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ABSTRACT

The OMAP  device is built upon a dual-core architecture that consists of a TIARM925T MPU
and a C55x  DSP device. Both cores have access to internal memory via an internal memory
interface (IMIF) as well as external memory via two external memory interfaces, namely the
EMIF Slow (EMIFS) and EMIF Fast (EMIFF). This application report focuses on the ARM side
of the device and investigates the performance that can be achieved for executing program
code that is located in internal or external memory. Examples will be given for instances
where program code is placed in external memories such as SDRAM and SRAM.
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1 Introduction
The DSP Catalog OMAP device is built upon a dual-core architecture that consists of a
TIARM925T MPU and a C55x DSP. Both cores have access to internal memory via an inter-
nal memory interface (IMIF) as well as external memory via two external memory interfaces,
namely the EMIF Slow (EMIFS) and EMIF Fast (EMIFF).

This application report focuses on the ARM side of the device and investigates the perfor-
mance that can be achieved for executing program code that is located in internal or external
memory. This document will also provide a brief description of the MPU subsystem, data
paths for internal and external memory, and will show how to achieve the best performance
for MPU program accesses.

2 Overview of the MPU Subsystem
The main features of the MPU subsystem are:

• MPU core

• 16KB 2-way set associative instruction-cache with 16 byte line size

• 8KB 2-way set associative data-cache with 16 byte line size

• 32-bit x17 deep Write Buffer

• Memory Management Unit (MMU)

The OMAP5910 MPU core, namely the TIARM925T, is a 32-bit reduced instruction set (RISC)
processor. The MPU has the ability to perform 32-bit or 16-bit instructions and process 32-bit,
16-bit, and 8-bit data. The 16-bit instruction format is an extension to the ARM architecture and
provides a subset of the original 32-bit instructions. The 16-bit instruction set is also known as
the “thumb” instruction set and has been developed to reduce code size. Thumb instructions are
compressed versions of some of the original 32-bit instructions. Hence, prior to the execution, a
thumb instruction is decompressed by the MPU. The thumb instruction set does have its
limitations by reducing the number of instructions available and limiting the number of
general-purpose core registers available. However, the ability to switch between 32-bit
instructions and 16-bit instructions during the program flow can allow significant savings in code
size.
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The TIARM925T MPU has a five-stage pipeline architecture that allows different phases of
different instructions to be performed simultaneously. For example, the MPU five-stage pipeline
consists of a fetch, decode, execute, data memory access, and register write phase. Therefore,
while the first instruction is being decoded, the second can be fetched.

Since the MPU is a 32-bit processor, it has a 32-bit addressing range and hence, provides a
4GB address space. Specific details of the MPU memory map can be found in the OMAP5910
Dual-Core Technical Reference Manual (SPRU602).

The MMU provides the ability to use virtual space addressing and permission checking within
the system. In other words, the MMU performs virtual to physical address translations and
checks whether the process wishing to access a particular memory region has permission to do
so.

The instruction-cache (I-cache), data-cache (D-cache), write-buffer, and MMU can be enabled or
disabled within the system as the user wishes. However, it should be noted that the I-cache can
be used independently of the MMU, whereas the data-cache and write-buffer cannot. Therefore,
the use of I-cache does not require enabling the MMU, whereas the use of the data-cache and
write buffer do.

A detailed description of the MPU subsystem can be found in OMAP5910 Dual-Core Technical
Reference Manual (SPRU602).

3 Overview of the OMAP5910 Traffic Controller and Memory Interfaces

The OMAP5910 can support up to three shared memories, via three memory interfaces, namely
the internal memory interface (IMIF), external memory interface slow (EMIFS) and external
memory interface fast (EMIFF). The IMIF provides a 32-bit interface to the internal 192KB SRAM
on the OMAP5910. Unlike the IMIF, the EMIFS and EMIFF are user-configurable and provide a
16-bit interface to a variety external memory. The EMIFS supports memories such as FLASH,
ROM, SRAM and synchronous burst FLASH, whereas the EMIFF only supports SDRAM.

The on-chip devices that have access to the three memory-interfaces are the MPU, DSP,
System DMA, DSP DMA and USB Host Controller. With up to five devices being able to access
any of the shared-memories within the system, there is an important need to manage the “traffic”
within the device. Hence, the task of the OMAP5910 traffic controller is to manage all accesses
made by the five on-chip devices to shared-memory.

4 MPU Program Performance Analysis

4.1 System Setup

The following were used in the course of creating this application report:

• Test board with:

– 256Mbit Infineon SDRAM (HYB39S256160AT-8)

– 512KB Samsung SRAM (KM616U4000CLT-7L) 

• Tektronix TLA704 logic analyzer

• POMAP5910CGZG
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• Spectrum Digital XDS510PP_Plus emulator

• PC running Windows  2000 OS

• Code Composer Studio  v2.1 for OMAP

4.2 OMAP5910 Configuration

Prior to evaluating the program performance of the MPU, the OMAP5910 was configured by
running an initialization routine. The initialization routine configured the OMAP5910 in the
following manner:

4.2.1 OMAP5910 Clock Domains

The OMAP5910 clock domains were configured as shown in Table 1.

Table 1. Clock Domain Settings

Clock Domain Frequency

MPU 150MHz

DSP 150MHz

Traffic Controller 75MHz

Peripheral Clocks 75MHz

LCD 75MHz

DSP MMU 75MHz

The above clock domains are derived from the OMAP5910 digital phase locked loop (DPLL),
which was configured for 150MHz clock generation, in synchronous scalable mode. Note that
the output of the OMAP5910 DPLL is itself derived from an external 12MHz clock.

Other than the MPU and traffic controller (TC) clock domains, all other clock domains are not
relevant for these tests. However, in order to set the MPU and TC domains all had to be
configured, and so they were set as shown above. Note that the settings of these other timer
domains will not have any direct effect on the results.

4.2.2 EMIFS Configuration

The EMIFS is configured by specifying:

• For a write operation:

The number of wait states between write operations (WRWST)

The number of wait states for which the write enable signal is asserted (WELEN)

• For a read operation, the number of wait states between the assertion of chip select and
output being valid (RDWST).
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The EMIFS has a total of four chip selects and for each chip select there is a separate EMIFS
configuration register. Therefore, to configure the EMIFS for a particular memory, the
appropriate configuration register must be programmed with the required WRWST, WELEN, and
RDWST value. The EMIFS internal clock reference for each chip select is derived from the traffic
controller clock, which can be divided down as required by setting the FCLKDIV value in the
appropriate EMIFS configuration register. Table 2 shows how the values WRWST, WELEN, and
RDWST are related to FCLKDIV and can be used to configure read/write cycle times for the
EMIFS.

Table 2. EMIFS CS Active Widths for Asynchronous Reads/Write

FCLKDIV CS Active Width Read (TC cycles) CS Active Width Write (TC Cycles)

/1 1*(RDWST+1)+1 1*(WRWST+WELEN+1)+2

/2 2*(RDWST+1)+2 2*(WRWST+WELEN+1)+4

/4 4*(RDWST+1)+4 4*(WRWST+WELEN+1)+8

/6 6*(RDWST+1)+6 6*(WRWST+WELEN+1)+12

The EMIFS was connected to a 512KB SRAM, which had a minimum access period of 70ns. For
this application, the EMIFS was configured using the following setup:

FCLKDIV = 1, RDWST = 4, WRWST = 1, WELEN = 3

Table 3 shows the minimum timing requirements for the SRAM and actual timing that the EMIFS
was configured to ensure correct operation. Note that even though the write cycle was not
optimal, this was not a concern as only read accesses were being analyzed.

Table 3. EMIFS Timing

Parameter Symbol SRAM Timing Requirement EMIFS Configuration

Read Cycle Time tRC 70ns (min) 80ns

Write Cycle Time tWC 70ns (min) 93.3ns

4.2.3 EMIFF Configuration

The EMIFF timing is configured by specifying the following parameters:

• SDRAM Frequency Range: This parameter is used to group SDRAMs into four categories
based on operating speed alone. Therefore, the read/write timing for an SDRAM is
determined by specifying the appropriate SDRAM Frequency Range category.

• SDRAM Type: This parameter is used to indicate the SDRAM’s size, width and number of
banks.

• Refresh Mode and Refresh Period

• CAS Latency
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The EMIFF was connected to a 256Mb SDRAM, which had a maximum operational speed of
125MHz. For this application, the EMIFF was configured using the following setup:

• SDRAM Frequency Range: SDF0

• SDRAM Type: 256Mb, 16-bit width, 4 banks

• Refresh Mode and Refresh Period: Auto-refresh @ 585 TC cycles

• CAS Latency = 2

Table 4 shows the minimum timing requirements for the SDRAM and actual timing that the
EMIFF was configured to use to ensure correct operation. Note that the below timing may not
appear that optimal, but this was the only configuration available that would meet the SDRAM
timing specification.

Table 4. EMIFF Timing

Parameter Symbol SDRAM Timing Requirement EMIFF Configuration

Row cycle time tRC 70 ns (min) 120 ns

Row active time tRAS 48 ns (min) 67 ns

Row precharge time tRP 20 ns (min) 40 ns

RAS to CAS delay tRCD 20 ns (min) 26 ns

Row active to row
active delay

tRRD 16 ns (min) 26 ns

CAS latency CASL 2 clocks 2 clocks

4.2.4 Traffic Controller Configuration

The traffic controller manages all accesses between the three memory interfaces, namely the
IMIF, EMIFS and EMIFF and the requestors to these interfaces such as the MPU, DSP, DMAs
and USB host controller. At any one time there can be potentially more than one requestor
wishing to access the same memory interface. By default no requestor has priority over another,
so in this case the traffic controller will make sure that the interface is shared fairly between
requestors. However, the traffic controller has three priority registers that allow the user to set
the priority of each requestor for each memory interface accordingly. A requestor of higher
priority will be allowed to retain access to a memory interface for a longer duration before having
to share it with another requestor of lower priority.

For this particular investigation, the memory interface priority registers were not reconfigured
and their default setting was used. In other words, no requestor had priority over another.
However, when only program accesses are being performed by the MPU alone, there is only
one requestor, and so setting these registers with different priority configurations would not have
made a difference.
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4.2.5 MPU MMU Configuration

During the evaluation of the MPU program performance, tests were carried out with MPU MMU
enabled and with the MPU MMU disabled.

For the tests where the MMU was enabled, it was configured as follows:

• 4096 1Mb sections

• Translation Table located in external SDRAM

• Full read/write permissions to all sections

All sections are cacheable apart from:

• MPU and DSP peripheral address space

• MPU MMU translation table

4.2.6 DSP Configuration

For evaluating the MPU’s program performance, it was not necessary for the DSP to be
operational and so the DSP was held in reset for the duration of the analysis. Note that despite
configuring the DSP clock domain to operate at 150MHz (as shown above) the DSP clock was
never actually enabled.

4.3 MPU Program Performance Examples

The program performance examples provide analysis of the throughput that can be achieved
when program code is located in internal SRAM, external SDRAM, and external SRAM. These
examples also investigate the effects of the I-cache, MMU and thumb instruction set on the MPU
program performance.

It should be noted that the instructions executed during these tests by the MPU were simply a
series of MOVE operations that had the same source and destination registers. In other words,
these MOVE operations are essentially dummy commands and thus, are referred to as NOPs
(no operation).

The program performance of the MPU was evaluated by:

• Using a 6MHz internal timer on the OMAP5910.

• Using a GPIO to trigger a logic analyzer and capture the activity at the external memory
interfaces. Note that when executing program code located in internal SRAM, it was not
possible to capture the bus activity using a logic analyzer.

With the I-cache enabled, tests were produced to evaluate 100% cache-misses and 100%
cache-hit cases, to illustrate the worst and best case scenarios. Note that in order to generate a
100% miss scenario, the I-cache was flushed prior running the test; for a 100% hit scenario, the
I-cache was filled prior to running the test with the test code.
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However, given that the I-cache is only 16KB, only a total of 4096 32-bit or 8192 16-bit
instructions can reside in the cache. Therefore, when executing a test case with more
instructions than could be accommodated within the I-cache, it was necessary to configure the
test code as a loop of N instructions that could reside within the cache. Note that the number of
times the loop was executed was dependent on the total number of instructions that were to be
executed in the test itself. It was also found that filling the whole cache would not generate the
most reliable data, because prior to executing the test routine after filling the cache, intermediate
instructions for setting up a timer or GPIO would thrash regions of the I-cache. Therefore, a
100% cache-hit scenario would not be produced. To overcome this issue, it was decided that a
100% cache-hit scenario could be produced by filling only half of the cache and taking
advantage of the 2-way set associative configuration of the I-cache.

In the following subsections the terms are used:

• Latency between reads describes the period between latching the instruction at a memory
interface, to the start of the next read operation seen at a memory interface. Hence, this
latency accounts for the time taken for the instruction to propagate through the TC to the
MPU, and then for the request from the MPU to make the next read access to propagate
back through the TC to the memory interface.

• MPU cycles per instruction read describes the average number of MPU cycles for each
instruction read. This value was calculated by using the 6MHz timer to measure the time
taken for the MPU to execute 40000 NOP instructions and then dividing the result by 40000,
to get the average number of cycles per instruction. This value was also verified for
instruction fetches from the external memory, by viewing the activity on the external memory
interfaces with a logic analyzer.

• MPU cycles per cache line fill describes the average number of MPU cycles for each
cache line fill. This value was calculated by using the “MPU cycles per instruction read” and
multiplying this value by the number of instructions in a cache line. This value was also
verified for external memories, by viewing the activity on the external memory interfaces
during a cache miss with a logic analyzer.

• ARM and thumb refer to where the MPU uses the 32-bit instruction set and 16-bit instruction
set, respectively.



SPRA891

9 OMAP5910 ARM Program Throughput Analysis

4.3.1 External SRAM Examples

Table 5 summarizes the MPU program throughput achieved, when the program code was
located in external SRAM.

Table 5. External SRAM Performance

MPU
Mode

Instruction
Cache MMU

Number of
NOPs

Latency Between
Reads (MPU Cycles)

MPU Cycles Per
Instruction Read

MPU Cycles Per
Cache Line Fill

ARM OFF OFF 40000 12 36 –

ARM OFF ON 40000 See Note 1 36 –

ARM Miss OFF 40000 12 27 108

ARM Miss ON 40000 See Note 1 27 108

ARM Hit OFF 40000 See Note 2 1 –

ARM Hit ON 40000 See Note 2 1 –

Thumb OFF OFF 40000 12 24 –

Thumb OFF ON 40000 See Note 1 24 –

Thumb Miss OFF 40000 12 13.75 110

Thumb Miss ON 40000 See Note 1 13.75 110

Thumb Hit OFF 40000 See Note 2 1 –

Thumb Hit ON 40000 See Note 2 1 –

NOTES: 1. The MMU performs virtual to physical address translation, by using a translation table that maps virtual memory sections to physical
memory sections. The location of the translation table is user-defined and so can be placed in any memory location the MPU can
access. When the MMU is enabled, to avoid having to always reference the translation table when performing a virtual to physical
address mapping, the MMU has translation look-aside buffers (TLBs) that are used to store the addresses of most recent memory
sections that have been accessed. Therefore, with respect to the above table, when the MMU is enabled, the latency for the first
read will be dependent on whether the address falls into a memory section whose physical address is already located in the TLBs.
If it is located in the TLBs, then the latency of the first read will be the same as for the cases where the MMU is disabled. Otherwise,
the latency of the first read will be delayed by the time taken to fetch the address from the memory where the translation table is
located

2. When the I-cache is enabled and a cache hit occurs, because there is no activity on the EMIFS, it is not possible to measure the
latency of the first read.

Table 5 shows that when the I-cache is disabled, the average instruction read time is greater
than when the I-cache is enabled and a miss occurs. Therefore, performance through the
EMIFS with the I-cache disabled, does not reflect the performance with the I-cache enabled
during a cache-miss. The reason for this can be explained by referring to the following two
figures. Figures 1 and 2 show the activity observed on the EMIFS address bus, output-enable
(OE) signal, and chip-select (CS) signal during a sequence of external SRAM read accesses
made by the MPU, with the I-cache disabled and enabled, respectively. Note that in these
waveforms each address seen on the SRAM ADDR bus represents a 16-bit read.

Figure 1 shows that two 16-bit words are being read per chip-select, because in this case, the
MPU is using the 32-bit instruction set and so bursts two 16-bit reads back-to-back. However,
between 32-bit instruction reads, there is a delay of 80ns (12 MPU cycles) that occur. Note that
this delay is the latency between reads that is shown in table 5 and accounts for the propagation
delay through the EMIFS and TC.
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Figure 1. External SRAM Read Accesses with I-Cache Disabled (ARM Mode)

Figure 2 illustrates that with the I-cache enabled, eight consecutive 16-bit reads occur per
chip-select, which is equivalent to an I-cache line fill. It also shows that a delay of 80ns (12 MPU
cycles) only occurs between cache line fills, as opposed to between every instruction read when
the I-cache is disabled. For this reason we see an improvement in the average time between
instruction reads with the I-cache enabled.

Figure 2. External SRAM Read Accesses with I-Cache Enabled (ARM Mode)
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When the I-cache is enabled during a cache-hit, the MPU achieves an average time of one MPU
cycle per instruction read. When the I-cache is disabled, the average time for a 16-bit instruction
(thumb) fetch is less efficient in terms of MPU cycles per bit than the average time for a 32-bit
instruction (ARM) fetch. The reason for this is explained in Figure 1 and Figure 3. They show the
activity observed on the EMIFS address bus, output-enable (OE) signal and chip-select (CS)
signal during a sequence of external SRAM read accesses made by the MPU, in ARM and
thumb modes, respectively. Note that in these waveforms each address seen on the SRAM
ADDR bus represents a 16-bit read.

Figure 1 shows that two 16-bit words are being read per chip-select, because in this case the
MPU is using the 32-bit instruction set and so bursts two 16-bit reads back-to-back. This figure
shows that between 32-bit instruction reads that a delay of 80ns (12 MPU cycles) occurs. Note
that this delay is the latency between reads that is shown in Table 5 and accounts for the
propagation delay through the EMIFS and TC.

Figure 3. External SRAM Read Accesses with I-Cache Disabled (Thumb Mode)

Figure 3 shows that one 16-bit word is being read per chip-select, due to the fact that in this
case the MPU is using the 16-bit instruction set. This figure also shows that that a delay of 80ns
(12 MPU cycles) occurs between every 16-bit instruction read, as opposed to between every
32-bit instruction read when using the 32-bit instruction set. Hence, there is an improved
efficiency in terms of MPU cycles per bit when using the 32-bit instruction set with the I-cache
disabled.

When the I-cache is enabled, 16-bit and 32-bit instruction formats have nearly the same
efficiency in terms of MPU cycle per bit. This would be expected because the time taken to fill a
cache line should be the same irrespective of instruction size. However, an I-cache line fill takes
two MPU cycles longer when using the 16-bit instruction set.

Enabling the MMU, regardless of whether the I-cache was enabled or disabled, did not have any
noticeable effect on the program performance.
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4.3.2 External SDRAM Examples

Table 6 summarizes the MPU program throughput achieved, when the program code was
located in external SDRAM.

Table 6. External SDRAM Performance

MPU
Mode

Instruction
Cache MMU

Number of
NOPs

Latency Between
Reads (MPU Cycles)

MPU Cycles Per
Instruction Read

MPU Cycles Per
Cache Line Fill

ARM OFF OFF 40000 10 18 –

ARM OFF ON 40000 See Note 1 18 –

ARM Miss OFF 40000 10 7.5 30

ARM Miss ON 40000 See Note 1 7.5 30

ARM Hit OFF 40000 See Note 2 1 –

ARM Hit ON 40000 See Note 2 1 –

Thumb OFF OFF 40000 10 18 –

Thumb OFF ON 40000 See Note 1 18 –

Thumb Miss OFF 40000 10 4 32

Thumb Miss ON 40000 See Note 1 4 32

Thumb Hit OFF 40000 See Note 2 1 –

Thumb Hit ON 40000 See Note 2 1 –

NOTES: 1. The MMU performs virtual to physical address translation, by using a translation table that maps virtual memory sections to physical
memory sections. The location of the translation table is user-defined and so can be placed in any memory location the MPU can
access. When the MMU is enabled, to avoid having to always reference the translation table when performing a virtual to physical
address mapping, the MMU has translation look-aside buffers (TLBs) that are used to store the addresses of most recent memory
sections that have been accessed. Therefore with respect to the above table, when the MMU is enabled the latency for the first read,
will be dependent on whether the address falls into a memory section whose physical address is already located in the TLBs. If it
is located in the TLBs, then the latency of the 1st read will be the same as for the cases where the MMU is disabled. Otherwise the
latency of the first read will be delayed by the time taken to fetch the address from the memory where the translation table is located

2. When the I-cache is enabled and a cache hit occurs, then because there is no activity on the EMIFF, it was not possible to measure
the latency of the first read.

Table 6 indicates that the average instruction read time when the I-cache is disabled is more
than twice as much than when the I-cache is enabled and a cache miss occurs. Therefore, the
performance through the EMIFF with the I-cache disabled, does not reflect the performance with
the I-cache enabled during a cache-miss. The reason for this can be explained by referring to
Figure 4 and Figure 5. They show the activity observed on the EMIFF row access strobe (RAS),
column access strobe (CAS) and write enable (WE) signals during a sequence of external
SDRAM read accesses made by the MPU, with the I-cache disabled and enabled, respectively.
Note that in these figures, the TC cycles are illustrated by the top waveform labeled “sample”.

Figure 4 shows that the RAS goes low first to activate an SDRAM row. Three TC cycles after the
RAS, the CAS goes low to start the read burst. Note that because the SDRAM has a CAS
latency of 2, the first data word in the burst will appear on the EMIFF data bus two cycles after
the assertion of the CAS.
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Another two TC cycles after the CAS, the WE signal is activated to terminate the read burst at
the same time the first 16-bit word appears on the EMIFF data bus. Again with a CAS latency of
2, the burst will not be terminated for another two cycles. Once a read burst has started, new
data will appear on the EMIFF data bus every TC cycle. Therefore, by the time the burst has
been terminated, two 16-bit words will have been read. This is to be expected because in this
case the MPU is using the 32-bit instruction set and so will burst two 16-bit reads back-to-back.
The latching of the second 16-bit word would occur two cycles after the assertion of the WE
signal. Following the latching of the second 16-bit word there are 5 more TC cycles (10 MPU
cycles) that occur before the next burst read command (CAS) is seen. This delay is the latency
between reads that is shown in table 6 and accounts for the propagation delay through the
EMIFS and TC.

Figure 4. External SDRAM Read Accesses with I-Cache Disabled (ARM Mode)

Figure 5 shows that the RAS goes low first to activate an SDRAM row. Three TC cycles after the
RAS, the CAS goes low to start the read burst. Note that because the SDRAM has a CAS
latency of 2, the first data word in the burst will appear on the EMIFF data bus two cycles after
the assertion of the CAS signal. Once a read burst has started, new data will appear on the
EMIFF data bus every TC cycle until such a time when the burst is terminated.

Another eight TC cycles after the CAS, the WE signal is activated to terminate the read burst.
Again with a CAS latency of 2, the burst will not be terminated for another two cycles. Therefore,
by the time the burst has been terminated eight 16-bit words will have been read, which is
equivalent to an I-cache line fill. The latching of the eighth 16-bit word will occur two cycles after
the assertion of the WE signal. Following the latching of the eighth 16-bit word, there are five
more TC cycles (10 MPU cycles) that occur before the next burst read command (CAS) is seen.
This delay is the latency between reads that is shown in Table 6 and accounts for the
propagation delay through the EMIFS and TC.
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Figure 5. External SDRAM Read Accesses with I-Cache Enabled (ARM Mode)

Figure 5 illustrates that with the I-cache enabled, a delay of 10 MPU cycles only occurs between
cache line fills. However, Figure 4 shows that when the I-cache is disabled, a delay of 10 MPU
cycles is seen between every instruction read. For this reason we see an improvement in the
average time between instruction reads with the I-cache enabled.

When the I-cache is enabled during a cache-hit the MPU achieves an average time of one MPU
cycle per instruction read.

When the I-cache is disabled the average time for a 16-bit instruction (thumb) fetch is less
efficient in terms of MPU cycles per bit than the average time for a 32-bit instruction (ARM)
fetch. The reason for this can be explained by referring to Figure 4 and Figure 6. These figures
show the activity observed on the EMIFF row access strobe (RAS), column access strobe (CAS)
and write enable (WE) signals during a sequence of external SDRAM read accesses made by
the MPU, in ARM and thumb modes, respectively.

Figure 4 shows that between 32-bit instruction reads, a delay of 10 MPU cycles occurs. Note
that this delay is the latency between reads that is shown in Table 6 and accounts for the
propagation delay through the EMIFS and TC.
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Figure 6. External SDRAM Read Accesses with I-Cache Disabled (Thumb Mode)

Figure 6 illustrates that the RAS signal goes low first to activate an SDRAM row. Three TC
cycles after the RAS, the CAS goes low to start the read burst. Note that because the SDRAM
has a CAS latency of 2, the first data word in the burst will appear on the EMIFF data bus two
cycles after the assertion of the CAS.

Another TC cycle after the CAS, the WE signal is activated to terminate the read burst. Again
with a CAS latency of 2, the burst will not be terminated for another two cycles. The first 16-bit
word appears on the EMIFF data bus, one TC cycle after the WE is asserted. Hence, by the
time the burst has been terminated, only one 16-bit word would have been read. This is to be
expected because in this case, the MPU is using the 16-bit instruction set, and so will only read
one 16-bit word at a time. The latching of the 16-bit word occurs two cycles after the assertion of
the WE signal. Following the latching of the 16-bit word there are six more TC cycles (12 MPU
cycles) that occur before the next burst read command (CAS) is seen. Note that this delay is the
latency between reads that is shown in Table 6 and accounts for the propagation delay through
the EMIFS and TC.

Figure 6 shows that when using the thumb instruction set, there is a delay of 12 MPU cycles
between every 16-bit read. However, Figure 4 illustrates that there was only a delay of 10 MPU
cycles for every 32-bit instruction that was read. Therefore, there is an improved efficiency in
terms of MPU cycles per bit when using the 32-bit instruction set as opposed to the 16-bit
instruction set when the I-cache is disabled.

When the I-cache is enabled, 16-bit and 32-bit instruction formats have nearly the same
efficiency in terms of MPU cycle per bit. This would be expected because the time taken to fill a
cache line should be the same irrespective of instruction size. However, it should be noted that
an I-cache line fill, takes two MPU cycles longer when using the 16-bit instruction set.

Enabling the MMU, regardless of whether the I-cache was enabled or disabled, did not have any
noticeable effect on the program performance.
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4.3.3 Internal SRAM Examples

Table 7 summarizes the MPU program throughput achieved, when the program code was
located in external SRAM.

Table 7. Internal SRAM Performance

MPU
Mode

Instruction
Cache MMU

Number of
NOPs

Latency Between
Reads (MPU Cycles)

MPU Cycles Per
Instruction Read

MPU Cycles Per
Cache Line Fill

ARM OFF OFF 40000 See Note 1 8 –

ARM OFF ON 40000 See Note 1 8 –

ARM Miss OFF 40000 See Note 1 3.5 14

ARM Miss ON 40000 See Note 1 3.5 14

ARM Hit OFF 40000 See Note 1 1 –

ARM Hit ON 40000 See Note 1 1 –

Thumb OFF OFF 40000 See Note 1 8 –

Thumb OFF ON 40000 See Note 1 8 –

Thumb Miss OFF 40000 See Note 1 2 16

Thumb Miss ON 40000 See Note 1 2 16

Thumb Hit OFF 40000 See Note 1 1 –

Thumb Hit ON 40000 See Note 1 1 –

NOTE 1: The latency of the 1st read was not possible to measure for all internal SRAM benchmarks, simply because it is not feasible to monitor
the activity of the internal buses within the device.

Table 7 indicates that when the I-cache is disabled, the average time of an instruction read is
greater than when the I-cache is enabled and a miss occurs. Therefore, it should be noted that
the performance through the IMIF with the I-cache disabled, does not reflect the performance
with the I-cache enabled during a cache-miss. When an I-cache miss occurs, a complete cache
line, consisting of 16 bytes, will be fetched in a single burst access, across the IMIF and through
the TC. However, when the I-cache is disabled, each instruction is read individually over the
IMIF and through the TC. Given that there is a fixed initial latency for each access that is made,
the more data that is read per access will have the effect of reducing the total overhead. Hence,
it is more efficient to read instructions in bursts with the I-cache enabled, than individually when
I-cache is disabled.

When the I-cache is enabled during a cache-hit, the MPU achieves an average time of one MPU
cycle per instruction read. When the I-cache is disabled the average time of a 16-bit instruction
(thumb) fetch is less efficient in terms of MPU cycles per bit than the average time of a 32-bit
instruction (ARM) fetch. In fact, the average number of MPU instructions per instruction read is
the same for both 16-bit and 32-bit instructions. The reason for this is that the OMAP5910 has
32-bit buses running between the internal SRAM and MPU. Therefore, whether the MPU is
reading 16-bit or 32-bit instructions the latency for fetching an individual instruction with the
I-cache disabled will be the same.
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When the I-cache is enabled, 16-bit and 32-bit instruction formats have nearly the same
efficiency in terms of MPU cycle per bit. This would be expected because the time taken to fill a
cache line should be the same irrespective of instruction size. However, it should be noted that
an I-cache line fill, takes two MPU cycles longer when using the 16-bit instruction set.

Enabling the MMU, regardless of whether the I-cache was enabled or disabled, did not have any
noticeable effect on the program performance.

5 Conclusions

In general, to ensure the most optimum MPU program performance, the I-cache should always
be enabled. Disabling the I-cache will not allow the multiple instructions to be fetched in a single
burst and hence, will have a considerable effect on the system performance. The 16-bit and
32-bit instruction sets have a comparable performance in terms of instructions per cycle,
depending on memory, when the I-cache is disabled. However, when the I-cache is enabled, the
16-bit instruction set has nearly twice the performance of the 32-bit instruction set. This is due to
twice the number of instructions being included per line fill. In addition to this, enabling the MMU
had no noticeable effect on the system performance for this particular case. Though, it should be
understood that the program code was located in a contiguous block of memory. So, it did not
thrash the TLBs as much as some code may.
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Appendix A OMAP Block Diagram
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Figure A–1. OMAP Block Diagram
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Appendix B MPU Memory Map

Table B–1. MPU Memory Map

Address Range On-Chip External Interface

0x0000 0000
0x01FF FFFF

FLASH CS0
32M bytes

0x0200 0000
0x03FF FFFF

reserved

0x0400 0000
0x05FF FFFF

FLASH CS1
32M bytes

0x0600 0000
0x07FF FFFF

reserved

0x0800 0000
0x09FF FFFF

FLASH CS2
32M bytes

0x0A00 0000
0x0BFF FFFF

reserved

0x0C00 0000
0x0DFF FFFF

FLASH CS3
32M bytes

0x0E00 0000
0x0FFF FFFF

reserved

0x1000 0000
0x13FF FFFF

SDRAM
64M bytes

0x1400 0000
0x1FFF FFFF

reserved

0x2000 0000
0x2002 FFFF

Internal SRAM
192K bytes

0x2003 0000
0x2FFF FFFF

reserved

0x3000 0000
0x7FFF FFFF

Local bus space for USB host

0x8000 0000
0xDFFF FFFF

reserved

0xE000 0000
0xE0FF FFFF

DSP public memory space (accessible by MPUI)
16M bytes

0xE100 0000
0xEFFF FFFF

DSP public peripherals
(accessible by MPUI)

0xFFFB 0000
0xFFFC FFFF

MPU public, MPU/DSP shared peripherals

0xFFFD 0000
0xFFFE FFFF

MPU private peripherals

0xFFFF 0000
0xFFFF FFFF

reserved
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