
TMS320C55x Image/Video
Processing Library

Programmer’s Reference

Preliminary

Literature Number SPRU037C
January 2004

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

iiiContents

Preface

Read This First

About This Manual

Welcome to the TMS320C55x image/video Library, or IMGLIB for short. The
IMGLIB is a collection of 31 high-level optimized DSP functions for the
TMS320C55x device. This source code library includes C-callable functions
(ANSI-C language compatible) for general-purpose imaging functions that in-
clude compression, video processing, machine vision, and medical imaging
type applications.

This document contains a reference for the IMGLIB functions and is organized
as follows:

Overview - an introduction to the TI C55x IMGLIB
� Installation - information on how to install and rebuild IMGLIB
� IMGLIB Functions - a description of the routines in the library and how

they are organized
� IMGLIB Function Tables - a list of functions grouped by categories
� IMGLIB Reference - a detailed description of each IMGLIB function
� Information about performance, warranty, and support

How to Use This Manual

The information in this document describes the contents of the TMS320C55x
IMGLIB in several different ways.

Chapter 1 provides a brief introduction to the TI C55x IMGLIB, shows the
organization of the routines contained in the library, and lists the features
and benefits of the IMGLIB.

Chapter 2 provides information on how to install, use, and rebuild the TI
C55x IMGLIB.

Chapter 3 provides a brief description of each IMGLIB function.

Chapter 4 provides information about each IMGLIB function in table for-
mat for easy reference. The information shown for each function includes

Contents

iv

the syntax, a brief description, and a page reference for obtaining more
detailed information.

Chapter 5 provides a list of the routines within the IMGLIB organized into
functional categories. The functions within each category include argu-
ments, descriptions, algorithms, benchmarks, and special requirements.

Appendix A describes performance considerations related to the C55x
IMGLIB and provides information about warranty issues, software up-
dates, and customer support.

Notational Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown
in a special typeface.

In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of a syntax
that are within parentheses describe the type of information that should be
entered.

Macro names are written in uppercase text; function names are written in
lowercase.

The TMS320C55x is also referred to in this reference guide as the C55x.

Related Documentation From Texas Instruments

The following books describe the TMS320C55x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C55x Technical Overview (SPRU393). This overview is an
introduction to the TMS320C55x digital signal processor (DSP). The
TMS320C55x is the latest generation of fixed-point DSPs in the
TMS320C5000 DSP platform. Like the previous generations, this
processor is optimized for high performance and low-power operation.
This book describes the CPU architecture, low-power enhancements,
and embedded emulation features of the TMS320C55x.

TMS320C55x DSP CPU Reference Guide (literature number SPRU371)
describes the architecture, registers, and operation of the CPU for the
TMS320C55x digital signal processors (DSPs).

Notational Conventions

Contents

vContents

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the TMS320C55x DSP algebraic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the mnemonic
instruction set.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature
number SPRU374) describes the TMS320C55x DSP mnemonic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the algebraic
instruction set.

TMS320C55x Programmer’s Guide (literature number SPRU376) describes
ways to optimize C and assembly code for the TMS320C55x DSPs and
explains how to write code that uses special features and instructions of
the DSP.

TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

TMS320C55x Optimizing C Compiler User’s Guide (literature number
SPRU281) describes the TMS320C55x C Compiler. This C compiler
accepts ANSI standard C source code and produces assembly language
source code for TMS320C55x devices.

TMS320C55x Hardware Extensions for Image/Video Application Pro-
grammer’s Reference (literature number SPRU098) describes the
built-in video hardware extensions for TMS320C55x DSPs and ex-
plains how to implement them for video application.

Trademarks

TMS320C55x is a trademark of Texas Instruments.

Related Documentation from Texas Instruments

Contents

vi

Contents

vii

Contents

1 Introduction 1-1.
1.1 Introduction 1-2.
1.2 Features and Benefits 1-2.
1.3 Software Routines 1-2.

2 Installing and Using IMGLIB 2-1.
2.1 IMGLIB Contents 2-2.
2.2 How to Install IMGLIB 2-3.
2.3 How to Rebuild IMGLIB 2-4.
2.4 Calling an IMGLIB Function From C 2-5.
2.5 Calling an IMGLIB Function from Assembly Language Source Code 2-6.
2.6 Where to Find Sample Code 2-7.

3 IMGLIB Function Descriptions 3-1.
3.1 IMGLIB Functions Overview 3-2.
3.2 Compression/Decompression 3-2.
3.3 Image Analysis 3-4.
3.4 Picture Filtering/Format Conversions 3-5.

4 IMGLIB Function Tables 4-1.
4.1 IMGLIB Function Tables 4-2.

5 IMGLIB Reference 5-1.
5.1 Compression/Decompression 5-2.
5.2 Image Analysis 5-45.
5.3 Picture Filtering/Format Conversions 5-50.

A Performance /Warranty and Support A-1.
A.1 Performance Considerations A-2.
A.2 Warranty A-6.
A.3 IMGLIB Software Updates A-6.
A.4 IMGLIB Customer Support A-6.

Contents

viii

Figures

5-1 Macro Expansion Algorithm 5-33.
5-2 Computing Nine Absolute Differences 5-34.
5-3 Alignment Case 1 Align_variable=0 5-37.
5-4 Alignment Case 2 Align_variable=1 5-38.
5-5 Alignment Case 3 Align_variable=2 5-39.
5-6 Alignment Case 4 Align_variable=3 5-40.
5-7 Full Interpolated Zone Organization 5-41.
5-8 Organization of original image with extension 5-53.
5-9 Organization of scale-by-2 output 5-54.
5-10 Original image with extension (128x128) 5-55.
5-11 Scale-by-2 result of original image with extension 5-55.

Tables

4-1. Compression/Decompression 4-2.
4-2. Image Analysis 4-3.
4-3. Picture Filtering/Format Conversions 4-4.
A-1. C55x Routines Performance Data A-3.

1-1

Introduction

This chapter introduces the TMS320C55x Image/Video Library (IMGLIB) and
describes its features and benefits.

Topic Page

1.1 Introduction 1-2.

1.2 Features and Benefits 1-2.

1.3 Software Routines 1-2.

Chapter 1

Introduction

 1-2

1.1 Introduction

The TI C55x IMGLIB is an optimized image/video processing functions library
for C programmers using TMS320C55x devices. It includes many C-callable,
assembly-optimized, general-purpose image/video processing routines.
These routines are typically used in computationally intensive real-time ap-
plications where optimal execution speed is critical. By using these routines,
you can achieve execution speeds considerably faster than equivalent code
written in standard ANSI C language. In addition, by providing ready-to-use
DSP functions, TI IMGLIB can significantly shorten your image/video process-
ing application development time.

1.2 Features and Benefits

The TI C55x IMGLIB contains commonly used image/video processing rou-
tines. Source code is provided that allows you to modify functions to match
your specific needs.

IMGLIB features include:

Optimized assembly code routines

C-callable routines fully compatible with the TI C55x compiler

Support large memory model

Benchmarks (cycles and code size)

1.3 Software Routines

The rich set of software routines included in the IMGLIB are organized into
three different functional categories as follows:

Compression and Decompression

Image Analysis

Picture Filtering/Format Conversion

Introduction / Features and Benefits / Software Routines

2-1

 Installing and Using IMGLIB

This chapter provides information on how to install and rebuild IMGLIB.

Topic Page

2.1 IMGLIB Contents 2-2.

2.2 How to Install IMGLIB 2-3.

2.3 How to Rebuild IMGLIB 2-4.

2.4 Calling an IMGLIB Function From C 2-5.

2.5 Calling an IMGLIB Function From Assembly Language
Source Code 2-6.

2.6 Where to Find Sample Code 2-7.

Chapter 2

IMGLIB Contents

 2-2

2.1 IMGLIB Contents

The TI IMGLIB software consists of several parts:

imglib.h, a header file for C programmers

image_sample.h, a header file that contains an image sample

wavelet.h, a header file for wavelet functions

55ximagex.lib, an object library to support large memory model

55ximage.lib, an object library to support small memory model

55ximage.src, a source library to allow function optimization by the end
user

Example programs and linker command files used under the examples
subdirectory.

After following the instructions in section 2.2, How to Install IMGLIB, the
IMGLIB directory structure and content you will find is:

IMAGELIB Directory containing these C55x IMGLIB files:

55ximage.lib Library file to use for small memory model

55ximagex.lib library file to use for large memory model

blt55x.bat Generate 55ximage.lib for small memory model
based on 55ximage.src

blt55xx.bat Generate 55ximagex.lib for large memory model
based on 55ximage.src

readme.txt Release notes

examples Directory containing examples covering all routines in-
cluded in the library

include Directory containing the following include files:

imagelib.h Include file with data types and function prototypes

wavelet.h Include file with five groups of wavelet filter banks

imagesample An image sample (128x128 Goldenhill)

55x_src Directory containing assembly source files for func-
tions

How to Install IMGLIB

2-3 Installing and Using IMGLIB

Warning

For the large memory model (55ximagex.lib), all the functions are
supported. For the small memory model (55ximage.lib), the
IMG_jpeg_vlc, IMG_jpeg_vld, IMG_sw_dct_8x8, and
IMG_sw_idct_8x8 are not supported.

2.2 How to Install IMGLIB

You should read the README.txt file for specific details of the release.

IMGLIB is distributed in two forms:

as part of Code Composer Studio in the c:\ti\c5500\imglib directory, or

as a zip file (external web download at www.ti.com)

The zip file automatically restores the IMGLIB individual components in
the same directory where you unzip the file. See section 2.1, IMGLIB Con-
tent, for a list of the directories and files contained in the ZIP file.

The IMGLIB root directory contains the library archive and the source ar-
chive. In order for the linker to find the library, you can update the C_DIR
environment variable,for example, by adding the following line in autoex-
ec.bat file:

SET C_DIR=<install_dir>/lib;<install_dir>/include;%C_DIR%

or under Unix/csh:

setenv C_DIR ”<install_dir>/lib;<install_dir>/
include; $C_DIR”

or under Unix/Bourne Shell:

C_DIR=”<install_dir>/lib;<install_dir>/include;$C_DIR”
; export C_DIR

You can also relocate the library file by copying the C55x IMGLIB object
library file, 55ximage.lib, or 55ximagex.lib to your C5500 run-time-support
library folder.

For example, if your TI C5500 tools are located in c:\ti\c5500\cgtools\bin,
and your C run-time-support libraries (rts55x.lib etc) are located in
c:\ti\c5500\cgtools\lib, copy 55ximage.lib to the second folder. Relocating
the library file allows the C55x compiler/linker to find C55x imaging li-
braries.

How to Rebuild IMGLIB

 2-4

2.3 How to Rebuild IMGLIB

For a full rebuild of 55ximage.lib, execute the blt55x.bat file. For a full rebuild
of 55ximagex.lib, execute the blt55xx.bat file.

A partial rebuild of IMGLIB enables you to modify a specific IMGLIB function.
As an example of a partial rebuild of 55ximagex.lib, follow these steps:

1) Extract the source for the selected function from the source archive. For
example to alter swdctal.asm, you would enter:

ar55 x 55ximage.src swdctal.asm

2) Assemble your new source file. For example:

cl55 -mg -ml swdctal.asm

3) Replace the original object file in the 55ximagex.lib object library with the
newly formed object file. For example:

ar55 r 55ximagex.lib swdctal.obj

Calling an IMGLIB Function From C

2-5 Installing and Using IMGLIB

2.4 Calling an IMGLIB Function From C

In addition to correctly installing the IMGLIB software, you must follow these
steps to include an IMGLIB function in your code:

Include the imagelib.h header file

Link your code with the IMGLIB object code library, 55ximage.lib or
55ximagex.lib

Use a correct linker command file describing the memory configuration
available in your C55x board

For example, the following code contains a call to the histogram routine in
IMGLIB:

#include <studio.h>
#include <stdlib.h>
#include <imagelib.h>
#include “imagesample.h”

#define MAX_PIXEL_VALUE 256
#define WIDTH 128
#define HEIGHT 128

void main()
{

int i
int size
int *input, *output

size = WIDTH*HEIGHT

input = &goldhill[0][0];
output = (int *)malloc((size_t)(MAX_PIXEL_VALUE*sizeof(int)));

// Initialize the histogram bins
for(i=0; i<MAX_PIXEL_VALUE; i++)

output[i] = 0;

histogram(input,output, size);
}

In this example, the histogram IMGLIB function is used to compute the histo-
gram of a sample image. The example code, histogram.c, is located in the \ex-
ample\histogram subdirectory. To compile and link this code with 55xi-
mage.lib, enter the following command:

cl55 -pk -g -o3 -i histogram.c -z -v0 ld3.cmd 55ximage.lib -m
hgram.map -o hgram.out

The examples presented in this document have been tested using the Texas
Instruments C55x emulator.

Refer to the TMS320C55x Optimizing C Compiler User’s Guide for information
about the compiler tools.

Calling an IMGLIB Function from Assembly Language Source Code

 2-6

2.5 Calling an IMGLIB Function from Assembly Language Source Code

The TMS320C55x IMGLIB functions were written to be used from C. Calling
the functions from assembly language source code is possible as long as the
calling function conforms to the Texas Instruments C55x C compiler calling
conventions. Refer to the TMS320C55x Optimizing C Compiler User’s Guide
if a more in-depth explanation is required.

Realize that the TI IMGLIB is not an optimal solution for assembly-only pro-
grammers. Even though IMGLIB functions can be invoked from an assembly
program, the result may not be optimal due to unnecessary C-calling over-
head.

Where to Find Sample Code

2-7 Installing and Using IMGLIB

2.6 Where to Find Sample Code

You can find examples on how to use every function in the C55x IMGLIB in the
examples subdirectory. The examples that cover the functions in
C55ximage.lib are as follows:

Example Function(s)

swdctidct IMG_sw_fdct_8x8

IMG_sw_idct_8x8

dctidct IMG_fdct_8x8

IMG_idct_8x8

Quantize

jpeg_vlc

jpeg_vld

IMG_jpeg_make_recip_tbl

IMG_jpeg_quantize

IMG_dequantize_8x8

IMG_jpeg_vlc

IMG_jpeg_vld

motion_estimation IMG_mad_16x16_4step

mad_8x8 IMG_mad_8x8

mad_16x16 IMG_mad_16x16

sad_8x8 IMG_sad_8x8

sad_16x16 IMG_sad_16x16

pixel_interpolation IMG_pix_Inter_16x16

1D_wavelet IMG_wave_decom_one_dim

IMG_wave_recon_one_dim

IMG_wavep_decom_one_dim

IMG_wavep_recon_one_dim

2D_wavelet IMG_wave_decom_two_dim

IMG_wave_recon_two_dim

IMG_wavep_decom_two_dim

IMG_wavep_recon_two_dim

Boundary IMG_boundary

Histogram IMG_histogram

Perimeter IMG_perimeter

Where to Find Sample Code

 2-8

Example Function(s)

Threshold IMG_threshold

conv_3x3 IMG_conv_3x3

corr_3x3 IMG_corr_3x3

Color_conversion IMG_ycbcr_rgb565

IMG_Scale_by_2 IMG_scale_by_2

3-1

IMGLIB Function Descriptions

This chapter provides a brief description of each IMGLIB function listed in three
categories. It also gives representative examples of their areas of applicability.

Topic Page

3.1 IMGLIB Functions Overview 3-2.

3.2 Compression/Decompression 3-2.

3.3 Image Analysis 3-4.

3.4 Picture Filtering/Format Conversions 3-5.

Chapter 3

Compression/Decompression

 3-2

3.1 IMGLIB Functions Overview

The C55x IMGLIB provides a collection of C-callable high performance rou-
tines that can serve as key enablers for a wide range of image/video process-
ing applications. These functions are representative of the high performance
capabilities of the C55x DSP. Some of the functions provided and their areas
of applicability are listed below. The areas of applicability are only provided as
representative examples. Users of this software will surely conceive many
more creative uses.

3.2 Compression/Decompression

The following Forward and Inverse DCT (Discrete Cosine Transform) func-
tions, with and without built-in hardware extension, are provided:

IMG_fdct_8x8
� IMG_sw_fdct_8x8
� IMG_idct_8x8
� IMG_sw_idct_8x8

The above four functions have applicability in a wide range of compression
standards such as JPEG Encode/Decode, MPEG Video Encode/Decode,
H.26x Encode/Decode. These compression standards are used in diverse
end-applications such as:

� JPEG is used in printing, photography, security systems, etc.

� MPEG video standards are\ used in digital TV, DVD players, Set-Top
Boxes, Video-on-Demand systems, Video Disc applications, Multime-
dia/Streaming Media applications, etc.

� H.26x standards are used in Video Telephony and some Streaming
Media applications.

IMG_mad_8x8

IMG_mad_16x16

IMG_sad_8x8

IMG_sad_16x16

IMG_mad_16×16_4step

IMG_pix_inter_16×16

IMGLIB Functions Overview / Compression/Decompression

Compression/Decompression

3-3IMGLIB Function Descriptions

The first five functions enable high performance motion estimation algo-
rithm usage in applications such as MPEG Video Encode, or H26x Encod-
er. The IMG_pix_inter_16×16 function enables high performance pixel in-
terpolation algorithm usage by fractal-pixel motion estimation in video en-
coding. Video encoding is useful in video-on-demand systems, streaming
media systems, video telephony, and other video systems. Motion estima-
tion is typically one of the most computation-intensive operation in video
encoding systems. The high performance enabled by the functions pro-
vided can enable significant improvements in such systems.

IMG_jpeg_make_recip_tbl

IMG_jpeg_quantize

IMG_dequantize_8x8

Quantization/Dequantization is an integral step in many image/video com-
pression systems, including those based on widely used variations of DCT
based compression such as JPEG, MPEG, and H.26x. The routines
IMG_jpeg_quantize and IMG_dequantize_8x8 can be used in such sys-
tems to perform the quantization and dequantization steps, respectively.

� IMG_jpeg_vlc
� IMG_jpeg_vld

The JPEG variable length coding and decoding functions provide an inte-
grated and efficient solution for performing variable length coding/decod-
ing and running length decoding/decoding for the 8x8 macro block, follow-
ing the ITU-T (CCITT) T.81 standard.

IMG_wave_decom_one_dim
� IMG_wave_recon_one_dim
� IMG_wavep_decom_one_dim
� IMG_wavep_recon_one_dim
� IMG_wave_decom_two_dim
� IMG_wave_recon_two_dim
� IMG_wavep_decom_two_dim
� IMG_wavep_recon_two_dim

Wavelet processing is finding increasing use in emerging standards such
as JPEG2000 and MPEG-4, where it is typically used to provide highly effi-
cient still picture compression. Various proprietary image compression
systems are also wavelets based. Included in this release are the above
eight utilities for computing 1-D/2-D Wavelet/Wavelet-Package decom-
position/reconstruction transforms. Together, they can be used to com-
pute 2-D wavelet transforms for image data. The routines are flexible
enough, within documented constraints, to be able to accommodate a
wide range of specific wavelets and image dimensions.

Image Analysis

 3-4

3.3 Image Analysis

The following functions are applicable to image analysis standards:

boundary

A boundary computation function, boundary, is provided. The boundary
function, along with perimeter, is a commonly used structural operator in
machine vision applications.

histogram

The routine histogram generates an image histogram. An image is basi-
cally a count of the intensity levels (or some other statistic) in an image. For
example, for a gray scale image with 8-bit pixel intensity values, the histo-
gram will consist of 256 bins corresponding to the 256 possible pixel inten-
sities. Each bin will contain a count of the number of pixels in the image that
have that particular intensity value. Histogram processing (such as histo-
gram equalization or modification) are used in areas such as machine vi-
sion systems and Image/Video Content generation systems.

perimeter

A perimeter computation function, perimeter, is provided. The perimeter
function, along with boundary, is a commonly used structural operator in
machine vision applications.

threshold

Different forms of Image Thresholding operations are used for various rea-
sons in image/video processing systems. For example, one form of
thresholding may be used to convert gray-scale image data to binary
image data for input to binary morphological processing. Another form of
thresholding may be used to clamp image data levels into a desired range,
and yet another form of thresholding may be used to zero out low level per-
turbations in image data due to sensor noise. This latter form of threshold-
ing is addressed in the routine threshold.

IMG_ycbcr422_rgb565

Color space conversion from YCbCr to RGB enables display of digital vid-
eo data generated, for instance, by an MPEG or JPEG decoder system on
RGB displays.

Picture Filtering/Format Conversions

3-5IMGLIB Function Descriptions

3.4 Picture Filtering/Format Conversions

This section provides a description of the functions that are applicable to pic-
ture filtering and format conversions.

IMG_conv_3x3

The convolution function is used to apply generic image filters with a 3x3 filter
mask, such as image smoothing, sharpening, etc.

IMG_corr_3x3

Correlation functions are provided to enable image matching. Image matching
is useful in applications such as machine vision, medical imaging, and securi-
ty/defense.

IMG_scale_by_2

This function upscales the image by the factor of 2, using built-in hardware ex-
tensions. This efficient routine makes it possible to match a small size video
stream with a large display size.

 3-6

4-1

 IMGLIB Function Tables

This chapter provides tables containing all IMGLIB functions, a brief descrip-
tion of each, and a page reference for more detailed information.

Topic Page

4.1 IMGLIB Function Tables 4-2.

Table 4-1 Compression/Decompression 4-2.

Table 4-2 Image Analysis 4-3.

Table 4-3 Picture Filtering/Format Conversions 4-4.

Chapter 4

IMGLIB Function Tables

 4-2

4.1 IMGLIB Function Tables

The routines included in the image library are organized into three functional
categories and listed below in alphabetical order.

Table 4-1. Compression/Decompression

Function Description Page

void IMG_dequantize_8x8(short *quantize_tbl,
short *deq_data);

Matrix dequantization 5-12

void IMG_fdct_8x8 (short *fdct_data,
short *inter_buffer);

2-D forward discrete cosine transform (DCT)
for 8*8 image block using built-in hardware
extensions

5-6

void IMG_idct_8x8 (short *idct_data,
short *inter_buffer);

2-D inverse discrete cosine transform for 8*8
DCT coefficients using built-in hardware
extensions

5-8

void IMG_jpeg_make_recip_tbl(short *quantize_tbl); Computation of the reciprocal table of the
quantization terms.

5-10

void IMG_jpeg_quantize(short *quantize_input,
short *zigzag, short *recip_tbl,
int *quantize_output);

Matrix quantization 5-11

void IMG_jpeg_vlc(int *input_data, int
*output_stream, int type);

JPEG variable length coding following ITU-T
(CCITT) T.81 standard

5-13

void IMG_jpeg_vld(int *input_stream, int *lastdc, int
*output_data, int type, vldvar_t *hufvar, huff_t *infor);

JPEG_variable length coding following ITU-T
(CCITT) T.81 standard

5-14

void IMG_mad_8x8(unsigned short *ref_data,
unsigned short *src_data, int pitc, int sx, int sy,
unsighed int* match)

8x8 minimum absolute difference 5-28

void IMG_mad_16x16(unsigned short *ref_data,
unsigned short *src_data, int pitc, int sx, int sy,
unsigned int* match)

16x16 minimum absolute difference 5-30

void IMG_mad_16x16_4step(short *src_data,
short * search_window, unsigned int *match)

Motion estimation by 4-step searching 5-32

void IMG_pix_inter_16x16(short *reference_window,
short *pixel_inter_block, int offset,
short *align_variable);

Half-pixel interpolation 5-35

unsigned sad_8x8(unsigned short *srcImg,
unsigned short *refImg, int pitch)

Sum of absolute differences on a single
8x8 block

5-42

unsigned sad_16x16(unsigned short *srcImg,
unsigned short *refImg, int pitch)

Sum of absolute differences on a single
16x16 block

5-44

IMGLIB Function Tables

4-3 IMGLIB Function Tables

PageDescriptionFunction

void IMG_sw_fdct_8x8 (short *fdct_data,
short *inter_buffer);

2-D forward discrete cosine transform for 8*8
image block without built-in hardware exten-
sions

5-2

void IMG_sw_idct_8x8 (short *idct_data,
short *inter_buffer);

2-D inverse discrete cosine transform for 8*8
DCT coefficients without built-in hardware ex-
tensions

5-4

void IMG_wave_decom_one_dim(short *in_data,
short *wksp, int *wavename, int length, int level);

1-D discrete wavelet transform 5-16

void IMG_wave_decom_two_dim(short **image,
short * wksp, int width, int height, int *wavename,
int level);

2-D discrete wavelet transform 5-20

void IMG_wave_recon_one_dim(short *in_data,
short *wksp, int *wavename, int length, int level);

1-D inverse discrete wavelet transform 5-17

void IMG_wave_recon_two_dim(short **image,
short * wksp, int width, int height, int *wavename,
int level);

2-D inverse discrete wavelet transform 5-22

void IMG_wavep_decom_one_dim(short *in_data,
short *wksp, int *wavename, int length, int level);

1-D discrete wavelet package transform 5-18

void IMG_wavep_decom_two_dim(short **image,
short * wksp, int width, int height, int *wavename,
int level);

2-D discrete wavelet package transform 5-24

void IMG_wavep_recon_one_dim(short *in_data,
short *wksp, int *wavename, int length, int level);

1-D inverse discrete wavelet package trans-
form

5-19

void IMG_wavep_recon_two_dim(short **image,
short * wksp, int width, int height, int *wavename,
int level);

2-D inverse discrete wavelet package trans-
form

5-26

Table 4-2. Image Analysis

Function Description Page

void IMG_boundary(short * in_data, int rows,
int cols, int *out_coord, int *out_gray);

Boundary structural operator 5-45

void IMG_histogram(short * in_data, short *out_data,
int size);

Histogram computation 5-46

void IMG_perimeter(short * in_data, int cols,
short *out_data);

Perimeter structural operator 5-47

void threshold(short * in_data, short *out_data,
short cols, short rows, short threshold_value)

Image thresholding 5-49

IMGLIB Function Tables

 4-4

Table 4-3. Picture Filtering/Format Conversions

Function Description Page

void IMG_conv_3x3(unsigned char *input_data,
unsigned char *output_data, unsigned char *mask,
int column, int shift);

3x3 convolution 5-50

void IMG_corr_3x3(unsigned char *input_data,
unsigned char *output_data, unsigned char *mask,
int row, int column, int shift, int round_val)

3x3 correlation with rounding 5-51

void IMG_scale_by_2(int *input_image, int
*output_image, int row, int column)

Implements image scaling by pixel
interpolation using built-in hardware
extensions

5-52

void IMG_ycbcr422_rgb565(short coeff[], short
*y_data, short *cb_data, short* cr_data, short
*rgb_data, num_pixels)

Planarized yCbCr 4:2:2/4:2:0 to RGB 5:6:5
color space conversion

5-56

5-1

IMGLIB Reference

This chapter provides a list of the routines within the IMGLIB and organized
into functional categories. The functions within each category are listed in al-
phabetical order and include arguments, descriptions, algorithms, bench-
marks, and special requirements.

Topic Page

5.1 Compression/Decompression 5-2.

5.2 Image Analysis 5-45.

5.3 Picture Filtering/Format Conversions 5-50.

Chapter 5

Compression/Decompression

 5-2

5.1 Compression/Decompression

2-D Forward Discrete Cosine Transform for an 8x8 Image BlockIMG_sw_fdct_8x8

Syntax void IMG_sw_fdct_8x8(short *fdct_data, short *inter_buffer);

Arguments Inputs:

fdct_data Points to a short format array [0..63] containing an 8x8
macro-block row by row. Data format is Q16.0.

inter_buffer Points to a short format array [0..71] used as a temporary
buffer that contains intermediate results in the transform

Outputs:

fdct_data Points to a short format array [0..63] containing results of 2-D
DCT for the macro-block. Data format is Q16.0.

Description The routine IMG_sw_fdct_8x8 implements the 2-D forward discrete cosine
transform (FDCT) for an 8x8 image block. Input and output data format is
singed Q16.0.

Algorithm The forward discrete cosine transform is described by the following equation:

I(u, v) �
a(u)s(v)

4
�

7

x � 0

�
7

y � 0

i(x, y) cos�(2x � 1)u�
16

� cos�(2y � 1)v�
16

�

where

z � 0 � �(z) � 1
2�

z � 0 � �(z) � 1

Special Requirements

Input array fdct_data and inter_buffer must be aligned on a 32-bit
boundary.

For optimal cycle performance, fdct_data and inter_buffer must be located
in different DARAM banks. r_coefs can be located in the same DARAM
bank as fdct_data. r_coeffs cannot be located in the same DARAM bank
with inter_buffer.

Implementation Notes

IMG_sw_fdct_8x8

5-3 IMGLIB Reference

The jpeidct.tab file contains ten DCT coefficients. These coefficients are
pointed to by label r_coefs and are used by this routine. For maximum per-
formance, r_coefs is located at DARAM.

Small Memory Model

Benchmark 1078 cycles without return

Code Size 188 words

Data Size 16 words (6 words in stack, 10 DCT coefficient words in DARAM)

Large Memory Model

Benchmark 1082 cycles without return

Code Size 192 words

Data Size 19 words (6 words in stack, 3 words in sysstack, 10 DCT coefficient words in
DARAM)

Example See the examples/swDCTIDCT subdirectory.

Compression/Decompression

 5-4

2-D Inverse Forward Discrete Cosine Transform for an 8x8 Image
Block

IMG_sw_idct_8x8

Syntax void IMG_sw_idct_8x8(short *idct_data, short *inter_buffer);

Arguments Inputs:

idct_data Points to a short format array [0..63] containing an 8x8
macro-block row by row. Data format is Q13.3.

inter_buffer Points to a short format array [0..71] used as a temporary
buffer that contains intermediate results in the transform

Outputs:

idct_data Points to a short format array [0..63] containing results of 2-D
DCT for the macro-block. Data format is Q16.0.

Description The IMG_sw_idct_8×8 routine implements the 2-D Inverse Discrete Cosine
Transform (IDCT) for an 8x8 input block. Input terms are expected to be signed
Q13.3 values, producing signed Q16.0 results.

Algorithm The Inverse Discrete Cosine Transform is described by the following equa-
tions:

i(x, y) �
�(u)�(v)

4
�

7

u � 0

�
7

v � 0

I(u, v) cos�(2x � 1)u�
16

� cos�(2y � 1)v�
16

�

where

z � 0 � �(z) � 1
2�

z � 0 � �(z) � 1

Special Requirements For maximum cycle performance, input array idct_data, intermediate buffer
inter_buffer, and r_coefs must be in different DARAM banks.

Implementation Notes

Local constant, r_coefs, contains the ten IDCT coefficients that are from
m4idct.tab. Data format is 16.0.

The m4idct.tab file contains ten IDCT coefficients. These coefficients are
pointed to by the r_coefs label and used for this routine. For maximum
performance, r_coefs should be located in DARAM.

IMG_sw_idct_8x8

5-5 IMGLIB Reference

Small Memory Model

Benchmark 672 cycles without return

Code Size 177 words

Data Size 21 words (11 words in stack, 10 IDCT coefficient words in DARAM)

Large Memory Model

Benchmark 676 cycles without return

Code Size 179 words

Data Size 23 words (11 words in stack, 2 words in sysstack, 10 IDCT coefficient words
in DARAM)

Example See the examples/swDCTIDCT subdirectory.

Compression/Decompression

 5-6

2-D Forward Discrete Cosine Transform for an 8x8 Image Using
Built-In Hardware Extensions

IMG_fdct_8x8

Syntax void IMG_fdct_8x8(short *fdct_data, short *inter_buffer);

Arguments Inputs:

fdct_data Points to a short format array [0..63] containing an 8x8
macro-block row by row. Data format is Q16.0.

inter_buffer Points to a short format array [0..71] used as a temporary
buffer that contains intermediate results in the transform

Outputs:

fdct_data Points to a short format array [0..63] containing the results of
2-D DCT for the macro-block. Data format is Q16.0.

Description The routine IMG_fdct_8x8 implements the 2-D Forward Discrete Cosine
Transform (FDCT) using built-in hardware extensions for an 8x8 image block.
Input terms are expected to be signed Q16.0 values, producing signed Q16.0
results.

Algorithm The Forward Discrete Cosine Transform is described by the following equa-
tions:

I(u, v) �
�(u)�(v)

4
�

7

x � 0

�
7

y � 0

i(x, y) cos�(2x � 1)u�
16

� cos�(2y � 1)v�
16

�

where

z � 0 � �(z) � 1
2�

z � 0 � �(z) � 1

i(x,y) : gray level of the pixel
I(u,v) : discrete cosine coefficient

Special Requirements

Input array fdct_data and inter_buffer must be aligned on a 32-bit
boundary.

For maximum performance, fdct_data and inter_buffer must be located in
different DARAM banks. r_coeffs can be located in the same DARAM
bank as fdct_data. r_coeffs cannot be located in the same DARAM bank
as inter_buffer.

IMG_fdct_8x8

5-7 IMGLIB Reference

Small Memory Model

Benchmark 238 cycles without return

Code Size 118 words

Data Size 5 words (5 words in stack)

Large Memory Model

Benchmark 240 cycles without return

Code Size 120 words

Data Size 7 words (5 words in stack, 2 words in sysstack)

Example See the examples/hwDCTIDCT subdirectory.

Compression/Decompression

 5-8

2-D Inverse Discrete Cosine Transform for an 8x8 Image Block Us-
ing Built-In Hardware Extensions

IMG_idct_8x8

Syntax void IMG_idct_8x8(short *idct_data, short *inter_buffer);

Arguments Inputs:

idct_data Points to a short format array [0..63] containing an 8x8
macro-block row by row. Data format is Q13.3.

inter_buffer Points to a short format array [0..71] used as a temporary
buffer that contains intermediate results in the transform

Outputs:

idct_data Points to a short format array [0..63] containing the results of
2-D IDCT for the input block. Data format is Q16.0.

Description The routine IMG_idct_8x8 implements the 2-D Inverse Discrete Cosine Trans-
form (IDCT) using built-in hardware extensions for an 8x8 image block. Input
terms are expected to be signed Q13.3 values, producing signed Q16.0 re-
sults.

Algorithm The Inverse Discrete Cosine Transform is described by the following equa-
tions:

i(x, y) �
�(u)�(v)

4
�

7

u � 0

�
7

v � 0

I(u, v) cos�(2x � 1)u�
16

� cos�(2y � 1)v�
16

�
where

z � 0 � �(z) � 1
2�

z � 0 � �(z) � 1

Special Requirements

For maximum cycle performance, input array idct_data and inter_buffer
must be located in different DARAM blocks.

IMG_idct_8x8

5-9 IMGLIB Reference

Small Memory Model

Benchmark 165 cycles without return

Code Size 112 words

Data Size 2 words (2 words in stack)

Large Memory Model

Benchmark 168 cycles without return

Code Size 120 words

Data Size 4 words (2 words in stack, 2 words in sysstack)

Example See the examples/hwDCTIDCT subdirectory.

IMG_jpeg_make_recip_tbl

5-10

Computation of the Reciprocal Table of the Quantization TermsIMG_jpeg_make
_recip_tbl

Syntax void IMG_jpeg_make_recip_tbl(short *quantize_tbl);

Arguments Inputs:

quantize_tbl Points to an integer format array [0..63] containing an 8x8
quantization table row by row. Data format is Q16.0.

Outputs:

quantize_tbl Points to an integer format array [0..63] containing the recip-
rocal table of the quantization table. Data format is Q16.0.

Description The routine IMG_jpeg_make_recip_tbl computes the reciprocal table of the
quantization table. It is an initialization of quantization. The reciprocal quanti-
zation table used in IMG_jpeg_quantize reduces the computation cost by
avoiding division operations. Input terms are expected to be signed Q16.0 val-
ues, producing signed Q16.0 results.

Small Memory Model

Benchmark 1413 cycles without return

Code Size 16 words

Data Size 1 word (1 word in stack)

Example See the examples/IMG_jpeg_quantization subdirectory.

IMG_jpeg_quantize

5-11 IMGLIB Reference

Matrix QuantizationIMG_jpeg_quan-
tize

Syntax void IMG_jpeg_quantize(short *quantize_input, short *zigzag,
short *recip_tbl, int *quantize_output);

Arguments Inputs:

quantize_input Points to an integer format array [0..63] containing an 8x8
matrix row by row. Data format is Q16.0.

zigzag Points to an integer format array [0..63] containing an 8x8
zigzag table row by row. Data format is 16.0.

recip_tbl Points to an integer format array containing an 8x8 recipro-
cal table of the quantization terms which is computed by
IMG_jpeg_make_recip_tbl row by row. Data format is
Q16.0.

Outputs:

quantize_output Points to a integer format array [0..63] containing the 8x8
quantized output of the input matrix row by row. Data for-
mat is Q16.0.

Description The IMG_jpeg_quantize routine quantizes an 8x8 input matrix by multiplying
the contents with a third block of values that contains reciprocals of the quanti-
zation terms in zigzag order. This step corresponds to the quantization that is
performed in 2-D DCT-based compression techniques. The output is in zigzag
order (JPEG required). Input and output data format is Q16.0.

Implementation Notes Since the quantization output is in zigzag order, the data format must be
changed to get the output in normal order. Since the output order is dominant
by the zigzag argument, the output order can be changed by replacing the zig-
zag matrix to satisfy an image processing requirement.

Small Memory Model

Benchmark 215 cycles without return

Code Size 31 words

Data Size 1 word (1 word in stack)

Example See the examples/IMG_jpeg_quantization subdirectory.

IMG_dequantize_8x8

5-12

Matrix deQuantizationIMG_dequan-
tize_8x8

Syntax void IMG_dequantize_8x8(short *quantize_tbl, short *deq_data);

Arguments Inputs:

quantize_tbl Points to an integer format array [0..63] containing an 8x8
quantization table row by row. Data format is Q16.0.

deq_data Points to an integer format array [0..63] containing an 8x8
quantized matrix row by row. Data format is Q16.0.

Outputs:

deq_data Points to a integer format array [0..63] containing the 8x8
dequantized output of the input matrix row by row. Data for-
mat is Q16.0.

Description The IMG_dequantize_8x8 routine dequantizes an 8x8 input matrix by multi-
plying the contents with a second block of values that contains the quantization
terms. This step corresponds to the dequantization that is performed in 2-D
DCT-based compression techniques. The output is in normal order. Input and
output data format is Q16.0.

Implementation Notes The output of IMG_jpeg_quantize needs to be changed to remove the zigzag
format before the application of IMG_dequantize_8x8.

Small Memory Model

Benchmark 132 cycles without return

Code Size 10 words

Data Size 0 words

Example See the IMG_jpeg_quantize example in the examples/IMG_jpeg_quantiza-
tion subdirectory. You will find a linker command file in the example.

IMG_jpeg_vlc

5-13 IMGLIB Reference

JPEG Baseline Variable Length CodingIMG_jpeg_vlc

Syntax void IMG_jpeg_vlc(int *input_data, int *output_stream, int *VLC_status, int
type);

Arguments Inputs:

input_data Points to the zigzagged quantized 8x8 DCT coefficient of a
macro block.

type Input_data is 8x8 luminance block or chrominance block.
Luminance block: 0, Chrominance block: 1

VLC_status The buffer to hold intermediate coding status.

Outputs:

output_stream Huffman coded VLC data stream. The length of output is
data-dependent.

Description This routine takes an 8x8 zigzagged quantized DCT coefficient and returns
a bitstream of a JPEG baseline Huffman coding. The routine checks ITU-T
T.81 Huffman tables and performs DC and AC coefficient coding, including
run-length code and variable length code. Before calling the routine, the
luminance code table and chrominance code table have to be initialized by
the IMG_jpeg_initialization routine. The JPEG encoder only needs to call
this routine once.

Algorithm This routine implements running length coding and variable length coding for
the 8x8 macro block following the ITU-T (CCITT) T.81 standard baseline se-
quential method. Note that the DCT component from the previous macro block
is needed for this routine.

Benchmark

Cycles Data-dependent

Code Size 339 words

Data Size 393 for Huffman look-up table

Example See the examples/JPEG_VLC subdirectory.

IMG_jpeg_vld

5-14

JPEG Baseline Variable Length Decoding of an 8x8 MBIMG_jpeg_vld

Syntax void IMG_jpeg_vld(int *input_stream, int *lastdc, int *output_data, int type,
vldvar_t *hufvar, huff_t *infor);

Arguments Inputs:

input stream Points to a JPEG baseline VLC coded bitstream. The length
of the bitstream is not fixed.

lastdc Specifies DC coefficient from the previous MB

type Input_stream is JPEG VLC coded bitstream of 8x8 lumi-
nance block or chrominance block. Luminance block: 0,
Chrominance block: 1

vldevart_t Points to a structure containing Huffman tables, control
tables, and their property

huff_t Points to a context structure containing coding parameters
of the MB to be decoded and the current state of the bit-
stream buffer

Outputs:

output_data Points to the JPEG baseline VLD decoded quantized DC co-
efficients in normal order

Description This routine takes a bitstream of a JPEG Baseline VLC coded macroblock
(MB) and returns the decoded IDCT coefficients. The routine checks the
code book and performs DC and AC coefficient decoding, including variable
length decoder, run-length expansion, inverse zigzag ordering, and satura-
tion and mismatch control. Before this routine is called, you must initialize
the variable of VLC and set up the Huffman look-up tables. Input is a JPEG
VLC-coded bitstream of an 8x8 luminance block or chrominance block.

Implementation Notes

The following structure is defined in this routine.

 typedef struct {

 int bit_ptr; /* bit counter for current word (MSB-16) */

 int buf_ptr; /* buffer counter for data buffer (*databuf)
*/

 int bits_count; /* Reserved Default value is 0*/

 int *databuf; /* Reserved pointer to current data buffer, Default
value is 0 */

 } huff_t

IMG_jpeg_vld

5-15 IMGLIB Reference

typedef struct {

 int UvldTabDC[2][32]; /* 32 may NOT be enough */

 int UvldCtlTabDC[2][17];

 int UvldTabAC[2][256]; /* 256 may NOT be enough */

 int UvldCtlTabAC[2][17];

 int UvldLenMaxDC[2];

 int UvldLenMaxAC[2];

} vldvar_t;

struct vlccode {

 unsigned int len;

 unsigned int word;

 unsigned int pattern;

 };

struct control {

 unsigned int th_lower;

 int shift;

 int offset;

};

C header file, Vld.h, should be included in the source file.

Assemble file, consth.inc, should be included .

VLD.h includes the data structure definition and two utility C routines, InitDe-
hufVars and makevldtab. Before calling the routine, the bitstream variables
have to be initialized by the InitDehufVar routine, and then the Huffman table
is set up by the makevldtab routine.

Algorithm This routine implements variable-length coding and inverse scan for an 8x8
chrominance block or luminance block.

Benchmark

Cycles Data-dependent

Code Size 634 words
 Huffman look-up table: 700 words

IMG_wave_decom_one_dim

5-16

One Dimensional Pyramid Wavelet DecompositionIMG_wave_de-
com_one_dim

Syntax void IMG_wave_decom_one_dim(short *in_data, short *wksp,
int *wavename, int length, int level)

Arguments Inputs:

in_data Points to input vector of size length. Data format is Q16.0.

wksp Points to work space of size length

wavename Points to wavelet filter coefficients

length Specifies length of input and work space data array

level Specifies level of decomposition

Outputs:

in_data Stores the output of the decomposition. Data format is Q16.0.

Description One dimensional wavelet pyramid decomposition. The wavelet filter coeffi-
cients are passed by the vector wavename. The length of the input vector
should be divided by 2^level. The decomposition output is stored in the same
vector of input. The IMG_wave_decom_one_dim function calls the decomIn-
place assembly function. Input and output data format is Q16.0.

Implementation Notes

No scaling implemented for overflow prevention.

There is no overflow prevention in the wavelet functions. However, if the
input is in the range of [0, 255], there should be no overflow up to at least
five levels of decomposition for all wavelets filters. The library has the fol-
lowing five families of wavelets: bior, coif, daub, rbio and sym.

Small Memory Model

Benchmark [(Filter Length + 3)/2] � [Signal Length] � [2-2^(1- level)]+87 Cycles

Code Size IMG_wave_decom_one_dim: 32 words
DecomInplace: 67 words

Data Size DecomInplace: 4 words (4 words in stack)

Example See the examples/1D_Wavelet subdirectory.

IMG_wave_recon_one_dim

5-17 IMGLIB Reference

One Dimensional Pyramid Wavelet ReconstructionIMG_wave_re-
con_one_dim

Syntax void IMG_wave_recon_one_dim(short *in_data, short *wksp,
int *wavename, int length, int level);

Arguments Inputs:

in_data Points to input vector of size length. Data format is Q16.0.

wksp Points to work space of size length

wavename Points to wavelet filter coefficients

length Specifies length of input and work space data array

level Specifies level of reconstruction

Outputs:

in_data Stores the output of the reconstruction. Data format is Q16.0.

Description One dimensional wavelet pyramid reconstruction. The wavelet filter coeffi-
cients are passed by the vector wavename. The length of the input vector
should be divided by 2^level. The reconstruction output is stored in the same
vector of input. The IMG_wave_recon_one_dim function calls the recon-
Inplace assembly function. Input and output data format is Q16.0.

Implementation Notes

No scaling implemented for overflow prevention.

There is no overflow prevention in the wavelet functions. However, if the
input is in the range of [0, 255], there should be no overflow up to at least
five levels of decomposition for all wavelets filters. The library has the fol-
lowing five families of wavelets: bior, coif, daub, rbio and sym.

Small Memory Model

Benchmark [(Filter Length + 4)/2] � [Signal Length] � [2-2^(1- level)] + 85 Cycles

Code Size IMG_wave_recon_one_dim: 39 words
reconInplace: 85 words

Data Size reconInplace: 5 words (5 words in stack)

Example See the examples/1D_Wavelet subdirectory.

IMG_wavep_decom_one_dim

5-18

One Dimensional Wavelet Packet DecompositionIMG_wavep_de-
com_one_dim

Syntax void IMG_wavep_decom_one_dim(short *in_data, short *wksp,
int *wavename, int length, int level);

Arguments Inputs:

in_data Points to input vector of size length. Data format is Q16.0.

wksp Points to work space of size length

wavename Points to wavelet filter coefficients

length Specifies length of input and work space data array

level Specifies level of decomposition

Outputs:

in_data Stores the output of the decomposition. Data format is Q16.0.

Description One dimensional wavelet packet decomposition. The wavelet filter coeffi-
cients are passed by the vector wavename. The length of the input vector
should be divided by 2^level. The decomposition output is stored in the same
vector of input. The IMG_wavep_decom_one_dim function calls the decomIn-
place assembly function. Input and output data format is Q16.0.

Implementation Notes

No scaling implemented for overflow prevention.

There is no overflow prevention in the wavelet functions. However, if the
input is in the range of [0, 255], there should be no overflow up to at least
five levels of decomposition for all wavelets filters. The library has the fol-
lowing five families of wavelets: bior, coif, daub, rbio and sym.

Small Memory Model

Benchmark [(Filter Length + 3)/2] � [Signal Length] � [level] + 90 Cycles

Code Size IMG_wavep_decom_one_dim: 57 words
DecomInplace: 67 words

Data Size DecomInplace: 4 words (4 words in stack)

Example See the examples/1D_Wavelet subdirectory.

IMG_wavep_recon_one_dim

5-19 IMGLIB Reference

One Dimensional Wavelet Packet ReconstructionIMG_wavep_rec
on_one_dim

Syntax void IMG_wavep_recon_one_dim(short *in_data, short *wksp,
int *wavename, int length, int level);

Arguments Inputs:

in_data Points to input array of size length. Data format is Q16.0.

wksp Points to work space of size length

wavename Points to wavelet filter coefficients

length Specifies length of input and work space data vectors

level Specifies level of reconstruction

Outputs:

in_data Stores the output of the reconstruction. Data format is Q16.0.

Description One dimensional wavelet packet reconstruction. The wavelet filter coefficients
are passed by the vector wavename. The length of the input array should be
divided by 2^level. The reconstruction output is stored in the same array of
in_data. The IMG_wavep_recon_one_dim function calls the reconInplace
assembly function. Input and output data format is Q16.0.

Implementation Notes

No scaling implemented for overflow prevention.

There is no overflow prevention in the wavelet functions. However, if the
input is in the range of [0, 255], there should be no overflow up to at least
five levels of decomposition for all wavelets filters. The library has the fol-
lowing five families of wavelets: bior, coif, daub, rbio and sym.

Small Memory Model

Benchmark [(Filter Length + 4)/2] � [Signal Length] � [level] + 94 Cycles

Code Size IMG_wavep_recon_one_dim : 69 words
reconInplace: 85 words

Data Size reconInplace: 5 words (5 words in stack)

Example See the examples/1D_Wavelet subdirectory.

IMG_wave_decom_two_dim

5-20

Two Dimensional Pyramid Wavelet DecompositionIMG_wave_de-
com_two_dim

Syntax void IMG_wave_decom_two_dim(short **image, short *wksp, int width,
int height, int *wavename, int level);

Arguments Inputs:

image Points to image matrix of size width by height. Data format is
Q16.0.

wksp Points to work space of size max (width, height)

wavename Points to wavelet filter coefficients

width Specifies row size of the image

height Specifies column size of the image

level Specifies level of decomposition

Outputs:

image Stores the decomposed image. Data format is Q16.0.

Description Two dimensional wavelet pyramid decomposition. The wavelet filter coeffi-
cients are passed by the vector wavename. The width and height of the image
should be divided by 2^level. The decomposed image is stored in the same
matrix of in_data. The IMG_wave_decom_two_dim function calls three
assembly functions: decomInplace, col2row and decomCol. Input and output
data format is Q16.0.

Implementation Notes

No scaling implemented for overflow prevention.

There is no overflow prevention in the wavelet functions. However, if the
input is in the range of [0, 255], there should be no overflow up to at least
five levels of decomposition for all wavelets filters. The library has the fol-
lowing five families of wavelets: bior, coif, daub, rbio and sym.

IMG_wave_decom_two_dim

5-21 IMGLIB Reference

Small Memory Model

Benchmark 35 + 13 x level + (322 x height +210 x width) x [1-2^(- level)] + 4/3 x width x
height x (filter length + 2) x [1-4^(- level)]

Code Size IMG_wave_decom_two_dim: 71 words
DecomInplace: 67 words
col2row: 6 words
decomCol: 56 words

Data Size DecomInplace: 5 words (5 words in stack)
col2row: 0 words
decomCol: 5 words (5 words in stack)

Example See the examples/2D_Wavelet subdirectory.

IMG_wave_recon_two_dim

5-22

Two Dimensional Pyramid Wavelet ReconstructionIMG_wave_re-
con_two_dim

Syntax void IMG_wave_recon_two_dim(short **image, short *wksp, int width,
int height, int *wavename, int level);

Arguments Inputs:

image Points to image matrix of size width by height. Data format is
Q16.0.

wksp Points to work space of size max (width, height)

wavename Points to wavelet filter coefficients

width Specifies row size of the image

height Specifies column size of the image

level Specifies level of reconstruction

Outputs:

image Stores the reconstructed image. Data format is Q16.0.

Description Two dimensional wavelet pyramid reconstruction. The wavelet filter coeffi-
cients are passed by the vector wavename. The width and height of the image
should be divided by 2^level. The reconstructed image is stored in the same
matrix of in_data. The IMG_wave_recon_two_dim function calls three assem-
bly functions: decomInplace, col2row and decomCol. Input and output data
format is Q16.0.

Implementation Notes

No scaling implemented for overflow prevention.

There is no overflow prevention in the wavelet functions. However, if the
in_data is in the range of [0, 255], there should be no overflow up to at least
five levels of decomposition for all wavelets filters. The library has the fol-
lowing five families of wavelets: bior, coif, daub, rbio and sym.

Small Memory Model

Benchmark 13 x level + 246 x height x [1-2^(- level)] + 448 x width x [1-2^(- length)] + 4/3
x (filter length +4) x [1-4^(- level)]

Code Size IMG_wave_recon_two_dim: 87 words
InterlaceCol: 43 words

IMG_wave_recon_two_dim

5-23 IMGLIB Reference

ReconCol: 58 words
 reconInplace: 85 words

Data Size InterlaceCol: 5 words
ReconCol: 5 words
reconInplace. 5 words

Example See the examples/2D_Wavelet subdirectory.

IMG_wavep_decom_two_dim

5-24

Two Dimensional Wavelet Package DecompositionIMG_wavep_de-
com_two_dim

Syntax void IMG_wavep_decom_two_dim(short **image, short *wksp, int width,
int height, int *wavename, int level);

Arguments Inputs:

image Points to image matrix of size width by height. Data format is
Q16.0.

wksp Points to work space of size max (width, height)

wavename Points to wavelet filter coefficients

width Specifies row size of the image

height Specifies column size of the image

level Specifies level of decomposition

Outputs:

image Stores the decomposed image. Data format is Q16.0.

Description Two dimensional wavelet packet decomposition. The wavelet filter coefficients
are passed by the vector wavename. The width and height of the image should
be divided by 2^level. The decomposed image is stored in the same matrix of
in_data. The IMG_wavep_decom_two_dim function calls three assembly
functions: decomInplace, col2row and decomCol. Input and output data for-
mat is Q16.0.

Implementation Notes

No scaling implemented for overflow prevention.

There is no overflow prevention in the wavelet functions. However, if the
in_data is in the range of [0, 255], there should be no overflow up to at least
five levels of decomposition for all wavelets filters. The library has the fol-
lowing five families of wavelets: bior, coif, daub, rbio and sym.

Small Memory Model

Benchmark (110 x height + 137 x width) x (2^level -1) + (filter length x 0.25 + 2.25) x (width
x height) x level + 20 x (width + height) x level

Code Size IMG_wavep_decom_two_dim: 101 words
DecomInplace: 67 words

IMG_wavep_decom_two_dim

5-25 IMGLIB Reference

col2row: 6 words
decomCol: 56 words

Data Size DecomInplace: 5 words (5 words in stack)
col2row: 0 words
decomCol: 5 words (5 words in stack)

Example See the examples/2D_Wavelet subdirectory.

IMG_wavep_recon_two_dim

5-26

Two Dimensional Wavelet Package ReconstructionIMG_wavep_re-
con_two_dim

Syntax void IMG_wavep_recon_two_dim(short **image, short *wksp, int width,
int height, int *wavename, int level);

Arguments Inputs:

image Points to image matrix of size width by height. Data format is
Q16.0.

wksp Points to work space of size max (width, height)

wavename Points to wavelet filter coefficients

width Specifies row size of the image

height Specifies column size of the image

level Specifies level of reconstruction

Outputs:

image Stores the reconstructed image. Data format is Q16.0.

Description Two dimensional wavelet packet reconstruction. The wavelet filter coefficients
are passed by the vector wavename. The width and height of the image should
be divided by 2^level. The reconstructed image is stored in the same matrix
of in_data. The IMG_wavep_decom_two_dim function calls three assembly
functions: decomInplace, col2row and decomCol. Input and output data for-
mat is Q16.0.

Implementation Notes

No scaling implemented for overflow prevention.

There is no overflow prevention in the wavelet functions. However, if the
in_data is in the range of [0, 255], there should be no overflow up to at least
five levels of decomposition for all wavelets filters. The library has the fol-
lowing five families of wavelets: bior, coif, daub, rbio and sym.

IMG_wavep_recon_two_dim

5-27 IMGLIB Reference

Small Memory Model

Benchmark Level x [32 + 123 x height + 224 x weight + (filter length +4) x width x height]

Code Size IMG_wave_recon_two_dim: 87 words
InterlaceCol: 43 words
ReconCol: 58 words
reconInplace: 85 words

Data Size InterlaceCol: 5 words
ReconCol: 5 words
reconInplace: 5 words

Example See the examples/2D_Wavelet subdirectory.

IMG_mad_8x8

5-28

8x8 Minimum Absolute DifferenceIMG_mad_8x8

Syntax void IMG_mad_8x8(unsigned short *ref_data, unsigned short *src_data,
 int pitch, int sx, int sy, unsigned int* match)

Arguments Inputs

*ref_data Points to a pixel in a reference image which constitutes the
top-left corner of the area to be searched. The dimensions of
the search area are given by (sx+8)x(sy+8)

src_data[] Points to 8x8 source image pixels. Must be word aligned.

pitch Width of reference image

sx Horizontal dimension of the search space

sy Vertical dimension of the search space

match [2] match[0]: packed best match location. The upper half-word
contains the horizontal pixel position and the lower half-word
contains the vertical pixel position of the best matching 8x8
block in the search area. The range of the coordinates is
[0,sx-1] in the horizontal dimension and [0,sy-1] in the verti-
cal dimension, where the location (0.0) represents the top-
left corner of the search area.
match[1]: minimum absolute difference value at the best
match location.

Description This routine locates the position of the top-left corner of an 8x8 pixel block in
a reference image which most closely matches the 8x8 pixel block in
src_data[], using the sum of absolute difference metric. The source image
block, src_data[], is moved over a range that is sx pixels wide and sy pixels tall
within a reference image that is pitch pixels wide. The pointer, *ref_data, points
to the top-left corner of the search area within the reference image. The match
location as well as the minimum absolute difference value for the match are
returned in the match[2] array. The search is performed in top-to-bottom, left-
to-right order, with the earliest match taking precedence in the case of ties.

Algorithm

Calculate all sads in the range of [0,sx-1]x[0,sy-1].

Get the minimum sad.

Special Requirements

Sy must be a multiple of 12.

Every two pixels are packaged into one word.

IMG_mad_8x8

5-29 IMGLIB Reference

Implementation Notes

This routine is developed based on built-in motion estimation hardware
extension.

Small Memory Model

Benchmarks 38.5*sx*sy+95 cycles
For sx=10, sy=24, cycles=9,558
For sx=64, sy=24, cycles=60,642

Code Size 268 words

Data Size 8 words (8 words in stack)

Large Memory Model

Benchmarks 38.5*sx*sy+95 cycles
For sx=10, sy=24, cycles=9,415
For sx=64, sy=24, cycles=59,749

Code Size 270 words

Data Size 8 words (8 words in stack)

Example See the examples/mad_8x8 subdirectory.

IMG_mad_16x16

5-30

16x16 Minimum Absolute DifferenceIMG_mad_16x16

Syntax void IMG_mad_16x16(unsigned short *ref_data, unsigned short *src_data,
 int pitch, int sx, int sy, unsigned int* match)

Arguments Inputs

*ref_data Points to a pixel in a reference image which constitutes the
top-left corner of the area to be searched. The dimensions of
the search area are given by (sx+16)x(sy+16)

src_data[] Points to 16x16 source image pixels. Must be word aligned.

pitch Width of reference image

sx Horizontal dimension of the search space

sy Vertical dimension of the search space

match [2] match[0]: packed best match location. The upper half-word
contains the horizontal pixel position and the lower half-word
contains the vertical pixel position of the best matching 8x8
block in the search area. The range of the coordinates is
[0,sx-1] in the horizontal dimension and [0,sy-1] in the verti-
cal dimension, where the location (0.0) represents the top-
left corner of the search area.
match[1]: minimum absolute difference value at the best
match location.

Description This routine locates the position of the top-left corner of a 16x16 pixel block in
a reference image which most closely matches the 16x16 pixel block in
src_data[], using the sum of absolute difference metric. The source image
block, src_data[], is moved over a range that is sx pixels wide and sy pixels tall
within a reference image that is pitch pixels wide. The pointer, *ref_data, points
to the top-left corner of the search area within the reference image. The match
location, as well as the minimum absolute difference value for the match, are
returned in the match[2] array. The search is performed in top-to-bottom, left-
to-right order, with the earliest match taking precedence in the case of ties.

Algorithm

Calculate all sads in the range of [0,sx-1]x[0,sy-1].

Get the minimum sad.

Special Requirements

Sy must be a multiple of 12.

Every two pixels are packaged into one word.

IMG_mad_16x16

5-31 IMGLIB Reference

Implementation Notes

This routine is developed based on built-in motion estimation hardware
extension.

Small Memory Model

Benchmarks 85.5*sx*sy+95 cycles
For sx=10, sy=12, cycles=10,378
For sx=64, sy=24, cycles=131,682

Code Size 301 words

Data Size 8 words (8 words in stack)

Large Memory Model

Benchmarks 85.5*sx*sy+95 cycles
For sx=10, sy=12, cycles=10,379
For sx=64, sy=24, cycles=131,683

Code Size 304 words

Data Size 8 words (8 words in stack)

Example See the examples/mad_16x16 subdirectory.

IMG_mad_16x16_4step

5-32

Motion Estimation by 4-Step Search Using Built-In Hardware Exten-
sions

IMG_mad_16x16
_4step

Syntax void IMG_mad_16x16_4step(short *src_data, short *search_window,
unsigned int *match);

Arguments Inputs:

src_data Points to a packed integer format buffer [0..1q28] that con-
tains 16x16 source data row by row. Data format is Q16.0.
Every two pixels are packed into one 16-bit integer.

search_window Points to a packed integer format buffer [0..1152] that con-
tains the 48x48 search-window row by row. Data format is
Q16.0. Every two pixels are packed into one 16-bit integer.

Outputs:

match[2] The location of the best match block is packed in match[0].
The upper halfword contains the horizontal pixel position,
and the lower halfword contains the vertical pixel position
of the best matching 16x16 block in the search window.
The minimum absolute difference value at the best match
location is packed in match[1].

Description The routine IMG_mad_16x16_4step implements the motion estimation by
4-step (distance=8,4,2,1) search using built-in hardware extensions. The
4-step search is a popular fast-searching technique. Input terms are packed
in 16-bit integers and doubleword aligned. Input and output data format is
Q16.0.

Algorithm The motion estimation by 4-step search is described by the following equa-
tions:

Initialization:

d={8,4,2,1}

Given pixel as the start point of searching window.

i=0;

for(i=0; i<4; i++)

{

Call the macros for d[i] and generate the nine absolute-difference table. Com-
pute the minimum of the nine error table based on distance d[i] as shown in
Figure 5-2 .

Start above process around the minimum location for the new distance.

IMG_mad_16x16_4step

5-33 IMGLIB Reference

d[i+1].

}

The algorithm is also described in Figure 5-1.

Figure 5-1. Macro Expansion Algorithm

d[i]

d[i]

Partial search
Resulting vector

IMG_mad_16x16_4step

5-34

Figure 5-2 illustrates how to compute nine absolute differences.

Figure 5-2. Computing Nine Absolute Differences

16 pixels

Block 3
Block 2
Block 1

Block 4
Block 5
Block 6
Block 7
Block 8
Block 9

d[i]

Offset

d[i] 16 pixels

refBlock 16 pixels

16
pixels

Search image

Special Requirements

src_data and search_window must be aligned on a (32-bit) boundary.

src_data and search_window use word-packed memory. Every 16-bit
word of src_data and search_window contains two 8-bit pixels.

src_data and search_window must be located in different DARAM bank
for optimal cycle performance.

Implementation Notes The block_index section stores 12 integers needed for the location in 4-step
searching.

Small Memory Model

Benchmark 2225 cycles without return

Code Size 429 words

Data Size 17 words (5 words in stack, 12 words DRAM)

Example See the examples/motion_estimation subdirectory.

IMG_pix_inter_16x16

5-35 IMGLIB Reference

Pixel Interpolation for 16x16 Image BlockIMG_pix_inter_16x16

Syntax void IMG_pix_inter_16x16(short *reference_window, short *pixel_in-
ter_block,

int offset, short *align_variable);

Arguments Inputs:

reference_window Points to a packed integer format buffer [0..1152] that
contains a 48x48 image block row by row. Must be dou-
bleword aligned. Every four pixels are packed into one
32-bit doubleword. Data format Q16.0.

offset Specifies the top-left corner index of the 18x18 MBE
(MBE=16x16 macro block + extension) in refer-
ence_window. Offset is even because of the doubleword
alignment.

align_variable Configures four alignment cases of the MBE in the refer-
ence_window

Outputs:

pixel_inter_block Points to a packed integer format buffer [0..612] that
contains the 36x34 interpolated result. Only the lower
33x33 part that corresponds to the whole 36x34 interpo-
lated zone is usually used. Every four pixels are packed
into one 32-bit doubleword.

Description The routine IMG_pix_inter_16x16 implements pixel interpolation for a 16x16
source block located in reference_window using built-in hardware extensions.
This pixel interpolation routine adapts to the fractal-pixel motion estimation
technique in video compression. To implement full interpolation for the 16x16
source block, the 18x18 MBE (MBE=16x16 macro block + extension) is need-
ed. The full interpolated zone is composed of 36x34 pixels, but only the lower
33x33 part corresponding to the full interpolated zone is usually interested.
The original pixels and interpolated pixels in the full interpolated zone are orga-
nized in different 16 bits to adapt to the related motion estimation technique.

IMG_pix_inter_16x16

5-36

Algorithm The half-pixel interpolation is described by the following equations and dia-
grams.

U� �� A� B� Rnd

2
� M� �� A� B� C�D� 1 � Rnd

4
� R� �� B�D� Rnd

2

A B

DC

U

M R

where A, B, C, and D are original pixels and U, M, and R are corresponding
interpolated pixels. Using the above basic half-pixel interpolation to the whole
MBE, you get the full interpolated zone.

Special Requirements

Reference_window must be aligned to a 32-bit boundary.

Reference_window and pixel_inter_block must be located in different
DARAM banks.

Implementation Notes align_variable configures the following four alignment cases of the MBE in the
reference_window.

IMG_pix_inter_16x16

5-37 IMGLIB Reference

Figure 5-3. Alignment Case 1 Align_variable=0

reference_window (row 48, column 48 pixels)
0 0 0 0... 0 0 0 0 00 00 ... 00 00 00 0 0... 0 00 0
2-word alignment / 32-bits memory access
2 words contain 4 pixels.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

000 00 0... 00 0 0 0 ...00 0 00 0 000 0... 0 0 0
000 0 0 0... 0 0 0 00 ...0 0 0 0 0 0 00 0 0... 00 0
000 0 0 ...0 00 0 0 0 ...0 0 0 0 0 0 00 0 ... 0 0 0 0

000 0 0

.

.

.

0... 0 0

.

.

.

0 00 ...0 0 0

.

.

.

0 0 0

.

.

.

00 0 0...

.

.

.

00 0

.

.

.

000 0 0 ...0 00

.

.

.

.

.

.

0 0 0 ...0 0 0

.

.

.

0 0 0 00 0 ... 0

.

.

.

.

.

.

0 0 0

.

.

.

48 pixels

48
rows

Source
data
for

MBC

The last
pixel of
the first
line in
MBC

17 pixels
of the
first line
in MBC

First line of source data
to generate MBC

Second line of source data
to generate MBC

IMG_pix_inter_16x16

5-38

Figure 5-4. Alignment Case 2 Align_variable=1

reference_window (row 48, column 48 pixels)
0 0 0 0... 0 0 0 0 00 00 ... 00 00 00 0 0... 0 00 0
2-word alignment / 32-bits memory access
2 words contain 4 pixels.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

000 00 0... 00 0 0 0 ...00 0 00 0 000 0... 0 0 0
000 0 0 0... 0 0 0 00 ...0 0 0 0 0 0 00 0 0... 00 0
000 0 0 ...0 00 0 0 0 ...0 0 0 0 0 0 00 0 ... 0 0 0 0

000 0 0

.

.

.

0... 0 0

.

.

.

0 00 ...0 0 0

.

.

.

0 0 0

.

.

.

00 0 0...

.

.

.

00 0

.

.

.

000 0 0 ...0 00

.

.

.

.

.

.

0 0 0 ...0 0 0

.

.

.

0 0 0 00 0 ... 0

.

.

.

.

.

.

0 0 0

.

.

.

48 pixels

48
rows

Source
data
for

MBC

The last
pixel of
the first
line in
MBC

17 pixels
of the
first line
in MBC

First line of source data
to generate MBC

Second line of source data
to generate MBC

IMG_pix_inter_16x16

5-39 IMGLIB Reference

Figure 5-5. Alignment Case 3 Align_variable=2

reference_window (row 48, column 48 pixels)
0 0 0 0... 0 0 0 0 00 00 ... 00 00 00 0 0... 0 00 0
2-word alignment / 32-bits memory access
2 words contain 4 pixels.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

000 00 0... 00 0 0 0 ...00 0 00 0 000 0... 0 0 0
000 0 0 0... 0 0 0 00 ...0 0 0 0 0 0 00 0 0... 00 0
000 0 0 ...0 00 0 0 0 ...0 0 0 0 0 0 00 0 ... 0 0 0 0

000 0 0

.

.

.

0... 0 0

.

.

.

0 00 ...0 0 0

.

.

.

0 0 0

.

.

.

00 0 0...

.

.

.

00 0

.

.

.

000 0 0 ...0 00

.

.

.

.

.

.

0 0 0 ...0 0 0

.

.

.

0 0 0 00 0 ... 0

.

.

.

.

.

.

0 0 0

.

.

.

48 pixels

48
rows

Source
data
for

MBC

The last
pixel of
the first
line in
MBC

17 pixels
of the
first line
in MBC

First line of source data
to generate MBC

Second line of source data
to generate MBC

IMG_pix_inter_16x16

5-40

Figure 5-6. Alignment Case 4 Align_variable=3

reference_window (row 48, column 48 pixels)
0 0 0 0... 0 0 0 0 00 00 ... 00 00 00 0 0... 0 00 0
2-word alignment / 32-bits memory access
2 words contain 4 pixels.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

000 00 0... 00 0 0 0 ...00 0 00 0 000 0... 0 0 0
000 0 0 0... 0 0 0 00 ...0 0 0 0 0 0 00 0 0... 00 0
000 0 0 ...0 00 0 0 0 ...0 0 0 0 0 0 00 0 ... 0 0 0 0

000 0 0

.

.

.

0... 0 0

.

.

.

0 00 ...0 0 0

.

.

.

0 0 0

.

.

.

00 0 0...

.

.

.

00 0

.

.

.

000 0 0 ...0 00

.

.

.

.

.

.

0 0 0 ...0 0 0

.

.

.

0 0 0 00 0 ... 0

.

.

.

.

.

.

0 0 0

.

.

.

48 pixels

48
rows

Source
data
for

MBC

The last
pixel of
the first
line in
MBC

17 pixels
of the
first line
in MBC

First line of source data
to generate MBC

Second line of source data
to generate MBC

IMG_pix_inter_16x16

5-41 IMGLIB Reference

The full interpolated zone organization is shown in Figure 5-7.

Figure 5-7. Full Interpolated Zone Organization

U U OO
UU O O

UU O O
UU O O

U
U

U

U
U
U

O O
O
O

O
O

UU O O

UU O O

MM R R
MM RR

M
MM

M
RR

R R

R RM M
MM R R

M
MM

M
RR

R R

MM R R

U
UU

U O O
O O

Interpolated
U pixels
corresponding
to the first
line of
original MBE

to the first
line of
original MBE

corresponding
M pixels
Interpolated

First line
of the
original MBE

Interpolated

original MBE

to the first
line of

corresponding
R pixels

original MBE
of the
Second line

Small Memory Model

Benchmark The benchmark return depends on the align_variable value. The average is
530 cycles without return.

if (align_variable=0) 571 cycles without return
� if (align_variable=1) 497 cycles without return
� if (align_variable=2) 553 cycles without return
� if (align_variable=3) 498 cycles without return

Code Size 462 words

Data Size 2 words (2 words in stack)

Example See the examples/MPEG_PI subdirectory.

IMG_sad_8x8

5-42

Sum of Absolute Difference on Single 8x8 BlockIMG_sad_8x8

Syntax unsigned short IMG_sad_8x8(unsigned short *srcImg, unsigned short *re-
fImg, int pitch)

Arguments Inputs

srcImg[] 8x8 source block. Must be double-word aligned.

refImg[] Reference image

pitch Width of reference image

Description This function returns the sum of the absolute differences between the source
block and the 8x8 region pointed to in the reference image.

The code accepts a pointer to the 8x8 source block (srcImg), and a pointer to
the upper-left corner of a target position in a reference image (refImg). The
wdth of the reference image is given by the pitch argument.

Algorithm
The sad is defined by the following equation:

∑∑
= =

−=
7

0

7

0i j
ijij rssad

where ijs
 and ijr

 are source block and reference block respectively.

Special Requirements

Every two pixels are packaged into one word.

Implementation Notes

This routine is developed based on built-in motion estimation hardware
extension.

Small Memory Model

Benchmarks 52 cycles

Code Size 28 words

Data Size 0 words

Large Memory Model

Benchmarks 52 cycles

IMG_sad_8x8

5-43 IMGLIB Reference

Code Size 28 words

Data Size 0 words

Example See the examples/sad_8x8 subdirectory.

IMG_sad_16x16

5-44

Sum of Absolute Difference on Single 16x16 BlockIMG_sad_16x16

Syntax unsigned short IMG_sad_16x16(unsigned short *srcImg, unsigned short *re-
fImg, int pitch)

Arguments Inputs

srcImg[] 16x16 source block. Must be double-word aligned.

refImg[] Reference image

pitch Width of reference image

Description This function returns the sum of the absolute differences between the source
block and the 16x16 region pointed to in the reference image.

The code accepts a pointer to the 16x16 source block (srcImg), and a pointer
to the upper-left corner of a target position in a reference image (refImg). The
width of the reference image is given by the pitch argument.

Algorithm
The sad is defined by the following equation:

∑∑
= =

−=
15

0

15

0i j
ijij rssad

where ijs
 and ijr

 are source block and reference block respectively.

Special Requirements Every two pixels are packaged into one word.

Implementation Notes

This routine is developed based on built-in motion estimation hardware
extension.

Small Memory Model

Benchmarks 156 cycles

Code Size 28 words

Data Size 0 words

Large Memory Model

Benchmarks 156 cycles

Code Size 28 words

Data Size 0 words

Example See the examples/sad_16x16 subdirectory.

IMG_boundary

5-45 IMGLIB Reference

5.2 Image Analysis

Boundary Structural OperatorIMG_boundary

Syntax void IMG_boundary(short *in_data, int rows, int cols, int *out_coord,
int *out_gray);

Arguments Inputs:

in_data Points to original image array

rows Specifies the number of rows of the image

cols Specifies the number of columns of the image

Outputs:

out_coord Points to the boundary pixel coordinates array

out_gray Points to the boundary pixel value array

Description Gets the boundary of an image with a background pixel value of zero. If a
boundary pixel is detected, the function outputs its coordinates into array
out_coord and the pixel value into array out_gray. Input data format is Q16.0.

Small Memory Model

Benchmark 5.125�(cols�rows) + 8�rows + 14 cycles

Code Size 44 words

Data Size 2 words (2 words in stack)

Example See the examples/Boundary subdirectory.

IMG_histogram

5-46

Histogram ComputationIMG_histogram

Syntax void IMG_histogram(short *in_data, short *out_data, int size);

Arguments Input:

in_data Points to input image array

size Specifies the size of the image

Outputs:

out_data Specifies the histogram array

Description Histogram analysis. The in_data image value should be in the range of [0,
255]. Input and output data format is Q16.0.

Implementation Notes

Use the pixel_value as index to get the histogram value:
histogram[pixel_value]

Update the histogram value, histogram[pixel_value]++

Small Memory Model

Benchmark 2.25 x size+18

Code Size 33 words

Data Size 3 words (3 words in stack)

Example See the examples/Histogram subdirectory.

IMG_perimeter

5-47 IMGLIB Reference

Perimeter Structural OperatorIMG_perimeter

Syntax void IMG_perimeter(short *in_data, int cols, short *out_data);

Arguments Inputs:

in_data Points to input array. The array holds one row of an image.

cols Specifies the length of a row

Outputs:

out_data Points to output boundary image data

Description The routine perimeter() produces the boundary of an object in a binary image.
It echoes the boundary pixels with a value of 0xFF and sets the other pixels
to 0x00. Detection of the boundary of an object in a binary image is a seg-
mentation problem and is done by examining spatial locality of the neighboring
pixels. This is done by using the four connectivity algorithm:

pix_up

pix_lft pix_cent pix_rgt

pix_dn

The output pixel at location pix_cent is echoed as a boundary pixel, if pix_cent
is non-zero and any one of its four neighbors is zero. The four neighbors are
as shown above and stand for the following:

pix_up: top pixel
pix_lft: left pixel
pix_rgt: right pixel
pix_dn: bottom pixel

Special Requirements

No specific alignment is expected for the input or output array.

The cols argument can be either even or odd.

This code expects three input lines each of width cols pixels and produces
one output line of width (cols – 1) pixels.

Implementation Notes

The output pixel at location pix_cent is echoed as a boundary pixel, if
pix_cent is non-zero and any one of its four neighbors is zero.

The output buffer has 2 less pixels than the input buffer. To make these two
buffers have the same length, we set the first and the last value of the out-
put buffer to be 0x00.

IMG_perimeter

5-48

Small Memory Model

Benchmark (cols - 2)�7+21

Code Size 49 words

Data Size 3 words (3 words in stack)

Example See the examples/Perimeter subdirectory.

IMG_threshold

5-49 IMGLIB Reference

Image ThresholdingIMG_threshold

Syntax void IMG_threshold(short *in_data, short *out_data, short col, short rows,
short threshold_val);

Arguments Inputs:

in_data Points to original image buffer

rows Specifies the number of rows of the image

cols Specifies the number of columns of the image

threshold_val Specifies the threshold value

Outputs:

output Points to the output image buffer

Description The routine threshold() performs a thresholding operation on an input image
in in_data[] whose dimensions are given by the arguments cols and rows. The
thresholded pixels are written to the output image pointed to by out_data[].
The input and output are exactly the same dimensions.

Pixels that are above the threshold value are written to the output unmodified.
Pixels that are less than or equal to the threshold are clamped to zero in the
output image.

Small Memory Model

Benchmark cols�rows�2.5 + 16 cycles

Code Size 28 words

Data Size 0 words

Example See the examples/thresholding subdirectory.

IMG_conv_3x3

5-50

5.3 Picture Filtering/Format Conversions

3x3 Convolution With ShiftIMG_conv_3x3

Syntax void IMG_conv_3x3(unsigned char *input_data, unsigned char *out-
put_data, char *mask, int column, int shift);

Arguments Inputs:

input_data Points to an input image of 8-bit pixels

mask Points to an 8-bit mask

column Specifies the number of columns in the input image. Must be
an even number

shift Specifies the output shift number

Outputs:

output_data Points to an output image of 8-bit pixels

Description The convolution kernel accepts three rows of column input pixels and pro-
duces one output row of column-2 pixels using the input mask of 3 by 3. The
user-defined shift value is used to shift the convolution value down to the byte
range. The shift amount is non-zero for low-pass filters, and zeros for high-
pass and sharpening filters.

Algorithm Every output pixel results in the sum of the nine multiplications between mask
and input image pixels.

Implementation Notes

Convolution loop is unrolled for optimized benchmark performance.

Dual MAC is implemented such that we calculate two convolutions each
time.

Number of columns must be an even number.

Benchmark

Cycles 6x(column-2)+16

Data Size 89 words

Example See \examples\conv_3x3 subdirectory.

IMG_corr_3x3

5-51 IMGLIB Reference

3x3 Correlation With Rounding and ShiftingIMG_corr_3x3

Syntax void corr_3x3(unsigned char *input_data,unsigned char *output_data, un-
signed char *mask, int row, int column, int shift, int round_val);

Arguments Inputs:

input_data Points to an input image of 8-bit pixels

mask Points to an 8-bit mask

rows Specifies the horizontal size of input image

column Specifies the vertical size of input image. It must be even.

shift Specifies the output shift number

round_val Specifies the user-specified round value

Outputs:

output_data Points to an output image of 8-bit pixels

Description The routine IMG_corr_3x3 performs a point-by-point multiplication of the
3x3 mask with the input image. The result of the nine multiplications are
then added. The sum is rounded and shifted to produce an 8-bit value
which is stored in an output image. The image mask to be correlated is typi-
cally part of the input image or another image. The mask is moved one col-
umn at a time, advancing the mask until the until input image is covered.
The size of output image is (row-2)x(column-2).

Algorithm Every output pixel results in the sum of the nine multiplications between mask
and input image pixels.

Implementation Notes

Correlation loop is unrolled for optimized benchmark performance.

Dual MAC is implemented such that we calculate two correlations each
time.

Number of columns must be an even number.

Benchmark

Cycles 8.2x(row-2)x(column-2)+25

Data Size 165 words

Example See /examples/corr_3x3 subdirectory

IMG_scale_by_2

5-52

Image Scaling (horizontally/vertically) by 2IMG_scale_by_2

Syntax void IMG_scale_by_2(int *input_image, int *output_image, int row, int col-
umn);

Arguments Inputs:

input_image Points to the original image with an extension. The exten-
sion of the image are two columns attached to the original
image. It is required by HWE. The image with the exten-
sion must by double-word aligned. Every four pixels are
packed into one 32-bit double word.

row Specifies the horizontal size of the input image with exten-
sion

column Specifies the vertical size of the input image with extension

Outputs:

output_image Points to the upscaled-by-2 image. Only the left (2xco-
lumn-4)columns are output corresponding to the original
image. The right four columns are the symmetric padding.
Every four pixels are packed into one 32-bit double word.

Description The routine IMG_scale_by_2 implements image scaling by linear pixel in-
terpolation using built-in hardware extensions. To implement pixel interpola-
tion for original image, we need to attach two columns to the original image
as the extension. This is required by HWE. In the output of this routine, left
(2xcolumn-4) columns are the scaled image corresponding the original
image. The right four columns are the symmetric padding of the scaled-
by-2 image.

Algorithm The pixel interpolation technique used by image scaling is described by the
following equations and diagrams.

IMG_scale_by_2

5-53 IMGLIB Reference

where A, B ,C, and D are original pixels and U, M, and R are corresponding
interpolated pixels in the scaled image. Using the above basic pixel interpola-
tion technique to the whole image with extension, the scaled-by-2 image is re-
trieved.

Special Requirements Both original image with extension and output scaled image must be
aligned to a 32-bit boundary.

Implementation Notes

Original image
with extension

2-pixel
extension

2-pixel
extension

Figure 5-8. Organization of original image with extension.

IMG_scale_by_2

5-54

Scaled by 2
image of
original
image

Scaled by 2 result
of original image
with extension

4-pixel symmetric pad

Figure 5-9. Organization of scale-by-2 output.

IMG_scale_by_2

5-55 IMGLIB Reference

Example See /examples/scale_by_2 subdirectory.

Here is an example of the routine. The original image with extension is 128
x128.

Figure 5-10. Original image with extension (128x128)

The scaled-by-2 result is 256x256.

Figure 5-11.Scale-by-2 result of original image with extension.

Benchmark

Cycles 0.27x(2xrow)x(2xcolumn)+23

Code Size 216 words

Example See examples/image_scale_by2 subdirectory.

IMG_YCbCr422_rgb565

5-56

Planarized YCbCr 4:2:2 to RGB 5:6:5 Color Space ConversionIMG_YCbCr422_
rgb565

Syntax void IMG_ycbcr422_rgb565(short coeff[], short *y_data, short *cb_data,
short*cr_data, short *rgb_data, short num_pixels)

Arguments Inputs:

coeff[7] Matrix coefficients

y_data Luminance data (Y’)

cb_data Blue color-diff (B’-Y’)

cr_data Red color-diff (R’-Y’)

rgb_data RGB5:6:5 packed pixel out

num_pixels Number of luma pixels to process

Description This kernel performs Y’CbCr to RGB conversion. The ‘coeff[]’ array con-
tains the color-space-conversion matrix coefficients. The ‘y_data’, ’cb_data’
and ‘cr_data’ pointers point to the separate input image planes. The
‘rgb_data’ pointer points to the output image buffer. The kernel is designed
to process arbitrary amounts of 4:2:2 image data, although 4:2:0 image
may be processed as well. For 4:2:2 input data, the ‘y_data’, ‘cb_data’ and
‘cr_data’ arrays may hold an arbitrary amount of image data. For 4:2:0 in-
put data, only a single scan-line (or portion thereof) may be processed at a
time. The coefficients in the coeff array must be in signed Q13 form. This
code can perform various flavors Y’CbCr to RGB conversion as long as the
offset on Y, Cb and Cr are -16, -128 and -128, respectively, and the coeffi-
cients match the pattern shown. The kernel implements the following matrix
form, which involves 7 coefficients:
[coeff[0] 0.000 coeff[1]] [Y’ -16] [R’]
[coeff[2] coeff[3] coeff[4]] * [Cb’-128] = [G’]
[coeff[5] coeff[6] 0.000] [Cr – 128] [B’]

Below are some common coefficient sets, along with the matrix equation to
which they correspond. Coefficients are in Q13 notation, which gives a suit-
able balance between precision and range.

 Y’CbCr -> RGB conversion with RGB levels that correspond to the
219-level range of Y’. Expected range are
 [16..235] for Y’ and [16..240] for Cb and Cr.
Coeff[7]={0x2000, 0x2BDD, 0x2000 -0x0AC5, -0x1658, 0x2000, 0x3770};
 [1.000 0.000 1.3707] [Y’ -16] [R’]

IMG_YCbCr422_rgb565

5-57 IMGLIB Reference

[1.000 -0.3365 -0.6982] * [Cb-128] = [G’]
[1.000 1.7324 0.000] [Cr-128] [B’]

Y’CbCr->RGB conversion with the 219- level range of Y’ expanded to fill
the full RGB dynamic range. (The matrix has been scaled by by 255/219).
Expected ranges are [16..235] for Y’ and [16..240] for Cb and Cr.
Coeff[7]={0x2543, 0x3313, -0x0C8A, -0x1A04, 0x408D}
[1.1644 0.0000 1.5960] [Y’ -16] [R’]
[1.1644 -0.3918 -0.8130] *[Cb-128] = [G’]
[1.1644 2.0172 0.0000] [Cr-128] [B’]

Other scalings of the color differences (B’-Y’) and (R’-Y’), (sometimes in-
correctly referred as U and V), are supported, as long as the color differ-
ences are unsigned values centered around 128 rather than signed values
centered around 0, as noted above. In addition to performing plain color-
space conversion, color saturation can be adjusted by scaling coeff[1]
through coeff[6]. Similarly, brightness can be adjusted by scaling coeff[0].
General hue adjustment cannot be performed, however, due to the two ze-
ros hard-coded in the matrix.

Algorithm

−
−
−

=

128
128
16

0

0

76

543

21

Cr

Cb

Y

cc

ccc

cc

B

G

R

where 631 ccc ==
 usually.

The output (R,G,B)’ is packed in the following way.

Special Requirements

Coeff cannot be allocated in the memory bank which is allocated to any
of y_data, cb_data, cr_data for the best performance.

IMG_YCbCr422_rgb565

5-58

Implementation Notes

Matrix multiplication is performed as a series of Dual MAC followed by
shift. In each loop, one pair of RGB 5:6:5 is calculated.

Small Memory Model

Benchmark 12xnum_pixels+47

Code Size 109 words

Data Size 3 words

Large Memory Model

Benchmark 12xnum_pixels+47

Code Size 111 words

Data Size 3 words

Example See the examples/ycbcr_rgb subdirectory.

A-1

Appendix A

Performance /Warranty and Support

This appendix describes performance considerations related to the C55x
IMGLIB and provides information about warranty, software updates, and
customer support issues.

Topic Page

A.1 Performance Considerations A-2.

A.2 Warranty A-6.

A.3 IMGLIB Software Updates A-6.

A.4 IMGLIB Customer Support A-6.

Appendix A

Performance Considerations

 A-2

A.1 Performance Considerations

Although IMGLIB can be used as a first estimation of processor performance
for a specific function, you should be aware that the generic nature of IMGLIB
might add extra cycles not required for customer specific usage.

Benchmark cycles presented assume best case conditions, typically assum-
ing all code and data are placed in internal data memory. Any extra cycles due
to placement of code or data in external data memory or cache-associated
effects (cache-hits or misses) are not considered when computing the cycle
counts.

You should also be aware that execution speed in a system is dependent on
where the different sections of program and data are located in memory. You
should account for such differences when trying to explain why a routine is tak-
ing more time than the reported IMGLIB benchmarks.

Table A-1 provides a listing of the routines provided in this software package
as well as C55x performance data for each:

P
erform

ance C
onsiderations

A
-3

P
erform

ance C
onsiderations

Table A-1. C55x Routines Performance Data

Function Description Cycles Code Size

IMG_sw_fdct_8x8 2-D forward discrete cosine transform
(DCT) for 8*8 image block without built-in
hardware extensions

1078 cycles 188 words

IMG_sw_idct_8x8 2-D inverse discrete cosine transform
(IDCT) for 8*8 DCT coefficients without
built-in hardware extensions

672 cycles 177 words

IMG_fdct_8x8 2-D forward discrete cosine transform
(DCT) for 8*8 image block using built-in
hardware extensions

238 cycles 238 words

IMG_idct_8x8 2-D inverse discrete cosine transform
(IDCT) for 8*8 DCT coefficients using built-
in hardware extensions

165 cycles 165 words

IMG_jpeg_make_recip_tbl Computation of the reciprocal table of the
quantization terms

1413 cycles 16 words

IMG_jpeg_quantize Matrix quantization 215 cycles 31 words

IMG_dequantize_8x8 Matrix dequantization 132 cycles 10 words

IMG__jpeg_vlc JPEG VLC data-dependent 501 words

IMG__jpeg_vld JPEG VLD data-dependent 634 words

IMG_mad_8x8 8x8 minimum absolute difference 38.5*sx*sy+95 cycles 267 words

IMG_mad_16x16 16x16 minimum absolute difference 85.5*sx*sy+95 cycles 304 words

IMG_mad_16x16_4step Motion estimation by 4-step searching 2225 cycles 429 words

IMG_sad_8x8 Sum of absolute differences on single 8x8
block

52 cycles 28 words

IMG_sad_16x16 Sum of absolute differences on single
16x16 block

156 cycles 28 words

P
erform

ance C
onsiderations

A
-4

P
erform

ance C
onsiderations

Table A-1. C55x Routines Performance Data

Function Code SizeCyclesDescription

IMG_pix_inter_16x16 Pixel interpolation 530 cycles 462 words

IMG_wave_decom_one_dim 1-D discrete wavelet transform (function
decomInplace is called)

[(Filter Length + 3)/2] �
[Signal Length] *[2-2^
(1- level)]+87 Cycles

IMG_wave_decom_one_dim:
32 words

DecomInplace: 67 words

IMG_wave_recon_one_dim 1-D inverse discrete Wavelet Transform
(function reconInplace is called)

[(Filter Length + 4)/2] �
[Signal Length] �[2 -2^
(1- level)] + 85 Cycles

IMG_wave_recon_one_dim:
39 words

reconInplace: 85 words

IMG_wavep_decom_one_
dim

1-D discrete wavelet package transform
(function decomInplace is called)

[(Filter Length + 3)/2] �
[Signal Length] � [Level]
+ 90 Cycles

IMG_wavep_decom_one_dim:
57 words

DecomInplace: 67 words

IMG_wavep_recon_one_dim 1-D discrete inverse wavelet package
transform (function reconInplace is called)

[(Filter Length + 4)/2] �
[Signal Length] � [Level]
+ 94 Cycles

IMG_wavep_recon_one_dim:
69 words

reconInplace: 85 word

IMG_wave_decom_two_dim 2-D discrete wavelet transform (functions
decomInplace, col2row and decomCol are
called)

Cycles 35 + 13 x level +
(322 x height +210 x width)
x [1-2^(- level)] + 4/3 x
width x height x (filter length
+ 2) x [1-4^(- level)]

IMG_wave_decom_two_dim:
71 words

DecomInplace: 67 words

col2row : 6 words

decomCol: 56 words

IMG_wave_recon_two_dim 2-D inverse discrete wavelet transform
(functions interlaceCol, reconCol, reconIn-
place are called)

Cycles 13 x level + 246 x
height x [1-2^(- level)] + 448
x width x [1-2^(- length)] +
4/3 x (filter length +4) x
[1 -4^(- level)]

IMG_wave_recon_two_dim:
87 words

InterlaceCol: 43 words

ReconCol: 58 words

reconInplace. 85 words

P
erform

ance C
onsiderations

A
-5

P
erform

ance C
onsiderations

Table A-1. C55x Routines Performance Data

Function Code SizeCyclesDescription

IMG_wavep_decom_two_dim 2-D discrete wavelet package transform
(functions decomInplace, col2row and de-
comCol are called)

Cycles (110 x height + 137 x
width) x (2^level -1) + (fil-
ter length x 0.25 + 2.25) x
(width x height) x level + 20
x (width + height) x level

IMG_wavep_decom_two_dim:
101 words

DecomInplace: 67 words

col2row : 6 words

decomCol: 56 words

IMG_wavep_recon_two_dim 2-D discrete inverse wavelet package
transform (functions interlaceCol, recon-
Col, reconInplace are called)

Cycles Level x [32 + 123 x
height + 224 x weight + (fil-
ter length +4) x width x
height]

IMG_wavep_recon_two_dim:
87 words

InterlaceCol: 43 words

ReconCol: 58 words

reconInplace. 85 words

IMG_boundary Boundary structural operator 5.125�(cols�rows) +
8�rows + 14 cycles

44 words

IMG_histogram Histogram computation 2.25 � size + 18 33 words

IMG_perimeter Perimeter structural operator (cols - 2) � 7 + 21 49 words

IMG_threshold Image thresholding cols�rows�2.5 + 16 cycles 28 words

IMG_conv_3x3 3x3 convolution 6x(column-2)+16 89 words

IMG_corr_3x3 3x3 correlation with rounding 8.2x(row-2)x(column-2)+25 165 words

IMG_Scale_by_2 Image up-scale by a factor of 2 0.27x(2xrow-2)x(2col-
umn-2)+23

216 words

IMG_ycbcr422_rgb565 Planarized yCbCr 4:2:2/4:2:0 to RGB 5:6:5
color space conversion

12*num_pixels+76 cycles 111 words

Warranty

A-6

A.2 Warranty

The C55x IMGLIB is distributed free of charge.

BETA RELEASE SPECIAL DISCLAIMER: This IMGLIB software release is
preliminary (beta). It is intended for evaluation only. Testing and characteriza-
tion has not been fully completed. Production release typically follows the beta
release but there are no explicit guarantees.

A.3 IMGLIB Software Updates

C55x IMGLIB software updates may be periodically released incorporating
product enhancements and fixes as they become available. You should read
the README.TXT available in the root directory of every release.

A.4 IMGLIB Customer Support

If you have questions or want to report problems or suggestions regarding the
C55x IMGLIB, contact Texas Instruments at dsph@ti.com.

Warranty / IMGLIB Software Updates / IMGLIB Customer Support

Index-1

Index

C
compression/decompression functions

function summary table 4-2
IMGLIB function descriptions 3-2
IMGLIB reference 5-2

D
DCT (discrete cosine transform), forward and in-

verse 3-2

F
forward and inverse DCT 3-2

H
H.26x 3-2, 3-3
histogram 3-4

I
Image Analysis 5-45
image thresholding 3-4
imaging, general purpose, functions table 4-3
IMG_boundary

IMGLIB function descriptions 3-4
IMGLIB reference 5-45

IMG_conv_3x3, IMGLIB reference 5-50
IMG_corr_3x3, IMGLIB reference 5-51
IMG_dequantize_8x8

IMGLIB function descriptions 3-3
IMGLIB reference 5-12

IMG_fdct_8x8
IMGLIB function descriptions 3-2
IMGLIB reference 5-6

IMG_histogram
IMGLIB function descriptions 3-4
IMGLIB reference 5-46

IMG_idct_8x8
IMGLIB function descriptions 3-2
IMGLIB reference 5-8

IMG_jpeg_make_recip_tbl
IMGLIB function descriptions 3-3
IMGLIB reference 5-10

IMG_jpeg_quantize
IMGLIB function descriptions 3-3
IMGLIB reference 5-11

IMG_jpeg_vlc
IMGLIB function descriptions 3-3
IMGLIB reference 5-13

IMG_jpeg_vld
IMGLIB function descriptions 3-3
IMGLIB reference 5-14

IMG_mad_16x16, IMGLIB function descrip-
tions 3-2

IMG_mad_16x16_4step
IMGLIB function descriptions 3-2
IMGLIB reference 5-32

IMG_mad_8x8
IMGLIB function descriptions 3-2
IMGLIB reference 5-28, 5-30

IMG_perimeter
IMGLIB function descriptions 3-4
IMGLIB reference 5-47

IMG_pix_inter_16x16
IMGLIB function descriptions 3-2
IMGLIB reference 5-35

IMG_sad_16x16
IMGLIB function descriptions 3-2
IMGLIB reference 5-44

Index-2

IMG_sad_8x8
IMGLIB function descriptions 3-2
IMGLIB reference 5-42

IMG_scale_by_2, IMGLIB reference 5-52

IMG_sw_fdct_8x8
IMGLIB function descriptions 3-2
IMGLIB reference 5-2

IMG_sw_idct_8x8
IMGLIB function descriptions 3-2
IMGLIB reference 5-4

IMG_threshold
IMGLIB function descriptions 3-4
IMGLIB reference 5-49

IMG_wave_decom_one_dim
IMGLIB function descriptions 3-3
IMGLIB reference 5-16

IMG_wave_decom_two_dim
IMGLIB function descriptions 3-3
IMGLIB reference 5-20

IMG_wave_recon_one_dim
IMGLIB function descriptions 3-3
IMGLIB reference 5-17

IMG_wave_recon_two_dim
IMGLIB function descriptions 3-3
IMGLIB reference 5-22

IMG_wavep_decom_one_dim
IMGLIB function descriptions 3-3
IMGLIB reference 5-18

IMG_wavep_decom_two_dim
IMGLIB function descriptions 3-3
IMGLIB reference 5-24

IMG_wavep_recon_one_dim
IMGLIB function descriptions 3-3
IMGLIB reference 5-19

IMG_wavep_recon_two_dim
IMGLIB function descriptions 3-3
IMGLIB reference 5-26

IMG_ycbcr422_rgv565, IMGLIB function descrip-
tions 3-4

IMGLIB 4-4
calling an IMGLIB function from Assembly 2-6
calling an IMGLIB function from C 2-5
features and benefits 1-2
functions, table 4-2

compression/decompression�4−2

general−purpose imaging�4−3
how to install 2-3
introduction 1-2
software routines 1-2

IMGLIB reference
compression/decompression functions 5-2
IMG_boundary 5-45
IMG_conv_3x3 5-50
IMG_corr_3x3 5-51
IMG_dequantize_8x8 5-12
IMG_fdct_8x8 5-6
IMG_histogram 5-46
IMG_idct_8x8 5-8
IMG_jpeg_quantize 5-11
IMG_mad_16x16 5-30
IMG_mad_16x16_4step 5-32
IMG_mad_8x8 5-28
IMG_perimeter 5-47
IMG_pix_inter_16x16 5-35
IMG_sad_16x16 5-44
IMG_sad_8x8 5-42
IMG_scale_by_2 5-52
IMG_sw_fdct_8x8 5-2
IMG_threshold 5-49
IMG_wave_decom_one_dim 5-16
IMG_wave_decom_two_dim 5-20
IMG_wave_recon_one_dim 5-17
IMG_wave_recon_two_dim 5-22
IMG_wavep_decom_one_dim 5-18
IMG_wavep_decom_two_dim 5-24
IMG_wavep_recon_one_dim 5-19
IMG_wavep_recon_two_dim 5-26
IMG_ycbcr422_rgb565 5-56
IMG_jpeg_make_recip_tbl 5-10
IMG_sw_idct_8x8 5-4
IMG_jpeg_vlc 5-13
IMG_jpeg_vld 5-14

installing IMGLIB 2-3

J

JPEG 3-2, 3-3

M

MPEG 3-2, 3-3

Index-3

P
picture filtering/format conversions, functions

table 4-4

Q
quantize 3-3

W

wavelet 3-3

Y

YCbCr422_rgb565, IMGLIB reference 5-56

	Title Page - SPRU037C
	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Chapter 1: Introduction
	1.1 Introduction
	1.2 Features and Benefits
	1.3 Software Routines

	Chapter 2: Installing and Using IMGLIB
	2.1 IMGLIB Contents
	2.2 How to Install IMGLIB
	2.3 How to Rebuild IMGLIB
	2.4 Calling an IMGLIB Function From C
	2.5 Calling an IMGLIB Function from Assembly Language Source Code
	2.6 Where to Find Sample Code

	Chapter 3: IMGLIB Function Descriptions
	3.1 IMGLIB Functions Overview
	3.2 Compression/Decompression
	3.3 Image Analysis
	3.4 Picture Filtering/Format Conversions

	Chapter 4: IMGLIB Function Tables
	4.1 IMGLIB Function Tables

	Chapter 5: IMGLIB Reference
	5.2 Image Analysis
	IMG_boundary
	IMG_histogram
	IMG_perimeter
	IMG_threshold

	5.3 Picture Filtering/Format Conversions
	IMG_conv_3x3
	IMG_corr_3x3
	IMG_scale_by_2
	IMG_YCbCr422_rgb565

	Appendix A: Performance /Warranty and Support
	A.1 Performance Considerations
	A.2 Warranty
	A.3 IMGLIB Software Updates
	A.4 IMGLIB Customer Support

	Index

