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About This Manual

This user’s guide describes the architecture, hardware, assembly language
instructions, and general operation of the TMS320C5x digital signal proces-
sors (DSPs). This manual can also be used as a reference guide for develop-
ing hardware and/or software applications.

How to Use This Manual

The following table summarizes the ’C5x information contained in this user’s
guide:

If you are looking for 
information about: Turn to:

Addressing modes Chapter 5, Addressing Modes

Assembly language instructions Chapter 6, Assembly Language Instructions

Boot loader Chapter 8, Memory

Clock generator Chapter 9, On-Chip Peripherals

Control bits Chapter 4, Program Control

CPU Chapter 3, Central Processing Unit (CPU)

Custom ROM from TI Appendix F, Submitting ROM Codes to TI

Development support information Appendix G, Development Support and Part
Order Information

Features Chapter 1, Introduction
Chapter 2, Architectural Overview

Host port interface Chapter 9, On-Chip Peripherals

Input/output ports Chapter 8, Memory

Interrupts Chapter 4, Program Control

Memory configuration Chapter 8, Memory

Memory interface Chapter 8, Memory

On-chip peripherals Chapter 9, On-Chip Peripherals

Opcodes Chapter 6, Assembly Language Instructions

Part order information Appendix G, Development Support and Part
Order Information
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If you are looking for 
information about: Turn to:

Pinouts Appendix A, Pinouts and Signal Descriptions

Pipeline operation Chapter 7, Pipeline

Program control Chapter 4, Program Control

Serial ports Chapter 9, On-Chip Peripherals

Status registers Chapter 4, Program Control

Timer Chapter 9, On-Chip Peripherals

Upgrading from a ’C25 Appendix C, System Migration

Wait-state generators Chapter 9, On-Chip Peripherals

XDS510 Emulator Appendix D, Design Considerations for Using
XDS510 Emulator

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface  similar to a typewriter’s. Examples use a bold
version  of the special typeface for emphasis; interactive displays use a
bold version  of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011  0005  0001         .field    1, 2
0012  0005  0003         .field    3, 4
0013  0005  0006         .field    6, 3
0014  0006               .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface  font and parameters are in an italic typeface. Portions of a syntax
that are in bold  should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ” section name”,  address

.asect is the directive. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be

How to Use This Manual / Notational Conventions
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an actual section name, enclosed in double quotes; the second parameter
must be an address.

� Square brackets ( [ and ] ) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LALK 16–bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

� Braces ( { and } ) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.
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Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution and warning carefully.

Related Documentation From Texas Instruments

The following books describe the ’C5x and related support tools. To obtain a
copy of any of these TI documents, call the Texas Instruments Literature Re-
sponse Center at (800) 477–8924. When ordering, please identify the book by
its title and literature number.

TMS320C5x General-Purpose Applications User’s Guide  (literature num-
ber SPRU164) serves as a reference book for developing hardware and/
or software applications for the ’C5x generation of devices.

TMS320C5x, TMS320LC5x Digital Signal Processors  (literature number
SPRS030) data sheet contains the electrical and timing specifications for
these devices, as well as signal descriptions and pinouts for all of the
available packages.

TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started
Guide (literature number SPRU121) describes how to install the
TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly
language tools and the C compiler for the ’C1x, ’C2x, ’C2xx, and ’C5x de-
vices. The installation for MS-DOS , OS/2 , SunOS , and Solaris
systems is covered.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide  (lit-
erature number SPRU018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the ’C1x, ’C2x, ’C2xx, and ’C5x gen-
erations of devices.

Information About Cautions and Warnings / Related Documentaiton From Texas Instruments
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TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature
number SPRU024) describes the ’C2x/C2xx/C5x C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the ’C2x, ’C2xx, and ’C5x genera-
tions of devices.

TMS320C5x C Source Debugger User’s Guide  (literature number
SPRU055) tells you how to invoke the ’C5x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C5x Evaluation Module Technical Reference  (literature number
SPRU087) describes the ’C5x evaluation module, its features, design
details and external interfaces.

TMS320C5x Evaluation Module Getting Started Guide  (literature number
SPRU126) tells you how to install the MS-DOS , PC-DOS , and
Windows  versions of the ’C5x evaluation module.

TMS320C54x Simulator Getting Started Guide (literature number
SPRU137) describes how to install the TMS320C54x simulator and the
C source debugger for the ’C54x. The installation for Windows 3.1,
SunOS , and HP-UX  systems is covered.

XDS51x Emulator Installation Guide (literature number SPNU070)
describes the installation of the XDS510 , XDS510PP , and
XDS510WS  emulator controllers. The installation of the XDS511
emulator is also described.

JTAG/MPSD Emulation Technical Reference (literature number SPDU079)
provides the design requirements of the XDS510  emulator controller,
discusses JTAG designs (based on the IEEE 1149.1 standard), and
modular port scan device (MPSD) designs.

TMS320 Third-Party Support Reference Guide  (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.
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TMS320 DSP Development Support Reference Guide  (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

If you are an assembly language programmer and would like more information
about C or C expressions, you may find this book useful:

The C Programming Language  (second edition, 1988), by Brian W. Kernig-
han and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs,
New Jersey.

Technical Articles

A wide variety of related documentation is available on digital signal processing.
These references fall into one of the following application categories:

� General-Purpose DSP
� Graphics/Imagery
� Speech/Voice
� Control
� Multimedia
� Military
� Telecommunications
� Automotive
� Consumer
� Medical
� Development Support

In the following list, references appear in alphabetical order according to
author. The documents contain beneficial information regarding designs,
operations, and applications for signal-processing systems; all of the docu-
ments provide additional references. Texas Instruments strongly suggests
that you refer to these publications.

General-Purpose DSP :

1) Antoniou, A., Digital Filters: Analysis and Design, New York, NY: McGraw-
Hill Company, Inc., 1979.

2) Brigham, E.O., The Fast Fourier Transform, Englewood Cliffs, NJ: Pren-
tice-Hall, Inc., 1974.

Related Documentation From Texas Instruments / Technical Articles
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3) Burrus, C.S., and T.W. Parks, DFT/FFT and Convolution Algorithms, New
York, NY: John Wiley and Sons, Inc., 1984.

4) Chassaing, R., Horning, D.W., “Digital Signal Processing with Fixed and
Floating-Point Processors.” CoED, USA, Volume 1, Number 1, pages 1–4,
March 1991.

5) Defatta, David J., Joseph G. Lucas, and William S. Hodgkiss, Digital Sig-
nal Processing: A System Design Approach, New York: John Wiley, 1988.

6) Erskine, C., and S. Magar, “Architecture and Applications of a Second-
Generation Digital Signal Processor.” Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, USA, 1985.

7) Essig, D., C. Erskine, E. Caudel, and S. Magar, “A Second-Generation
Digital Signal Processor.” IEEE Journal of Solid-State Circuits, USA, Vol-
ume SC–21, Number 1, pages 86–91, February 1986.

8) Frantz, G., K. Lin, J. Reimer, and J. Bradley, “The Texas Instruments
TMS320C25 Digital Signal Microcomputer.” IEEE Microelectronics, USA,
Volume 6, Number 6, pages 10–28, December 1986.

9) Gass, W., R. Tarrant, T. Richard, B. Pawate, M. Gammel, P. Rajasekaran,
R. Wiggins, and C. Covington, “Multiple Digital Signal Processor Environ-
ment for Intelligent Signal Processing.” Proceedings of the IEEE, USA,
Volume 75, Number 9, pages 1246–1259, September 1987.

10) Gold, Bernard, and C.M. Rader, Digital Processing of Signals, New York,
NY: McGraw-Hill Company, Inc., 1969.

11) Hamming, R.W., Digital Filters, Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

12) IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Proces-
sing, New York, NY: IEEE Press, 1979.

13) Jackson, Leland B., Digital Filters and Signal Processing, Hingham, MA:
Kluwer Academic Publishers, 1986.

14) Jones, D.L., and T.W. Parks, A Digital Signal Processing Laboratory Using
the TMS32010, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

15) Lim, Jae, and Alan V. Oppenheim, Advanced Topics in Signal Processing,
Englewood Cliffs, NJ: Prentice- Hall, Inc., 1988.

16) Lin, K., G. Frantz, and R. Simar, Jr., “The TMS320 Family of Digital Signal
Processors.” Proceedings of the IEEE, USA, Volume 75, Number 9, pages
1143–1159, September 1987.
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17) Lovrich, A., Reimer, J., “An Advanced Audio Signal Processor.” Digest of
Technical Papers for 1991 International Conference on Consumer Elec-
tronics, June 1991.

18) Magar, S., D. Essig, E. Caudel, S. Marshall and R. Peters, “An NMOS Digi-
tal Signal Processor with Multiprocessing Capability.” Digest of IEEE In-
ternational Solid-State Circuits Conference, USA, February 1985.

19) Morris, Robert L., Digital Signal Processing Software, Ottawa, Canada:
Carleton University, 1983.

20) Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

21) Oppenheim, Alan V., and R.W. Schafer, Digital Signal Processing, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1975 and 1988.

22) Oppenheim, A.V., A.N. Willsky, and I.T. Young, Signals and Systems,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

23) Papamichalis, P.E., and C.S. Burrus, “Conversion of Digit-Reversed to Bit-
Reversed Order in FFT Algorithms.” Proceedings of ICASSP 89, USA,
pages 984–987, May 1989.

24) Papamichalis, P., and R. Simar, Jr., “The TMS320C30 Floating-Point Digi-
tal Signal Processor.” IEEE Micro Magazine, USA, pages 13–29, Decem-
ber 1988.

25) Parks, T.W., and C.S. Burrus, Digital Filter Design, New York, NY: John
Wiley and Sons, Inc., 1987.

26) Peterson, C., Zervakis, M., Shehadeh, N., “Adaptive Filter Design and Im-
plementation Using the TMS320C25 Microprocessor.” Computers in
Education Journal, USA, Volume 3, Number 3, pages 12–16, July–
September 1993.

27) Prado, J., and R. Alcantara, “A Fast Square-Rooting Algorithm Using a
Digital Signal Processor.” Proceedings of IEEE, USA, Volume 75, Number
2, pages 262–264, February 1987.

28) Rabiner, L.R. and B. Gold, Theory and Applications of Digital Signal Pro-
cessing, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

29) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to
Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,
Volume D, page 1678, April 1988.

30) Simar, Jr., R., T. Leigh, P. Koeppen, J. Leach, J. Potts, and D. Blalock, “A
40 MFLOPS Digital Signal Processor: the First Supercomputer on a Chip.”
Proceedings of ICASSP 87, USA, Catalog Number 87CH2396–0, Volume
1, pages 535–538, April 1987.
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31) Simar, Jr., R., and J. Reimer, “The TMS320C25: a 100 ns CMOS VLSI Dig-
ital Signal Processor.” 1986 Workshop on Applications of Signal Proces-
sing to Audio and Acoustics, September 1986.

32) Texas Instruments, Digital Signal Processing Applications with the
TMS320 Family, 1986; Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

33) Treichler, J.R., C.R. Johnson, Jr., and M.G. Larimore, A Practical Guide
to Adaptive Filter Design, New York, NY: John Wiley and Sons, Inc., 1987.

Graphics/Imagery :

1) Andrews, H.C., and B.R. Hunt, Digital Image Restoration, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

2) Gonzales, Rafael C., and Paul Wintz, Digital Image Processing, Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

3) Papamichalis, P.E., “FFT Implementation on the TMS320C30.” Proceed-
ings of ICASSP 88, USA, Volume D, page 1399, April 1988.

4) Pratt, William K., Digital Image Processing, New York, NY: John Wiley and
Sons, 1978.

5) Reimer, J., and A. Lovrich, “Graphics with the TMS32020.” WESCON/85
Conference Record, USA, 1985.

Speech/Voice :

1) DellaMorte, J., and P. Papamichalis, “Full-Duplex Real-Time Implementa-
tion of the FED-STD-1015 LPC-10e Standard V.52 on the TMS320C25.”
Proceedings of SPEECH TECH 89, pages 218–221, May 1989.

2) Frantz, G.A., and K.S. Lin, “A Low-Cost Speech System Using the
TMS320C17.” Proceedings of SPEECH TECH ’87, pages 25–29, April
1987.

3) Gray, A.H., and J.D. Markel, Linear Prediction of Speech, New York, NY:
Springer-Verlag, 1976.

4) Jayant, N.S., and Peter Noll, Digital Coding of Waveforms, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

5) Papamichalis, Panos, Practical Approaches to Speech Coding, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

6) Papamichalis, P., and D. Lively, “Implementation of the DOD Standard
LPC–10/52E on the TMS320C25.” Proceedings of SPEECH TECH ’87,
pages 201–204, April 1987.

7) Pawate, B.I., and G.R. Doddington, “Implementation of a Hidden Markov
Model-Based Layered Grammar Recognizer.” Proceedings of ICASSP
89, USA, pages 801–804, May 1989.



Technical Articles

xii  

8) Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech Signals,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

9) Reimer, J.B. and K.S. Lin, “TMS320 Digital Signal Processors in Speech
Applications.” Proceedings of SPEECH TECH ’88, April 1988.

10) Reimer, J.B., M.L. McMahan, and W.W. Anderson, “Speech Recognition
for a Low-Cost System Using a DSP.” Digest of Technical Papers for 1987
International Conference on Consumer Electronics, June 1987.

Control :

1) Ahmed, I., “16-Bit DSP Microcontroller Fits Motion Control System Ap-
plication.” PCIM, October 1988.

2) Ahmed, I., “Implementation of Self Tuning Regulators with TMS320 Fami-
ly of Digital Signal Processors.” MOTORCON ’88, pages 248–262, Sep-
tember 1988.

3) Ahmed, I., and S. Lindquist, “Digital Signal Processors: Simplifying High-
Performance Control.” Machine Design, September 1987.

4) Ahmed, I., and S. Meshkat, “Using DSPs in Control.” Control Engineering,
February 1988.

5) Allen, C. and P. Pillay, “TMS320 Design for Vector and Current Control of
AC Motor Drives.” Electronics Letters, UK, Volume 28, Number 23, pages
2188–2190, November 1992.

6) Bose, B.K., and P.M. Szczesny, “A Microcomputer-Based Control and
Simulation of an Advanced IPM Synchronous Machine Drive System for
Electric Vehicle Propulsion.” Proceedings of IECON ’87, Volume 1, pages
454–463, November 1987.

7) Hanselman, H., “LQG-Control of a Highly Resonant Disc Drive Head Posi-
tioning Actuator.” IEEE Transactions on Industrial Electronics, USA, Vol-
ume 35, Number 1, pages 100–104, February 1988.

8) Jacquot, R., Modern Digital Control Systems, New York, NY: Marcel Dek-
ker, Inc., 1981.

9) Katz, P., Digital Control Using Microprocessors, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

10) Kuo, B.C., Digital Control Systems, New York, NY: Holt, Reinholt, and
Winston, Inc., 1980.

11) Lovrich, A., G. Troullinos, and R. Chirayil, “An All-Digital Automatic Gain
Control.” Proceedings of ICASSP 88, USA, Volume D, page 1734, April
1988.
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12) Matsui, N. and M. Shigyo, “Brushless DC Motor Control Without Position
and Speed Sensors.” IEEE Transactions on Industry Applications, USA,
Volume 28, Number 1, Part 1, pages 120–127, January–February 1992.

13) Meshkat, S., and I. Ahmed, “Using DSPs in AC Induction Motor Drives.”
Control Engineering, February 1988.

14) Panahi, I. and R. Restle, “DSPs Redefine Motion Control.” Motion Control
Magazine, December 1993.

15) Phillips, C., and H. Nagle, Digital Control System Analysis and Design,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Multimedia :

1) Reimer, J., “DSP-Based Multimedia Solutions Lead Way Enhancing Audio
Compression Performance.” Dr. Dobbs Journal, December 1993.

2) Reimer, J., G. Benbassat, and W. Bonneau Jr., “Application Processors:
Making PC Multimedia Happen.” Silicon Valley PC Design Conference,
July 1991.

Military :

1) Papamichalis, P., and J. Reimer, “Implementation of the Data Encryption
Standard Using the TMS32010.” Digital Signal Processing Applications,
1986.

Telecommunications :

1) Ahmed, I., and A. Lovrich, “Adaptive Line Enhancer Using the
TMS320C25.” Conference Records of Northcon/86, USA, 14/3/1–10,
September/October 1986.

2) Casale, S., R. Russo, and G. Bellina, “Optimal Architectural Solution Us-
ing DSP Processors for the Implementation of an ADPCM Transcoder.”
Proceedings of GLOBECOM ’89, pages 1267–1273, November 1989.

3) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice
Echo Canceller on a SINGLE TMS32020.” Proceedings of ICASSP 86,
USA, Catalog Number 86CH2243–4, Volume 1, pages 429–432, April
1986.

4) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice
Echo Canceller on a Single TMS32020.” Proceedings of IEEE Internation-
al Conference on Acoustics, Speech and Signal Processing, USA, 1986.

5) Lovrich, A., and J. Reimer, “A Multi-Rate Transcoder.” Transactions on
Consumer Electronics, USA, November 1989.
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6) Lovrich, A. and J. Reimer, “A Multi-Rate Transcoder.” Digest of Technical
Papers for 1989 International Conference on Consumer Electronics, June
7–9, 1989.

7) Lu, H., D. Hedberg, and B. Fraenkel, “Implementation of High-Speed Voi-
ceband Data Modems Using the TMS320C25.” Proceedings of ICASSP
87, USA, Catalog Number 87CH2396–0, Volume 4, pages 1915–1918,
April 1987.

8) Mock, P., “Add DTMF Generation and Decoding to DSP– µP Designs.”
Electronic Design, USA, Volume 30, Number 6, pages 205–213, March
1985.

9) Reimer, J., M. McMahan, and M. Arjmand, “ADPCM on a TMS320 DSP
Chip.” Proceedings of SPEECH TECH 85, pages 246–249, April 1985.

10) Troullinos, G., and J. Bradley, “Split-Band Modem Implementation Using
the TMS32010 Digital Signal Processor.” Conference Records of Elec-
tro/86 and Mini/Micro Northeast, USA, 14/1/1–21, May 1986.

Automotive :

1) Lin, K., “Trends of Digital Signal Processing in Automotive.” International
Congress on Transportation Electronic (CONVERGENCE ’88), October
1988.

Consumer :

1) Frantz, G.A., J.B. Reimer, and R.A. Wotiz, “Julie, The Application of DSP
to a Product.” Speech Tech Magazine, USA, September 1988.

2) Reimer, J.B., and G.A. Frantz, “Customization of a DSP Integrated Circuit
for a Customer Product.” Transactions on Consumer Electronics, USA,
August 1988.

3) Reimer, J.B., P.E. Nixon, E.B. Boles, and G.A. Frantz, “Audio Customiza-
tion of a DSP IC.” Digest of Technical Papers for 1988 International Con-
ference on Consumer Electronics, June 8–10 1988.

Medical :

1) Knapp and Townshend, “A Real-Time Digital Signal Processing System
for an Auditory Prosthesis.” Proceedings of ICASSP 88, USA, Volume A,
page 2493, April 1988.

2) Morris, L.R., and P.B. Barszczewski, “Design and Evolution of a Pocket-
Sized DSP Speech Processing System for a Cochlear Implant and Other
Hearing Prosthesis Applications.” Proceedings of ICASSP 88, USA, Vol-
ume A, page 2516, April 1988.
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Development Support :

1) Mersereau, R., R. Schafer, T. Barnwell, and D. Smith, “A Digital Filter De-
sign Package for PCs and TMS320.” MIDCON/84 Electronic Show and
Convention, USA, 1984.

2) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to
Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,
Volume 3, pages 1678–1681, April 1988.

Trademarks

DuPont Electronics is a registered trademark of E.I. DuPont Corporation.

HP-UX is a trademark of Hewlett-Packard Company.

IBM, OS/2, and PC-DOS are trademarks of International Business Machines
Corporation.

MS and Windows are registered trademarks of Microsoft Corporation.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

SPARC is a trademark of SPARC International, Inc., but licensed exclusively
to Sun Microsystems, Inc.

320 Hotline On-line, TI, XDS510, and XDS510WS are trademarks of Texas
Instruments Incorporated.

VAX and VMS are trademarks of Digital Equipment Corp.
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If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax:  (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax:  (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines: 

Multi-Language Support +33 1 30 70 11 69 Fax:  +33 1 30 70 10 32
Email: epic@ti.com

Deutsch +49 8161 80 33 11  or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax:  +49 81 61 80 40 10
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Introduction

This user’s guide discusses the TMS320C5x generation of fixed-point digital
signal processors (DSPs) in the TMS320 family. The ’C5x DSP provides im-
proved performance over earlier ’C1x and ’C2x generations while maintaining
upward compatibility of source code between the devices. The ’C5x central
processing unit (CPU) is based on the ’C25 CPU and incorporates additional
architectural enhancements that allow the device to run twice as fast as ’C2x
devices. Future expansion and enhancements are expected to heighten the
performance and range of applications of the ’C5x DSPs.

The ’C5x generation of static CMOS DSPs consists of the following devices:

Device On-Chip RAM On-Chip ROM

TMS320C50/LC50 10K words 2K words

TMS320C51/LC51 2K words 8K words

TMS320C52/LC52 1K words 4K words

TMS320C53/LC53 4K words 16K words

TMS320C53S/LC53S 4K words 16K words

TMS320LC56 7K words 32K words

TMS320LC57 7K words 32K words

TMS320C57S/LC57S 7K words 2K words
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1.1 TMS320 Family Overview

The TMS320 family consists of two types of single-chip DSPs: 16-bit fixed-
point and 32-bit floating-point. These DSPs possess the operational flexibility
of high-speed controllers and the numerical capability of array processors.
Combining these two qualities, the TMS320 processors are inexpensive alter-
natives to custom-fabricated VLSI and multichip bit-slice processors. Refer to
subsection 1.1.2, TMS320 Typical Applications, for a detailed list of applica-
tions of the TMS320 family. The following characteristics make this family the
ideal choice for a wide range of processing applications:

� Very flexible instruction set
� Inherent operational flexibility
� High-speed performance
� Innovative, parallel architectural design
� Cost-effectiveness

1.1.1 History, Development, and Advantages of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010 — the first fixed-point
DSP in the TMS320 family. Before the end of the year, the Electronic Products
magazine awarded the TMS32010 the title “Product of the Year”. The
TMS32010 became the model for future TMS320 generations.

Today, the TMS320 family consists of eight generations: the ’C1x, ’C2x, ’C2xx,
’C5x, and ’C54x are fixed-point, the ’C3x and ’C4x are floating-point, and the
’C8x is a multiprocessor. Figure 1–1 illustrates the performance gains that the
TMS320 family has made over time with successive generations. Source code
is upward compatible from one fixed-point generation to the next fixed-point
generation (except for the ’C54x), and from one floating-point generation to the
next floating-point generation. Upward compatibility preserves the software
generation of your investment, thereby providing a convenient and cost-effi-
cient means to a higher-performance, more versatile DSP system.

Each generation of TMS320 devices has a CPU and a variety of on-chip
memory and peripheral configurations for developing spin-off devices. These
spin-off devices satisfy a wide range of needs in the worldwide electronics
market. When memory and peripherals are integrated into one processor, the
overall system cost is greatly reduced, and circuit board space is saved.
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Figure 1–1. Evolution of the TMS320 Family
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1.1.2 TMS320 Typical Applications

The TMS320 family of DSPs offers better, more adaptable approaches to tradi-
tional signal-processing problems, such as vocoding, filtering, and error cod-
ing. Furthermore, the TMS320 family supports complex applications that often
require multiple operations to be performed simultaneously. Figure 1–2 shows
many of the typical applications of the TMS320 family.

Figure 1–2. Typical Applications for the TMS320 Family

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D rotation
Animation/digital map
Homomorphic processing
Pattern recognition
Image enhancement 
Image compression/transmission
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 19200-bps modems
Adaptive equalizers
ADPCM transcoders
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
Personal digital assistants (PDA)

DTMF encoding/decoding
Echo cancellation
Fax
Line repeaters
Speaker phones
Spread spectrum communications
Video conferencing
X.25 Packet Switching 
Personal communications systems (PCS)

Speech enhancement
Speech recognition
Speech synthesis
Speaker verification
Speech vocoding
Voice mail
Text-to-speech
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1.2 TMS320C5x Overview

The ’C5x generation consists of the ’C50, ’C51, ’C52, ’C53, ’C53S, ’C56,  ’C57,
and ’C57S DSPs, which are fabricated by CMOS integrated-circuit technology.
Their architectural design is based on the ’C25. The operational flexibility and
speed of the ’C5x are the result of combining an advanced Harvard architec-
ture (which has separate buses for program memory and data memory), a
CPU with application-specific hardware logic, on-chip peripherals, on-chip
memory, and a highly specialized instruction set. The ’C5x is designed to ex-
ecute up to 50 million instructions per second (MIPS). Spin-off devices that
combine the ’C5x CPU with customized on-chip memory and peripheral con-
figurations may be developed for special applications in the worldwide elec-
tronics market.

The ’C5x devices offer these advantages:

� Enhanced TMS320 architectural design for increased performance and
versatility

� Modular architectural design for fast development of spin-off devices

� Advanced integrated-circuit processing technology for increased per-
formance and low power consumption

� Source code compatibility with ’C1x, ’C2x, and ’C2xx DSPs for fast and
easy performance upgrades

� Enhanced instruction set for faster algorithms and for optimized high-level
language operation

� Reduced power consumption and increased radiation hardness because
of new static design techniques

Table 1–1 lists the major characteristics of the ’C5x DSPs. The table shows the
capacity of on-chip RAM and ROM, number of serial and parallel input/output
(I/O) ports, power supply requirements, execution time of one machine cycle,
and package types available with total pin count. Use Table 1–1 for guidance
in choosing the best ’C5x DSP for your application.
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Table 1–1. Characteristics of the ’C5x DSPs

TMS320

On-Chip Memory
(16-bit words) I/O Ports Power

S pply
Cycle
Time PackageTMS320

Device ID DARAM† SARAM‡ ROM Serial Parallel ◊
Supp ly

(V)
Time
(ns)

Package
Type

’C50 PQ 1056 9K 2K§ 2¶ 64K 5 50/35/25 132 pin BQFP�

’LC50 PQ 1056 9K 2K§ 2¶ 64K 3.3 50/40/25 132 pin BQFP�

’C51 PQ 1056 1K 8K§ 2¶ 64K 5 50/35/25/20 132 pin BQFP�

’C51 PZ 1056 1K 8K§ 2¶ 64K 5 50/35/25/20 100 pin TQFP�

’LC51 PQ 1056 1K 8K§ 2¶ 64K 3.3 50/40/25 132 pin BQFP�

’LC51 PZ 1056 1K 8K§ 2¶ 64K 3.3 50/40/25 100 pin TQFP�

’C52 PJ 1056 — 4K§ 1 64K 5 50/35/25/20 100 pin QFP�

’C52 PZ 1056 — 4K§ 1 64K 5 50/35/25/20 100 pin TQFP�

’LC52 PJ 1056 — 4K§ 1 64K 3.3 50/40/25 100 pin QFP�

’LC52 PZ 1056 — 4K§ 1 64K 3.3 50/40/25 100 pin TQFP�

’C53 PQ 1056 3K 16K§ 2¶ 64K 5 50/35/25 132 pin BQFP�

’C53S PZ 1056 3K 16K§ 2 64K 5 50/35/25 100 pin TQFP�

’LC53 PQ 1056 3K 16K§ 2¶ 64K 3.3 50/40/25 132 pin BQFP�

’LC53S PZ 1056 3K 16K§ 2 64K 3.3 50/40/25 100 pin TQFP�

’LC56 PZ 1056 6K 32K 2# 64K 3.3 50/35/25 100 pin TQFP�

’C57S PGE 1056 6K 2K§ 2# 64K� 5 50/35/25 144 pin TQFP�

’LC57 PBK 1056 6K 32K 2# 64K� 3.3 50/35/25 128 pinTQFP�

’LC57S PGE 1056 6K 2K§ 2# 64K� 3.3 50/35 144 pin TQFP�

† Dual-access RAM (DARAM)
‡ Single-access RAM (SARAM)
§ ROM bootloader available
¶ Includes time-division multiplexed (TDM) serial port
# Includes buffered serial port (BSP)
|| Includes host port interface (HPI)
� 20 × 20 × 3.8 mm bumpered quad flat-pack (BQFP) package
�14 × 14 × 1.4 mm thin quad flat-pack (TQFP) package
�14 × 20 × 2.7 mm quad flat-pack (QFP) package
� 20 × 20 × 1.4 mm thin quad flat-pack (TQFP) package
◊ Sixteen of the 64K parallel I/O ports are memory mapped.
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1.3 TMS320C5x Key Features

Key features of the ’C5x DSPs are listed below. Where a feature is exclusive
to a particular device, the device’s name is enclosed within parentheses and
noted after that feature.

� Compatibility: Source-code compatible with ’C1x, ’C2x, and ’C2xx devices

� Speed: 20-/25-/35-/50-ns single-cycle fixed-point instruction execution
time (50/40/28.6/20 MIPS)

� Power

� 3.3-V and 5-V static CMOS technology with two power-down modes

� Power consumption control with IDLE1 and IDLE2 instructions for
power-down modes

� Memory

� 224K-word × 16-bit maximum addressable external memory space
(64K-word program, 64K-word data, 64K-word I/O, and 32K-word
global memory)

� 1056-word × 16-bit dual-access on-chip data RAM

� 9K-word × 16-bit single-access on-chip program/data RAM (’C50)

� 2K-word × 16-bit single-access on-chip boot ROM (’C50, ’C57S)

� 1K-word × 16-bit single-access on-chip program/data RAM (’C51)

� 8K-word × 16-bit single-access on-chip program ROM (’C51)

� 4K-word × 16-bit single-access on-chip program ROM (’C52)

� 3K-word × 16-bit single-access on-chip program/data RAM (’C53,
’C53S)

� 16K-word × 16-bit single-access on-chip program ROM (’C53, ’C53S)

� 6K-word�×�16-bit single-access on-chip program/data RAM (’LC56,
’C57S, ’LC57)

� 32K-word × 16-bit single-access on-chip program ROM (’LC56,
’LC57)
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� Central processing unit (CPU)

� Central arithmetic logic unit (CALU) consisting of the following:

� 32-bit arithmetic logic unit (ALU), 32-bit accumulator (ACC), and
32-bit accumulator buffer (ACCB)

� 16-bit × 16-bit parallel multiplier with a 32-bit product capability

� 0- to 16-bit left and right data barrel-shifters and a 64-bit incre-
mental data shifter

� 16-bit parallel logic unit (PLU)

� Dedicated auxiliary register arithmetic unit (ARAU) for indirect
addressing

� Eight auxiliary registers

� Program control

� 8-level hardware stack

� 4-deep pipelined operation for delayed branch, call, and return
instructions

� Eleven shadow registers for storing strategic CPU-controlled regis-
ters during an interrupt service routine (ISR)

� Extended hold operation for concurrent external direct memory
access (DMA) of external memory or on-chip RAM

� Two indirectly addressed circular buffers for circular addressing

� Instruction set

� Single-cycle multiply/accumulate instructions

� Single-instruction repeat and block repeat operations

� Block memory move instructions for better program and data man-
agement

� Memory-mapped register load and store instructions

� Conditional branch and call instructions

� Delayed execution of branch and call instructions

� Fast return from interrupt instructions

� Index-addressing mode

� Bit-reversed index-addressing mode for radix-2 fast-Fourier trans-
forms (FFTs)
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� On-chip peripherals

� 64K parallel I/O ports (16 I/O ports are memory-mapped)

� Sixteen software-programmable wait-state generators for program,
data, and I/O memory spaces

� Interval timer with period, control, and counter registers for software
stop, start, and reset

� Phase-locked loop (PLL) clock generator with internal oscillator or
external clock source

� Multiple PLL clocking option (x1, x2, x3, x4, x5, x9, depending on the
device)

� Full-duplex synchronous serial port interface for direct communica-
tion between the ’C5x and another serial device

� Time-division multiplexed (TDM) serial port (’C50, ’C51, ’C53)

� Buffered serial port (BSP) (’LC56, ’C57S, ’LC57)

� 8-bit parallel host port interface (HPI) (’C57, ’C57S)

� Test/Emulation

� On-chip scan-based emulation logic

� IEEE JTAG Standard 1149.1 boundary scan logic (’C50, ’C51, ’C53,
’C57S)

� Packages

� 100-pin quad flat-pack (QFP) package (’C52)

� 100-pin thin quad flat-pack (TQFP) package (’C51, ’C52, ’C53S,
’LC56)

� 128-pin TQFP package (’LC57)

� 132-pin bumpered quad flat-pack (BQFP) package (’C50, ’C51, ’C53)

� 144-pin TQFP package (’C57S)
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Architectural Overview

This chapter provides an overview of the architectural structure of the ’C5x,
which consists of the buses, on-chip memory, central processing unit (CPU),
and on-chip peripherals.

The ’C5x uses an advanced, modified Harvard-type architecture based on the
’C25 architecture and maximizes processing power with separate buses for
program memory and data memory. The instruction set supports data trans-
fers between the two memory spaces. Figure 2–1 shows a functional block
diagram of the ’C5x.

All ’C5x DSPs have the same CPU structure; however, they have different
on-chip memory configurations and on-chip peripherals.
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Figure 2–1. ’C5x Functional Block Diagram
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2.1 Bus Structure

Separate program and data buses allow simultaneous access to program
instructions and data, providing a high degree of parallelism. For example,
while data is multiplied, a previous product can be loaded into, added to, or
subtracted from the accumulator and, at the same time, a new address can be
generated. Such parallelism supports a powerful set of arithmetic, logic, and
bit-manipulation operations that can all be performed in a single machine
cycle. In addition, the ’C5x includes the control mechanisms to manage inter-
rupts, repeated operations, and function calling.

The ’C5x architecture is built around four major buses:

� Program bus (PB)
� Program address bus (PAB)
� Data read bus (DB)
� Data read address bus (DAB)

The PAB provides addresses to program memory space for both reads and
writes. The PB also carries the instruction code and immediate operands from
program memory space to the CPU. The DB interconnects various elements
of the CPU to data memory space. The program and data buses can work
together to transfer data from on-chip data memory and internal or external
program memory to the multiplier for single-cycle multiply/accumulate opera-
tions.
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2.2 Central Processing Unit (CPU)

The ’C5x CPU consists of these elements:

� Central arithmetic logic unit (CALU)
� Parallel logic unit (PLU)
� Auxiliary register arithmetic unit (ARAU)
� Memory-mapped registers
� Program controller

The ’C5x CPU maintains source-code compatibility with the ’C1x and ’C2x
generations while achieving high performance and greater versatility. Im-
provements include a 32-bit accumulator buffer, additional scaling capabili-
ties, and a host of new instructions. The instruction set exploits the additional
hardware features and is flexible in a wide range of applications. Data man-
agement has been improved through the use of new block move instructions
and memory-mapped register instructions. See Chapter 3, Central Processing
Unit (CPU).

2.2.1 Central Arithmetic Logic Unit (CALU)

The CPU uses the CALU to perform 2s-complement arithmetic. The CALU
consists of these elements:

� 16-bit � 16-bit multiplier
� 32-bit arithmetic logic unit (ALU)
� 32-bit accumulator (ACC)
� 32-bit accumulator buffer (ACCB)
� Additional shifters at the outputs of both the accumulator and the product

register (PREG)

For information on the CALU, see Section 3.2, Central Arithmetic Logic Unit
(CALU), on page 3-7.

2.2.2 Parallel Logic Unit (PLU)

The CPU includes an independent PLU, which operates separately from, but
in parallel with, the ALU. The PLU performs Boolean operations or the bit ma-
nipulations required of high-speed controllers. The PLU can set, clear, test, or
toggle bits in a status register, control register, or any data memory location.
The PLU provides a direct logic operation path to data memory values without
affecting the contents of the ACC or PREG. Results of a PLU function are writ-
ten back to the original data memory location. For information on the PLU, see
Section 3.3, Parallel Logic Unit (PLU), on page 3-15.
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2.2.3 Auxiliary Register Arithmetic Unit (ARAU)

The CPU includes an unsigned 16-bit arithmetic logic unit that calculates
indirect addresses by using inputs from the auxiliary registers (ARs), index
register (INDX), and auxiliary register compare register (ARCR). The ARAU
can autoindex the current AR while the data memory location is being
addressed and can index either by �1 or by the contents of the INDX. As a
result, accessing data does not require the CALU for address manipulation;
therefore, the CALU is free for other operations in parallel.  For information on
the ARAU, see Section 3.4, Auxiliary Register Arithmetic Unit (ARAU), on
page 3-17.

2.2.4 Memory-Mapped Registers

The ’C5x has 96 registers mapped into page 0 of the data memory space. All
’C5x DSPs have 28 CPU registers and 16 input/output (I/O) port registers but
have different numbers of peripheral and reserved registers (see Chapter 4,
Memory). Since the memory-mapped registers are a component of the data
memory space, they can be written to and read from in the same way as any
other data memory location. The memory-mapped registers are used for indi-
rect data address pointers, temporary storage, CPU status and control, or inte-
ger arithmetic processing through the ARAU. For information on registers, see
Section 3.5, Summary of Registers, on page 3-21.

2.2.5 Program Controller

The program controller contains logic circuitry that decodes the operational
instructions, manages the CPU pipeline, stores the status of CPU operations,
and decodes the conditional operations. Parallelism of architecture lets the
’C5x perform three concurrent memory operations in any given machine cycle:
fetch an instruction, read an operand, and write an operand. See Chapter 4,
Program Control, and Chapter 7, Pipeline. The program controller consists of
these elements:

� Program counter
� Status and control registers
� Hardware stack
� Address generation logic
� Instruction register
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2.3 On-Chip Memory

The ’C5x architecture contains a considerable amount of on-chip memory to
aid in system performance and integration:

� Program read-only memory (ROM)
� Data/program dual-access RAM (DARAM)
� Data/program single-access RAM (SARAM)

The ’C5x has a total address range of 224K words � 16 bits. The memory
space is divided into four individually selectable memory segments: 64K-word
program memory space, 64K-word local data memory space, 64K-word input/
output ports, and 32K-word global data memory space. For information on the
memory organization, see Chapter 8, Memory.

2.3.1 Program ROM

All ’C5x DSPs carry a 16-bit on-chip maskable programmable ROM (see
Table 1–1 for sizes). The ’C50 and ’C57S DSPs have boot loader code resi-
dent in the on-chip ROM, all other ’C5x DSPs offer the boot loader code as an
option. This memory is used for booting program code from slower external
ROM or EPROM to fast on-chip or external RAM. Once the custom program
has been booted into RAM, the boot ROM space can be removed from pro-
gram memory space by setting the MP/MC bit in the processor mode status
register (PMST). The on-chip ROM is selected at reset by driving the MP/MC
pin low. If the on-chip ROM is not selected, the ’C5x devices start execution
from off-chip memory. For information on the program ROM, see Section 8.2,
Program Memory, on page 8-7.

The on-chip ROM may be configured with or without boot loader code. Howev-
er, the on-chip ROM is intended for your specific program. Once the program
is in its final form, you can submit the ROM code to Texas Instruments for
implementation into your device. For details on how to submit code to Texas
Instruments to program your ROM, see Appendix F, Submitting ROM Codes
to TI.

2.3.2 Data/Program Dual-Access RAM

All ’C5x DSPs carry a 1056-word � 16-bit on-chip dual-access RAM (DARAM).
The DARAM is divided into three individually selectable memory blocks:
512-word data or program DARAM block B0, 512-word data DARAM block B1,
and 32-word data DARAM block B2. The DARAM is primarily intended to store
data values but, when needed, can be used to store programs as well. DARAM
blocks B1 and B2 are always configured as data memory; however, DARAM
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block B0 can be configured by software as data or program memory. The
DARAM can be configured in one of two ways:

� All 1056 words � 16 bits configured as data memory

� 544 words � 16 bits configured as data memory and 512 words × 16 bits
configured as program memory

DARAM improves the operational speed of the ’C5x CPU. The CPU operates
with a 4-deep pipeline. In this pipeline, the CPU reads data on the third stage
and writes data on the fourth stage. Hence, for a given instruction sequence,
the second instruction could be reading data at the same time the first instruc-
tion is writing data. The dual data buses (DB and DAB) allow the CPU to read
from and write to DARAM in the same machine cycle. For information on
DARAM, see Section 8.3, Local Data Memory, on page 8-15.

2.3.3 Data/Program Single-Access RAM

All ’C5x DSPs except the ’C52 carry a 16-bit on-chip single-access RAM
(SARAM) of various sizes (see Table 1–1). Code can be booted from an off-
chip ROM and then executed at full speed, once it is loaded into the on-chip
SARAM. The SARAM can be configured by software in one of three ways:

� All SARAM configured as data memory
� All SARAM configured as program memory
� SARAM configured as both data memory and program memory

The SARAM is divided into 1K- and/or 2K-word blocks contiguous in address
memory space. All ’C5x CPUs support parallel accesses to these SARAM
blocks. However, one SARAM block can be accessed only once per machine
cycle. In other words, the CPU can read from or write to one SARAM block
while accessing another SARAM block. When the CPU requests multiple
accesses, the SARAM schedules the accesses by providing a not-ready
condition to the CPU and executing the multiple accesses one cycle at a time.

SARAM supports more flexible address mapping than DARAM because
SARAM can be mapped to both program and data memory space simulta-
neously. However, because of simultaneous program and data mapping, an
instruction fetch and data fetch that could be performed in one machine cycle
with DARAM may take two machine cycles with SARAM. For information on
SARAM, see Section 8.3, Local Data Memory, on page 8-15.

2.3.4 On-Chip Memory Protection

The ’C5x DSPs have a maskable option that protects the contents of on-chip
memories. When the related bit is set, no externally originating instruction can
access the on-chip memory spaces. For information on the protection feature,
see subsection 8.2.4, Program Memory Protection Feature, on page 8-14.
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2.4 On-Chip Peripherals

All ’C5x DSPs have the same CPU structure; however, they have different on-
chip peripherals connected to their CPUs. The ’C5x DSP on-chip peripherals
available are:

� Clock generator
� Hardware timer
� Software-programmable wait-state generators
� Parallel I/O ports
� Host port interface (HPI)
� Serial port
� Buffered serial port (BSP)
� Time-division multiplexed (TDM) serial port
� User-maskable interrupts

2.4.1 Clock Generator

The clock generator consists of an internal oscillator and a phase-locked loop
(PLL) circuit. The clock generator can be driven internally by a crystal resona-
tor circuit or driven externally by a clock source. The PLL circuit can generate
an internal CPU clock by multiplying the clock source by a specific factor, so
you can use a clock source with a lower frequency than that of the CPU. For
information, see Section 9.2, Clock Generator, on page 9-7.

2.4.2 Hardware Timer

A 16-bit hardware timer with a 4-bit prescaler is available. This programmable
timer clocks at a rate that is between 1/2 and 1/32 of the machine cycle rate
(CLKOUT1), depending upon the timer’s divide-down ratio. The timer can be
stopped, restarted, reset, or disabled by specific status bits. For information,
see Section 9.3, Timer, on page 9-9.

2.4.3 Software-Programmable Wait-State Generators

Software-programmable wait-state logic is incorporated in ’C5x DSPs allow-
ing wait-state generation without any external hardware for interfacing with
slower off-chip memory and I/O devices. This feature consists of multiple wait-
state generating circuits. Each circuit is user-programmable to operate in
different wait states for off-chip memory accesses. For information, see Sec-
tion 9.4, Software-Programmable Wait-State Generators, on page 9-13.
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2.4.4 Parallel I/O Ports

A total of 64K I/O ports are available, sixteen of these ports are
memory-mapped in data memory space. Each of the I/O ports can be ad-
dressed by the IN or the OUT instruction. The memory-mapped I/O ports can
be accessed with any instruction that reads from or writes to data memory. The
IS signal indicates a read or write operation through an I/O port. The ’C5x can
easily interface with external I/O devices through the I/O ports while requiring
minimal off-chip address decoding circuits. For information, see Section 9.6,
Parallel I/O Ports, on page 9-22.

Table 2–1 lists the number and type of parallel ports available in ’C5x DSPs
with various package types.

2.4.5 Host Port Interface (HPI)

The HPI available on the ’C57S and ’LC57 is an 8-bit parallel I/O port that pro-
vides an interface to a host processor. Information is exchanged between the
DSP and the host processor through on-chip memory that is accessible to both
the host processor and the ’C57. For information, see Section 9.10, Host Port
Interface, on page 9-87.

Table 2–1. Number of Serial/Parallel Ports Available in Different ’C5x Package Types

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

TMS320
Device

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Package
ID†

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

High-Speed
Serial Port

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

TDM
Serial Port

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Buffered
Serial Port

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Host Port
(Parallel)

ÁÁÁÁÁ
ÁÁÁÁÁ

’C50/’LC50 ÁÁÁÁÁ
ÁÁÁÁÁ

PQ ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

– ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

–
ÁÁÁÁÁ
ÁÁÁÁÁ

’C51/’LC51 ÁÁÁÁÁ
ÁÁÁÁÁ

PQ/PZ ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

– ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

–
ÁÁÁÁÁ
ÁÁÁÁÁ

’C52/’LC52
ÁÁÁÁÁ
ÁÁÁÁÁ

PJ/PZ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

–
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

–
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

–
ÁÁÁÁÁ
ÁÁÁÁÁ

’C53/’LC53
ÁÁÁÁÁ
ÁÁÁÁÁ

PQ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

–
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

–
ÁÁÁÁÁ
ÁÁÁÁÁ’C53S/’LC53S

ÁÁÁÁÁ
ÁÁÁÁÁPZ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ2

ÁÁÁÁÁ
ÁÁÁÁÁ–

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ–

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ–ÁÁÁÁÁ

ÁÁÁÁÁ’LC56
ÁÁÁÁÁ
ÁÁÁÁÁPZ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁ
ÁÁÁÁÁ–

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ–ÁÁÁÁÁ

ÁÁÁÁÁ’C57S/’LC57S
ÁÁÁÁÁ
ÁÁÁÁÁPGE

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ1

ÁÁÁÁÁ
ÁÁÁÁÁ–

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ1ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

’LC57
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

PBK
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

–
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1

† PGE is a 20 × 20 × 1.4 mm thin quad flat-pack (TQFP) package
PJ is a 14 × 20 × 2.7 mm quad flat-pack (QFP) package
PQ is a 20 × 20 × 3.8 mm bumpered quad flat-pack (BQFP) package
PZ and PBK are a 14 × 14 × 1.4 mm thin quad flat-pack (TQFP) package
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2.4.6 Serial Port

Three different kinds of serial ports are available: a general-purpose serial
port, a time-division multiplexed (TDM) serial port, and a buffered serial port
(BSP). Each ’C5x contains at least one general-purpose, high-speed synchro-
nous, full-duplexed serial port interface that provides direct communication
with serial devices such as codecs, serial analog-to-digital (A/D) converters,
and other serial systems. The serial port is capable of operating at up to one-
fourth the machine cycle rate (CLKOUT1). The serial port transmitter and re-
ceiver are double-buffered and individually controlled by maskable external in-
terrupt signals. Data is framed either as bytes or as words.

Table 2–1 lists the number and type of serial ports available in ’C5x DSPs with
various package types. For information on serial ports, see Section 9.7, Serial
Port Interface, on page 9-23.

2.4.7 Buffered Serial Port (BSP)

The BSP available on the ’C56 and ’C57 devices is a full-duplexed, double-
buffered serial port and an autobuffering unit (ABU). The BSP provides flexibil-
ity on the data stream length. The ABU supports high-speed data transfer and
reduces interrupt latencies.

Table 2–1 lists the number and type of serial ports available in ’C5x DSPs with
various package types. For information, see Section 9.8, Buffered Serial Port
(BSP) Interface, on page 9-53.

2.4.8 TDM Serial Port

The TDM serial port available on the ’C50, ’C51, and ’C53 devices is a full-
duplexed serial port that can be configured by software either for synchronous
operations or for time-division multiplexed operations. The TDM serial port is
commonly used in multiprocessor applications.

Table 2–1 lists the number and type of serial ports available in ’C5x DSPs with
various package types. For information, see Section 9.9, Time-Division Multi-
plexed (TDM) Serial Port Interface, on page 9-74.

2.4.9 User-Maskable Interrupts

Four external interrupt lines (INT1–INT4) and five internal interrupts, a timer
interrupt and four serial port interrupts, are user maskable. When an interrupt
service routine (ISR) is executed, the contents of the program counter are
saved on an 8-level hardware stack, and the contents of eleven specific CPU
registers are automatically saved (shadowed) on a 1-level-deep stack. When
a return from interrupt instruction is executed, the CPU registers’ contents are
restored. For information, see Section 4.8, Interrupts, on page 4-36.
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2.5 Test/Emulation

On the ’C50, ’LC50, ’C51, ’LC51, ’C53, ’LC53, ’C57S and ’LC57S, an IEEE
standard 1149.1 (JTAG) interface with boundary scan capability is used for
emulation and test. This logic provides the boundary scan to and from the inter-
facing devices. It can be used to test pin-to-pin continuity and to perform opera-
tional tests on devices that are peripheral to the ’C5x.

On the ’C52, ’LC52, ’C53S, ’LC53S, ’LC56, and ’LC57, an IEEE standard
1149.1 (JTAG) interface without boundary scan capability is used for emula-
tion purposes only and is interfaced to other internal scanning logic circuitry
that has access to all of the on-chip resources. Thus, the ’C5x can perform
on-board emulation by means of the IEEE standard 1149.1 serial scan pins
and the emulation-dedicated pins.

The on-chip analysis block in conjunction with the ’C5x debugger software
provides the capability to perform debugging and performance evaluation
functions in a target system. The full analysis block provides the following
capabilities:

� Flexible breakpoint setup. Breakpoints can be triggered based on the fol-
lowing events:

� Program fetches/reads/writes
� EMU0/1 pin activity
� Data reads/writes
� CPU events (calls, returns, interrupts/traps, branches, pipeline clock)
� Event counter overflow

� Counting of the following events for performance analysis:

� CPU clocks
� Pipeline advances
� Instruction fetches
� Calls, returns, interrupts/traps, branches
� Program fetches/reads/writes
� Data reads/writes

� Program counter discontinuity trace buffer to monitor program counter
flow.

The reduced analysis block on the ’C53S and ’LC53S provides the capability
for breakpoint triggering based on program fetches/reads/writes and EMU0/1
pin activity.

Table 2–2 lists the IEEE standard 1149.1 (JTAG) interface, boundary scan
capability, and on-chip analysis block functions supported by the ’C5x. See
IEEE Std. 1149.1 for more details.
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Refer to the TMS320 DSP Development Support Reference Guide for addi-
tional information on available TMS320 development tools.

Table 2–2. IEEE Std.1149.1 (JTAG)/Boundary-Scan Interface Configurations for the ’C5x
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Central Processing Unit (CPU)

The TMS320C5x DSP central processing unit (CPU) can perform high-speed
arithmetic within a short instruction cycle by means of its highly parallel archi-
tecture, which consists of the following elements:

� Program controller
� Central arithmetic logic unit (CALU)
� Parallel logic unit (PLU)
� Auxiliary register arithmetic unit (ARAU)
� Memory-mapped registers

This chapter does not discuss the memory and peripheral segments, except
in relation to the CPU.
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3.1 Functional Overview

The block diagram shown in Figure 3–1 outlines the principal blocks and data
paths within the ’C5x. The succeeding sections provide further details of the
functional blocks of the CPU.

The internal hardware of the ’C5x executes functions that other processors
typically implement in software or microcode. For example, the ’C5x contains
hardware for single-cycle 16 � 16-bit multiplication, data shifting, and ad-
dress manipulation. This hardware-intensive approach provides computing
power previously unavailable on a single chip.

Table 3–1 presents a summary of the ’C5x’s internal hardware. This summary
table is alphabetized. The table includes the internal processing elements,
registers, and buses. All of the symbols used in the table correspond to the the
functional blocks illustrated in Figure 3–1, the succeeding block diagrams in
this chapter, and the text throughout this document.
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Figure 3–1. Block Diagram of ’C5x DSP – Central Processing Unit (CPU)
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Table 3–1. ’C5x CPU Internal Hardware Summary

Symbol Name

A15–A0 Address bus

ACC(32) Accumulator

ACCB(32) Accumulator buffer

ACCH Accumulator high byte

ACCL Accumulator low byte

ALU(32) Arithmetic logic unit

AR0–AR7 Auxiliary registers

ARAU Auxiliary register arithmetic unit

ARB(3) Auxiliary register buffer bits

ARCR Auxiliary register compare register

ARP(3) Auxiliary register pointer bits

BMAR Block move address register

BRAF(1) Block repeat active flag bit

BRCR Block repeat counter register

C Carry bit

CALU Central arithmetic logic unit

CBCR(8) Circular buffer control register

CBER1, CBER2 Circular buffer end registers

CBSR1, CBSR2 Circular buffer start registers

CNF Configuration control bit

COMPARE Compare of program address

D15–D0 Data bus

DATA BUS Data bus

DBMR Dynamic bit manipulation register

dma(7) Data memory address (immediate register)

DP(9) Data memory page pointer bits
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Table 3–1. ’C5x CPU Internal Hardware Summary (Continued)

Symbol Name

DRB Direct data memory address bus

GREG Global memory allocation register

HM(1) Hold mode bit

IFR Interrupt flag register

IMR Interrupt mask register

INDX Index register

INTM(1) Interrupt mode bit

IPTR(5) Interrupt vector pointer bits

IREG Instruction register

MCS Microcall stack

MP/MC Microprocessor/microcomputer bit

MULTIPLIER Multiplier

MUX Multiplexer

NDX(1) Enable extra index register bit

OV(1) Overflow bit

OVLY(1) RAM overlay bit

OVM(1) Overflow mode bit

P-SCALER (–6, 0, 1, 4) Product shifter

PAER Block repeat program address end register

PASR Block repeat program address start register

PC Program counter

PFC Prefetch counter

PLU Parallel logic unit

PM(2) Product shifter mode bits

PMST Processor mode status register

POSTSCALER(0–7) Accumulator postscaling shifter
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Table 3–1. ’C5x CPU Internal Hardware Summary (Continued)

Symbol Name

PREG(32) Product register

PRESCALER, SFL(0–16),
SFR(0–16)

Prescaling shifters

PROGRAM BUS Program bus

RAM(1) Program RAM enable bit

RPTC Repeat counter register

ST0, ST1 Status registers

STACK Stack

SXM(1) Sign-extension mode bit

TC(1) Test/control bit

TREG0 Temporary register (multiplicand)

TREG1(5) Temporary register (dynamic shift count)

TREG2(4) Temporary register (bit pointer in dynamic bit test)

TRM(1) Enable multiple temporary registers bit

XF(1) External flag pin status bit
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3.2 Central Arithmetic Logic Unit (CALU)

The CALU components, shown in Figure 3–2, consists of the following:

� 16-bit � 16-bit parallel multiplier
� 32-bit 2s-complement arithmetic logic unit (ALU)
� 32-bit accumulator (ACC)
� 32-bit accumulator buffer (ACCB)
� 0-, 1-, or 4-bit left or 6-bit right shifter
� 0- to 16-bit left barrel shifter
� 0- to 16-bit right barrel shifter
� 0- to 7-bit left barrel shifter

3.2.1 Multiplier, Product Register (PREG), and Temporary Register 0 (TREG0)

The 16-bit � 16-bit hardware multiplier can compute a signed or an unsigned
32-bit product in a single machine cycle. All multiply instructions except the
multiply unsigned (MPYU) instruction perform a signed multiply operation in
the multiplier. That is, two numbers being multiplied are treated as 2s-comple-
ment numbers, and the result is a 32-bit 2s-complement number.

One input to the multiplier is from memory-mapped temporary register 0
(TREG0), and the other input is from the data bus or the program bus. The
32-bit result from the multiplier is stored in the PREG and is available to the
ALU. The ALU uses the 16-bit words taken from data memory or derived from
an immediate instruction, or the ALU uses the 32-bit result stored in the PREG
to perform arithmetic operations. The ALU can also perform Boolean opera-
tions. The 32-bit result from the ALU is stored in the ACC; the ACC also sup-
plies the second input to the ALU. Instructions are provided for storing the high-
and low-order accumulator words in memory. The shifters (p-scaler, prescaler,
and postscaler) make it possible for the CALU to perform numerical scaling,
bit extraction, extended-precision arithmetic, and overflow prevention. These
shifters are connected to the output of the PREG and the ACC.

The four product shift modes (PM) at the PREG output are useful for perform-
ing multiply/accumulate operations and fractional arithmetic and for justifying
fractional products. The PM field of status register ST1 specifies the PM shift
mode of the p-scaler:

� If PM = 002, the PREG 32-bit output is not shifted when transferred into the
ALU or stored.

� If PM = 012, the PREG output is left-shifted 1 bit when transferred into the
ALU or stored, and the LSB is zero filled. This shift mode compensates for
the extra sign bit gained when multiplying two 16-bit 2s-complement num-
bers.
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Figure 3–2. Central Arithmetic Logic Unit

P–SCALER
(–6,0,1,4)

PRESCALER
SFL(0–16)

32

Data Bus

32

ACCB(32)

32

ACCLACCH

32

ALU(32)

3232

MUX

MUX

MUX

PREG(32)

Multiplier

TREG0 TREG1(5)

P
ro

gr
am

 B
us

32

32

32

Data Bus

C(1)ST1

PRESCALER
SFR(0–16)

POSTSCALER
(0–7)
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� If PM = 102, the PREG output is left-shifted 4 bits when transferred into the
ALU or stored, and the 4 LSBs are zero filled. This shift mode is used in
conjunction with the MPY instruction with a short immediate value (13 bits
or less) to eliminate the four extra sign bits gained when multiplying a16-bit
number times a 13-bit number.

� If PM = 112, the PREG output is right-shifted 6 bits, sign extended, when
transferred into the ALU or stored, and the 6 LSBs are lost. This shift mode
enables the execution of up to 128 consecutive multiply/accumulates with-
out the possibility of overflow. Note that the product is always sign extended,
regardless of the value of the sign extension mode (SXM) bit in ST1.
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The PM shifts also occur when the PREG contents are stored to data memory.
The PREG contents remain unchanged during the shifts.

The LT (load TREG0) instruction loads TREG0, from the data bus, with the first
operand; the MPY instruction provides the second operand for multiplication
operations. To perfrom a multiplication with a short or long immediate operand,
use the MPY instruction with an immediate operand. A product can be ob-
tained every two cycles except when a long immediate operand is used.

Four multiply/accumulate instructions (MAC, MACD, MADD, and MADS) fully
utilize the computational bandwidth of the multiplier, which allows both oper-
ands to be processed simultaneously. The data for these operations can be
transferred to the multiplier each cycle via the program and data buses. When
any of the four multiply/accumulate instructions are used with the RPT or
RPTZ instruction, the instruction becomes a single-cycle multiply/accumulate
function. In these repeated instructions, the coefficient addresses are gener-
ated by the PC while the data addresses are generated by the ARAU. This al-
lows the RPT instruction to sequentially access the values from the coefficient
table and step through the data in any of the indirect addressing modes. The
RPTZ instruction also clears the ACC and the PREG to initialize the multiply/
accumulate operation.

For example, consider multiplying the row of one matrix times the column of
a second matrix: there are 10 � 10 matrices, MTRX1 points to the beginning
of the first matrix, INDX = 10, and the current AR points to the beginning of the
second matrix:

RPTZ #9 ;For i = 0, i < 10, i++
MAC MTRX1,*0+ ;PREG=DATA(MTRX1+i) x DATA[MTRX2 + 

;(i x INDX)]
;ACC += PREG.

APAC ;ACC += PREG.

The MAC and MACD instructions obtain their coefficient pointer from a long
immediate address and are, therefore, 2-word instructions. The MADS and
MADD instructions obtain their coefficient pointer from the BMAR and are,
therefore, 1-word instructions. When you use the BMAR as a source to the co-
efficient table, one block of code can support multiple applications, and you
can change the long immediate address without modifying executable code.
The MACD and MADD instructions include a data move (DMOV) operation
that, in conjunction with the fetch of the data multiplicand, writes the data value
to the next higher data address.
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The MACD and MADD instructions, when repeated, support filter constructs
(weighted running averages) so that as the sum-of-products operation is ex-
ecuted, the sample data is shifted in memory to make room for the next sample
and to throw away the oldest sample. Circular addressing with MAC and
MADS instructions can also be used to support filter implementation.

In the next example, the current AR points to the oldest of the samples; BMAR
points to the coefficient table. In addition to initiating the repeat operation, the
RPTZ instruction also clears the ACC and the PREG. In this example, the PC
is stored in a temporary register while the repeated operation is executed.
Next, the PC is loaded with the value stored in BMAR. The program bus is used
to address the coefficients and, as the MADD instruction is repeatedly ex-
ecuted, the PC increments to step through the coefficient table. The ARAU
generates the address of the sample data.

Indirect addressing with decrement steps through the sample data, starting
with the oldest data. As the data is fetched, it is also written to the next higher
location in data memory. This operation aligns the data for the next execution
of the filter by moving the oldest sample out past the end of the sample’s array
and making room for the new sample at the beginning of the sample array. The
previous product of the PREG is added to the ACC, while the two fetched val-
ues are multiplied and the new product value is loaded into the PREG. Note
that the DMOV portion of the MACD and MADD instructions does not function
with external data memory addresses.

RPTZ #9 ;ACC = PREG = 0. For I = 9 TO 0 Do
MADD *– ;SUM AI  x X I . X I+1  = X I .
APAC ;FINAL SUM.

The MPYU instruction performs an unsigned multiplication that facilitates ex-
tended-precision arithmetic operations. The unsigned contents of TREG0 are
multiplied by the unsigned contents of the addressed data memory location;
the result is placed in PREG. This allows operands larger than 16 bits to be
broken down into 16-bit words and processed separately to generate products
larger than 32 bits. The square/add (SQRA) and square/subtract (SQRS) in-
structions pass the same value to both inputs of the multiplier for squaring a
data memory value.

After the multiplication of two 16-bit numbers, this 32-bit product is loaded into
PREG. The product from the PREG can be transferred to the ALU or to data
memory via the store product high (SPH) and store product low (SPL) instruc-
tions.
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3.2.2 Arithmetic Logic Unit (ALU) and Accumulators

The 32-bit general-purpose ALU and ACC implement a wide range of arithme-
tic and logical functions, the majority of which execute in a single clock cycle.
Once an operation is performed in the ALU, the result is transferred to the
ACC, where additional operations, such as shifting, can occur. Data that is in-
put to the ALU can be scaled by the prescaler.

The following steps occur in the implementation of a typical ALU instruction:

1) Data is fetched from memory on the data bus,

2) Data is passed through the prescaler and the ALU, where the arithmetic
is performed, and

3) The result is moved into the ACC.

The ALU operates on 16-bit words taken from data memory or derived from
immediate instructions. In addition to the usual arithmetic instructions, the ALU
can perform Boolean operations, thereby facilitating the bit manipulation abil-
ity required of a high-speed controller. One input to the ALU is always supplied
by the ACC. The other input can be transferred from the PREG of the multiplier,
the ACCB, or the output of the prescaler (that has been read from data memory
or from the ACC). After the ALU has performed the arithmetic or logical opera-
tion, the result is stored in the ACC. For the following example, assume that
ACC = 0, PREG = 0022 2200h, PM = 002, and ACCB = 0033 3300h:

LACC #01111h,8 ;ACC = 00111100h. Load ACC from prescaling
;shifter

APAC ;ACC = 00333300h. Add to ACC the
;product register.

ADDB ;ACC = 00666600h. Add to ACC the
;accumulator buffer.

The 32-bit ACC can be split into two 16-bit segments (ACCH and ACCL) for
storage in data memory (see Figure 3–2). A postscaler at the output of the
ACC provides a left shift of 0 to 7 places. This shift is performed while the data
is being transferred to the data bus for storage. The contents of the ACC re-
main unchanged. When the postscaler is used on the high word of the ACC
(bits 16 – 31), the MSBs are lost and the LSBs are filled with bits shifted in from
the low word (bits 0 – 15). When the postscaler is used on the low word, the
LSBs are zero filled. For the following example, assume that
ACC = FF23 4567h:

SACL  TEMP1,7   ;TEMP1 = B380h   ACC = FF234567h.
SACH  TEMP2,7   ;TEMP2 = 91A2h   ACC = FF234567h.
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The ’C5x supports floating-point operations for applications requiring a large
dynamic range. By performing left shifts, the NORM (normalization) instruction
normalizes fixed-point numbers contained in the ACC. The four bits of the
TREG1 define a variable shift through the prescaler for the add to/load to/sub-
tract from accumulator with shift specified by TREG1 (ADDT/LACT/SUBT)
instructions. These instructions denormalize a number (convert it from float-
ing-point to fixed-point) and also execute an automatic gain control (AGC)
going into a filter.

The single-cycle 1-bit to 16-bit right shift of the ACC can efficiently align its con-
tents. This shift, coupled with the 32-bit temporary buffer on the ACC, en-
hances the effectiveness of the CALU in extended-precision arithmetic. The
ACCB provides a temporary storage place for a fast save of the ACC. The
ACCB can also be used as an input to the ALU. The minimum or maximum
value in a string of numbers can be found by comparing the contents of the
ACCB with the contents of the ACC. The minimum or maximum value is placed
in both registers, and, if the condition is met, the carry bit (C) is set. The mini-
mum and maximum functions are executed by the CRLT and CRGT instruc-
tions, respectively. These operations are signed arithmetic operations. In the
next example, assume that ACC = 1234 5678h and ACCB = 7654 3210h:

CRLT ;ACC = ACCB = 12345678h. C = 1.
CRGT ;ACC = ACCB = 76543210h. C = 0.

The ACC overflow saturation mode can be enabled by setting and disabled by
clearing the overflow mode (OVM) bit of ST0. When the ACC is in the overflow
saturation mode and an overflow occurs, the overflow flag is set and the ACC
is loaded with either the most positive or the most negative value represent-
able in the ACC, depending upon the direction of the overflow. The value of
the ACC upon saturation is 7FFF FFFFh (positive) or 8000 0000h (negative).
If the OVM bit is cleared and an overflow occurs, the overflowed results are
loaded into the ACC without modification. Note that logical operations cannot
result in overflow.

The ’C5x can execute a variety of branch instructions that depend on the status
of the ALU and the ACC. For example, execution of the instruction BCND can
depend on a variety of conditions in the ALU and the ACC. The BACC instruc-
tion allows branching to an address stored in the ACC. The bit test instructions
(BITT and BIT) facilitate branching on the condition of a specified bit in data
memory.
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The ACC has an associated carry bit that is set or cleared, depending on vari-
ous operations within the ’C5x. The carry bit allows more efficient computation
of extended-precision products and additions or subtractions; it is also useful
in overflow management. The carry bit is affected by most arithmetic instruc-
tions as well as the single-bit shift and rotate instructions. The carry bit is not
affected by loading the ACC, logical operations, or other nonarithmetic or con-
trol instructions. Examples of carry bit operations are shown in Figure 3–3.

Figure 3–3. Examples of Carry Bit Operations
  C  MSB           LSB         C  MSB           LSB
  X   F F F F F F F F ACC      X   0 0 0 0 0 0 0 0 ACC
     +              1             –              1       
  1   0 0 0 0 0 0 0 0          0   F F F F F F F F

  C  MSB           LSB         C  MSB           LSB
  X   7 F F F F F F F ACC      X   8 0 0 0 0 0 0 1 ACC
     +              1 (OVM = 0)       –              2 (OVM = 0)
  0   8 0 0 0 0 0 0 0          1   7 F F F F F F F

  C  MSB           LSB         C  MSB           LSB
  1   0 0 0 0 0 0 0 0 ACC      0   F F F F F F F F ACC
     +              0 (ADDC)        –              1 (SUBB) 
  0   0 0 0 0 0 0 0 1          1   F F F F F F F D

The value added to or subtracted from the ACC can come from the prescaler,
ACCB, or PREG. The carry bit is set if the result of an addition or accumulation
process generates a carry; it is cleared if the result of a subtraction generates
a borrow. Otherwise, it is cleared after an addition or set after a subtraction.

The add to ACC with carry (ADDC) and add ACCB to ACC with carry (ADCB)
instructions use the previous value of carry in their addition operation. The
subtract from ACC with borrow (SUBB) and subtract ACCB from ACC with bor-
row (SBBB) instructions use the logical inversion of the previous value of carry.

The one exception to the operation of the carry bit is in the use of ADD with
a shift count of 16 (add to ACCH) and SUB with a shift count of 16 (subtract
from ACCH). These instructions can generate a carry or a borrow, but they will
not clear a carry or borrow, as is normally the case if a carry or borrow is not
generated. This feature is useful for extended-precision arithmetic.

Two conditional operands, C and NC, are provided for branching, calling, re-
turning, and conditionally executing according to the status of the carry bit. The
CLRC, LST #1, and SETC instructions can be used to load the carry bit. The
carry bit is set on a reset.

The 1-bit shift to the left (SFL) or right (SFR) and the rotate to the left (ROL)
or right (ROR) instructions shift or rotate the contents of the ACC through the
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carry bit. The SXM bit affects the definition of the shift accumulator right (SFR)
instruction. When SXM = 1, SFR performs an arithmetic right shift, maintaining
the sign of the ACC data. When SXM = 0, SFR performs a logical shift, shifting
out the LSBs and shifting in a 0 for the MSB. The shift accumulator left (SFL)
instruction is not affected by the SXM bit and behaves the same in both cases,
shifting out the MSB and shifting in a 0. The RPT and RPTZ instructions can
be used with the shift and rotate instructions for multiple-bit shifts.

The SFLB, SFRB, RORB, and ROLB instructions can shift or rotate the 65-bit
combination of the ACC, ACCB, and carry bit as described above.

The ACC can also be shifted 0–31 bits right in two instruction cycles or 1–16
bits right in one cycle. The bits shifted out are lost, and the bits shifted in are
either 0s or copies of the original sign bit, depending on the value of the SXM
bit. A shift count of 1 to 16 is embedded in the instruction word of the BSAR
instruction. For example, let ACC = 1234 5678h:

BSAR 7 ;ACC = 02468ACEh.

The right shift can also be controlled via TREG1. The SATL instruction shifts
the ACC by 0–15 bits, as defined by bits 0–3 of TREG1. The SATH instruction
shifts the ACC 16 bits to the right if bit 4 of TREG1 is a 1. The following code
sequence executes a 0- to 31-bit right shift of the ACC, depending on the shift
count stored at SHIFT. For example, consider the value stored at
SHIFT = 01Bh and ACC = 1234 5678h:

LMMR TREG1,SHIFT ;TREG1 = shift count 0 – 31. TREG1 = 1B
SATH ;If shift count > 15, then ACC >> 16

;ACC = 00001234
SATL ;ACC >> shift count. ACC = 00000002

3.2.3 Scaling Shifters and Temporary Register 1 (TREG1)

The prescaler has a 16-bit input connected to the data bus and a 32-bit output
connected to the ALU (see Figure 3–2). The prescaler produces a left shift of
0 to 16 bits on the input data. The shift count is specified by a constant em-
bedded in the instruction word or by the value in TREG1. The LSBs of the out-
put are filled with 0s; the MSBs can be filled with 0s or sign-extended, depend-
ing upon the value of the SXM bit of ST1.

The p-scaler and postscaler make it possible for the CALU to perform numeri-
cal scaling, bit extraction, extended-precision arithmetic, and overflow preven-
tion. These shifters are connected to the output of the PREG and the ACC (see
Figure 3–2 on page 3-8).
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3.3 Parallel Logic Unit (PLU)

The parallel logic unit (PLU) can directly set, clear, test, or toggle multiple bits
in a control/status register or any data memory location. The PLU provides a
direct logic operation path to data memory values without affecting the con-
tents of the ACC or the PREG (see Figure 3–4).

The PLU executes a read-modify-write operation on data stored in data space.
First, one operand is fetched from data memory space, and the second is
fetched from a long immediate on the program bus or from the dynamic bit ma-
nipulation register (DBMR). Then, the PLU executes a logical operation on the
two operands as defined by the instruction. The result is written to the same
data memory location from which the first operand was fetched.

Figure 3–4. Parallel Logic Unit Block Diagram
Data Bus
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Note: All registers and data lines are 16-bits wide unless otherwise specified.

The PLU makes it possible to directly manipulate bits in any location in data
memory space by ANDing, ORing, exclusive-ORing, or loading a 16-bit long
immediate value to a data location. For example, to use AR1 for circular buffer
1 and AR2 for circular buffer 2 but not enable the circular buffers, initialize the
circular buffer control register (CBCR) by executing the following code:

SPLK #021h,CBCR ;Store peripheral long immediate
;(DP = 0).

Next, enable circular buffers 1 and 2 by executing the code:

OPL #088h,CBCR ;Set bit 7 and bit 3 in CBCR.
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To test for individual bits in a specific register or data word, use the BIT instruc-
tion; however, to test for a pattern of bits, use the compare parallel long imme-
diate (CPL) instruction. If the data value is equal to the long immediate value,
then the test/control (TC) bit in ST1 is set. The TC bit is set if the result of any
PLU instruction is 0.

The set, clear, and toggle functions can be executed with a 16-bit dynamic reg-
ister value instead of the long immediate value. This is done with the following
three instructions: AND DBMR register to data (APL), OR DBMR register to
data (OPL), and exclusive-OR DBMR register to data (XPL).

The TC bit is also set by the APL, OPL, and XPL instructions if the result of the
PLU operation (value written back into data memory) is 0. This allows bits to
be tested and cleared simultaneously. For example,

APL #0FF00h,TEMP ;Clear low byte and check for
;bits set in high byte.

BCND HIGH_BITS_SET,NTC ;If bits active in high byte,
;then branch.

or

XPL #1,TEMP ;Toggle bit 0.
BCND BIT_SET,TC ;If bit was set, branch. If not,

;bit set now.

In the first example, the low byte of a flag word is cleared while the high byte
is checked for any active flags (bits = 1). If none of the flags in the high byte
is set, then the resulting APL operation yields a 0 to TEMP and the TC bit is
set. If any of the flags in the high byte are set, then the resulting APL operation
yields a nonzero value to TEMP and the TC bit is cleared. Therefore, the condi-
tional branch (BCND) following the APL instruction branches if any of the bits
in the high byte are nonzero. The second example tests the flag. If the flag is
low, the flag is set high; if the flag is high, the flag is cleared and the branch is
taken. The PLU instructions can operate anywhere in data address space, so
they can operate with flags stored in RAM locations as well as in control regis-
ters for both on- and off-chip peripherals. The PLU instructions are listed in
Table 6–6 on page 6-14.
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3.4 Auxiliary Register Arithmetic Unit (ARAU)

The auxiliary register file contains eight memory-mapped auxiliary registers
(AR0–AR7), which can be used for indirect addressing of the data memory or
for temporary data storage. Indirect auxiliary register addressing (see
Figure 3–5) allows placement of the data memory address of an instruction
operand into one of the AR. The ARs are pointed to by a 3-bit auxiliary register
pointer (ARP) that is loaded with a value from 0–7, designating AR0–AR7, re-
spectively. The ARs and the ARP can be loaded from data memory, the ACC
or the PREG or by an immediate operand defined in the instruction. The con-
tents of the ARs can be stored in data memory or used as inputs to the CALU.
The memory-mapped ARs reside in data page 0, as described in subsection
8.3.2, Local Data Memory Address Map, on page 8-17.

The auxiliary register file (AR0–AR7) is connected to the auxiliary register
arithmetic unit (ARAU), shown in Figure 3–6. The ARAU can autoindex the
current AR while the data memory location is being addressed; it indexes
either by ±1 or by the contents of the index register (INDX). As a result, the
CALU is not needed for address manipulation when tables of information are
accessed; it is free for other operations in parallel. For more advanced address
manipulation, such as multidimensional array addressing, the CALU can
directly read from or write to the ARs.

Figure 3–5. Indirect Auxiliary Register Addressing Example

Auxiliary Register
Pointer
(in ST0)

ARP 0 1 1

Data Memory MapAuxiliary Register File

AR0 0 5 3 7 h

AR1 5 1 5 0 h

AR2 0 E 9 F C h

AR3 0 F F 3 A h

AR4 1 0 3 B h

AR5 2 6 B 1 h

AR6 0 0 0 8 h

AR7 8 4 3 D h

Location
0000h

0FF3Ah 3121h

0FFFFh
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Figure 3–6. Auxiliary Register Arithmetic Unit
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The ARAU updates the ARs during the decode phase (second stage)
of the pipeline, while the CALU writes during the execution phase
(fourth stage). Therefore, the two instructions that immediately follow
the CALU write to an AR should not use the same AR for address
generation. See Chapter 7, Pipeline , for more details.

As shown in Figure 3–6, the INDX, auxiliary register compare register
(ARCR), or eight LSBs of the instruction register (IREG) can be used as one
of the inputs to the ARAU. The other input is provided by the contents of the
current AR pointed to by ARP. Table 3–2 defines the functions of the ARAU.
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Table 3–2. Auxiliary Register Arithmetic Unit Functions

Function Description

Current AR + INDX → Current AR Index the current AR by adding an unsigned 16-bit
integer contained in INDX. Example: ADD *0+

Current AR – INDX → Current AR Index the current AR by subtracting an unsigned
16-bit integer contained in INDX. Example: ADD *0–

Current AR + 1 → Current AR Increment the current AR by 1. Example: ADD *+

Current AR – 1 → Current AR Decrement the current AR by 1. Example: ADD *–

Current AR → Current AR Do not modify the current AR. Example: ADD *

Current AR + IR(7–0) → Current AR Add an 8-bit immediate value to current AR. Exam-
ple: ADRK #55h

Current AR – IR(7–0) → Current AR Subtract an 8-bit immediate value from the current
AR. Example: SBRK #55h

Current AR + rc(INDX) → Current AR Bit-reversed indexing; add INDX with reversed-carry
(rc) propagation. Example: ADD *BR0+

Current AR – rc(INDX) → Current AR Bit-reversed indexing; subtract INDX with reversed-
carry (rc) propagation. Example: ADD *BR0–

If (Current AR) = (ARCR), then TC = 1
If (Current AR) < (ARCR), then TC = 1
If (Current AR) > (ARCR), then TC = 1 
If (Current AR) ≠ (ARCR), then TC = 1

Compare the current AR to ARCR and, if the condi-
tion is true, then set the TC bit of the status register
ST1. If false, then clear the TC bit. Example: CMPR 3

If (Current AR) = (CBER), then Current AR = CBSR If the current AR is at the end of circular buffer, reload
the start address. The test for this condition is per-
formed before the execution of the AR modification.
Example: ADD *+

The INDX can be added to or subtracted from the current AR on any AR update
cycle. The INDX can be used to increment or decrement the address in steps
larger than 1; this is useful for operations such as addressing down a matrix
column. The ARCR limits blocks of data and supports logical comparisons be-
tween the current AR and ARCR in conjunction with the CMPR instruction.
Note that the ’C2x uses AR0 for this implementation. After reset, you can use
the load auxiliary register (LAR) instruction to load AR0; if the enable extra in-
dex register (NDX) bit in the PMST is set, LAR also loads INDX and ARCR to
maintain compatibility with the ’C2x.
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Because the ARs are memory-mapped, the CALU can act directly upon them
and use more advanced indirect addressing techniques. For example, the
multiplier can calculate the addresses of 3-dimensional matrices. After a
CALU load of the AR, there is, however, a 2-instruction-cycle delay before the
ARs can be used for address generation. The INDX and ARCR are accessible
via the CALU, regardless of the condition of the NDX bit (that is, SAMM ARCR
writes only to the ARCR).

The ARAU can serve as an additional general-purpose arithmetic unit be-
cause the auxiliary register file can directly communicate with data memory.
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple-
ments 32-bit 2s-complement arithmetic. The BANZ and BANZD instructions
permit the ARs to be used as loop counters.

The 3-bit auxiliary register pointer buffer (ARB), shown in Figure 3–6, stores
the ARP on subroutine calls when the automatic context switch feature of the
’C5x is not used.

Two circular buffers can operate at a given time and are controlled via the cir-
cular buffer control register (CBCR). Upon reset (rising edge of RS), both circu-
lar buffers are disabled. To define a circular buffer, load CBSR1 or CBSR2 with
the start address of the buffer and CBER1 or CBER2 with the end address;
then load the AR to be used with the circular buffer with an address between
the start and end addresses. Finally, load CBCR with the appropriate AR num-
ber and set the enable (CENB1 or CENB2) bit.

Do not use the same AR to access both circular buffers or unexpected
results will occur.

As the address is stepping through the circular buffer, the AR value is com-
pared against the value contained in CBER prior to the update to the AR value.
If the current AR value and the CBER are equal and an AR modification occurs,
the value contained in CBSR is automatically loaded into the AR. If the values
in the CBER and the AR are not equal, the AR is modified as specified.

Circular buffers can be used with either increment- or decrement-type up-
dates. If increment is used, then the value in CBER must be larger than the
value in CBSR. If decrement is used, the value in CBER must be smaller than
the value in CBSR. The other indirect addressing modes can be used; howev-
er, the ARAU tests only for the condition current AR = CBER. The ARAU does
not detect an AR update that steps over the value contained in CBER. See
Section 5.6, Circular Addressing, on page 5-21 for more details.
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3.5 Summary of Registers

CPU registers (except ST0 and ST1), peripheral registers, and I/O ports
occupy data memory space.

3.5.1 Auxiliary Registers (AR0–AR7)

The eight 16-bit auxiliary registers (AR0–AR7) can be accessed by the CALU
and modified by the ARAU or the PLU. The primary function of the ARs is to
provide a 16-bit address for indirect addressing to data space. However, the
ARs can also be used as general-purpose registers or counters. Section 5.2,
Indirect Addressing, on page 5-4 describes how the ARs are used in indirect
addressing. Use of ARs is described in Section 3.4 on page 3-17.

3.5.2 Auxiliary Register Compare Register (ARCR)

The 16-bit ARCR is used for address boundary comparison. The CMPR
instruction compares the ARCR to the selected AR and places the result of the
compare in the TC bit of ST1. Section 5.2, Indirect Addressing, on page 5-4
describes how the ARCR can be used in memory management. See also Sec-
tion 3.4 on page 3-17.

3.5.3 Block Move Address Register (BMAR)

The 16-bit BMAR holds an address value to be used with block moves and
multiply/accumulate operations. This register provides the 16-bit address for
an indirect-addressed second operand. See Section 5.4, Dedicated-Register
Addressing, on page 5-17.

3.5.4 Block Repeat Registers (RPTC, BRCR, PASR, PAER)

The 16-bit repeat counter register (RPTC) holds the repeat count in a repeat
single-instruction operation and is loaded by the RPT and RPTZ instructions.
See Section 4.6, Single Instruction Repeat Function, on page 4-22.

Although the RPTC is a memory-mapped register, you should avoid
writing to this register. Writing to this register can cause undesired
results.
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The 16-bit block repeat counter register (BRCR) holds the count value for the
block repeat feature. This value is loaded before a block repeat operation is
initiated. The value can be changed while a block repeat is in progress; howev-
er, take care to avoid infinite loops. The block repeat program address start
register (PASR) indicates the 16-bit address where the repeated block of code
starts. The block repeat program address end register (PAER) indicates the
16-bit address where the repeated block of code ends. The PASR and PAER
are loaded by the RPTB instruction. Block repeats are described in Section
4.7, Block Repeat Function, on page 4-31.

3.5.5 Buffered Serial Port Registers (ARR, AXR, BKR, BKX, SPCE)

The buffered serial port (BSP) is available on ’C56 and ’C57 devices. The BSP
comprises a full-duplex, double-buffered serial port interface and an autobuf-
fering unit (ABU). The BSP has a 2K-word buffer, which resides in the ’C5x
internal memory. Five registers control and operate the BSP. The 16-bit BSP
control extension register (SPCE) contains the mode control and status bits
of the BSP. The 11-bit BSP address receive register (ARR) and 11-bit BSP
receive buffer size register (BKR) support address generation for writing to the
data receive register (DRR) in the ’C5x internal memory. The 11-bit BSP
address transmit register (AXR) and 11-bit BSP transmit buffer size register
(BKX) support address generation for reading a word from the ’C5x internal
memory to the data transmit register (DXR). The BSP is described in Section
9.8, Buffered Serial port (BSP) Interface, on page 9-53.

3.5.6 Circular Buffer Registers (CBSR1, CBER1, CBSR2, CBER2, CBCR)

The ’C5x devices support two concurrent circular buffers operating in conjunc-
tion with user-specified auxiliary registers. Two 16-bit circular buffer start reg-
isters (CBSR1 and CBSR2) indicate the address where the circular buffer
starts. Two 16-bit circular buffer end registers (CBER1 and CBER2) indicate
the address where the circular buffer ends. The 16-bit circular buffer control
register (CBCR) controls the operation of these circular buffers and identifies
the auxiliary registers to be used. Section 5.6, Circular Addressing, on page
5-21 describes how circular buffers can be used in memory management.
Section 3.4 on page 3-17 describes how circular buffer registers are used in
addressing. See also subsection 4.4.1, Circular Buffer Control Register
(CBCR), on page 4-6.

3.5.7 Dynamic Bit Manipulation Register (DBMR)

The 16-bit DBMR is used in conjunction with the PLU as a dynamic (execution-
time programmable) mask register. The DBMR is described in Section 3.3 on
page 3-15.
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3.5.8 Global Memory Allocation Register (GREG)

The 16-bit GREG allocates parts of the local data space as global memory and
defines what amount of the local data space will be overlayed by global data
space. See Section 8.4, Global Data Memory, on page 8-20.

3.5.9 Host Port Interface Registers (HPIC, HPIA)

The 8-bit wide parallel host port interface (HPI) is available on the ’C57 device.
The HPI interfaces a host processor to the ’C57 device. The HPI control regis-
ter (HPIC) holds the control word. The host processor addresses HPI memory
via the HPI address register (HPIA). See Section 9.10, Host Port Interface
(’C57S and ’LC57 only), on page 9-87.

3.5.10 Index Register (INDX)

The 16-bit INDX is used by the ARAU as a step value (addition or subtraction
by more than 1) to modify the address in the ARs during indirect addressing.
For example, when the ARAU steps across a row of a matrix, the indirect
address is incremented by 1. However, when the ARAU steps down a column,
the address is incremented by the dimension of the matrix. The ARAU can add
or subtract the value stored in the INDX from the current AR as part of the indi-
rect address operation. INDX can also map the dimension of the address block
used for bit-reversal addressing. Section 5.2, Indirect Addressing, on page 5-4
describes how the INDX can be used in memory management. See also Sec-
tion 3.4 on page 3-17.

3.5.11 I/O Space (PA0–PA15)

The I/O space makes it possible to address 16 locations (50h–5Fh) of I/O
space via the addressing modes of the local data space. This means that these
locations can be read directly into the CALU or written from the ACC. It also
means that these locations can be acted upon by the PLU or addressed via
the memory-mapped addressing mode. The locations can also be addressed
with the IN and OUT instructions.

3.5.12 Instruction Register (IREG)

The 16-bit IREG holds the opcode of the instruction being executed. The IREG
is used during program control.

3.5.13 Interrupt Registers (IMR, IFR)

The 16-bit interrupt mask register (IMR) individually masks specific interrupts
at required times. The 16-bit interrupt flag register (IFR) indicates the current
status of the interrupts. The status of the interrupts is updated regardless of
the IMR and INTM bit in the ST0. Interrupts are described in Section 4.8, Inter-
rupts, on page 4-36.
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3.5.14 Processor Mode Status Register (PMST)

The 16-bit PMST contains status and control information for the ’C5x device.
Subsection 8.2.1, Program Memory Configurability, on page 8-7 and subsec-
tion 8.3.1, Local Data Memory Configurability, on page 8-15 describe how the
PMST configures memory. See also subsection 4.4.2, Processor Mode Status
Register (PMST), on page 4-7.

3.5.15 Product Register (PREG)

The 32-bit PREG holds the result of a multiply operation. The high and low
words of PREG can be accessed individually. See subsection 3.2.1 on page 3-7.

3.5.16 Serial Port Interface Registers (SPC, DRR, DXR, XSR, RSR)

Five registers control and operate the serial port interface. The 16-bit serial
port control register (SPC) contains the mode control and status bits of the seri-
al port. The 16-bit data receive register (DRR) holds the incoming serial data,
and the 16-bit data transmit register (DXR) holds the outgoing serial data. The
16-bit data transmit shift register (XSR) controls the shifting of the data from
the DXR to the output pin. The 16-bit data receive shift register (RSR) controls
the storing of the data from the input pin to the DRR. The serial port is de-
scribed in Section 9.7, Serial Port Interface, on page 9-23.

3.5.17 Software-Programmable Wait-State Registers (PDWSR, IOWSR, CWSR)

The software wait states are determined by three registers. These registers
serve different purposes on different devices. On most ’C5x devices the 16-bit
program/data wait-state register (PDWSR) contains the wait-state count for
the eight 16K-word blocks of program and data memory. The PDWSR is di-
vided into eight 2-bit wait-state fields assigned to each 16K-word block. The
I/O space is mapped into the 16-bit I/O wait-state register (IOWSR) under con-
trol of the 5-bit wait-state control register (CWSR). The CWSR determines the
range of wait states selected. The BIG bit in the CWSR determines how the
I/O space is partitioned. If the BIG bit is cleared, the IOWSR is divided into eight
pairs of I/O ports with the 2-bit wait-state fields assigned to each pair of port
addresses. If the BIG bit is set, the I/O space is divided into eight 8K-word
blocks with each having its own 2-bit wait-state field, similar to PDWSR. For
the ’C52, ’LC56, ’C57S, and ’LC57 devices, the program, data, and I/O space
wait states are each specified by a single (3-bit) wait-state value. Each
memory space can be independently set to 0–7 wait states by a 3-bit wait-state
field in PDWSR. See Section 9.4, Software-Programmable Wait-State Gener-
ators, on page 9-13.
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3.5.18 Status Registers (ST0, ST1)

The two 16-bit status registers contain status and control bits for the CPU and
are described in subsection 4.4.3, Status Registers (ST0 and ST1), on page
4-10.

3.5.19 Temporary Registers (TREG0, TREG1, TREG2)

The 16-bit TREG0 holds one of the multiplicands of the multiplier. TREG0 can
also be loaded via the CALU with the following instructions: LT, LTA, LTD, LTP,
LTS, SQRA, SQRS, MAC, MACD, MADS, and MADD. The 5-bit TREG1 holds
a dynamic (execution-time programmable) shift count for the prescaling shift-
er. The 4-bit TREG2 holds a dynamic bit address for the BITT instruction. The
TREG0 is described in subsection 3.2.1 on page 3-7.

Software compatibility can be maintained with the ’C2x by clearing the enable
multiple TREGs (TRM) bit in the PMST. This causes any ’C2x instruction that
loads TREG0 to write to all three TREGs, maintaining ’C5x object-code com-
patibility with the ’C2x.

3.5.20 Timer Registers (TIM, PRD, TCR)

Three registers control and operate the timer. The timer counter register (TIM)
gives the current count of the timer. The timer period register (PRD) defines
the period for the timer. The 16-bit timer control register (TCR) controls the op-
erations of the timer. See Section 9.3, Timer, on page 9-9.

3.5.21 TDM Serial Port Registers (TRCV, TDXR, TSPC, TCSR, TRTA, TRAD, TRSR)

The time-division-multiplexed (TDM) serial port interface is a feature superset
of the serial port interface and supports applications that require serial commu-
nication in a multiprocessing environment. Six registers control and operate
the TDM serial port interface. The 16-bit TDM serial port control register
(TSPC) contains the mode control and status bits of the TDM serial port inter-
face. The 16-bit TDM data receive register (TRCV) holds the incoming TDM
serial data, and the 16-bit TDM data transmit register (TDXR) holds the outgo-
ing TDM serial data. The 16-bit TDM data receive shift register (TRSR) con-
trols the storing of the data, from the input pin, to the TRCV. The 16-bit TDM
channel select register (TCSR) specifies in which time slot(s) each ’C5x device
is to transmit. The 16-bit TDM receive/transmit address register (TRTA) speci-
fies in the eight LSBs (RA0–RA7) the receive address of the ’C5x device and
in the eight MSBs (TA0–TA7) the transmit address of the ’C5x device. The
16-bit TDM receive address register (TRAD) contains various information re-
garding the status of the TDM address line (TADD). See Section 9.9, Time-Di-
vision Multiplexed (TDM) Serial Port Interface, on page 9-74.
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Program Control

Program control on the TMS320C5x is provided by the program counter, hard-
ware stack, repeat counters, status registers, program counter-related hard-
ware, and several software mechanisms. Software mechanisms used for pro-
gram control include branches, calls, conditional instructions, repeat instruc-
tions, reset, and interrupts.
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4.1 Program Counter (PC)

The ’C5x has a 16-bit program counter (PC) which contains the address of in-
ternal or external program memory used to fetch instructions.

The PC addresses program memory, either on-chip or off-chip, via the pro-
gram address bus (PAB). Through the PAB, an instruction is loaded into the
instruction register (IREG). Then the PC is ready to start the next instruction
fetch cycle. Refer to Figure 4–1 for a functional block diagram of the program
control elements.

The PC is loaded in a number of ways. Table 4–1 shows what address is
loaded into the PC, depending on the code operation performed.

Figure 4–1. Program Control Functional Block Diagram
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Table 4–1. Address Loading Into the Program Counter

Code Operation Address Loaded to the PC

Sequential code The PC is loaded with PC + 1.

Branch (B instruction) The PC is loaded with the long immediate value direct-
ly following the branch instruction.

Subroutine call The PC + 2 is pushed onto the stack and then the PC
is loaded with the long immediate value directly follow-
ing the call instruction. The return instruction pops the
stack back into the PC to return to the calling or inter-
rupting sequence of code.

Software (INTR, TRAP,
or NMI instruction) or
interrupt trap

The PC is loaded with the address of the appropriate
interrupt vector.

Computed GOTO The content of the accumulator low byte (ACCL) is
loaded into the PC. The BACC (branch to location
specified by the accumulator) or CALA (call subroutine
at location specified by the accumulator) instructions
can be used to perform GOTO operations.

BLDD, BLDP, BLPD,
MAC, or MACD
instruction

The PC is loaded with the a long immediate address.

BACC, BACCD, CALA,
TBLR, or TBLW
instruction

The PC is loaded with the contents of the accumulator
low byte (ACCL).

BLDD, BLDP, BLPD,
MADD, or MADS
instruction

The PC is loaded with the content of the block move
address register (BMAR).

End of a block repeat
loop

The PC is loaded with the content of the block repeat
program address start register (PASR).

Return instruction The PC is loaded with the top of the stack.

The PC can also be loaded with coefficients residing in program memory for
some instructions used with the repeat operation (see Section 4.6, Single
Instruction Repeat Function, on page 4-22). In a repeat operation, once the
instruction is repeated, it is no longer prefetched, and the PC can be used to
address program memory sequentially. The multiply/accumulate instructions
(MAC, MACD, MADD, and MADS), memory move from data-to-data instruc-
tion (BLDD), memory move from program-to-data instructions (BLPD and
TBLR), and memory move from data-to-program instructions (BLDP and
TBLW), use this capability.
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4.2 Hardware Stack

The stack which is 16 bits wide and 8 levels deep, is accessible via the PUSH
and POP instructions. Whenever the contents of the PC are pushed onto the
top of the stack (TOS), the previous contents of each level are pushed down,
and the bottom (eighth) location of the stack is lost. Therefore, data is lost if
more than eight successive pushes occur before a pop. The reverse happens
on pop operations. Any pop after seven sequential pops yields the value at the
bottom stack level, and then all of the stack levels contain the same value. Two
additional instructions — PSHD (push a data memory value onto TOS) and
POPD (pop a value from TOS to data memory) — are also available. These
instructions allow a stack to be built in data memory for the nesting of subrou-
tines and interrupts beyond eight levels.

The software can use the stack to save and restore context or for other pur-
poses through the following software instructions:

� POP, which pops a value from the stack to the accumulator low byte

� POPD, which pops a value from the stack to a data memory address

� PSHD, which pushes a data-memory value into the stack

� PUSH, which pushes the contents of the accumulator low byte into the
stack

The stack is used during interrupts and subroutines to save and restore the PC
contents. When a subroutine is called (CALA, CALAD, CALL, CALLD, CC, or
CCD instruction) or an interrupt occurs (hardware interrupt, NMI, INTR, or
TRAP instruction), the return address is automatically saved in the stack (a
PUSH operation). When a subroutine returns (RET, RETC, RETCD, RETD,
RETE, or RETI instruction), the return address is retrieved from the stack (a
POP operation) and loaded into the PC.
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4.3 Program-Memory Address Generation
The program memory space contains the code for applications and holds table
information and immediate operands. The program memory is accessed only
by the program address bus (PB). The address for this bus is generated by the
program counter (PC) when instructions and long immediate operands are ac-
cessed. The PB can also be loaded with a long immediate operand and the
lower 16-bit word of the accumulator for block transfers, multiply/accumulates,
table reads and writes, branching, and subroutine calls.

The ’C5x fetches instructions by putting the PC on the PAB and reading the
appropriate location in memory. While the read is executing, the PC is increm-
ented for the next fetch. If a program address discontinuity (for example, a
branch, a call, a return, an interrupt, or a block repeat) occurs, the appropriate
address is loaded into the PC. The PC is also loaded when operands are
fetched from program memory. Operands are fetched from program memory
when the ’C5x reads from (TBLR) or writes to (TBLW) a table or when it trans-
fers data to (BLPD) or from (BLDP) data space. Some instructions (MAC,
MACD, MADD, and MADS) use the program bus to fetch a second multipli-
cand.

The PC can address data stored in either program or data space. This makes
it possible, within repeated instructions, to fetch a second operand in parallel
with the data bus for 2-operand operations. For repeated instructions, the
array is sequentially accessed by the PAB by incrementing the PC. The block
transfer instructions (BLDD, BLDP, and BLPD) use both buses so that the
pipeline structure can read the next operand while writing to the current one.
The BLPD instruction loads the PC with either the long immediate address or
with the BMAR contents and then uses the PB to fetch the source data from
program space for the block move operation. The BLDP executes in the same
way, except that the PAB is used for the destination operation. The BLDD
instruction uses the PAB to address data space.

The TBLR and TBLW instructions operate like the BLPD and BLDP instruc-
tions, respectively, except that the PC is loaded with the accumulator low byte
instead of the long immediate address or the BMAR contents. This allows look-
up table operations. The multiply/accumulate operations (MAC, MACD,
MADD, and MADS) use the PAB to address their coefficient table. The MAC
and MACD instructions load the PC with the long immediate address following
the instruction. The MADD and MADS instructions load the PC with BMAR
contents.

For a more detailed explanation of how the program address is loaded into the
PC, see Section 4.1, Program Counter, on page 4-2. See also Section 4.6,
Single Instruction Repeat Function, on page 4-22, and Chapter 6, Assembly
Language Instructions, for more information.
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4.4 Status and Control Registers

The ’C5x has four status and control registers:

� Circular buffer control register (CBCR) and processor mode status regis-
ter (PMST) contain status and control information. Since these registers
are memory-mapped, they can be stored into and loaded from data
memory; therefore, the status of the CPU can be saved and restored for
subroutines and interrupt service routines (ISRs).

� Status registers ST0 and ST1 contain the status of various conditions and
modes compatible with the ’C2x.

4.4.1 Circular Buffer Control Register (CBCR)

The CBCR resides in the memory-mapped register space of data memory
page 0 and can be saved in the same way as any other data memory location.
The CBCR can be acted upon directly by the CALU and the PLU. The CALU
and the PLU operations change the status register bits during the execution
phase of the pipeline. The next two instructions after a status register update
must not be affected by the reconfiguration caused by the status update.
Table 7–10 on page 7-24 shows the required latencies between instructions
and register accesses.

The CBCR bits are shown in Figure 4–2 and defined in Table 4–2.

Do not use the same AR to access both circular buffers or unexpected
results will occur.
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Figure 4–2. Circular Buffer Control Register (CBCR) Diagram
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Table 4–2. Circular Buffer Control Register (CBCR) Bit Summary 

Bit Name
Reset
value Function

15–8 Reserved — These bits are reserved.

7 CENB2 0 Circular buffer 2 enable bit. This bit enables/disables circular buffer 2.

CENB2 = 0 Circular buffer 2 is disabled.

CENB2 = 1 Circular buffer 2 is enabled.

6–4 CAR2 — Circular buffer 2 auxiliary register bits. These bits select which auxiliary register
(AR0–AR7) is assigned to circular buffer 2.

3 CENB1 0 Circular buffer 1 enable bit. This bit enables/disables circular buffer 1.

CENB1 = 0 Circular buffer 1 is disabled.

CENB1 = 1 Circular buffer 1 is enabled.

2–0 CAR1 — Circular buffer 1 auxiliary register bits. These bits select which auxiliary register
(AR0–AR7) is assigned to circular buffer 1.

4.4.2 Processor Mode Status Register (PMST)

The PMST resides in the memory-mapped register space of data memory
page 0 and can be saved in the same way as any other data memory location.
The PMST can be acted upon directly by the CALU and the PLU. The CALU
and the PLU operations change the status register bits during the execution
phase of the pipeline. The next two instructions after a status register update
must not be affected by the reconfiguration caused by the status update.

The PMST has an associated 1-level deep shadow register stack for automat-
ic context-saving when an interrupt trap is taken. The PMST is automatically
restored upon a return from interrupt (RETI) or return from interrupt with inter-
rupt enable (RETE) instruction. Table 7–10 on page 7-24 shows the required
latencies between instructions and register accesses.

The PMST bits are shown in Figure 4–3 and defined in Table 4–3.
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Figure 4–3. Processor Mode Status Register (PMST) Diagram
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Table 4–3. Processor Mode Status Register (PMST) Bit Summary 

Bit Name
Reset
value Function

15–11 IPTR 00000 Interrupt vector pointer bits. These bits select any of 32 2K-word pages where the
interrupt vectors reside. The interrupt vectors can be remapped to RAM for boot-
loaded operations by loading the IPTR bits. At reset, the IPTR bits are cleared;
therefore, the reset vector always resides at address 0h in program memory space.

10–8 000 These bits are read as 0.

7 AVIS 0 Address visibility bit. This bit enables/disables the internal program address to
be visible at the address pins.

AVIS = 0 The internal program address is driven to the pins so that the ad-
dress can be traced and the interrupt vector can be decoded in
conjunction with IACK when the interrupt vectors reside in on-chip
memory.

AVIS = 1 The address lines do not change with the internal program
address. The control and data lines are not affected and the ad-
dress bus is driven with the last address on the bus.

6 0 This bit is read as 0.

5 OVLY 0 RAM overlay bit. This bit enables/disables the on-chip single-access RAM
(SARAM) to be addressable in data memory space. The OVLY bit is used in con-
junction with the RAM bit to configure the on-chip SARAM. See Table 4–4 on page
4-10 for specific mappings of the on-chip SARAM.

OVLY = 0 The on-chip SARAM is not addressable in data memory space.

OVLY = 1 The on-chip SARAM is mapped into data memory space.

4 RAM 0 Program RAM enable bit. This bit enables/disables the on-chip single-access RAM
(SARAM) to be addressable in program memory space. The RAM bit is used in con-
junction with the OVLY bit to configure the on-chip SARAM. See Table 4–4 on page
4-10 for specific mappings of the on-chip SARAM.

RAM = 0 The on-chip SARAM is not addressable in program memory
space.

RAM = 1 The on-chip SARAM is mapped into program memory space.

† MP/MC is the logic level of MP/MC pin reset value.
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Table 4–3. Processor Mode Status Register (PMST) Bit Summary (Continued)

Bit Function
Reset
valueName

3 MP/MC † Microprocessor/microcomputer bit. This bit enables/disables the on-chip ROM to
be addressable in program memory space. At reset, the MP/MC bit is set to the val-
ue corresponding to the logic level on the MP/MC pin. The level on the MP/MC pin
is sampled at reset only and can have no effect until the next reset.

MP/MC = 0 The on-chip ROM is mapped into program memory space.

MP/MC = 1 The on-chip ROM is not addressable in program memory space.

2 NDX 0 Enable extra index register bit. This bit determines whether a ’C2x-compatible
instruction that modifies or writes to auxiliary register 0 (AR0) also modifies or writes
to the index register (INDX) and the auxiliary register compare register (ARCR) to
maintain ’C5x object-code compatibility with the TMS320C2x.

NDX = 0 ’C2x-compatible mode. Any ’C2x-compatible instruction that modi-
fies or writes AR0 also modifies or writes the INDX and ARCR be-
cause the ’C2x uses AR0 for indexing and AR compare operations.

NDX = 1 ’C5x-enhanced mode. Any ’C2x-compatible instruction does not
affect the INDX and ARCR. The ’C2x-compatible instructions af-
fect only AR0 of the ’C5x.

1 TRM 0 Enable multiple TREGs bit. This bit determines whether a ’C2x-compatible instruc-
tion that loads TREG0 also loads TREG1 and TREG2 to maintain ’C5x object-code
compatibility with the TMS320C2x.

TRM = 0 ’C2x-compatible mode. Any ’C2x-compatible instruction that
loads TREG0 also loads TREG1 and TREG2 because the ’C2x
uses TREG as a shift count for the prescaling shifter and as a bit
address in the BITT instruction.

TRM = 1 ’C5x-enhanced mode. Any ’C2x-compatible instruction does not
load TREG1 and TREG2. The ’C2x-compatible instructions affect
only TREG0 of the ’C5x.

0 BRAF 0 Block repeat active flag bit. This bit indicates that a block repeat is currently
active.

BRAF = 0 The block repeat is deactivated. The BRAF bit is cleared when the
block repeat counter register (BRCR) decrements below 0.

BRAF = 1 The block repeat is active. The BRAF bit is automatically set when
an RPTB instruction is executed.

† MP/MC is the logic level of MP/MC pin reset value.
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Table 4–4. On-Chip RAM Configuration Using OVLY and RAM Bits

Bit values
On-Chip SARAM

OVLY RAM
On-Chip SARAM

Configuration

0 0 Disabled. The on-chip SARAM is not addressable.

0 1 The on-chip SARAM is mapped into program space.

1 0 The on-chip SARAM is mapped into data space.

1 1 The on-chip SARAM is mapped into both program and data spaces.

4.4.3 Status Registers (ST0 and ST1)

The status registers can be stored into data memory and loaded from data
memory, thereby allowing the ’C5x status to be saved and restored for sub-
routines. The LST instruction writes to ST0 and ST1, and the SST instruction
reads from them, except that the ARP bits and INTM bit are not affected by the
LST #0 instruction. Unlike the PMST and CBCR, the ST0 and ST1 do not
reside in the memory map and, therefore, cannot be handled by using the PLU
instructions.

The ST0 and ST1 each have an associated 1-level deep shadow register stack
for automatic context-saving when an interrupt trap is taken. The registers are
automatically restored upon a return from interrupt (RETI) or return from inter-
rupt with interrupt enable (RETE) instruction. Note that the INTM bit in ST0 and
the XF bit in ST1 are not saved on the stack or restored from the stack on an
automatic context save. This feature allows the XF pin to be toggled in an inter-
rupt service routine and also allows automatic context saves.

The INTM and OVM bits in ST0 and the C, CNF, HM, SXM, TC, and XF bits
in ST1 can be individually set using the SETC instruction or individually cleared
using the CLRC instruction. For example, the sign-extension mode (SXM) bit
is set with SETC SXM or cleared with CLRC SXM. The DP bits in ST0 can be
loaded using the LDP instruction. The PM bits in ST1 can be loaded using the
SPM instruction.

The ST0 bits are shown in Figure 4–4 and defined in Table 4–5.
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Figure 4–4. Status Register 0 (ST0) Diagram
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Table 4–5. Status Register 0 (ST0) Bit Summary 

Bit Name
Reset
value Function

15–13 ARP X Auxiliary register pointer. These bits select the auxiliary register (AR) to be used in
indirect addressing. When the ARP is loaded, the previous ARP value is copied to
the auxiliary register buffer (ARB) in ST1. The ARP can be modified by memory-refer-
ence instructions when you use indirect addressing, and by the MAR or LST #0
instruction. When an LST #1 instruction is executed, the ARP is loaded with the same
value as the ARB.

12 OV 0 Overflow flag bit. This bit indicates that an arithmetic operation overflow in the arith-
metic logic unit (ALU). The OV bit can be modified by the LST #0 instruction.

OV = 0 Overflow did not occur in the ALU. The OV bit is cleared by a reset
or a conditional branch (BCND/BCNDD on OV/NOV).

OV = 1 Overflow does occur in the ALU. As a latched overflow signal, the OV
bit remains set.

11 OVM X Overflow mode bit. This bit enables/disables the accumulator overflow saturation
mode in the arithmetic logic unit (ALU). The OVM bit can be modified by the LST #0
instruction.

OVM = 0 Disabled. An overflowed result is loaded into the accumulator without
modification. The OVM bit can be cleared by the CLRC OVM instruc-
tion.

OVM = 1 Overflow saturation mode. An overflowed result is loaded into the ac-
cumulator with either the most positive (00 7FFF FFFFh) or the most
negative value (FF 8000 0000h). The OVM bit can be set by the
SETC OVM instruction.

10 1 This bit is read as 1.
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Table 4–5. Status Register 0 (ST0) Bit Summary (Continued)

Bit Function
Reset
valueName

9 INTM 1 Interrupt mode bit. This bit globally masks or enables all interrupts. The INTM bit has
no effect on the nonmaskable RS and NMI interrupts. Note that the INTM bit is unaf-
fected by the TRAP and LST #0 instructions. The INTM bit is not saved on the stack
or restored from the stack on an automatic context save during interrupt service rou-
tines.

INTM = 0 All unmaskable interrupts are enabled. The INTM bit can be cleared
by the CLRC INTM or RETE instruction.

INTM = 1 All maskable interrupts are disabled. The INTM bit can be set by the
SETC INTM or INTR instruction, a RS and IACK signal, or when a
maskable interrupt trap is taken.

8–0 DP X Data memory page pointer bits. These bits specify the address of the current data
memory page. The DP bits are concatenated with the 7 LSBs of an instruction word
to form a direct memory address of 16 bits. The DP bits can be modified by the
LST #0 or LDP instruction.
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The ST1 bits are shown in Figure 4–5 and defined in Table 4–6.

Figure 4–5. Status Register 1 (ST1) Diagram
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Table 4–6. Status Register 1 (ST1) Bit Summary 

Bit Name
Reset
value Function

15–13 ARB XXX Auxiliary register buffer. This 3-bit field holds the previous value contained in the
auxiliary register pointer (ARP) in ST0. Whenever the ARP is loaded, the previous
ARP value is copied to the ARB, except when using the LST #0 instruction. When
the ARB is loaded using the LST #1 instruction, the same value is also copied to
the ARP. This is useful when restoring context (when not using the automatic con-
text save) in a subroutine that modifies the current ARP.

12 CNF 0 On-chip RAM configuration control bit. This 1-bit field enables the on-chip dual-ac-
cess RAM block 0 (DARAM B0) to be addressable in data memory space or pro-
gram memory space. The CNF bit can be modified by the LST #1 instruction.

CNF = 0 The on-chip DARAM block 0 is mapped into data memory space.
The CNF bit can be cleared by a reset or the CLRC CNF instruc-
tion.

CNF = 1 The on-chip DARAM block 0 is mapped into program memory
space. The CNF bit can be set by the SETC CNF instruction.

11 TC X Test/control flag bit. This 1-bit flag stores the results of the arithmetic logic unit (ALU)
or parallel logic unit (PLU) test bit operations. The TC bit is affected by the APL, BIT,
BITT, CMPR, CPL, NORM, OPL, and XPL instructions. The status of the TC bit de-
termines if the conditional branch, call, and return instructions execute. The TC bit
can be modified by the LST #1 instruction.

TC = 0 The TC bit can be cleared by the CLRC TC instruction or any one
of the following events:

� The result of the logical operation is 1 when tested by the APL,
OPL, or XPL instructions.

� A bit tested by the BIT or BITT instruction is equal to 0.

� A compare condition is false when tested by the CMPR or
CPL instruction.

� The result of the exclusive-OR operation is false when tested
by the NORM instruction.
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Table 4–6. Status Register 1 (ST1) Bit Summary (Continued)

Bit Function
Reset
valueName

TC = 1 The TC bit can be set by the SETC TC instruction or any one of
the following events:

� The result of the logical operation is 0 when tested by the APL,
OPL, or XPL instructions.

� A bit tested by the BIT or BITT instruction is equal to 1.

� A compare condition is true when tested by the CMPR or CPL
instruction.

� The result of the exclusive-OR operation is true when tested
by the NORM instruction.

10 SXM 1 Sign-extension mode bit. This 1-bit field enables/disables sign extension of an arith-
metic operation. The SXM bit does not affect the operations of certain arithmetic or
logical instructions; the ADDC, ADDS, SUBB, or SUBS instruction suppresses sign
extension, regardless of SXM. The SXM bit can be modified by the LST #1 instruc-
tion.

SXM = 0 Sign extension is suppressed. The SXM bit can be cleared by the
CLRC SXM instruction.

SXM = 1 Sign extension is produced on data as the data is passed into the
accumulator through the scaling shifter. The SXM bit can be set
by a reset or the SETC SXM instruction.

9 C 1 Carry bit. This 1-bit field indicates an arithmetic operation carry or borrow in the
arithmetic logic unit (ALU). The single-bit shift and rotate instructions affect the C
bit. The C bit can be modified by the LST #1 instruction.

C = 0 The result of a subtraction generates a borrow or the result of an
addition (except ADD with a 16-bit shift instruction) did not gener-
ate a carry. The ADD with a 16-bit shift instruction can only set the
bit (by a carry operation); otherwise, the bit is unaffected. The C
bit can be cleared by the CLRC C instruction.

C = 1 The result of an addition generates a carry or the result of a sub-
traction (except SUB with a 16-bit shift instruction) did not gener-
ate a borrow. The SUB with a 16-bit shift instruction can only clear
the bit (by a borrow operation); otherwise, the bit is unaffected.
The C bit can be set by a reset or the SETC C instruction.
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Table 4–6. Status Register 1 (ST1) Bit Summary (Continued)

Bit Function
Reset
valueName

8–7 11 These bits are read as 1.

6 HM 1 Hold mode bit. This 1-bit field determines whether the central processing unit (CPU)
stops or continues execution when acknowledging an active HOLD signal. The HM
bit can be modified by the LST #1 instruction.

HM = 0 The CPU continues execution from on-chip program memory but
puts its external interface in the high-impedance state. The HM bit
can be cleared by the CLRC HM instruction.

HM = 1 The CPU halts internal execution. The HM bit can be set by a reset
or the SETC HM instruction.

5 1 This bit is read as 1.

4 XF 1 XF pin status bit. This 1-bit field determines the level of the external flag (XF) output
pin. The XF bit can be modified by the LST #1 instruction. The XF bit is not saved
or restored from the stack on an automatic context save during interrupt service rou-
tines.

XF = 0 The XF output pin is set to a logic low. The XF bit can be cleared
by the CLRC XF instruction.

XF = 1 The XF output pin is set to a logic high. The XF bit can be set by
a reset or the SETC XF instruction.

3–2 11 These bits are read as 1.

1–0 PM 00 Product shift mode bits. This 2-bit field determines the product shifter (P-SCALER)
mode and shift value for the product register (PREG) output into the arithmetic logic
unit (ALU). The PM bits can be set by the SPM or LST #1 instruction. See Table 4–7
for the product shifter modes.

The PM shifts also occur when the PREG contents are stored to data memory. The
PREG contents remain unchanged during the shifts. See Section 3.2, Central Arith-
metic Logic Unit (CALU), on page 3-7 for details.
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Table 4–7. Product Shifter Mode as Determined by PM Bits

PM bit
values

Bit 1 Bit 0 P-SCALER mode for PREG output

0 0 No shift.

0 1 Left-shifted 1 bit; LSB zero-filled.

1 0 Left-shifted 4 bits; 4 LSBs zero-filled.

1 1 Right-shifted 6 bits; sign extended; 6 LSBs lost. The product is al-
ways sign extended, regardless of the value of the SXM bit.
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4.5 Conditional Operations

In addition to unconditional branches, calls, and returns, the ’C5x has a full
complement of conditional branches, calls, and returns. The execution of
these instructions is based on the conditions listed in Table 4–8.

Table 4–8. Conditions for Branch, Call, and Return Instructions

Mnemonic Condition Description

EQ ACC = 0 Accumulator equal to 0

NEQ ACC ≠ 0 Accumulator not equal to 0

LT ACC < 0 Accumulator less than 0

LEQ ACC ≤ 0 Accumulator less than or equal to 0

GT ACC > 0 Accumulator greater than 0

GEQ ACC ≥ 0 Accumulator greater than or equal to 0

NC C = 0 Carry bit cleared

C C = 1 Carry bit set

NOV OV = 0 No accumulator overflow detected

OV OV = 1 Accumulator overflow detected

BIO BIO is low BIO signal is low

NTC TC = 0 Test/control flag cleared

TC TC = 1 Test/control flag set

UNC none Unconditional operation

4.5.1 Conditional Branch

The BCND (conditional branch) is a 2-word instruction. The conditions for the
branch are not stable until the fourth cycle of the branch instruction pipeline
execution, because the previous instruction must have completely executed
for the accumulator’s status bits to be accurate. Therefore, following the
branch, the pipeline controller stops the decode of instructions until the condi-
tions are valid. If the conditions defined in the operands of the instruction are
met, the PC is loaded with the second word and the CPU starts filling the pipe-
line with instructions at the branch address. Because the pipeline has been
flushed, the branch instruction has an effective execution time of four cycles
if the branch is taken. If, however, any of the conditions are not met, the pipe-
line controller allows the next instruction (already fetched) to be decoded. This
means that if the branch is not taken, the effective execution time of the branch
is two cycles.
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4.5.2 Conditional Call

The CC (conditional call) is a 2-word instruction. The CC instruction operates
like the BCND except that the PC pointing to the instruction following the CC
is pushed onto the stack. Thus, the return (RET) operation can pop the stack
to return to the calling sequence. A subroutine or function can have multiple
return paths depending on the data being processed.

4.5.3 Conditional Return

The ’C5x supports conditional returns (RETC) to avoid conditionally branching
around the return. Example 4–1 shows an overflow-handling subroutine
called if the main algorithm causes an overflow condition. During the subrou-
tine, the ACC is checked and, if it is positive, the subroutine returns to the call-
ing sequence. If it is not positive, additional processing is necessary before the
return. Note that RETC, like RET, is a 1-word instruction. However, because
of the potential PC discontinuity, RETC operates with the same effective
execution time as BCND and CC.

Example 4–1. Use of Conditional Returns (RETC Instruction)

CC OVER_FLOW,OV ;If overflow,then execute the
. ;overflow-handling routine.
.
.

OVER_FLOW ;Overflow-handling routine.
.
.
.
RETC GEQ ;If ACC >= 0, then return.
.
.
.
RET ;Return.

4.5.4 Multiconditional Instructions

Multiple conditions can be defined in the operands of the conditional instruc-
tions. All defined conditions must be met.

The ’C5x includes instructions that test multiple conditions before passing con-
trol to another section of the program. These instructions are: BCND, BCNDD,
CC, CCD, RETC, RETCD, and XC. These instructions can test the conditions
listed in Table 4–8 individually or in combination with other conditions.
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You can combine conditions from the following four groups (Table 4–9). You
can select up to four conditions; however, each of these conditions must be
from different groups. You cannot have two conditions from the same group.
For example, you can test EQ and TC at the same time but not NEQ and GEQ.
For example:

      BCND BRANCH,LT,NOV,TC     ; If ACC < 0, no overflow
                                 ; and TC bit set.

In this example, LT (ACC < 0), NOV (OV = 0), and TC (TC = 1) conditions must
be met for the branch to be taken.

For a description of the condition codes, see Section 4.5, Conditional Opera-
tions, on page 4-17.

Table 4–9. Groups for Multiconditional Instructions

Group 1 Group 2 Group 3 Group 4

EQ OV C TC

NEQ NOV NC NTC

GT BIO

LT

GEQ

LEQ

4.5.5 Delayed Conditional Branches, Calls, and Returns

To avoid flushing the pipeline and causing extra cycles, the ’C5x has a full set
of delayed conditional branches, calls, and returns. The one 2-word instruction
or two 1-word instructions following a delayed instruction are executed while
the instructions at and following the branch address are being fetched, thereby
giving an effective 2-cycle branch instead of flushing the pipeline. If the instruc-
tion following the delayed instruction is 2 words, only that 2-word instruction
is executed before the branch is taken.

Conditions tested in the branch are not affected by the instructions following
the delayed branch, as shown in Example 4–2 and Example 4–3.

Example 4–2. Use of Conditional Branch (BCND Instruction)

OPL #030h,PMST
BCND NEW_ADRS,EQ
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Example 4–3. Use of Delayed Conditional Branch (BCNDD Instruction)

BCNDD NEW_ADRS,EQ
OPL #030h,PMST

The code in Example 4–2 executes in six cycles (two for the OPL and four for
the BCND). The code in Example 4–3 executes in four cycles because the two
dead cycles following the BCNDD are filled with the OPL instruction. The
condition tested on the branch is not affected by the OPL instruction, thereby
allowing it to be executed after the branch.

4.5.6 Conditional Execution

In cases where you want the conditional branch to skip over one or two words
of code, the branch can be replaced with the execute conditionally (XC)
instruction. There are two forms of the XC instruction. One form is the condi-
tional execute of a 1-word instruction (XC 1). The second form is the condition-
al execute of one 2-word instruction or two 1-word instructions (XC 2). Condi-
tions for XC are the same as for conditional branches, calls, and returns (see
Table 4–8 on page 4-17).

Example 4–4 shows a code example for a conditional branch and
Example 4–5 shows a code example for a conditional execution.

Example 4–4. Conditional Branch Operation

BCND SUM,NC
ADD  ONE

SUM APAC

Example 4–5. Use of Conditional Execution (XC Instruction)

XC   1,C
ADD  ONE
APAC

The code in Example 4–4 executes in six cycles (four for the BCND, one for
the ADD, and one for the APAC). The code in Example 4–5 executes in three
cycles (one each for the XC, ADD, and APAC). If the condition (C = 1) is met
in Example 4–5, the ADD instruction is executed. If the condition is not met,
a no operation (NOP) instruction is executed instead of the ADD.
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The condition (C = 1) must be stable one full cycle before the XC instruction
is executed. This ensures that the decision is made before the instruction fol-
lowing XC is decoded. You should avoid changing the XC test conditions in the
1-word instruction before XC. If no interrupts occur, this instruction has no ef-
fect on XC. However, if an interrupt occurs, it can trap between the instruction
and XC, thus, affecting the condition before XC is executed.

Example 4–6 and Example 4–7 show cycle dependency for the XC instruc-
tion.

Example 4–6. XC Execution with Unstable Condition

LACL #0 ;ACC = 0
ADD TEMP1 ;ACC = TEMP1
XC 2,EQ ;If ACC == 0,
SPLK #0EEEEh,TEMP2 ;then TEMP2 = 0EEEEh

Example 4–7. XC Execution with Stable Condition

LACL #0 ;ACC = 0
ADD #01234h ;ACC = 00001234
XC 2,EQ ;If ACC == 0,
SPLK #0EEEEh,TEMP2 ;then TEMP2 is unmodified

In the code in Example 4–6, the NEQ condition (ACC = TEMP1 � 0) is not
stable one full cycle before the XC instruction is executed. The NEQ status,
caused by the ADD instruction, is not established because the ADD is only a
1-cycle instruction. Therefore, the previous EQ condition, caused by the LACL
instruction, determines the conditional execute. Since the condition is met
(ACC = 0), the one 2-word instruction is executed, and TEMP2 is loaded by
the SPLK instruction. If an interrupt occurs, it can trap before XC and after ADD
so the SPLK instruction cannot execute. In the code in Example 4–7, the NEQ
condition (ACC � 0) is stable one full cycle before the XC instruction is
executed. The NEQ status, caused by the ADD instruction, is established be-
cause the long immediate value (#01234h) used with ADD is a 2-cycle instruc-
tion. Since the condition is not met, a NOP instruction is executed instead of
the one 2-word instruction, and TEMP2 is not affected. If an interrupt occurs,
it has no effect on this instruction sequence.
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4.6 Single Instruction Repeat Function

A single instruction can be repeated N + 1 times, where N is the value loaded
into a 16-bit repeat counter register (RPTC) by the RPT or RPTZ instruction.
The maximum number of executions of a given instruction is 65 536. The
RPTC cannot be programmed; it is is cleared by reset and loaded only by the
RPT or RPTZ instruction. When the repeat function is used, RPTC is decrem-
ented each time the instruction is executed until the RPTC equals 0. Once a
repeat instruction is decoded, all interrupts, including NMI (but not RS), are
masked until the completion of the repeat loop. However, the ’C5x responds
to the HOLD signal while executing a repeat loop.

The RPTC is a memory-mapped register. However, you should avoid
writing to this register. Writing to this register can cause undesired
results.

You can use the repeat function with instructions such as multiply/accumu-
lates, block moves, I/O transfers, and table reads/writes. When you use the
repeat function, these multicycle instructions are pipelined and the instruction
effectively becomes a single-cycle instruction after the first iteration. Absolute
program or data addresses are automatically incremented when you use the
repeat function. For example, the TBLR instruction can require three or more
cycles to execute, but when the instruction is repeated, a table location can be
read every cycle.

Not all instructions can be repeated or are meaningful to repeat. Table 4–10
through Table 4–13 list all ’C5x instructions according to their repeatability.
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Table 4–10. Multi-cycle Instructions Transformed Into Single-Cycle Instructions by the
Repeat Function

Mnemonic † Description

BLDD Block move from data to data memory

BLDP Block move from data to program memory with destination address in BMAR

BLPD Block move from program to data memory

IN Input data from I/O port to data memory location

MAC Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREG0; mul-
tiply data memory value by program memory value and store result in PREG

MACD Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREG0; mul-
tiply data memory value by program memory value and store result in PREG; and move
data

MADD Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREG0; mul-
tiply data memory value by value specified in BMAR and store result in PREG; and move
data

MADS Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREG0; mul-
tiply data memory value by value specified in BMAR and store result in PREG

OUT Output data from data memory location to I/O port

TBLR Transfer data from program to data memory with source address in ACCL

TBLW Transfer data from data to program memory with destination address in ACCL

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table 4–11. Repeatable Instructions 

Mnemonic † Description

ADCB Add ACCB and carry bit to ACC

ADD Add data memory value, with left shift, to ACC

ADDB Add ACCB to ACC

ADDC Add data memory value and carry bit to ACC with sign extension suppressed

ADDS Add data memory value to ACC with sign extension suppressed

ADDT Add data memory value, with left shift specified by TREG1, to ACC

APAC Add PREG, with shift specified by PM bits, to ACC

APL AND data memory value with DBMR, and store result in data memory location

BLDD Block move from data to data memory

BLDP Block move from data to program memory with destination address in BMAR

BLPD Block move from program to data memory

BSAR Barrel-shift ACC right

DMOV Move data in data memory

IN Input data from I/O port to data memory location

LMMR Load data memory value to memory-mapped register

LTA Load data memory value to TREG0; add PREG, with shift specified by PM bits, to ACC

LTD Load data memory value to TREG0; add PREG, with shift specified by PM bits, to ACC;
and move data

LTS Load data memory value to TREG0; subtract PREG, with shift specified by PM bits, from
ACC

MAC Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREG0; mul-
tiply data memory value by program memory value and store result in PREG

MACD Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREG0; mul-
tiply data memory value by program memory value and store result in PREG; and move
data

MADD Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREG0; mul-
tiply data memory value by value specified in BMAR and store result in PREG; and move
data

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table 4–11. Repeatable Instructions (Continued)

Mnemonic † Description

MADS Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREG0; mul-
tiply data memory value by value specified in BMAR and store result in PREG

MPYA Add PREG, with shift specified by PM bits, to ACC; multiply data memory value by TREG0
and store result in PREG

MPYS Subtract PREG, with shift specified by PM bits, from ACC; multiply data memory value by
TREG0 and store result in PREG

MAR Modify ARn

NOP No operation

NORM Normalize ACC

OPL OR data memory value with DBMR and store result in data memory location

OUT Output data from data memory location to I/O port

POP Pop top of stack to ACCL; zero ACCH

POPD Pop top of stack to data memory location

PSHD Push data memory value to top of stack

PUSH Push ACCL to top of stack

ROL Rotate ACC left 1 bit

ROLB Rotate ACCB and ACC left 1 bit

ROR Rotate ACC right 1 bit

RORB Rotate ACCB and ACC right 1 bit

SACH Store ACCH, with left shift, in data memory location

SACL Store ACCL, with left shift, in data memory location

SAMM Store ACCL in memory-mapped register

SAR AR, {ind} Store ARn (modified in indirect addressing mode) in data memory location

SATH Barrel-shift ACC right 0 or 16 bits as specified by TREG1

SATL Barrel-shift ACC right as specified by TREG1

SBB Subtract ACCB from ACC

SBBB Subtract ACCB and logical inversion of carry bit from ACC

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table 4–11. Repeatable Instructions (Continued)

Mnemonic † Description

SFL Shift ACC left 1 bit

SFLB Shift ACCB and ACC left 1 bit

SFR Shift ACC right 1 bit

SFRB Shift ACCB and ACC right 1 bit

SMMR Store memory-mapped register in data memory location

SPAC Subtract PREG, with shift specified by PM bits, from ACC

SPH Store PREG high byte, with shift specified by PM bits, in data memory location

SPL Store PREG low byte, with shift specified by PM bits, in data memory location

SQRA Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREG0;
square value and store result in PREG

SQRS Subtract PREG, with shift specified by PM bits, from ACC; load data memory value to
TREG0; square value and store result in PREG

SST Store STn in data memory location

SUB Subtract data memory value, with left shift, from ACC

SUBB Subtract data memory value and logical inversion of carry bit from ACC with sign extension
suppressed

SUBC Conditional subtract

SUBS Subtract data memory value from ACC with sign extension suppressed

SUBT Subtract data memory value, with left shift specified by TREG1, from ACC

TBLR Transfer data from program to data memory with source address in ACCL

TBLW Transfer data from data to program memory with destination address in ACCL

XPL Exclusive-OR data memory value with DBMR and store result in data memory location

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table 4–12. Instructions Not Meaningful to Repeat 

Mnemonic † Description

ABS Absolute value of ACC; zero carry bit

AND AND data memory value with ACCL; zero ACCH

ANDB AND ACCB with ACC

BIT Test bit

BITT Test bit specified by TREG2

CLRC Clear status bit

CMPL 1s complement ACC

CMPR Compare ARn with ARCR as specified by CM bits

CPL Compare data memory value with DBMR

CRGT Store ACC in ACCB if ACC > ACCB

CRLT Store ACC in ACCB if ACC < ACCB

EXAR Exchange ACCB with ACC

LACB Load ACC to ACCB

LACC Load data memory value, with left shift, to ACC

LACL Load data memory value to ACCL; zero ACCH

LACT Load data memory value, with left shift specified by TREG1, to ACC

LAMM Load contents of memory-mapped register to ACCL; zero ACCH

LAR Load data memory value to ARx

LDP Load data memory value to DP bits

LPH Load data memory value to PREG high byte

LST Load data memory value to STm

LT Load data memory value to TREG0

LTP Load data memory value to TREG0; store PREG, with shift specified by PM bits, in
ACC

MPY Multiply data memory value by TREG0 and store result in PREG

MPYU Multiply unsigned data memory value by TREG0 and store result in PREG

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.



Single Instruction Repeat Function

 4-28

Table 4–12. Instructions Not Meaningful to Repeat (Continued)

Mnemonic † Description

NEG Negate (2s complement) ACC

OR OR data memory value with ACCL

ORB OR ACCB with ACC

PAC Load PREG, with shift specified by PM bits, to ACC

SACB Store ACC in ACCB

SAR AR, dma Store ARn direct addressed in data memory location

SETC Set status bit

SPM Set product shift mode (PM) bits

XOR Exclusive-OR data memory value with ACCL

XORB Exclusive-OR ACCB with ACC

ZALR Zero ACCL and load ACCH with rounding

ZAP Zero ACC and PREG

ZPR Zero PREG

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table 4–13. Nonrepeatable Instructions 

Mnemonic † Description

ADD #k Add short immediate to ACC

ADD #lk, shift Add long immediate, with left shift, to ACC

ADRK Add short immediate to AR

AND #lk, shift AND long immediate, with left shift, with ACC

APL  #lk AND data memory value with long immediate and store result in data memory location

B Branch unconditionally

BACC Branch to program memory location specified by ACCL

BACCD Delayed branch to program memory location specified by ACCL

BANZ Branch to program memory location if AR not zero

BANZD Delayed branch to program memory location if AR not zero

BCND Branch conditionally to program memory location

BCNDD Delayed branch conditionally to program memory location

BD Delayed branch unconditionally

CALA Call to subroutine addressed by ACCL

CALAD Delayed call to subroutine addressed by ACCL

CALL Call to subroutine unconditionally

CALLD Delayed call to subroutine unconditionally

CC Call to subroutine conditionally

CCD Delayed call to subroutine conditionally

CPL #lk Compare data memory value with long immediate

IDLE Idle until nonmaskable interrupt or reset

IDLE2 Idle until nonmaskable interrupt or reset — low-power mode

INTR Software interrupt that branches program control to program memory location

LACC #lk, shift Load long immediate, with left shift, to ACC

LACL #k Load short immediate to ACCL; zero ACCH

LAR #k Load short immediate to ARx

LAR #lk Load long immediate to ARx

LDP #k Load short immediate to DP bits

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table 4–13. Nonrepeatable Instructions (Continued)

Mnemonic † Description

MPY #k Multiply short immediate by TREG0 and store result in PREG

MPY #lk Multiply long immediate by TREG0 and store result in PREG

NMI Nonmaskable interrupt and globally disable interrupts (INTM = 1)

OPL #lk OR data memory value with long immediate and store result in data memory location

OR #lk, shift OR long immediate, with left shift, with ACC

RET Return from subroutine

RETC Return from subroutine conditionally

RETCD Delayed return from subroutine conditionally

RETD Delayed return from subroutine

RETE Return from interrupt with context switch and globally enable interrupts (INTM = 0)

RETI Return from interrupt with context switch

RPT Repeat next instruction specified by data memory value

RPTB Repeat block of instructions specified by BRCR

RPTZ Clear ACC and PREG; repeat next instruction specified by long immediate

SBRK Subtract short immediate from AR

SPLK  #lk Store long immediate in data memory location

SUB #k Subtract short immediate from ACC

SUB #lk, shift Subtract long immediate, with left shift, from ACC

TRAP Software interrupt that branches program control to program memory location 22h

XC Execute next instruction(s) conditionally

XOR #lk, shift XOR long immediate, with left shift, with ACC

XPL #lk Exclusive-OR data memory value with long immediate and store result in data memory
location

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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4.7 Block Repeat Function

A block of instructions can be repeated N + 1 times, where N is the value
loaded into a 16-bit block repeat counter register (BRCR) by the RPTB instruc-
tion. The maximum number of executions of a given instruction block is
65 536. The block repeat feature provides no-overhead looping for imple-
mentation of FOR and DO loops. The block repeat function is controlled by
three registers (PASR, PAER, and BRCR) and the block repeat active flag
(BRAF) bit in the PMST. You can set or clear the BRAF bit via the PMST.

When the repeat block (RPTB) instruction is executed, it automatically sets the
BRAF bit, loads the program address start register (PASR) with the address
of the instruction following the RPTB instruction, and loads the program ad-
dress end register (PAER) with its long immediate operand. The long immedi-
ate operand is the address of the instruction following the last instruction in the
loop, minus 1. The repeat block must contain at least three instruction words.
With each PC update, the PAER is compared to the PC. If they are equal, the
BRCR contents are compared to 0. If the BRCR is greater than 0, it is decrem-
ented, and the PASR is loaded into the PC, therefore restarting the loop. If they
are not equal, the BRAF bit is cleared and the processor resumes execution
past the end of the code’s loop. Example 4–8 shows how the RPTB instruction
can be used.

Example 4–8. Use of Block Repeat (RPTB Instruction)

SPLK #0Fh,BRCR ;Set loop count to 16.
RPTB END_LOOP–1 ;For I = BRCR; I >=0; I––.

*
ZAP ;ACC = PREG = 0.
SQRA *,AR2 ;PREG = X 2.
SPL SQRX ;Save X 2.
MPY * ;PREG = b x X.
LTA SQRX ;ACC = bX. TREG = X 2.
MPY * ;PREG = aX 2.
APAC ;ACC = aX 2 + bX.
ADD *,0,AR3 ;ACC = aX 2 + bX + c = Y.
SACL *,0,AR1 ;Save Y.
CRGT ;Save MAX.

END_LOOP

Example 4–8 implements 16 executions of Y = aX2 + bX + c and saves the
maximum value in ACCB. Note that the initialization of the auxiliary registers
is not shown in the coded example. PAER is loaded with the address of the last
word in the code segment. The label END_LOOP is placed after the last
instruction, and the RPTB instruction long immediate is defined as
END_LOOP–1, in case the last word in the loop is a 2-word instruction.
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4.7.1 Context Save and Restore Used With Block Repeat

There is only one set of block repeat registers, so multiple block repeats cannot
be nested without saving the context of the outside block or using the BANZD
instruction. The simplest method of executing nested loops is to use the RPTB
instruction for only the innermost loop and using the BANZD instruction for all
the outer loops. This is still a valuable cycle-saving operation because the in-
nermost loop is repeated significantly more times than the outer loops. You can
nest block repeats by storing the context of the outer loop before initiating the
inner loop, then restoring the outer loop’s context after the inner loop com-
pletes. The context save and restore are shown in Example 4–9.

Example 4–9. Context Save and Restore Used With Block Repeat

SMMR BRCR,TEMP1 ;Save block repeat counter
SMMR PASR,TEMP2 ;Save block start address
SMMR PAER,TEMP3 ;Save block end address
SPLK #NUM_LOOP,BRCR ;Set inner loop count
RPTB END_INNER ;For I = 0; I<=BRCR; I++
 .
 .
 .

END_INNER
LMMR BRCR,TEMP1 ;Restore block repeat counter
OPL #1,PMST ;Set BRAF to continue outer loop
LMMR PASR,TEMP2 ;Restore block start address
LMMR PAER,TEMP3 ;Restore block end address

In Example 4–9, the context save and restore operations require 14 cycles.
Repeated single and BANZ/BANZD loops can also be inside a block repeat
and can include subroutine calls. Upon returning from a subroutine call, the
block repeat resumes. Repeated blocks can also be interrupted. When an en-
abled interrupt occurs during a repeated block of code, the CALU traps to the
interrupt and, when the interrupt service routine returns, the block repeat
resumes.

Caution should be exercised when interrupting block repeats. If the interrupt
service routine uses block repeats, check whether a block repeat has been in-
terrupted and, if so, save the context of the block repeat, as shown in
Example 4–9. Smaller external loops can be implemented with the BANZD-
looping method that requires two extra cycles per loop (that is, if the loop count
is less than eight, it can be more efficient to use the BANZD technique). Single-
cycle instructions can be repeated within a block repeat by using the RPT or
RPTZ instructions.

WHILE loops can be implemented with the RPTB instruction and a conditional
reset of the BRAF bit. The following code example clears BRAF bit so that the
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processor will drop out of the code loop and continue to sequentially access
instructions past the end of the loop if an overflow occurs:

XC 2,OV ;If overflow,
APL #0FFFEh,PMST ;then turn off block repeat.

The equivalent of a WHILE loop can be implemented by clearing the BRAF bit
if the exit condition is met. If this is done, the program completes the current
pass through the loop but does not go back to the top. To exit, the BRAF bit
must be cleared at least four instruction words before the end of the loop. You
can exit block repeat loops and return to them without stopping and restarting
the loop. Branches, calls, and interrupts do not necessarily affect the loop.
When program control is returned to the loop, loop execution is resumed.
Example 4–10 shows the block repeat with a small loop of code that executes
a series of tasks. The tasks are stored in a table addressed by TEMP0F. The
number of tasks to be executed is defined at NUM_TASKS.

Example 4–10. Block Repeat with Small Loop of Code

BLPD NUM_TASKS,BRCR ;Set loop count.
SPLK #(TASKS–1),TEMP0F ;TEMP0F points to list of

;tasks.
RPTB ENDCALL–1 ;For I = 0, I <= NUM_TASKS;

;I++.
TASK_HANDLER

LACC TEMP0F ;ACC points to task table.
ADD #1 ;Increment pointer to next

;task.
SACL TEMP0F ;Save for next pass of loop.
TBLR TEMP0E ;Get task address.
LACC TEMP0E ;ACC = task address.
CALA ;Call task.

ENDCALL

In the setup of Example 4–10, the BRCR is loaded with the number of tasks
to be executed. Next, the address of the task table is loaded into a temporary
register. The block repeat is started with the execution of the RPTB instruction.
The PASR is loaded with the address of the LACC TEMP0F instruction. The
PAER is loaded with the address of the last word of code. Notice that the label
marking the end of the loop is placed after the last instruction, then the PAER
is loaded with that label, minus 1. It is possible to place the label before the
CALA instruction, then load the PAER with the label address because this is
a 1-word instruction. However, if the last instruction in this loop had been a
2-word instruction, the second word of the instruction would not be read and
the long immediate operand would be substituted with the first instruction in
the loop.
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Inside the loop, the pointer to the task table is incremented and saved. Then,
the task address is read from the table and loaded into the ACC. Next, the task
is called by the CALA instruction. Notice that, when the task returns to the task
handler, it returns to the top of the loop. This is because the PC has already
been loaded with the PASR before the CALA executes the PC discontinuity.
Therefore, when the CALA is executed, the address at the top of the loop is
pushed onto the PC stack.

4.7.2 Interrupt Operation in a Block Repeat

The single-word instruction at the end of a repeat block is not interruptible, ex-
cept, when the previous instruction is a single-word multiple cycles instruction
as shown in Example 4–11 and Example 4–12. Since BLDD BMAR, *+ is a
single-word multiple-cycle instruction, the interrupt return is to the end of the
repeat block (see Example 4–12).

An incoming interrupt is latched by the ’C5x as soon as it meets the interrupt
timing requirement. However, the PC does not branch to the corresponding
interrupt service routine vector if it is fetching the last word of a repeat block
loop. This is the functional equivalent to disabling interrupts before the last
instruction word is fetched and reenabling interrupts afterward. Interrupt
operation with repeat blocks can potentially increase the worst-case interrupt
latency time.

Note:

When the case in Example 4–12 occurs, execute the following steps:

1) Save the PMST at the beginning of the interrupt service routine.

2) Clear the BRAF bit inside the interrupt service routine.

3) Restore the PMST before returning from the interrupt service routine.

Example 4–11. Interrupt Operation With a Single-Word Instruction at the End of an RPTB

RPTB END_LOOP–1
SAR AR0,* ← return from interrupt here if not the last loop iteration
.
.
.
LACC *+
SACL * ← interrupt occurs here

ENDLOOP:
MAR *,AR1 ← return from interrupt here if interrupt occurs during last 

two instruction words of the last loop iteration
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Example 4–12. Interrupt Operation With a Single-Word Instruction Before the
End of RPTB

RPTB END_LOOP–1
SAR AR0,*
.
.
.
BLDD BMAR,*+

←Interrupt occurs here and return at SACL
SACL *

END_LOOP:
MAR *,AR1
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4.8 Interrupts

The ’C5x CPU supports 16 user-maskable interrupts (INT16–INT1); however,
each ’C5x DSP does not necessarily use all 16 interrupts. For example, all the
’C5x DSPs use only 9 of these interrupts except ’C57, which uses 10 of them
(the others are tied high internally). External interrupts are generated by exter-
nal hardware using INT1–INT4. Internal interrupts generated by the on-chip
peripherals are:

� The timer (TINT)
� The serial ports (RINT, XINT, TRNT, TXNT, BRNT, and BXNT)
� Host port interface (HINT)

In addition, the ’C5x has three software interrupt instructions, INTR, NMI, and
TRAP; and two external nonmaskable interrupts, RS and NMI. The reset (RS)
interrupt has the highest priority, and the INT16 interrupt has the lowest priority.
The INT1–INT4 and NMI interrupts are valid if the signal is high for at least two
machine cycles and low for a minimum of three machine cycles. This triggering
gives the ’C5x the ability to avoid false interrupts from noise or taking multiple
interrupts on a single, long interrupt signal.

Note:

If the CPU is in IDLE2 mode, an interrupt input must be high for at least four
machine cycles and low for a minimum of five machine cycles to be properly
recognized.

4.8.1 Interrupt Vector Locations

Table 4–14 shows interrupt vector locations and priorities for all internal and
external interrupts. Interrupt addresses are spaced two locations apart so that
branch instructions can be accommodated in these locations. The TRAP
instruction (software interrupt) is not prioritized but is included here because
it has its own vector location.

To make vectors stored in ROM reprogrammable, you can use the following
code:

LAMM TEMP0 ;ACC = ISR address.
BACC ;Branch to ISR.

TEMP0 resides in DARAM block B2 and holds the address of the interrupt ser-
vice routine (ISR). Note that the ISR addresses must be loaded into block B2
before interrupts are enabled. For further information regarding interrupt op-
eration with respect to specific DSPs in the ’C5x generation, see subsection
9.1.2, External Interrupts, on page 9-4.
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Table 4–14. Interrupt Vector Locations and Priorities
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External user interrupt #2
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5 ÁÁÁÁÁÁÁÁÁÁÁ
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External user interrupt #3
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ÁÁÁÁÁ

8 ÁÁÁÁÁ
ÁÁÁÁÁ

8 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

6 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Internal timer interrupt
ÁÁÁÁÁ
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ÁÁÁÁÁ
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7
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Serial port receive interrupt
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ÁÁÁÁÁÁÁÁÁÁÁ
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Serial port transmit interrupt
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ÁÁÁÁÁ
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ÁÁÁÁÁ

14 ÁÁÁÁÁ
ÁÁÁÁÁ

E ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

9 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

TDM port receive interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ

TXNT‡ ÁÁÁÁÁ
ÁÁÁÁÁ

16 ÁÁÁÁÁ
ÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

10 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

TDM port transmit interrupt

ÁÁÁÁÁ
ÁÁÁÁÁ

INT4 ÁÁÁÁÁ
ÁÁÁÁÁ

18 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

11 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

External user interrupt #4
ÁÁÁÁÁ
ÁÁÁÁÁ

–––
ÁÁÁÁÁ
ÁÁÁÁÁ

20–23
ÁÁÁÁÁ
ÁÁÁÁÁ

14–17
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

N/A
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Reserved
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
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ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

24
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
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ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

–––
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

HINT (’C57 only)

ÁÁÁÁÁ
ÁÁÁÁÁ

––– ÁÁÁÁÁ
ÁÁÁÁÁ

26–33 ÁÁÁÁÁ
ÁÁÁÁÁ

1A–21 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

N/A ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Reserved

ÁÁÁÁÁ
ÁÁÁÁÁ

TRAP ÁÁÁÁÁ
ÁÁÁÁÁ

34 ÁÁÁÁÁ
ÁÁÁÁÁ

22 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

N/A ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Software trap instruction

ÁÁÁÁÁ
ÁÁÁÁÁ

NMI ÁÁÁÁÁ
ÁÁÁÁÁ

36 ÁÁÁÁÁ
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24 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Nonmaskable interrupt
ÁÁÁÁÁ
ÁÁÁÁÁ

–––
ÁÁÁÁÁ
ÁÁÁÁÁ

38–39
ÁÁÁÁÁ
ÁÁÁÁÁ

26–27
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

N/A
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Reserved for emulation and test
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

–––
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

40–63
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

28–3F
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

N/A
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Software interrupts

† RINT2 on ’C52; BRNT on ’C56/C57
‡ XINT2 on ’C52; BXNT on ’C56/C57

The interrupt vectors can be remapped to the beginning of any 2K-word page
in program memory space. The interrupt vector address is generated by con-
catenating the IPTR bits in the PMST (see subsection 4.4.2, Processor Mode
Status Registers (PMST), on page 4-7) with the interrupt vector number
(1–16) shifted by 1 as shown in Figure 4–6.

Upon reset, the IPTR bits are all cleared, thereby mapping the vectors to page
0 in program memory space. Therefore, the reset vector always resides at
location 0h in program memory space. You can move the interrupt vectors to
another location by loading a nonzero value into the IPTR bits. For example,
you can move the interrupt vectors of INT 5 (as shown in Figure 4–6) to loca-
tion 080Ah by loading the IPTR with 1.
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Figure 4–6. Interrupt Vector Address Generation

IPTR = 00001 INT = 5

Vector 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0

8 0 A0

4.8.2 Interrupt Operation

When an interrupt occurs, a flag is activated in the 16-bit interrupt flag register
(IFR). The interrupt flag is activated whether the interrupt is enabled or dis-
abled. An interrupt flag (other than from an active serial port) is automatically
cleared when the corresponding interrupt trap is taken.

The number of the specific interrupt being acknowledged is indicated by ad-
dress bits A5–A1 on the falling edge of the interrupt acknowledge (IACK) sig-
nal. If the interrupt vectors reside in on-chip memory, the CPU should operate
in address visibility mode (AVIS = 0) so the interrupt number can be decoded.
If an interrupt occurs while the CPU is on hold and HM = 0, the address will not
be present when the IACK is activated.

Upon receiving an interrupt, the following actions occur:

� The CPU completes execution of current instruction.
� Interrupts are globally disabled (INTM = 1).
� The PC is pushed to the top of the stack (TOS).
� The PC is set to the interrupt vector address.
� Key registers are saved into context shadow registers.
� IACK signal goes low.
� Corresponding interrupt flag bit in the IFR is cleared.

The ’C5x recognizes pending interrupts on a priority basis. At the start of each
machine cycle (when INTM = 0), the interrupt status is polled and the highest
priority interrupt present and enabled is executed. When an interrupt is being
serviced, even higher priority interrupts cannot be serviced until interrupts are
reenabled — usually at the end of the ISR.
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4.8.3 Interrupt Flag Register (IFR)

The IFR is a memory-mapped CPU register located at address 06h in data
memory space. The IFR can be read to identify pending external and internal
interrupts and written to clear interrupts. An interrupt sets its corresponding
interrupt flag in the IFR until the interrupt is recognized by the CPU. Any one
of the following events clears the interrupt flag:

� The ’C5x is reset (RS is active).
� An interrupt trap is taken.
� A 1 is written to the appropriate bit in the IFR.

Note that when interrupts are disabled (INTM = 1) and an interrupt causes an
IDLE or IDLE2 instruction to be exited, none of the IFR bits are cleared (includ-
ing the IFR bit that caused the IDLE or IDLE2 to be exited). The only event,
other than reset or clearing the IFR bits directly in software, that can cause an
IFR bit to be cleared is actually taking the interrupt trap when the the ISR is
entered. Therefore, if an interrupt causes an IDLE or IDLE2 instruction to be
exited when interrupts are disabled, the corresponding IFR bit is not cleared;
whereas, if interrupts are enabled and the ISR is entered, the IFR bit is cleared.
Figure 4–7 shows the IFR fields.

A value of 1 in an IFR bit indicates a pending interrupt. A 1 can be written to
a specific bit to clear the corresponding interrupt. Writing a 0 to a specific bit
has no effect. All pending interrupts can be cleared by writing the current con-
tents of the IFR back into the IFR. The following example clears two interrupts,
INT1 and INT3, without affecting any other flags that have been set:

SPLK #5,IFR ;Clear flags for INT1 and INT3.

The IFR sets only one flag for each interrupt recognized. If several hardware
interrupts occur on the same pin before the interrupt is recognized by the CPU,
the CPU will respond as though only a single interrupt (the last one) had
occurred.

Figure 4–7. Interrupt Flag Register (IFR) Diagram
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4.8.4 Interrupt Mask Register (IMR)

The IMR is a memory-mapped CPU register located at address 04h in data
memory space. The IMR is used for masking external and internal interrupts.
Neither NMI nor RS are in the IMR; therefore, the IMR has no effect on these
nonmaskable interrupts.

Figure 4–8 shows the IMR fields.

Figure 4–8. Interrupt Mask Register (IMR) Diagram
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ÁÁÁÁÁ
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ÁÁÁÁÁ
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ÁÁÁ

RINT
ÁÁÁ
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ÁÁÁ
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ÁÁÁ
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A value of 1 in an IMR bit enables the corresponding interrupt, provided that the
INTM bit in ST0 (see subsection 4.4.3, Status Registers (ST0 and ST1), on page
4-10) is cleared. The IMR is accessible with both read and write operations.

4.8.5 Interrupt Mode (INTM) Bit

The INTM bit in ST0 (see subsection 4.4.3, Status Registers (ST0 and ST1),
on page 4-10) globally enables or disables all maskable interrupts:

� When INTM = 0, all unmasked interrupts are enabled.
� When INTM = 1, all unmasked interrupts are disabled.

The INTM bit does not modify the IFR or IMR. Any one of the following events
sets the INTM bit:

� The ’C5x is reset (RS is active).
� An interrupt trap is taken.
� The NMI instruction is executed.
� The SETC INTM instruction is executed.

 Any one of the following events clears the INTM bit:

� The CLRC INTM instruction is executed.
� The RETE instruction is executed.



Interrupts

4-41Program Control

4.8.6 Nonmaskable Interrupts

The two nonmaskable interrupts, RS and NMI, are unaffected by either the
INTM bit or the contents of the IMR. You can use the NMI as a soft reset of the
’C5x or as the input to a system’s most time-critical interrupt event. When used
as a soft reset, NMI does not perform any of the control bit or register initializa-
tions that are provided by the RS function. The NMI trap can be initiated via
software using the NMI instruction.

Upon receiving an NMI, the following actions occur:

1) The CPU completes execution of all instructions in the pipeline.

2) Interrupts are globally disabled (INTM = 1).

3) The PC is set to the NMI interrupt vector (location 24h).

Because it is possible to service an NMI, even during an ISR, the key registers
are not saved automatically. The NMI is different from RS because it does not
affect any of the ’C5x modes. The NMI is delayed by multicycle instructions
(including RPT) and by HOLD, as described in subsection 4.8.9, Interrupt
Latency, on page 4-43. RS is discussed in Section 4.9, Reset, on page 4-45.

4.8.7 Software-Initiated Interrupts

Not all of the 16 CPU interrupts are utilized on any given ’C5x DSP. The vectors
for the interrupts that are not tied to specific external pins or internal peripher-
als can be used as software interrupts. The three software interrupt instruc-
tions, INTR, NMI, and TRAP, are unaffected by either the INTM bit or the
contents of the IMR. These instructions allow interrupts to be invoked under
software control.

The INTR instruction (page 6-111) allows any ISR to be executed from your
software. An INTR interrupt for the external interrupts (INT1–INT4) executes
like an external interrupt described in subsection 4.8.2, Interrupt Operation.

The NMI instruction (page 6-179) has the same affect as a hardware nonmaskable
interrupt (NMI). The NMI instruction transfers program control to program memory
location 24h. Interrupts are globally disabled (INTM = 1), but key registers are not
saved into context shadow registers.

The TRAP instruction (page 6-277) transfers program control to program
memory location 22h. The TRAP instruction disables interrupts (INTM = 1), but
key registers are not saved into context shadow registers.
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4.8.8 Interrupt Context Save

When an interrupt is executed, certain key CPU registers are saved automati-
cally. The PC is saved on an 8-deep hardware stack (see Section 4.2, Hard-
ware Stack), which is also used for subroutine calls. Therefore, the CPU sup-
ports subroutine calls within an ISR as long as the 8-level stack is not exceed-
ed. Also, there is a 1-deep stack (or shadow registers) for each of the following
registers:

� Accumulator (ACC)
� Accumulator buffer (ACCB)
� Auxiliary register compare register (ARCR)
� Index register (INDX)
� Processor mode status register (PMST)
� Product register (PREG)
� Status register 0 (ST0)
� Status register 1 (ST1)
� Temporary register 0 (TREG0) for multiplier
� Temporary register 1 (TREG1) for shift count
� Temporary register 2 (TREG2) for bit test

When the interrupt trap is taken, the contents of all these registers are pushed
onto a 1-level stack, with the exception of the the INTM bit in ST0 and the XF
bit in ST1. On an interrupt, the INTM bit is always set to disable interrupts. The
values in the registers at the time of the interrupt trap are still available to the
ISR but are also protected in the shadow registers. The shadow registers are
copied back to the CPU registers when the RETI or RETE instruction is
executed. This function allows the CPU to be used for the ISR without requiring
context save and restore overhead in the ISR.

With only a 1-level stack for the registers, nested interrupts cannot be sup-
ported. In most cases this is not a problem, because without the context save
and restore overhead, serial processing of the interrupts is so efficient that
nested interrupt handling is less effective. If the application requires nested in-
terrupts, they can be handled by using a software stack. Software compatibility
with the ’C2x is maintained because the RET instruction, if it is used to return
from the ISR on a ’C2x, cannot restore these registers. Interrupts are not en-
abled unless a RETE or CLRC INTM instruction is executed.

In the case where the ISR needs to modify values in these registers with re-
spect to the interrupted code, these registers can be restored from the stack
and modified as shown in Example 4–13.
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Example 4–13. Modifying Register Values During Interrupt Context Save

ISR
LACC #ISR_RE_ENTER ;ACC = address of reentry point.
PUSH ;Top of stack = reentry point.
RETI ;Pop all the stacks.

ISR_RE_ENTER
.
.
.
CLRC INTM
RET ;Return to interrupted code.

In Example 4–13, the address of the re-entry point within the ISR is pushed
onto the PC stack. The RETI instruction pops all the stacks, including the PC
stack, and resumes execution. At the end of the ISR, a standard return is
executed because the stack is already popped.

4.8.9 Interrupt Latency

The interrupt latency of the ’C5x depends on the current contents of the pipe-
line. The CPU always completes all instructions in the pipeline before execut-
ing a software vector. Figure 4–9 shows the minimum latency from the time an
interrupt occurs externally to the IACK. The minimum IACK time is defined as
eight cycles:

� 3 cycles to externally synchronize the interrupt
� 1 cycle for the interrupt to be recognized by the CPU
� 4 cycles to execute the INTR instruction and flush the pipeline

On the sixth cycle, an INTR is jammed into the pipeline and the INTM bit is set
to 1. On the ninth cycle, the interrupt vector is fetched and the IACK signal is
generated.

Note that if the instruction immediately ahead of the INTR in the pipeline
(Main5 in Figure 4–9) is an SST #0 and INTM was previously cleared, INTM
gets set before this instruction executes and INTM is stored as a 1. Therefore,
if ST0 is restored in order to return to the previous context, interrupts will be
disabled (INTM = 1) rather than enabled.

Accordingly, if this is critical in an application, an SST #0 instruction should be
executed only with interrupts disabled or interrupts should be reenabled after
loading ST0, if necessary.
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Figure 4–9. Minimum Interrupt Latency

Interrupt
written to

IFR

This instruction will be
refetched after return from
interrupt

Interrupt occurs
before the fetch
of this instruction ↓↓↓

Fetch Main1 Main2 Main3 Main4 Main5 Main6 Dummy Dummy Dummy Vec1 Vec2 Dummy Dummy ISR1

Decode Main1 Main2 Main3 Main4 Main5 INTR Dummy Dummy Dummy Vec1 Vec2 Dummy Dummy

Read Main1 Main2 Main3 Main4 Main5 INTR Dummy Dummy Dummy Vec1 Vec2 Dummy

Execute Main1 Main2 Main3 Main4 Main5 INTR Dummy Dummy Dummy Vec1 Vec2

↑ Interrupt
latched external
to the CPU

↑  INTR
jammed into
the pipeline
and INTM = 1

↑  IACK
generated here

The maximum latency is a function of the contents of the pipeline. Multicycle
instructions add additional cycles to empty the pipeline. This applies to instruc-
tions that are extended via wait-state insertion on memory accesses. The wait
states required for interrupt vector accesses also affect the latency.

The repeat instructions (RPT and RPTZ) delay execution of interrupts (includ-
ing NMI, but not RS). The repeat instructions require that all executions of the
next instruction be completed before allowing an interrupt to execute to protect
the context of the repeated instructions. This protection is necessary, because
these instructions run parallel operations in the pipeline, and the context of
these additional parallel operations cannot be saved in the ISR.

The HOLD function takes precedence over interrupts and can delay the inter-
rupt trap. If an interrupt occurs when the CPU is in hold (HOLD asserted), the
interrupt is not taken until HOLDA is deasserted when the hold state ends.
However, if the CPU is in the concurrent hold mode (HM = 0) and the interrupt
vector table is located in on-chip memory, the CPU takes the interrupt regard-
less of the HOLD status.

Interrupts cannot be processed between the CLRC INTM instruction and the
next instruction in a program sequence. If an interrupt occurs during the de-
code phase of the CLRC INTM instruction, the CPU always completes CLRC
INTM and the following instruction before the pending interrupt is processed.
Waiting for these instructions to complete, ensures that a return (RET) can be
executed in an ISR before the next interrupt is processed to protect against PC
stack overflow. If the ISR is ends with an RETE instruction, the CLRC INTM
instruction is unnecessary. Similarly, the SETC INTM instruction and the next
instruction cannot be interrupted.
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4.9 Reset

Reset (RS) is a nonmaskable external interrupt that can be used at any time
to place the ’C5x into a known state. Reset is typically applied after power-up
when the ’C5x is in an unknown state. The reset signal aborts memory opera-
tions; therefore, the system should be reinitialized after each reset. Reset is
the highest priority interrupt; thus, no other interrupt takes precedence over a
reset. You can use the NMI interrupt for soft resets because the NMI does not
abort memory operations or initialize status bits.

A hardware reset clears all pending interrupt flags.

Driving the RS signal low causes the ’C5x to terminate execution and forces
the PC to the reset vector location 0h in program memory space. At power-up,
the state of the ’C5x is undefined. For correct system operation after power-up,
the RS signal must be asserted low for a minimum of six clock cycles so that
the data lines are placed into the high-impedance state and the address lines
are driven low. The ’C5x latches the reset pulse and generates an internal re-
set pulse long enough to guarantee a reset. After the RS signal is high for 17
clock cycles, CPU execution begins at location 0h, which normally contains a
branch instruction to the system initialization routine. When the ’C5x receives
a reset signal, the following sequence of actions occur:

1) The program currently being executed is asynchronously aborted.

2) The CPU registers’ status bits are set per Table 4–15. Note that any
remaining status bits remain undefined and should be initialized appropri-
ately.

3) The PC is cleared. The address bus is unknown while RS is low. If HOLD
is asserted while RS is low, HOLDA is generated. In this case, the address
lines are placed into a high-impedance state until HOLD is brought back
high.

4) A synchronized reset (SRESET) signal is sent to the peripheral circuits to
initialize them. The peripheral registers’ status bits are set per Table 4–16
on page 4-47. See subsection 9.1.3, Peripheral Reset, on page 9-6.

Execution starts from program memory location 0h when the RS signal is driv-
en high. If HOLD is asserted while RS is low, normal reset operation occurs
internally, but all buses and control lines remain in a high-impedance state, and
HOLDA is asserted, as shown in Figure 4–10(a) and (b) on page 4-49. Howev-
er, if RS is asserted while HOLD and HOLDA are low, the CPU comes out of
the hold mode momentarily by deactivating HOLDA. This condition should be
avoided. Upon release of HOLD and RS, execution starts from location 0h.
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Note that the external parallel interface signals are asynchronously disabled
during reset; therefore, external DMA is not supported during reset. See sub-
section 8.6.2, External DMA, on page 8-24 for more information.

Table 4–15. CPU Registers’ Bit Status at Reset

Register Bit Status Result

ST0 INTM → 1 All maskable interrupts are disabled. Note that RS and NMI are nonmaskable.

OV → 0 Overflow bit is cleared.

ST1 C → 1 Carry bit is set.

CNF → 0 DARAM block B0 is mapped into data memory space.

HM → 1 Processor halts execution during HOLD.

PM → 0 PREG output is not shifted.

SXM → 1 Sign extension on data is enabled.

XF → 1 External flag pin is set high.

PMST AVIS → 0 Internal program address appears at address pins.

BRAF → 0 Block repeat is disabled.

IPTR → 0 Reset vector is cleared.

MP/MC→ (pin) MP/MC pin is sampled to determine use of on-chip ROM.

NDX → 0 ’C2x-compatible mode is selected.

OVLY → 0 SARAM block is not mapped to data memory space.

RAM → 0 SARAM block is not mapped to program memory space.

TRM → 0 ’C2x-compatible mode is selected.

IFR All bits → 0 No interrupts are pending.

CBCR CENB1→ 0 Circular buffer 1 is disabled.

CENB2→ 0 Circular buffer 2 is disabled.

GREG All bits → 0 All data memory space is configured as local.

RPTC All bits → 0 Repeat counter is cleared.
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Table 4–16. Peripheral Registers’ Bit Status at Reset 

Register Bit Status Result

PDWSR All bits → 1 All program and data wait-state registers are set to 7.

IOWSR All bits → 1 All I/O wait-state registers are set to 7.

CWSR BIG → 0 I/O space is divided into eight 8K-word blocks.

D → 1 Wait states are enabled for data memory space.

I/O High → 1 Wait states are enabled for upper half of I/O space.

I/O Low → 1 Wait states are enabled for lower half of I/O space.

P → 1 Wait states are enabled for program memory space.

DRR All bits → 0 Data receive register is cleared.

DXR All bits → 0 Data transmit register is cleared.

SPC/BSPC/
TSPC

DLB → 0

FO → 0

Digital loop back is disabled.

Data is transmitted/received as 16-bit words.

Free → 0 Stop serial clock is enabled.

FSM → 0 Serial port is operated in continuous mode.

IN0 → (pin) IN0 reflects the current level of the CLKR pin.

IN1 → (pin) IN1 reflects the current level of the CLKX pin.

MCM → 0 CLKX pin is configured as input pin.

RRDY → 0 Receive ready is reset.

RRST → 0 Receive serial port is reset.

RSRFULL → 0 SPC only: receive shift register full flag is reset.

Soft → 0 Stop serial clock immediately is enabled.

TDM → 0 TSPC only: TDM port is configured as standard serial port.

TXM → 0 FSX pin is configured as input pin.

XRDY → 1 Transmit ready is reset.

XRST → 0 Transmit serial port is reset.

XSREMPTY → 0 SPC only: transmit shift register empty flag is reset.



Reset

 4-48

Table 4–16. Peripheral Registers’ Bit Status at Reset (Continued)

Register ResultBit Status

SPCE BRE → 0 Autobuffering receive is disabled.

BXE → 0 Autobuffering transmit is disabled.

CLKDV → 00011 Internal transmit clock division factor is set to 3.

CLKP → 0 Data is sampled by the receiver on CLKR’s falling edge and sent by the
transmitter on CLKX’s rising edge.

FE → 0 Data is transmitted/received as 16-bit words.

FIG → 0 The frame pulses following first frame restart the serial port interface.

FSP → 0 Frame sync pulses are active high.

HALTR → 0 Autobuffering halt receive is reset.

HALTX → 0 Autobuffering halt transmit is reset.

PCM → 0 Pulse coded modulation is not active.

RH → 0 Receive buffer half received bit is reset.

XH → 0 Transmit buffer half transmitted bit is reset.

TIM All bits → 1 Timer counts down from FFFFh.

PRD All bits → 1 Timer is disabled.

TCR TDDR → 0 Each cycle decrements timer by 1.

TSS → 0 Timer is in run mode.

HPIC SMOD       0→ 1 Zero while in reset, set to one when reset goes high.

HINT → 0 No interrupt (external HINT pin is high)
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Figure 4–10. RS and HOLD Interaction
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4.10 Power-Down Mode

In the power-down mode, the ’C5x enters a dormant state and dissipates less
power than in the normal mode. You can invoke the power-down mode by
executing either the IDLE or IDLE2 instruction, or by driving the HOLD input
low with the HM status bit set. While the ’C5x is in power-down mode, all its
internal contents are maintained; this allows operations to continue unaltered
when the power-down mode is terminated.

4.10.1 IDLE Instruction

The IDLE instruction halts all CPU activities except the system clock. Since the
system clock remains applied to the peripherals, the peripheral circuits contin-
ue operating and the CLKOUT1 pin remains active. Thus peripherals such as
serial ports and timers can take the CPU out of its power-down state.

This power-down mode is terminated upon receipt of an interrupt. If INTM = 0
when the interrupt takes place, then the CPU enters the ISR when IDLE is ter-
minated. If INTM = 1, then the CPU continues with the instruction following the
IDLE.

4.10.2 IDLE2 Instruction

The IDLE2 instruction halts all CPU activities and the on-chip peripherals. Un-
like the IDLE instruction, the IDLE2 instruction disables the CLKOUT1 signal.
Because the on-chip peripherals are stopped in this power-down mode, they
cannot be used to generate the interrupt to wake up the CPU as in the IDLE
mode. However, the power is significantly reduced because the complete DSP
is stopped. Note that the HPI has some special IDLE2 considerations, see
Section 9.10, Host Port Interface, on page 9-87.

This power-down mode is terminated by activating any of the external interrupt
pins (RS, NMI, INT1, INT2, INT3, and INT4) for at least five machine cycles.
If INTM = 0 when the interrupt takes place, then the CPU enters the ISR when
IDLE2 is terminated. If INTM = 1, then the CPU continues with the instruction
following the IDLE2. Reset all peripherals when IDLE2 terminates, especially
if the peripherals are externally clocked.
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4.10.3 Power Down Using HOLD

The power-down mode can also be initiated by the HOLD signal. When the
HOLD signal initiates power-down and HM = 1, the CPU stops executing and
address, data, and control lines go into high impedance for further power re-
duction. When the HOLD signal initiates power-down and HM = 0, the address,
data, and control lines go into high impedance, but the CPU continues to
execute internally. When external memory accesses are not required in the
system, the HM = 0 mode can be used. The ’C5x continues to operate normally
unless an off-chip access is required by an instruction, then the CPU halts until
the hold is removed.

This power-down mode is terminated when the HOLD signal becomes inac-
tive. HOLD does not stop the operation of on-chip peripherals (serial ports and
timers); the peripherals continue to operate regardless of the level on HOLD
or the status of the HM bit.
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Addressing Modes

This chapter describes each of the following addressing modes and gives the
opcode formats and some examples.

� Direct addressing
� Indirect addressing
� Immediate addressing
� Dedicated-register addressing
� Memory-mapped register addressing
� Circular addressing

Topic Page
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5.6 Circular Addressing 5-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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5.1 Direct Addressing

In the direct memory addressing mode, the instruction contains the lower 7 bits of
the data memory address (dma). The 7-bit dma is concatenated with the 9 bits of
the data memory page pointer (DP) in status register 0 to form the full 16-bit data
memory address. This 16-bit data memory address is placed on an internal direct
data memory address bus (DAB). The DP points to one of 512 possible data
memory pages and the 7-bit address in the instruction points to one of 128 words
within that data memory page. You can load the DP bits by using the LDP or the
LST #0 instruction.

Figure 5–1 illustrates how the 16-bit data memory address is formed.

Figure 5–1. Direct Addressing
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Note:

The DP is not initialized by reset and, therefore, is undefined after power-up.
The ’C5x development tools, however, use default values for many parameters,
including the DP. Because of this, programs that do not explicitly initialize the
DP may execute improperly, depending on whether they are executed on a
’C5x device or with a development tool. Thus, it is critical that all programs
initialize the DP in software.

Figure 5–2 illustrates the direct addressing mode. Bits 15 through 8 contain
the opcode. Bit 7, with a value of 0, defines the addressing mode as direct, and
bits 6 through 0 contain the dma.

Figure 5–2. Direct Addressing Mode

LDP #019Dh
ADD  010h, 5

Machine Code 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0

DP 1 1 0 0 1 1 1 0 1

DAB 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0

Operand Data(DAB)

ADD opcode 010h

067815

Note: DAB is the 16-bit internal data memory address bus.
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5.2 Indirect Addressing

Eight 16-bit auxiliary registers (AR0–AR7) provide flexible and powerful indirect
addressing. In indirect addressing, any location in the 64K-word data memory
space can be accessed using a 16-bit address contained in an AR. Figure 5–3
shows the hardware for indirect addressing.

Figure 5–3. Indirect Addressing
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To select a specific AR, load the auxiliary register pointer (ARP) with a value
from 0 through 7, designating AR0 through AR7, respectively. The register
pointed to by the ARP is referred to as the current auxiliary register (current
AR). You can load the address into the AR using the LAR instruction and you
can change the content of the AR by the:

� ADRK instruction
� MAR instruction
� SBRK instruction
� Indirect addressing field of any instruction supporting indirect addressing.

The content of the current AR is used as the address of the data memory oper-
and. After the instruction uses the data value, the content of the current AR can
be incremented or decremented by the auxiliary register arithmetic unit
(ARAU), which implements unsigned 16-bit arithmetic.
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The ARAU performs auxiliary register arithmetic operations in the decode
phase of the pipeline (when the instruction specifying the operation is being
decoded). This allows the address to be generated before the decode phase
of the next instruction. The content of the current AR is incremented or decrem-
ented after it is used in the current instruction.

You can load the ARs via the data bus by using memory-mapped writes to the
ARs. The following instructions can write to the memory-mapped ARs:

APL OPL SAMM XPL

BLDD SACH SMMR

LMMR SACL SPLK

Be careful when using these memory-mapped loads of the ARs because, in
this case, the memory-mapped ARs are modified in the execute phase of the
pipeline. This causes a pipeline conflict if one of the next two instruction words
modifies that AR. For further information on the pipeline and possible pipeline
conflicts, see Chapter 7, Pipeline.

There are two ways to use the ARs for purposes other than referencing data
memory addresses:

� Use the ARs to support conditional branches, calls, and returns by using
the CMPR instruction. This instruction compares the content of the current
AR with the content of the auxiliary register compare register (ARCR) and
puts the result in the test/control (TC) flag bit of status register ST1.

� Use the ARs for temporary storage by using the LAR instruction to load
a value into the AR and the SAR instruction to store the AR value to a data
memory location.

5.2.1 Indirect Addressing Options

The ’C5x provides four indirect addressing options:

� No increment or decrement.  The instruction uses the content of the current
AR as the data memory address, but neither increments nor decrements the
content of the current AR.

� Increment or decrement by one. The instruction uses the content of the
current AR as the data memory address and then increments or decrements
the content of the current AR by 1.

� Increment or decrement by an index amount.  The value in INDX is the
index amount. The instruction uses the content of the current AR as the
data memory address and then increments or decrements the content of
the current AR by the index amount.
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� Increment or decrement by an index amount using reverse carry. The
value in INDX is the index amount. The instruction uses the content of the
current AR as the data memory address and then increments or decrements
the content of the current AR by the index amount. The addition or subtrac-
tion is done using reverse carry propagation.

The contents of the current AR are used as the address of the data memory
operand. Then, the ARAU performs the specified mathematical operation on
the indicated AR. Additionally, the ARP can be loaded with a new value. All
indexing operations are performed on the current AR in the same cycle as the
original instruction decode phase of the pipeline.

Indirect auxiliary register addressing lets you make post-access adjustments
of the current AR. The adjustment may be an increment or decrement by one
or may be based upon the contents of the INDX. To maintain compatibility with
the ’C2x devices, clear the NDX bit in the PMST. In the ’C2x architecture, the
current AR can be incremented or decremented by the value in the AR0. When
the NDX bit is cleared, every AR0 modification or LAR write also writes the
ARCR and INDX with the same value. Subsequent modifications of the current
ARs with indexed addressing will use the INDX, therefore maintaining compatibility
with existing ’C2x code. The NDX bit is cleared at reset.

The bit-reversed addressing modes (see subsection 5.2.3 on page 5-12) helps
you achieve efficient I/O by the resequencing of data points in a radix-2 fast
Fourier transform (FFT) program. The direction of carry propagation in the
ARAU is reversed when bit-reversed addressing is selected, and INDX is added
to/subtracted from the current AR. Normally, this addressing mode requires that
INDX first be set to a value corresponding to one-half of the array’s size, and
that the current AR be set to the base address of the data (the first data point).

The following indirect-addressing symbols are used in the ’C5x assembly language
instructions:

* No increment or decrement.  Content of the current AR is used
as the data memory address and is neither incremented nor
decremented.

*+ Increment by 1.  Content of the current AR is used as the data
memory address. After the memory access, the content of the current
AR is incremented by 1.

*– Decrement by 1.  Content of current AR is used as the data memory
address. After the memory access, the content of the current AR is
decremented by 1.

*0+ Increment by index amount.  Content of current AR is used as the
data memory address. After the memory access, the content of
INDX is added to the content of the current AR.
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*0– Decrement by index amount.  Content of current AR is used as
the data memory address. After the memory access, the content
of INDX is subtracted from the content of the current AR.

*BR0+ Increment by index amount, adding with reverse carry.  Content
of current AR is used as the data memory address. After the memory
access, the content of INDX with reverse carry propagation is added
to the content of the current AR.

*BR0– Decrement by index amount, subtracting with reverse carry.
Content of current AR is used as the data memory address. After the
memory access, the content of INDX with reverse carry propagation
is subtracted from the content of the current AR.

5.2.2 Indirect Addressing Opcode Format

Indirect addressing can be used with all instructions except those with immediate
operands or with no operands. The indirect addressing format is shown in
Figure 5–4 and described in Table 5–1.

Table 5–3 on page 5-9 shows the instruction field bit values, notation, and op-
eration used for indirect addressing. Example 5–1 through Example 5–8 illus-
trate the indirect addressing formats. Example 5–9 shows an indirect address-
ing routine.

Figure 5–4. Indirect Addressing Opcode Format Diagram
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Table 5–1. Indirect Addressing Opcode Format Summary 

Bit Name Description

15–8 Opcode. This 8-bit field is the opcode for the instruction.

7 I Addressing mode bit. This 1-bit field determines the addressing mode.

I = 0 Direct addressing mode.

I = 1 Indirect addressing mode.
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Table 5–1. Indirect Addressing Opcode Format Summary (Continued)

Bit DescriptionName

6 IDV Index register bit. This 1-bit field determines whether the INDX is used to increment or
decrement the current AR. The IDV bit works in conjunction with the INC and DEC bits to
determine the arithmetic operation.

IDV = 0 The INDX is not used in the arithmetic operation. An increment or decrement
(if any) by 1 occurs to the current AR.

IDV = 1 The INDX is used in the arithmetic operation. An increment or decrement (if
any) by the contents of INDX or by reverse carry propagation occurs to the
current AR.

5 INC Auxiliary register increment bit. This 1-bit field determines whether the current AR is in-
cremented. The INC bit works in conjunction with the IDV and DEC bits to determine the
arithmetic operation.

INC = 0 The current AR is not incremented.

INC = 1 The current AR is incremented as determined by the IDV bit.

4 DEC Auxiliary register decrement bit. This 1-bit field determines whether the current AR is de-
cremented. The DEC bit works in conjunction with the IDV and INC bits to determine the
arithmetic operation. See Table 5–2 for specific arithmetic operations.

DEC = 0 The current AR is not decremented.

DEC = 1 The current AR is decremented as determined by the IDV bit.

3 N Next auxiliary register indicator bit. This 1-bit field determines whether the instruction will
change the ARP value.

N = 0 The content of the ARP will remain unchanged.

N = 1 The content of NAR will be loaded into the ARP, and the old ARP value is
loaded into the auxiliary register buffer (ARB) of status register ST1.

2–0 NAR Next auxiliary register value bits. This 3-bit field contains the value of the next auxiliary
register. If the N bit is set, NAR is loaded into the ARP.
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Table 5–2. Indirect Addressing Arithmetic Operations

Bit values

IDV INC DEC Arithmetic Operation Performed on Current AR

0 0 0 No operation on current AR

0 0 1 (Current AR) – 1 → current AR

0 1 0 (Current AR) + 1 → current AR

0 1 1 Reserved

1 0 0 (Current AR) – INDX [reverse carry propagation] → current AR

1 0 1 (Current AR) – INDX → current AR

1 1 0 (Current AR) + INDX → current AR

1 1 1 (Current AR) + INDX [reverse carry propagation] → current AR

Table 5–3. Instruction Field Bit Values for Indirect Addressing 

Instruction Field Bit Values

15–8 7 6 5 4 3 2–0 Notation Operation

← Opcode → 1 0 0 0 0 ← NAR → * No operation on current AR

← Opcode → 1 0 0 0 1 ← NAR → *, ARn NAR → ARP

← Opcode → 1 0 0 1 0 ← NAR → *– (Current AR) – 1 → current AR

← Opcode → 1 0 0 1 1 ← NAR → *–, ARn (Current AR) – 1 → current AR,
NAR → ARP

← Opcode → 1 0 1 0 0 ← NAR → *+ (Current AR) + 1 → current AR

← Opcode → 1 0 1 0 1 ← NAR → *+, ARn (Current AR) + 1 → current AR,
NAR → ARP

← Opcode → 1 1 0 0 0 ← NAR → *BR0– (Current AR) – rcINDX → current AR

← Opcode → 1 1 0 0 1 ← NAR → *BR0–, ARn (Current AR) – rcINDX → current AR,
NAR → ARP

← Opcode → 1 1 0 1 0 ← NAR → *0– (Current AR) – INDX → current AR

← Opcode → 1 1 0 1 1 ← NAR → *0–, ARn (Current AR) – INDX → current AR,
NAR → ARP

← Opcode → 1 1 1 0 0 ← NAR → *0+ (Current AR) + INDX → current AR

← Opcode → 1 1 1 0 1 ← NAR → *0+, ARn (Current AR) + INDX → current AR,
NAR → ARP
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Table 5–3. Instruction Field Bit Values for Indirect Addressing (Continued)

Instruction Field Bit Values

OperationNotation15–8 OperationNotation2–034567

← Opcode → 1 1 1 1 0 ← NAR → *BR0+ (Current AR) + rcINDX → current AR

← Opcode → 1 1 1 1 1 ← NAR → *BR0+, ARn (Current AR) + rcINDX → current AR,
NAR → ARP

Example 5–1. Indirect Addressing With No Change to AR
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In Example 5–1, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The current
AR is not changed. The instruction word is 2880h.

Example 5–2. Indirect Addressing With Autodecrement

ADD *–,8
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In Example 5–2, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The current
AR is decremented by 1. The instruction word is 2890h.

Example 5–3. Indirect Addressing With Autoincrement

ADD *+,8
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In Example 5–3, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The current
AR is incremented by 1. The instruction word is 28A0h.
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Example 5–4. Indirect Addressing With Autoincrement and Change AR

ADD *+,8,AR3
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In Example 5–4, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The current
AR is incremented by 1. The auxiliary register pointer (ARP) is loaded with the
value 3 for subsequent instructions. The instruction word is 28ABh.

Example 5–5. Indirect Addressing With INDX Subtracted from AR

ADD *0–,8
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In Example 5–5, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The content
of INDX is subtracted from the current AR. The instruction word is 28D0h.

Example 5–6. Indirect Addressing With INDX Added to AR

ADD *0+,8
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In Example 5–6, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The content
of INDX is added to the current AR. The instruction word is 28E0h.

Example 5–7. Indirect Addressing With INDX Subtracted from AR With Reverse Carry

ADD *BR0–,8
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In Example 5–7, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The content
of INDX with reverse carry propagation is subtracted from the current AR. The
instruction word is 28C0h.
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Example 5–8. Indirect Addressing With INDX Added to AR With Reverse Carry

ADD *BR0+,8
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In Example 5–8, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The content
of INDX with reverse carry propagation is added to the current AR. The instruc-
tion word is 28F0h.

Example 5–9. Indirect Addressing Routine

* This routine uses indirect addressing to calculate the following equation:
*
*                   10
*                 –––––
*                 \     X(I) x Y(I)
*                  /
*                 –––––
*                 I = 1
*
* The routine assumes that the X values are located in on-chip RAM block B0,
* and the Y values in block B1. The efficiency of the routine is due to the
* use of indirect addressing and the repeat instruction.
*
SERIES MAR *,AR4 ;ARP POINTS TO ADDRESS REGISTER 4.

SETC CNF ;CONFIGURE BLOCK B0 AS PROGRAM MEMORY.
LAR AR4,#0300h ;POINT AT BEGINNING OF DATA MEMORY.
RPTZ #9 ;CLEAR ACC AND PREG; REPEAT NEXT INST. 10 TIMES
MAC 0FF00h,*+ ;MULTIPLY AND ACCUMULATE; INCREMENT AR4.

APAC ;ACCUMULATE LAST PRODUCT.
RET ;ACCUMULATOR CONTAINS RESULT.

5.2.3 Bit-Reversed Addressing

In the bit-reversed addressing mode, INDX specifies one-half the size of the
FFT. The value contained in the current AR must be equal to 2n–1, where n is
an integer, and the FFT size is 2n. An auxiliary register points to the physical
location of a data value. When you add INDX to the current AR using bit-
reversed addressing, addresses are generated in a bit-reversed fashion.

Assume that the auxiliary registers are eight bits long, that AR2 represents the
base address of the data in memory (0110 00002), and that INDX contains the
value 0000 10002. Example 5–10 shows a sequence of modifications to AR2
and the resulting values of AR2. Table 5–4 shows the relationship of the bit pat-
tern of the index steps and the four LSBs of AR2, which contain the bit-
reversed address.
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Example 5–10. Sequence of Auxiliary Register Modifications in Bit-Reversed Addressing

*BR0+ ;AR2 = 0110 0000 (0th value)
*BR0+ ,AR2 = 0110 1000 (1st value)
*BR0+ ;AR2 = 0110 0100 (2nd value)
*BR0+ ;AR2 = 0110 1100 (3rd value)
*BR0+ ;AR2 = 0110 0010 (4th value)
*BR0+ ;AR2 = 0110 1010 (5th value)
*BR0+ ;AR2 = 0110 0110 (6th value)
*BR0+ ;AR2 = 0110 1110 (7th value)

Table 5–4. Bit-Reversed Addresses

Step Bit Pattern Bit-Reversed Pattern Bit-Reversed Step

0 0000 0000 0

1 0001 1000 8

2 0010 0100 4

3 0011 1100 12

4 0100 0010 2

5 0101 1010 10

6 0110 0110 6

7 0111 1110 14

8 1000 0001 1

9 1001 1001 9

10 1010 0101 5

11 1011 1101 13

12 1100 0011 3

13 1101 1011 11

14 1110 0111 7

15 1111 1111 15
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5.3 Immediate Addressing

In immediate addressing, the instruction word(s) contains the value of the im-
mediate operand. The ’C5x has both 1-word (8-bit, 9-bit, and 13-bit constant)
short immediate instructions and 2-word (16-bit constant) long immediate
instructions. Table 5–5 lists the instructions that support immediate addressing.

Table 5–5. Instructions That Support Immediate Addressing

Short Immediate (1-Word) Long Immediate (2-Word)

8-Bit
Constant

9-Bit
Constant

13-Bit
Constant

16-Bit
Constant

ADD
ADRK
LACL
LAR
RPT
SBRK
SUB

LDP MPY ADD
AND
APL
CPL
LACC
LAR
MPY
OPL

OR
RPT
RPTZ
SPLK
SUB
XOR
XPL

5.3.1 Short Immediate Addressing

In short immediate instructions, the operand is contained within the instruction
machine code. Figure 5–5 shows an example of the short immediate mode.
Note that in this example, the lower 8 bits are the operand and will be added
to the ACC by the CALU.

Figure 5–5. Short Immediate Addressing Mode

ADD #0FFh

Machine Code 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1

Operand 1 1 1 1 1 1 1 1

ADD opcode 0FFh
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5.3.2 Long Immediate Addressing

In long immediate instructions, the operand is contained in the second word
of a two-word instruction. There are two long immediate addressing modes:

� One-operand instructions
� Two-operand instructions

5.3.2.1 Long Immediate Addressing with Single/No Data Memory Access

Figure 5–6 shows an example of long immediate addressing with no data
memory access. In Figure 5–6, the second word of the 2-word instruction is
added to the ACC by the CALU.

Figure 5–6. Long Immediate Addressing Mode — No Data Memory Access

ADD #01234h

Machine Code 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0
Operand 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

ADD opcode

01234h

5.3.2.2 Long Immediate Addressing with Dual Data Memory Access

The long immediate addressing also could apply for a second data memory
access for the execution of the instruction. The prefetch counter (PFC) is
pushed onto the microcall stack (MCS), and the long immediate value is loaded
into the PFC. The program address/data bus is then used for the operand fetch
or write. At the completion of the instruction, the MCS is popped back to the PFC,
the program counter (PC) is incremented by two, and execution continues. The
PFC is used so that when the instruction is repeated, the address generated can
be autoincremented.

Figure 5–7 shows an example of long immediate addressing with two oper-
ands. In Figure 5–7, the source address (OPERAND1) is fetched via PAB, and
the destination address (OPERAND2) uses the direct addressing mode. Bits
15 through 8 of machine code1 contain the opcode. Bit 7, with a value of 0,
defines the addressing mode as direct, and bits 6 through 0 contain the dma.
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Figure 5–7. Long Immediate Addressing Mode — Two Operands

BLDD #02345h,012h

Machine Code1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0

DP 1 1 0 0 1 1 1 0 1

DAB 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0

Machine Code2 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1

PC 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1

Operand1 Data (PC)
Operand2 Data (DAB)

BLDD opcode 012h

067815

02345h

Note: DAB is the 16-bit internal data memory address bus.
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5.4 Dedicated-Register Addressing

The dedicated-registered addressing mode operates like the long immediate
addressing mode, except that the address comes from one of two
special-purpose memory-mapped registers in the CPU: the block move
address register (BMAR) and the dynamic bit manipulation register (DBMR).
The advantage of this addressing mode is that the address of the block of
memory to be acted upon can be changed during execution of the program.
The syntax for dedicated-register addressing can be stated in one of two ways:

� Specify BMAR by its predefined symbol:

BLDD BMAR,DAT100 ;DP = 0. BMAR contains the value 200h.

The content of data memory location 200h is copied to data memory loca-
tion 100 on the current data page.

� Exclude the immediate value from a parallel logic unit (PLU) instruction:

OPL DAT10 ;DP = 6. DBMR contains the value FFF0h.
;Address 030Ah contains the value 01h

The content of data memory location 030Ah is ORed with the content of
the DBMR. The resulting value FFF1h is stored back in memory location
030Ah.

5.4.1 Using the Contents of the BMAR

The BLDD, BLDP, and BLPD instructions use the BMAR to point at the source
or destination space of a block move. The MADD and MADS instructions also
use the BMAR to address an operand in program memory for a multiply-
accumulate operation.

Figure 5–8 shows how the BMAR is used in the dedicated-register addressing
mode. Bits 15 through 8 of the machine code contain the opcode. Bit 7, with
a value of 0, defines the addressing mode as direct, and bits 6 through 0 con-
tain the dma.
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Figure 5–8. Dedicated-Register Addressing Using the BMAR

BLDD BMAR, 012h

Machine Code 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0

DP 1 1 0 0 1 1 1 0 1

DAB 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0

BMAR PFC

Operand1 Data (PFC)
Operand2 Data (DAB)

BLDD opcode 012h

067815

Note: DAB is the 16-bit internal data memory address bus.

5.4.2 Using the Contents of the DBMR

The APL, CPL, OPL, and XPL instructions use the PLU and the contents of the
DBMR when an immediate value is not specified as one of the operands.

Figure 5–9 illustrates how the DBMR is used as an AND mask in the APL
instruction. Bits 15 through 8 of the machine code contain the opcode. Bit 7,
with a value of 0, defines the addressing mode as direct, and bits 6 through
0 contain the dma.

Figure 5–9. Dedicated-Register Addressing Using the DBMR

APL 010h

Machine Code 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0

DP 1 1 0 0 1 1 1 0 1

DAB 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0

Operand1 Data(DAB)
Operand2 DBMR

APL opcode 010h

067815

Note: DAB is the 16-bit internal data memory address bus.
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5.5 Memory-Mapped Register Addressing

With memory-mapped register addressing, you can modify the memory-
mapped registers without affecting the current data page pointer value. In
addition, you can modify any scratch pad RAM (DARAM B2) location or data
page 0. The memory-mapped register addressing mode operates like the
direct addressing mode, except that the 9 MSBs of the address are forced to
0 instead of being loaded with the contents of the DP. This allows you to
address the memory-mapped registers of data page 0 directly without the
overhead of changing the DP or auxiliary register.

The following instructions operate in the memory-mapped register addressing
mode. Using these instructions does not affect the contents of the DP:

� LAMM — Load accumulator with memory-mapped register
� LMMR — Load memory-mapped register
� SAMM — Store accumulator in memory-mapped register
� SMMR — Store memory-mapped register

Figure 5–10 illustrates how this is done by forcing the 9 MSBs of the data
memory address to 0, regardless of the current value of the DP when direct
addressing is used or of the current AR value when indirect addressing is used.

Example 5–11 uses memory-mapped register addressing in the direct
addressing mode and Example 5–12 uses the indirect addressing mode.

Figure 5–10. Memory-Mapped Register Addressing

PAGE 0

128-WORD
PAGE

(MEMORY-
MAPPED

REGISTERS
AND

DARAM B2)

7 LSBs

16-bit memory-mapped
register address

7 LSBs from IREG (direct addressing)
or current AR (indirect addressing)

0615

0 0 0 0 0 0 0 0 0 dma

DAB
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Example 5–11. Memory-Mapped Register Addressing in the Indirect Addressing Mode

SAMM *+ ;STORE ACC TO PMST REGISTER

In Example 5–11, assume that ARP = 3 and AR3 = FF07h. The content of the
ACC is stored to the PMST (address 07h) pointed at by the 7 LSBs of AR3.

Example 5–12. Memory-Mapped Register Addressing in the Direct Addressing Mode

LAMM 07h ;ACC = PMST

In Example 5–12, assume that DP = 0184h and TEMP1 = 8060h. The content
of memory location 07h (PMST) is loaded into the ACC. Figure 5–11 illustrates
memory-mapped register addressing in the direct addressing mode.

Figure 5–11.Memory-Mapped Addressing in the Direct Addressing Mode

LAMM PMST

Machine Code 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1

Value 0 0 0 0 0 0 0 0 0

DAB 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Operand Data(DAB)

LAMM opcode 07h

067815

Note: DAB is the 16-bit internal data memory address bus.
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5.6 Circular Addressing

Many algorithms such as convolution, correlation, and finite impulse response
(FIR) filters can use circular buffers in memory to implement a sliding window,
which contains the most recent data to be processed. The ’C5x supports two
concurrent circular buffers operating via the ARs. The following five
memory-mapped registers control the circular buffer operation:

� CBSR1 — Circular buffer 1 start register
� CBSR2 — Circular buffer 2 start register
� CBER1 — Circular buffer 1 end register
� CBER2 — Circular buffer 2 end register
� CBCR — Circular buffer control register

The 8-bit CBCR enables and disables the circular buffer operation and is
defined in subsection 4.4.1, Circular Buffer Control Register (CBCR), on
page 4-6.

To define circular buffers, you first load the start and end addresses into the
corresponding buffer registers; next, load a value between the start and end
registers for the circular buffer into an AR. Load the proper AR value, and set
the corresponding circular buffer enable bit in the CBCR. Note that you must
not enable the same AR for both circular buffers; if you do, unexpected results
occur. The algorithm for circular buffer addressing below shows that the test
of the AR value is performed before any modifications:

If (ARn = CBER) and (any AR modification),
Then: ARn = CBSR.
Else: ARn = ARn + step.

If ARn = CBER and no AR modification occurs, the current AR is not modified
and is still equal to CBER. When the current AR = CBER, any AR modification
(increment or decrement) will set the current AR = CBSR. Example 5–13 illus-
trates the operation of circular addressing.
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Example 5–13. Circular Addressing

mar *,ar6
lpd #,0

splk #200h,CBSR1 ; Circular buffer start register
splk #203h,CBER1 ; Circular buffer end register
splk #0Eh,CBCR ; Enable AR6 pointing to buffer 1

lar ar6,#200h ; Case 1
lacc * ; AR6 = 200h

lar ar6,#203h ; Case 2
lacc * ; AR6 = 203h

lar ar6,#200h ; Case 3
lacc *+ ; AR6 = 201h

lar ar6,#203h ; Case 4
lacc *+ ; AR6 = 200h

lar ar6,#200h ; Case 5
lacc *– ; AR6 = 1FFh

lar ar6,#203h ; Case 6
lacc *– ; AR6 = 200h

lar ar6,#202h ; Case 7
adrk 2 ; AR6 = 204h

lar ar6,#203h ; Case 8
adrk 2 ; AR6 = 200h

In circular addressing, the step is the quantity that is being added to or sub-
tracted from the specified AR. Take care when using a step of greater than 1
to modify the AR pointing to an element of the circular buffer. If an update to
an AR generates an address outside the range of the circular buffer, the ARAU
does not detect this situation, and the buffer does not wrap around. AR up-
dates are performed as described in Section 5.2, Indirect Addressing.
Because of the pipeline, there is a two-cycle latency between configuring the
CBCR and performing AR modifications.

Circular buffers can be used in increment- or decrement-type updates. For
incrementing the value in the AR, the value in CBER must be greater than the
value in CBSR. For decrementing the value in the AR, the value in CBSR must
be greater than the value in CBER.
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Assembly Language Instructions

The ’C5x instruction set supports numerically intensive signal-processing
operations as well as general-purpose applications, such as multiprocessing
and high-speed control. The instruction set is a superset of the ’C1x and ’C2x
instruction sets and is source-code upward compatible with both devices.

Section 6.3, Instruction Set Descriptions, describes individual instructions in
detail. Chapter 5, Addressing Modes, discusses the addressing modes asso-
ciated with the instruction set. Section C.4, ’C2x-to-’C5x Instruction Set Map-
ping, includes a table that maps ’C2x instructions to ’C5x instructions. Note
that the Texas Instruments ’C5x assembler accepts ’C2x instructions as well
as ’C5x instructions.
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6.1 Instruction Set Symbols and Notations

For the sake of convenience and as a memory aid, this chapter uses many
symbols and notations while describing the assembly language instructions.
This section provides a centralized list of definitions for these symbols and
notations.

6.1.1 Symbols and Abbreviations Used in the Instruction Set Opcodes

Table 6–1 explains the symbols and abbreviations used in the opcode of the
instruction set summaries (Table 6–4 through Table 6–10) and instruction set
descriptions (Section 6.3, page 6-22).

Table 6–1. Instruction Set Opcode Symbols and Abbreviations 

Symbol Meaning

AAA AAAA The data memory address bits. When indirect addressing (I = 1) is being used, the seven
As are the seven least significant bits (LSBs) of a data memory address. For indirect
addressing, the seven As are bits that control auxiliary register manipulation (see Sec-
tion 5.2, Indirect Addressing, on page 5-4.)

ARX A 3-bit value used in the LAR and SAR instructions to designate which auxiliary register
(0–7) will be loaded (LAR) or have its contents stored (SAR).

BITX A 4-bit value (called the bit code) that determines which bit of a designated data memory
value will be tested by the BIT instruction.

CM A 2-bit value that determines the comparison performed by the CMPR instruction.

I The addressing mode bit. When I = 0, the direct addressing mode is being used. When
I =1, the indirect addressing mode is being used.

kkkk kkkk An 8-bit constant used in short immediate addressing for the ADD, ADRK, LACL, LAR,
RPT, SBRK, and SUB instructions.

k kkkk kkkk A 9-bit constant used in short immediate addressing for the LDP instruction.

k kkkk kkkk kkkk A 13-bit constant used in short immediate addressing for the MPY instruction.

I NTR # The interrupt vector number. A 5-bit value representing a number from 0 to 31. The INTR
instruction uses this number to change program control to one of the 32 interrupt vector
addresses.

PM A 2-bit value copied into the product shift mode (PM) bits of status register ST1 by the
SPM instruction.

SHF A 3-bit shift value for the SACH and SACL instructions.

SHFT A 4-bit shift value for the ADD, AND, BSAR, LACC, OR, SUB, and XOR instructions.
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Table 6–1. Instruction Set Opcode Symbols and Abbreviations (Continued)

Symbol Meaning

N A 1-bit field for the XC instruction indicating the number of instructions (one or two) to
conditionally execute.
If N = 0, one instruction will execute.
If N = 1, two instructions will execute.

TP A 2-bit value used by the conditional execution instructions to represent the following
conditions:

TP Condition
0 0 BIO pin low
0 1 TC = 1
1 0 TC = 0 (NTC)
1 1 None of the above conditions

ZLVC ZLVC Two 4-bit fields designating the following bit conditions to be tested and the bit states:

Bit Condition
Z ACC = 0
L ACC < 0
V Overflow
C Carry

A conditional instruction contains two of these 4-bit fields. The 4-LSB field of the instruction
is a mask field. A 1 in a mask bit indicates that the corresponding condition is being tested.
The second 4-bit field (bits 4–7) indicates the state of the conditions being tested. For
example, to test for ACC ≥ 0, the Z and L bits of the 4-LSB field are set, while the V and
C bits are not set. When the Z bit is set, it indicates to test for the condition ACC = 0; when
the L bit is set, it indicates to test for the condition ACC ≥ 0. The conditions possible with
these 8 bits are shown in the BCND, BCNDD, CC, CCD, RETC, RETCD, and XC instruc-
tions. To determine if the conditions are met, the 4-LSB field is ANDed with the 4-bit field
containing the state of the conditions. If any bits are set, the conditions are met.

+ 1 word The second word of a two-word opcode. This second word contains a 16-bit constant.
Depending on the instruction, this constant is a long immediate value, a program
memory address, or an address for an I/O port or an I/O-mapped register.
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6.1.2 Symbols and Abbreviations Used in the Instruction Set Descriptions

Table 6–2 explains the symbols and abbreviations used in the instruction set
descriptions (Section 6.3, page 6-22).

Table 6–2. Instruction Set Descriptions Symbols and Abbreviations 

Symbol Meaning

ACC Accumulator

ACCB Accumulator buffer

ACCH Accumulator high byte, ACC(31–16)

ACCL Accumulator low byte, ACC(15–0)

addr 16-bit data memory address

ALU Arithmetic logic unit

AR Auxiliary register

ARB Auxiliary register buffer (in ST1). This register stores the previous ARP value.

ARCR Auxiliary register compare register

ARn A value n from 0 to 7 designating the next auxiliary register (AR), the register that will be pointed
to by the ARP when the instruction is complete

ARP Auxiliary register pointer (in ST0). This register points to the current auxiliary register (AR).

AVIS Address visibility bit (in PMST)

BIO Branch control input

bit code A 4-bit value that determines which bit of a designated data memory value will be tested by the
BIT instruction.

BMAR Block move address register

BRAF Block repeat active flag bit (in PMST)

C Carry bit (in ST1)

CNF On-chip RAM configuration control bit (in ST1)

cond An operand representing a condition used by instructions that execute conditionally.

current AR The current auxiliary register; that is, the auxiliary register (AR) pointed to by the ARP.

D Data memory address field

dst Destination address field

DATn Label assigned to data memory location n

DBMR Dynamic bit manipulation register

dma The 7 LSBs of a data memory address.
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Table 6–2. Instruction Set Descriptions Symbols and Abbreviations (Continued)

Symbol Meaning

DP Data memory page pointer bits (in ST0)

HM Hold mode bit (in ST1)

ind Indirect addressing operand (see Section 5.2, Indirect Addressing, on page 5-4.)

INTM Interrupt mode flag bit (in ST0)

k Short immediate operand (an 8-, 9-, or 13-bit constant)

K A value from 0 to 31 indicating one of the 32 interrupt vector locations. The INTR instruction forces
a branch to the location referenced by K.

lk Long immediate operand (a 16-bit constant)

MCS Microcall stack

ÁÁÁÁÁ
ÁÁÁÁÁ

MP/MC ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Microprocessor/Microcomputer bit (in PMST)

n A value of 1 or 2 designating the number of words following the XC instruction.

OV Overflow bit (in ST0)

OVLY RAM overlay bit (in PMST)

OVM Overflow mode bit (in ST0)

NDX Enable extra index register bit (in PMST)

PA A 16-bit address for an I/O port or an I/O-mapped register ( 0 ≤ PA ≤ 65535 )

ÁÁÁÁÁ
ÁÁÁÁÁ

PAER ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Block Repeat Program Address End Register

ÁÁÁÁÁ
ÁÁÁÁÁ

PASR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Block Repeat Program Address Start Register

PC Program counter

PFC Prefetch counter

PGMn Label assigned to program memory location n

PM Product shift mode bits (in ST1)

pma A 16-bit program memory address

PREG Product register
ÁÁÁÁÁ
ÁÁÁÁÁ

RAM bit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program RAM enable bit (in PMST)

RPTC Repeat counter

shift A 4-bit shift value from 0–15

shift2 A 3-bit shift value from 0–7

src Source address field
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Table 6–2. Instruction Set Descriptions Symbols and Abbreviations (Continued)

Symbol Meaning

STm Status register m (m = 0 or 1)

SXM Sign-extension mode bit (in ST1)

TREGn Temporary register n (n = 0, 1, or 2)

TC Test/control bit (in ST1)

TOS Top of stack

TRM Enable multiple TREGs bit (in PMST)

x A value from 0 to 7 designating one of the eight auxiliary registers (AR0–AR7).

XF XF pin status bit (in ST1)

6.1.3 Notations Used in the Instruction Set Descriptions

Special notations have been used to describe the execution of the instructions
and to indicate how a particular instruction is to be written. Table 6–3 explains
the notations used in the instruction set descriptions (Section 6.3, page 6-22).

Table 6–3. Instruction Set Descriptions Notations 

Notation Meaning

x Logical inversion (1s complement) of x

| x | Absolute value of x

{     } Alternative items, one of which must be entered

nnh Indicates that nn represents a hexadecimal number

(r) The content of register or location r.
Example: (dma) means: The value at data memory address dma.

x→y Value x is assigned to register or location y.
Example: (dma) → ACC means: The content of the data memory address is put into 
the accumulator.

x ↔ y Value x is switched with value y.
Example: (ACCB) ↔ (ACC) means: The content of the accumulator buffer is switched

with the content of the accumulator.

r(n–m) Bits n through m of register or location r.
Example: ACC(15–0) means: Bits 15 through 0 of the accumulator.

(r(n–m)) The content of bits n through m of register or location r.
Example: (ACC(31:16)) means: The content of bits 31 through 16 of the accumulator.
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Table 6–3. Instruction Set Descriptions Notations (Continued)

Notation Meaning

Boldface
Characters

Boldface characters in an instruction syntax are to be typed as shown.
Example: For the syntax: ADD dma, 16, you may use a variety of values for dma, but the

word ADD and the number 16 should be typed as shown.
Samples with this syntax follow:
ADD 7h, 16
ADD X, 16

italic
symbols

Italic symbols in an instruction syntax represent variables.
Example: For the syntax: ADD dma, you may use a variety of values for dma.

Samples with this syntax follow:
ADD DAT
ADD 15

# The # symbol is a prefix for constants used in immediate addressing. For short- or long-immediate
operands, it is used in instructions where there is ambiguity with other addressing modes.
Example: RPT #15 uses short immediate addressing. It causes the next instruction to be

repeated 16 times.
RPT 15 uses direct addressing. The number of times the next instruction
repeats is determined by a value stored in memory.

[,x] Operand x is optional.
Example: For the syntax: ADD dma, [,shift ], you may use a variety of values for dma.

Samples with this syntax follow:
ADD 7h
You have the option of adding a shift value, as in the instruction:
ADD 7h, 5

[,x1 [,x2] ] Operands x1 and x2 are optional, but you cannot include x2 without also including x1.
Example: For the syntax: ADD ind, [,shift [,ARn] ], you must supply ind, as in the instruction:

ADD *+
You have the option of including shift, as in the instruction:
ADD *+, 5
If you wish to include ARn, you must also include shift, as in:
ADD *+, 0, AR2
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6.2 Instruction Set Summary

This section summarizes the instruction set and instruction set opcodes for the
’C5x. Table 6–4 through Table 6–10 alphabetically list the ’C5x instructions
within the following functional groups:

� Accumulator memory reference instructions (Table 6–4)

� Auxiliary registers and data memory page pointer instructions (Table 6–5
on page 6-13)

� Parallel logic unit (PLU) instructions (Table 6–6 on page 6-14)

� TREG0, PREG, and multiply instructions (Table 6–7 on page 6-15)

� Branch and call instructions (Table 6–8 on page 6-17)

� I/O and data memory operation instructions (Table 6–9 on page 6-19)

� Control instructions (Table 6–10 on page 6-20)

The number of words that an instruction occupies in program memory is speci-
fied in the Words column of the table. Several instructions specify two values
in the Words column because different forms of the instruction occupy a differ-
ent number of words. For example, the ADD instruction occupies one word
when the operand is a short immediate value or two words if the operand is
a long immediate value. The number of cycles that an instruction requires to
execute is in the Cycles column of the table. The tables assume that all instruc-
tions are executed from internal program memory (ROM) and internal data
memory (RAM). The cycle timings are for single-instruction execution, not for
repeat mode. Additional information is presented in Section 6.3, Instruction
Set Descriptions on page 6-22. Bold  typeface indicates instructions that are
new for the ’C5x instruction set.

A read or write access to any peripheral memory-mapped register
in data memory locations  20h–4Fh will add one cycle to the cycle
time shown. This occurs because all peripherals perform these
accesses over the TI Bus, which requires an additional cycle.

Note that all writes to external memory require two cycles. Reads require one
cycle. Any write access immediately before or after a read cycle will require
three cycles (refer to Chapter 8). In addition, if two pipelined instructions try to
access the same 2K-word single-access memory block simultaneously, one
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extra cycle is required. For example, the DMOV instruction when used with the
RPT instruction, requires one cycle in the dual-access RAM but requires two
cycles in the single-access RAM. Wait states are added to all external accesses
according to the configuration of the software wait-state registers described in
Section 9.4, Software-Programmable Wait-State Generators, on page 9-13.

Table 6–4. Accumulator Memory Reference Instructions 

Mnemonic † Description Words Cycles ‡ Opcode Page

ABS Absolute value of ACC; 
zero carry bit

1 1 1011 1110 0000 0000 6-28

ADCB Add ACCB and carry bit to ACC 1 1 1011 1110 0001 0001 6-30

ADD Add data memory value, with left
shift, to ACC

1 1 0010 SHFT IAAA AAAA 6-31

Add data memory value, with left
shift of 16, to ACC

1 1 0110 0001 IAAA AAAA 6-31

Add short immediate to ACC 1 1 1011 1000 kkkk kkkk 6-31

Add long immediate, with left shift,
to ACC

2 2 1011 1111 1001 SHFT
+ 1 word

6-31

ADDB Add ACCB to ACC 1 1 1011 1110 0001 0000 6-35

ADDC Add data memory value and carry
bit to ACC with sign extension
suppressed

1 1 0110 0000 IAAA AAAA 6-36

ADDS Add data memory value to ACC
with sign extension suppressed

1 1 0110 0010 IAAA AAAA 6-38

ADDT Add data memory value, with left
shift specified by TREG1, to ACC

1 1 0110 0011 IAAA AAAA 6-40

AND AND data memory value with
ACCL; zero ACCH

1 1 0110 1110 IAAA AAAA 6-43

AND long immediate, with left
shift, with ACC

2 2 1011 1111 1011 SHFT
+ 1 word

6-43

AND long immediate, with left
shift of 16, with ACC

2 2 1011 1110 1000 0001
+ 1 word

6-43

ANDB AND ACCB with ACC 1 1 1011 1110 0001 0010 6-46

BSAR Barrel-shift ACC right 1 1 1011 1111 1110 SHFT 6-82

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
§ Peripheral memory-mapped register access
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Table 6–4. Accumulator Memory Reference Instructions (Continued)

Mnemonic † PageOpcodeCycles ‡WordsDescription

CMPL 1s complement ACC 1 1 1011 1110 0000 0001 6-94

CRGT Store ACC in ACCB if 
ACC > ACCB

1 1 1011 1110 0001 1011 6-100

CRLT Store ACC in ACCB if
ACC < ACCB

1 1 1011 1110 0001 1100 6-102

EXAR Exchange ACCB with ACC 1 1 1011 1110 0001 1101 6-106

LACB Load ACC to ACCB 1 1 1011 1110 0001 1111 6-113

LACC Load data memory value, with
left shift, to ACC

1 1 0001 SHFT IAAA AAAA 6-114

Load long immediate, with left
shift, to ACC

2 2 1011 1111 1000 SHFT
+ 1 word

6-114

Load data memory value, with
left shift of 16, to ACC

1 1 0110 1010 IAAA AAAA 6-114

LACL Load data memory value to
ACCL; zero ACCH

1 1 0110 1001 IAAA AAAA 6-117

Load short immediate to ACCL;
zero ACCH

1 1 1011 1001 kkkk kkkk 6-117

LACT Load data memory value, with left
shift specified by TREG1, to ACC

1 1 0110 1011 IAAA AAAA 6-120

LAMM Load contents of memory-
mapped register to ACCL; zero
ACCH

1 1 or 2§ 0000 1000 IAAA AAAA 6-122

NEG Negate (2s complement) ACC 1 1 1011 1110 0000 0010 6-177

NORM Normalize ACC 1 1 1010 0000 IAAA AAAA 6-181

OR OR data memory value with
ACCL

1 1 0110 1101 IAAA AAAA 6-187

OR long immediate, with left
shift, with ACC

2 2 1011 1111 1100 SHFT
+ 1 word

6-187

OR long immediate, with left
shift of 16, with ACC

2 2 1011 1110 1000 0010
+ 1 word

6-187

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
§ Peripheral memory-mapped register access
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Table 6–4. Accumulator Memory Reference Instructions (Continued)

Mnemonic † PageOpcodeCycles ‡WordsDescription

ORB OR ACCB with ACC 1 1 1011 1110 0001 0011 6-190

ROL Rotate ACC left 1 bit 1 1 1011 1110 0000 1100 6-210

ROLB Rotate ACCB and ACC left 1 bit 1 1 1011 1110 0001 0100 6-211

ROR Rotate ACC right 1 bit 1 1 1011 1110 0000 1101 6-212

RORB Rotate ACCB and ACC right 1 bit 1 1 1011 1110 0001 0101 6-213

SACB Store ACC in ACCB 1 1 1011 1110 0001 1110 6-220

SACH Store ACCH, with left shift, in
data memory location

1 1 1001 1SHF IAAA AAAA 6-221

SACL Store ACCL, with left shift, in
data memory location

1 1 1001 0SHF IAAA AAAA 6-223

SAMM Store ACCL in memory-
mapped register

1 1 or 2§ 1000 1000 IAAA AAAA 6-225

SATH Barrel-shift ACC right 0 or 16 bits
as specified by TREG1

1 1 1011 1110 0101 1010 6-229

SATL Barrel-shift ACC right as specified
by TREG1

1 1 1011 1110 0101 1011 6-231

SBB Subtract ACCB from ACC 1 1 1011 1110 0001 1000 6-232

SBBB Subtract ACCB and logical inver-
sion of carry bit from ACC

1 1 1011 1110 0001 1001 6-233

SFL Shift ACC left 1 bit 1 1 1011 1110 0000 1001 6-237

SFLB Shift ACCB and ACC left 1 bit 1 1 1011 1110 0001 0110 6-238

SFR Shift ACC right 1 bit 1 1 1011 1110 0000 1010 6-239

SFRB Shift ACCB and ACC right 1 bit 1 1 1011 1110 0001 0111 6-241

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
§ Peripheral memory-mapped register access
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Table 6–4. Accumulator Memory Reference Instructions (Continued)

Mnemonic † PageOpcodeCycles ‡WordsDescription

SUB Subtract data memory value,
with left shift, from ACC

1 1 0011 SHFT IAAA AAAA 6-259

Subtract data memory value,
with left shift of 16, from ACC

1 1 0110 0101 IAAA AAAA 6-259

Subtract short immediate from
ACC

1 1 1011 1010 kkkk kkkk 6-259

Subtract long immediate, with
left shift, from ACC

2 2 1011 1111 1010 SHFT
+ 1 word

6-259

SUBB Subtract data memory value
and logical inversion of carry bit
from ACC with sign extension
suppressed

1 1 0110 0100 IAAA AAAA 6-263

SUBC Conditional subtract 1 1 0000 1010 IAAA AAAA 6-265

SUBS Subtract data memory value
from ACC with sign extension
suppressed

1 1 0110 0110 IAAA AAAA 6-267

SUBT Subtract data memory value,
with left shift specified by
TREG1, from ACC

1 1 0110 0111 IAAA AAAA 6-269

XOR Exclusive-OR data memory
value with ACCL

1 1 0110 1100 IAAA AAAA 6-280

Exclusive-OR long immediate,
with left shift of 16, with ACC

2 2 1011 1110 1000 0011
+ 1 word

6-280

Exclusive-OR long immediate,
with left shift, with ACC

2 2 1011 1111 1101 SHFT
+ 1 word

6-280

XORB Exclusive-OR ACCB with ACC 1 1 1011 1110 0001 1010 6-283

ZALR Zero ACCL and load ACCH
with rounding

1 1 0110 1000 IAAA AAAA 6-287

ZAP Zero ACC and PREG 1 1 1011 1110 0101 1001 6-289

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
§ Peripheral memory-mapped register access
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Table 6–5. Auxiliary Registers and Data Memory Page Pointer Instructions

Mnemonic † Description Words Cycles ‡ Opcode Page

ADRK Add short immediate to AR 1 1 0111 1000 kkkk kkkk 6-42

CMPR Compare AR with ARCR as
specified by CM bits

1 1 1011 1111 0100 01CM 6-95

LAR Load data memory value to ARx 1 2 0000 0ARX IAAA AAAA 6-124

Load short immediate to ARx 1 2 1011 0ARX kkkk kkkk 6-124

Load long immediate to ARx 2 2 1011 1111 0000 1ARX
+ 1 word

6-124

LDP Load data memory value to
DP bits

1 2 0000 1101 IAAA AAAA 6-127

Load short immediate to DP bits 1 2 1011 110I kkkk kkkk 6-127

MAR Modify AR 1 1 1000 1011 IAAA AAAA 6-166

SAR Store ARx in data memory 
location

1 1 1000 0ARX IAAA AAAA 6-227

SBRK Subtract short immediate from
AR

1 1 0111 1100 kkkk kkkk 6-234

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
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Table 6–6. Parallel Logic Unit (PLU) Instructions

Mnemonic † Description Words Cycles ‡ Opcode Page

APL AND data memory value with
DBMR, and store result in data
memory location

1 1 0101 1010 IAAA AAAA 6-48

AND data memory value with
long immediate and store
result in data memory location

2 2 0101 1110 IAAA AAAA
+ 1 word

6-48

CPL Compare data memory value
with DBMR

1 1 0101 1011 IAAA AAAA 6-97

Compare data memory value
with long immediate

2 2 0101 1111 IAAA AAAA
+ 1 word

6-97

OPL OR data memory value with
DBMR and store result in data
memory location

1 1 0101 1001 IAAA AAAA 6-184

OR data memory value with
long immediate and store
result in data memory location

2 2 0101 1101 IAAA AAAA
+ 1 word

6-184

SPLK Store long immediate in data
memory location

2 2 1010 1110 IAAA AAAA
+ 1 word

6-251

XPL Exclusive-OR data memory
value with DBMR and store
result in data memory location

1 1 0101 1000 IAAA AAAA 6-284

Exclusive-OR data memory
value with long immediate and
store result in data memory
location

2 2 0101 1100 IAAA AAAA
+ 1 word

6-284

LPH Load data memory value to
PREG high byte

1 1 0111 0101 IAAA AAAA 6-133

LT Load data memory value to
TREG0

1 1 0111 0011 IAAA AAAA 6-138

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
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Table 6–7. TREG0, PREG, and Multiply Instructions 

Mnemonic † Description Words Cycles ‡ Opcode Page

LTA Load data memory value to
TREG0; add PREG, with shift
specified by PM bits, to ACC

1 1 0111 0000 IAAA AAAA 6-140

LTD Load data memory value to
TREG0; add PREG, with shift
specified by PM bits, to ACC;
and move data

1 1 0111 0010 IAAA AAAA 6-142

LTP Load data memory value to
TREG0; store PREG, with shift
specified by PM bits, in ACC

1 1 0111 0001 IAAA AAAA 6-145

LTS Load data memory value to
TREG0; subtract PREG, with
shift specified by PM bits, from
ACC

1 1 0111 0100 IAAA AAAA 6-147

MAC Add PREG, with shift specified
by PM bits, to ACC; load data
memory value to TREG0; multi-
ply data memory value by pro-
gram memory value and store
result in PREG

2 3 1010 0010 IAAA AAAA
+ 1 word

6-149

MACD Add PREG, with shift specified
by PM bits, to ACC; load data
memory value to TREG0; multi-
ply data memory value by pro-
gram memory value and store
result in PREG; and move data

2 3 1010 0011 IAAA AAAA
+ 1 word

6-153

MADD Add PREG, with shift specified
by PM bits, to ACC; load data
memory value to TREG0; multi-
ply data memory value by value
specified in BMAR and store
result in PREG; and move data

1 3 1010 1011 IAAA AAAA 6-158

MADS Add PREG, with shift specified
by PM bits, to ACC; load data
memory value to TREG0; multi-
ply data memory value by value
specified in BMAR and store
result in PREG

1 3 1010 1010 IAAA AAAA 6-162

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
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Table 6–7. TREG0, PREG, and Multiply Instructions (Continued)

Mnemonic † PageOpcodeCycles ‡WordsDescription

MPY Multiply data memory value by
TREG0 and store result in PREG

1 1 0101 0100 IAAA AAAA 6-168

Multiply short immediate by
TREG0 and store result in PREG

1 1 110k kkkk kkkk kkk 6-168

Multiply long immediate by
TREG0 and store result in PREG

2 2 1011 1110 1000 0000
+ 1 word

6-168

MPYA Add PREG, with shift specified
by PM bits, to ACC; multiply
data memory value by TREG0
and store result in PREG

1 1 0101 0000 IAAA AAAA 6-171

MPYS Subtract PREG, with shift speci-
fied by PM bits, from ACC; multi-
ply data memory value by
TREG0 and store result in PREG

1 1 0101 0001 IAAA AAAA 6-173

MPYU Multiply unsigned data memory
value by TREG0 and store result
in PREG

1 1 0101 0101 IAAA AAAA 6-175

PAC Load PREG, with shift specified
by PM bits, to ACC

1 1 1011 1110 0000 0011 6-193

SPAC Subtract PREG, with shift speci-
fied by PM bits, from ACC

1 1 1011 1110 0000 0101 6-246

SPAC Subtract PREG, with shift speci-
fied by PM bits, from ACC

1 1 1011 1110 0000 0101 6-246

SPH Store PREG high byte, with shift
specified by PM bits, in data
memory location

1 1 1000 1101 IAAA AAAA 6-247

SPL Store PREG low byte, with shift
specified by PM bits, in data
memory location

1 1 1000 1100 IAAA AAAA 6-249

SPM Set product shift mode (PM) bits 1 1 1011 1111 0000 00PM 6-252

SQRA Add PREG, with shift specified
by PM bits, to ACC; load data
memory value to TREG0; square
value and store result in PREG

1 1 0101 0010 IAAA AAAA 6-253

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
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Table 6–7. TREG0, PREG, and Multiply Instructions (Continued)

Mnemonic † PageOpcodeCycles ‡WordsDescription

SQRS Subtract PREG, with shift speci-
fied by PM bits, from ACC; load
data memory value to TREG0;
square value and store result in
PREG

1 1 0101 0011 IAAA AAAA 6-255

ZPR Zero PREG 1 1 1011 1110 0101 1000 6-290

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.

Table 6–8. Branch and Call Instructions 

Mnemonic † Description Words Cycles ‡ Opcode Page

B Branch unconditionally to pro-
gram memory location

2 4 0111 1001 1AAA AAAA
+ 1 word

6-51

BACC Branch to program memory
location specified by ACCL

1 4 1011 1110 0010 0000 6-52

BACCD Delayed branch to program
memory location specified by
ACCL

1 2 1011 1110 0010 0001 6-53

BANZ Branch to program memory
location if AR not zero

2 4¶ or 2# 0111 1011 1AAA AAAA
+ 1 word

6-54

BANZD Delayed branch to program
memory location if AR not zero

2 2 0111 1111 1AAA AAAA
+ 1 word

6-56

BCND Branch conditionally to pro-
gram memory location

2 4¶ or 2# 1110 00TP ZLVC ZLVC
+ 1 word

6-58

BCNDD Delayed branch conditionally to
program memory location

2 2 1111 00TP ZLVC ZLVC
+ 1 word

6-60

BD Delayed branch unconditionally
to program memory location

2 2 0111 1101 1AAA AAAA
+ 1 word

6-62

CALA Call to subroutine addressed by
ACCL

1 4 1011 1110 0011 0000 6-83

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
¶ Conditions true
# Condition false
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Table 6–8. Branch and Call Instructions (Continued)

Mnemonic † PageOpcodeCycles ‡WordsDescription

CALAD Delayed call to subroutine ad-
dressed by ACCL

1 2 1011 1110 0011 1101 6-84

CALL Call to subroutine unconditionally 2 4 0111 1010 1AAA AAAA
+ 1 word

6-85

CALLD Delayed call to subroutine
unconditionally

2 2 0111 1110 1AAA AAAA
+ 1 word

6-86

CC Call to subroutine conditionally 2 4¶ or 2# 1110 10TP ZLVC ZLVC
+ 1 word

6-88

CCD Delayed call to subroutine
conditionally

2 2 1111 10TP ZLVC ZLVC
+ 1 word

6-90

INTR Software interrupt that branches
program control to program
memory location

1 4 1011 1110 011I NTR# 6-111

NMI Nonmaskable interrupt and glo-
bally disable interrupts (INTM = 1)

1 4 1011 1110 0101 0010 6-179

RET Return from subroutine 1 4 1110 1111 0000 0000 6-202

RETC Return from subroutine 
conditionally

1 2 1110 11TP ZLVC ZLVC 6-203

RETCD Delayed return from subroutine
conditionally

1 4¶ or 2# 1111 11TP ZLVC ZLVC 6-205

RETD Delayed return from subroutine 1 2 1111 1111 0000 0000 6-207

RETE Return from interrupt with con-
text switch and globally enable
interrupts (INTM = 0)

1 4 1011 1110 0011 1010 6-208

RETI Return from interrupt with con-
text switch

1 4 1011 1110 0011 1000 6-209

TRAP Software interrupt that branches
program control to program
memory location 22h

1 4 1011 1110 0101 0001 6-277

XC Execute next instruction(s)
conditionally

1 1 111N 01TP ZLVC ZLVC 6-278

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
¶ Conditions true
# Condition false
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Table 6–9. I/O and Data Memory Operation Instructions

Mnemonic † Description Words Cycles ‡ Opcode Page

BLDD Block move from data to data
memory

2 3 1010 1000 IAAA AAAA
+ 1 word

6-67

Block move from data to data
memory with destination address
long immediate

2 3 1010 1001 IAAA AAAA
+ 1 word

6-67

Block move from data to data
memory with source address in
BMAR

1 2 1010 1100 IAAA AAAA 6-67

Block move from data to data
memory with destination address
in BMAR

1 2 1010 1101 IAAA AAAA 6-67

BLDP Block move from data to program
memory with destination address
in BMAR

1 2 0101 0111 IAAA AAAA 6-73

BLPD Block move from program to data
memory with source address in
BMAR

1 2 1010 0100 IAAA AAAA 6-76

Block move from program to data
memory with source address long
immediate

2 3 1010 0101 IAAA AAAA
+ 1 word

6-76

DMOV Move data in data memory 1 1 0111 0111 IAAA AAAA 6-104

IN Input data from I/O port to data
memory location

2 2 1010 1111 IAAA AAAA
+ 1 word

6-109

LMMR Load data memory value to
memory-mapped register

2 2 or 3§ 1000 1001 IAAA AAAA
+ 1 word

6-130

OUT Output data from data memory
location to I/O port

2 3 0000 1100 IAAA AAAA
+ 1 word

6-191

SMMR Store memory-mapped register
in data memory location

2 2 or 3§ 0000 1001 IAAA AAAA
+ 1 word

6-243

TBLR Transfer data from program to
data memory with source
address in ACCL

1 3 1010 0110 IAAA AAAA 6-271

TBLW Transfer data from data to pro-
gram memory with destination
address in ACCL

1 3 1010 0111 IAAA AAAA 6-274

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
§ Peripheral memory-mapped register access
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Table 6–10. Control Instructions 

Mnemonic † Description Words Cycles ‡ Opcode Page

BIT Test bit 1 1 0100 BITX IAAA AAAA 6-63

BITT Test bit specified by TREG2 1 1 0110 1111 IAAA AAAA 6-65

CLRC Clear overflow mode (OVM) bit 1 1 1011 1110 0100 0010 6-92

Clear sign extension mode
(SXM) bit

1 1 1011 1110 0100 0110 6-92

Clear hold mode (HM) bit 1 1 1011 1110 0100 1000 6-92

Clear test/control (TC) bit 1 1 1011 1110 0100 1010 6-92

Clear carry (C) bit 1 1 1011 1110 0100 1110 6-92

Clear configuration control
(CNF) bit

1 1 1011 1110 0100 0100 6-92

Clear interrupt mode (INTM) bit 1 1 1011 1110 0100 0000 6-92

Clear external flag (XF) pin 1 1 1011 1110 0100 1100 6-92

IDLE Idle until nonmaskable interrupt
or reset

1 1 1011 1110 0010 0010 6-107

IDLE2 Idle until nonmaskable interrupt
or reset — low-power mode

1 1 1011 1110 0010 0011 6-108

LST Load data memory value to ST0 1 2 0000 1110 IAAA AAAA 6-135

Load data memory value to ST1 1 2 0000 1111 IAAA AAAA 6-135

NOP No operation 1 1 1000 1011 0000 0000 6-180

POP Pop top of stack to ACCL; zero
ACCH

1 1 1011 1110 0011 0010 6-194

POPD Pop top of stack to data memory
location

1 1 1000 1010 IAAA AAAA 6-196

PSHD Push data memory value to top
of stack

1 1 0111 0110 IAAA AAAA 6-198

PUSH Push ACCL to top of stack 1 1 1011 1110 0011 1100 6-200

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
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Table 6–10. Control Instructions (Continued)

Mnemonic † PageOpcodeCycles ‡WordsDescription

RPT Repeat next instruction specified
by data memory value

1 1 0000 1011 IAAA AAAA 6-214

Repeat next instruction specified
by short immediate

1 2 1011 1011 kkkk kkkk 6-214

Repeat next instruction specified
by long immediate

2 2 1011 1110 1100 0100
+ 1 word

6-214

RPTB Repeat block of instructions
specified by BRCR

2 2 1011 1110 1100 0110
+ 1 word

6-217

RPTZ Clear ACC and PREG; repeat
next instruction specified by
long immediate

2 2 1011 1110 1100 0101
+ 1 word

6-219

SETC Set overflow mode (OVM) bit 1 1 1011 1110 0100 0011 6-235

Set sign extension mode (SXM)
bit

1 1 1011 1110 0100 0111 6-235

Set hold mode (HM) bit 1 1 1011 1110 0100 1001 6-235

Set test/control (TC) bit 1 1 1011 1110 0100 1011 6-235

Set carry (C) bit 1 1 1011 1110 0100 1111 6-235

Set external flag (XF) pin high 1 1 1011 1110 0100 1101 6-235

Set configuration control (CNF)
bit

1 1 1011 1110 0100 0101 6-235

Set interrupt mode (INTM) bit 1 1 1011 1110 0100 0001 6-235

SST Store ST0 in data memory
location

1 1 1000 1110 IAAA AAAA 6-257

Store ST1 in data memory
location

1 1 1000 1111 IAAA AAAA 6-257

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ The cycle timings are for single-instruction execution, not for repeat mode.
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6.3 Instruction Set Descriptions

This section provides detailed information on the instruction set for the ’C5x
family; see Table 6–4 through Table 6–10 for a complete list of available
instructions. Each instruction description presents the following information:

� Assembler syntax
� Operands
� Opcodes
� Execution
� Status Bits
� Description
� Words
� Cycles
� Examples

The EXAMPLE  instruction is provided to familiarize you with the format of the
instruction descriptions and to explain what is described under each heading.
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Syntax Direct: EXAMPLE  dma [,shift ]
Indirect: EXAMPLE  {ind} [,shift ] [,ARn]
Short immediate: EXAMPLE  #k
Long immediate: EXAMPLE  #lk

Each instruction description begins with an assembly language syntax expres-
sion. A source statement can contain four ordered fields. The general syntax
for source statements is as follows:

[label ]  [:] mnemonic [operand list ] [;comment ]

Follow these guidelines:

� All statements must begin with a label, a blank, an asterisk, or a semicolon.

� Labels are optional; if used, they must begin in column 1. Labels may be
placed either before the instruction mnemonic on the same line or on the
preceding line in the first column.

� One or more blanks must separate each field. Tab characters are equiva-
lent to blanks.

� Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column mus t begin with a semicolon.

See Table 6–2 on page 6-4 for definitions of symbols and abbreviations used
in the syntax expression.

Operands 0 ≤ dma ≤ 127
0 ≤ pma ≤ 65535
0 ≤ shift ≤ 15
0 ≤ shift2 ≤ 7
0 ≤ n ≤ 7
0 ≤ k ≤ 255
0 ≤ lk ≤ 65535
0 ≤ x ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Operands can be constants or assembly-time expressions that refer to
memory, I/O ports, register addresses, pointers, shift counts, and a variety of
other constants. This section also gives the range of acceptable values for the
operand types.

Opcode 0123456789101112131415
xxxxxxxxxxxxxxxx

The opcode graphic shows bit values or field names that make up each instruc-
tion. See Table 6–1 on page 6-2 for definitions of symbols and abbreviations
used in the instruction opcodes.
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Execution (PC) + 1 →  PC
(ACC) + (dma)  →  ACC
0 →  C

The execution section symbolically represents the process that takes place
when the instruction is executed. See Table 6–2 on page 6-4 for definitions of
symbols and abbreviations used in the execution section.

Status Bits Affected by: Not affected by: Affects:
OVM SXM C and OV

An instruction’s execution may be affected by the state of the fields in the status
registers; also it may affect the state of the status register fields. Both the
effects on and the effects of the status register fields are listed in this section.

Description This section describes the instruction execution and its effect on the rest of the
processor or memory contents. Any constraints on the operands imposed by
the processor or the assembler are discussed. The description parallels and
supplements the information given symbolically in the execution section.

Words This section specifies the number of memory words required to store the in-
struction and its extension words.

Cycles This section provides tables showing the number of cycles required for a given
instruction to execute in a given memory configuration — both as a single
instruction and in the repeat (RPT) mode. The following are examples of the
cycle timing tables.

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1 1+p

External 1+d 1+d 1+d 2+d+p

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n n+p

External n+nd n+nd n+nd n+1+p+nd
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The column headings in the tables indicate the program source location. The
program source locations are defined as follows:

ROM The instruction executes from on-chip program ROM.

DARAM The instruction executes from on-chip dual-access
program RAM.

SARAM The instruction executes from on-chip single-access
program RAM.

External Memory The instruction executes from external program
memory.

If an instruction requires memory operand(s), the rows in the tables indicate
the location(s) of the operand(s). The operands are defined as follows:

DARAM The operand is in internal dual-access RAM.

SARAM The operand is in internal single-access RAM.

External The operand is in external memory.

ROM The operand is in internal program ROM.

MMR The operand is a memory-mapped register.

MMPORT The operand is a memory-mapped I/O port.

The number of cycles required for each instruction is given in terms of the pro-
cessor machine cycles (CLKOUT1 period). The additional wait states for pro-
gram/data memory and I/O accesses are defined below. Note that these addi-
tional cycles can be generated by the on-chip software wait-state generator
or by the external READY signal. These variables can also use the subscripts
src, dst, and code to indicate source, destination, and code, respectively.

d Data memory wait states. Represents the number of additional clock
cycles the device waits for external data memory to respond to an
access.

io I/O wait states. Represents the number of additional clock cycles
the device waits for an external I/O to respond to an access.

n Repetitions (where n > 2 to fill the pipeline). Represents the number
of times a repeated instruction is executed.

p Program memory wait states. Represents the number of additional
clock cycles the device waits for external program memory to
respond to an access.
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Table 6–11 lists the on-chip single-access RAM available on each ’C5x pro-
cessor. The on-chip single-access RAM is divided into 1K- and/or 2K-word
blocks contiguous in address memory space. All ’C5x processors support par-
allel accesses to these on-chip SARAM blocks. However, one SARAM block
allows only one access per cycle. In other words, the processor can read/write
on one SARAM block while accessing another SARAM block.

All external reads require at least one machine cycle while all external writes
require at least two machine cycles. However, if an external write is immediate-
ly followed or preceded by an external read cycle, then the external write
requires three cycles. See Section 8.9, External Memory Interface Timings, on
page 8-39 for details. If you use an on-chip wait-state generator to add m (m>0)
wait states to an external access, then both the external reads and the external
writes require m+1 cycles, assuming that the external READY line is driven
high. If you use the READY input line to add m additional cycles to an external
access, then external reads require m+1 cycles and external write accesses
require m+2 cycles. See Section 9.4, Software-Programmable Wait-State
Generators, on page 9-13 and the data sheet for READY electrical specifica-
tions.

Table 6–11. Address Blocks for On-Chip Single-Access RAM
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The instruction cycles are based on the following assumptions:

� At least four instructions following the current instruction are fetched from
the same memory section (on-chip or external) as the current instruction,
except in instructions that cause a program counter discontinuity, such as
B, CALL, etc.

� When executing a single instruction, there is no pipeline conflict between
the current instruction and the instructions immediately preceding or fol-
lowing that instruction. The only exception is the conflict between the fetch
phase of the pipeline and the memory read/write (if any) access of the
instruction under consideration. See Chapter 7 for pipeline operation.

� In the repeat execution mode, all conflicts caused by the pipelined execu-
tion of that instruction are considered.

Refer to Appendix B for a summary of instruction cycle classifications.

Example Example code is shown for each instruction. The effect of the code on memory
and/or registers is summarized.
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Syntax ABS

Operands None

Opcode 0123456789101112131415
0000000001111101

Execution (PC) + 1 →  PC
|(ACC)|  →  ACC
0  →  C

Status Bits Affected by: Not affected by: Affects:
OVM SXM C and OV

Description If the contents of the accumulator (ACC) are greater than or equal to 0, the con-
tents of the ACC is unchanged. If the contents of the ACC are less than 0, the
contents of the ACC is replaced by its 2s-complement value. The ABS instruc-
tion clears the C bit.

Note that 8000 0000h is a special case. When the OVM bit is cleared, the ABS
of 8000 0000h is 8000 0000h. When the OVM bit is set, the ABS of
8000 0000h is 7FFF FFFFh. In either case, the OV bit is set.

ABS is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 ABS

Before Instruction After Instruction

 ACC X 1234h ACC 0 1234h

C C

Example 2 ABS

Before Instruction After Instruction

ACC X FFFF FFFFh ACC 0 1h

C C

Cycles
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Example 3 ABS ;(OVM = 1)

Before Instruction After Instruction

ACC X 8000 0000h ACC 0 7FFF FFFFh

C C

X 1

OV OV

Example 4 ABS ;(OVM = 0)

Before Instruction After Instruction

ACC X 8000 0000h ACC 0 8000 0000h

C C

X 1

OV OV
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Syntax ADCB

Operands None

Opcode 0123456789101112131415
1000100001111101

Execution (PC) + 1 →  PC
(ACC) + (ACCB) + (C)  →  ACC

Status Bits Affected by: Affects:
OVM C and OV

Description The contents of the accumulator buffer (ACCB) and the value of the C bit are
added to the contents of the accumulator (ACC). The result is stored in the
ACC and the contents of the ACCB are unaffected. The C bit is set, if the result
of the addition generates a carry; otherwise, the C bit is cleared.

ADCB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example ADCB

Before Instruction After Instruction

ACC 1 1234h ACC 0 1237h

C C

ACCB 2h ACCB 2h

Cycles
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Syntax Direct: ADD dma [,shift ]
Indirect: ADD {ind} [,shift ] [,ARn]
Short immediate: ADD #k
Long immediate: ADD #lk [,shift]

Operands 0 ≤ dma ≤ 127
0 ≤ shift ≤16 (defaults to 0)
0 ≤ n ≤ 7
0 ≤ k ≤ 255
–32768 ≤ lk ≤ 32767
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing with shift
0123456789101112131415

0SHFT †0100 dma
† See Table 6–1 on page 6-2.

Indirect addressing with shift
0123456789101112131415

1SHFT †0100 See Section 5.2
† See Table 6–1 on page 6-2.

Direct addressing with shift of 16
0123456789101112131415

010000110 dma

Indirect addressing with shift of 16
0123456789101112131415

110000110 See Section 5.2

Short immediate addressing

8-Bit Constant
0123456789101112131415

00011101

Long immediate addressing with shift
0123456789101112131415

SHFT †100111111101
16-Bit Constant

† See Table 6–1 on page 6-2.

Execution Direct or indirect addressing:
(PC) + 1  →  PC
(ACC) + ((dma) � 2shift ) →  ACC
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Short immediate addressing:
(PC) + 1 →  PC
(ACC) + k  →  ACC

Long immediate addressing:
(PC) + 2 →  PC
(ACC) + (lk � 2shift ) →  ACC

Status Bits Affected by: Affects:
OVM and SXM C and OV Direct or indirect addressing
OVM C and OV Short immediate addressing
OVM and SXM C and OV Long immediate addressing

Description If direct, indirect, or long immediate addressing is used, the contents of the
data memory address (dma) or a 16-bit constant are shifted left, as defined by
the shift code, and added to the contents of the accumulator (ACC). The result
is stored in the ACC. During shifting, the accumulator low byte (ACCL) is
zero-filled. If the SXM bit is cleared, the high-order bits of the ACC are zero-
filled; if the SXM bit is set, the high-order bits of the ACC are sign-extended.

Note that when the auxiliary register pointer (ARP) is updated during indirect
addressing, you must specify a shift operand. If you don’t want a shift, you must
enter a 0 for this operand. For example:

ADD*+,0,AR0

If short immediate addressing is used, an 8-bit positive constant is added to
the contents of the ACC. The result is stored in the ACC. In this mode, no shift
value may be specified and the addition is unaffected by the SXM bit.

The C bit is set, if the result of the addition generates a carry; otherwise, the
C bit is cleared. If a 16-bit shift is specified with the ADD instruction, the C bit
is set only if the result of the addition generates a carry; otherwise, the C bit
is unaffected. This allows the accumulation to generate the proper single carry
when a 32-bit number is added to the ACC.

ADD is an accumulator memory reference instruction (see Table 6–4).

1 (Direct, indirect, or short immediate addressing)

2 (Long immediate addressing)

Words
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For the short and long immediate addressing modes, the ADD instruction is
not repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example 1 ADD DAT1,1 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
301h 1h 301h 1h

ACC X 2h ACC 0 04h

C C

Cycles
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Example 2 ADD *+,0,AR0

Before Instruction After Instruction

ARP 4 ARP 0

AR4 0302h AR4 0303h

Data Memory Data Memory
302h 2h 302h 2h

ACC X 2h ACC 0 04h

C C

Example 3 ADD #1h ;Add short immediate

Before Instruction After Instruction

ACC X 2h ACC 0 03h

C C

Example 4 ADD #1111h,1 ;Add long immediate with shift of 1

Before Instruction After Instruction

ACC X 2h ACC 0 2224h

C C
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Syntax ADDB

Operands None

Opcode 0123456789101112131415
0000100001111101

Execution (PC) + 1 →  PC
(ACC) + (ACCB)  →  ACC

Status Bits Affected by: Affects:
OVM C and OV

Description The contents of the accumulator buffer (ACCB) are added to the contents of
the accumulator (ACC). The result is stored in the ACC and the contents of the
ACCB are unaffected. The C bit is set, if the result of the addition generates
a carry; otherwise, the C bit is cleared.

ADDB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example ADDB

Before Instruction After Instruction

ACC 1234h ACC 1236h

ACCB X 2h ACCB 0 2h

C C

Cycles
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Syntax Direct: ADDC dma
Indirect: ADDC {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000000110 dma

Indirect addressing
0123456789101112131415

100000110 See Section 5.2

Execution (PC) + 1 →  PC
(ACC) + (dma) + (C)  →  ACC

Status Bits Affected by: Not affected by: Affects:
OVM SXM C and OV

Description The contents of the data memory address (dma) and the value of the C bit are
added to the contents of the accumulator (ACC) with sign extension sup-
pressed. The result is stored in the ACC. The C bit is set, if the result of the
addition generates a carry; otherwise, the C bit is cleared.

The ADDC instruction can be used in performing multiple-precision arithmetic.
ADDC is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 ADDC DAT0 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
300h 04h 300h 04h

ACC 1 13h ACC 0 18h

C C

Example 2 ADDC *–,AR4 ;(OVM = 0)

Before Instruction After Instruction

ARP 0 ARP 4

AR0 300h AR0 299h

Data Memory Data Memory
300h 0h 300h 0h

ACC 1 FFFF FFFFh ACC 1 0h

C C

X 0

OV OV
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Syntax Direct: ADDS dma
Indirect: ADDS {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001000110 dma

Indirect addressing
0123456789101112131415

101000110 See Section 5.2

Execution (PC) + 1  →  PC
(ACC) + (dma)  →  ACC
(dma) is an unsigned16-bit number

Status Bits Affected by: Not affected by: Affects:
OVM SXM C and OV

Description The contents of the data memory address (dma) are added to the contents of
the accumulator (ACC) with sign extension suppressed. The data is treated
as an unsigned 16-bit number, regardless of the SXM bit. The contents of the
ACC are treated as a signed number. The result is stored in the ACC. The C
bit is set, if the result of the addition generates a carry; otherwise, the C bit is
cleared.

The ADDS instruction produces the same results as an ADD instruction with
the SXM bit cleared and a shift count of 0.

ADDS is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles
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Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDS DAT0 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
300h F006h 300h F006h

ACC X 0000 0003h ACC 0 0000 F009h

C C

Example 2 ADDS *

Before Instruction After Instruction

ARP 0 ARP 0

AR0 0300h AR0 0300h

Data Memory Data Memory
300h FFFFh 300h FFFFh

ACC X 7FFF 0000h ACC 0 7FFF FFFFh

C C
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Syntax Direct: ADDT dma
Indirect: ADDT {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011000110 dma

Indirect addressing
0123456789101112131415

111000110 See Section 5.2

Execution (PC) + 1 →  PC
(ACC) + ((dma) � 2TREG1(3–0) )  →  ACC

If SXM = 0:
(dma) is not sign-extended

If SXM = 1:
(dma) is sign-extended

Status Bits Affected by: Affects:
OVM, SXM, and TRM C and OV

Description The contents of the data memory address (dma) are shifted left from 0 to 15
bits, as defined by the 4 LSBs of TREG1, and added to the contents of the ac-
cumulator (ACC). The result is stored in the ACC. Sign extension on the dma
value is controlled by the SXM bit. The C bit is set, if the result of the addition
generates a carry; otherwise, the C bit is cleared.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs.
Subsequent calls to the ADDT instruction will shift the value by the TREG1 val-
ue (which is the same as TREG0), maintaining ’C5x object-code compatibility
with the ’C2x.

ADDT is an accumulator memory reference instruction (see Table 6–4).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDT DAT127 ;(DP = 4, SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
027Fh 09h 027Fh 09h

TREG1 FF94h TREG1 FF94h

ACC X F715h ACC 0 F7A5h

C C

Example 2 ADDT *–,AR4 ;(SXM = 0)

Before Instruction After Instruction

ARP 0 ARP 4

AR0 027Fh AR0 027Eh

Data Memory Data Memory
027Fh 09h 027Fh 09h

TREG1 FF94h TREG1 FF94h

ACC X F715h ACC 0 F7A5h

C C

Cycles
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Syntax ADRK  #k

Operands 0 ≤ k ≤ 255

Opcode 0123456789101112131415
8-Bit Constant00011110

Execution (PC) + 1 →  PC
(current AR) + 8-bit positive constant →  current AR

Status Bits None affected.

Description The 8-bit immediate value, right-justified, is added to the current auxiliary reg-
ister (AR). The result is stored in the AR. The addition takes place in the auxilia-
ry register arithmetic unit (ARAU), with the immediate value treated as an 8-bit
positive integer. All arithmetic operations on the AR are unsigned.

ADRK is an auxiliary registers and data memory page pointer instruction (see
Table 6–5).

Words 1

Cycles The ADRK instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Example ADRK #80h

Before Instruction After Instruction

ARP 5 ARP 5

AR5 4321h AR5 43A1h
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Syntax Direct: AND dma
Indirect: AND {ind} [,ARn]
Long immediate: AND #lk [,shift ]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
lk: 16-bit constant
0 ≤ shift ≤ 16
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001110110 dma

Indirect addressing
0123456789101112131415

101110110 See Section 5.2

Long immediate addressing with shift
0123456789101112131415

SHFT †110111111101

16-Bit Constant
† See Table 6–1 on page 6-2.

Long immediate addressing with shift of 16
0123456789101112131415

1000000101111101

16-Bit Constant

Execution Direct or indirect addressing:
(PC) + 1 → PC
(ACC(15–0))  AND  (dma) →  ACC(15–0)
0  →  ACC(31–16)

Long immediate addressing:
(PC) + 2  →  PC
(ACC(30–0))  AND  (lk � 2shift ) →  ACC

Status Bits Not affected by:
SXM Long immediate addressing

Description If a long immediate constant is specified, the constant is shifted left and zero-
extended on both ends and is ANDed with the contents of the accumulator
(ACC). The result is stored in the ACC. If a constant is not specified, the con-
tents of the data memory address (dma) are ANDed with the contents of the
accumulator low byte (ACCL). The result is stored in the ACCL and the accu-
mulator high byte (ACCH) is zero-filled.

AND is an accumulator memory reference instruction (see Table 6–4).
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1 (Direct or indirect addressing)

2 (Long immediate addressing)

For the long immediate addressing modes, the AND instruction is not
repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block.

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example 1 AND DAT16 ;(DP = 4)

Before Instruction After Instruction

Data Memory Data Memory
0210h 00FFh 0210h 00FFh

ACC 1234 5678h ACC 0000 0078h

Example 2 AND *

Before Instruction After Instruction

ARP 0 ARP 0

AR0 0301h AR0 0301h

Data Memory Data Memory
0301h FF00h 0301h FF00h

ACC 1234 5678h ACC 0000 5600h

Words

Cycles
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Example 3 AND #00FFh,4

Before Instruction After Instruction

ACC 1234 5678h ACC 0000 0670h
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Syntax ANDB

Operands None

Opcode 0123456789101112131415
0100100001111101

Execution (PC) + 1 →  PC
(ACC)  AND  (ACCB) →  ACC

Status Bits None affected.

Description The contents of the accumulator (ACC) are ANDed with the contents of the
accumulator buffer (ACCB). The result is stored in the ACC and the contents
of the ACCB are unaffected.

ANDB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example ANDB

Before Instruction After Instruction

ACC 0F0F FFFFh ACC 0505 5555h

ACCB 5555 5555h ACCB 5555 5555h

Cycles
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Syntax APAC

Operands None

Opcode 0123456789101112131415
0010000001111101

Execution (PC) + 1 →  PC
(ACC) + (shifted PREG) →  ACC

Status Bits Affected by: Not affected by: Affects:
OVM and PM SXM C and OV

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the contents of the accumulator (ACC). The result is stored
in the ACC. The C bit is set, if the result of the addition generates a carry; other-
wise, the C bit is cleared. The contents of the PREG are always sign extended.

The APAC instruction is a subset of the LTA, LTD, MAC, MACD, MADS,
MADD, MPYA, and SQRA instructions.

APAC is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example APAC ;(PM = 01)

Before Instruction After Instruction

PREG 40h PREG 40h

ACC X 20h ACC 0 A0h

C C

Cycles
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Syntax Direct: APL  [#lk,] dma
Indirect: APL  [#lk,] {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
lk: 16-bit constant
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing with long immediate not specified
0123456789101112131415

001011010 dma

Indirect addressing with long immediate not specified
0123456789101112131415

101011010 See Section 5.2

Direct addressing with long immediate specified

dma
0123456789101112131415

001111010

16-Bit Constant

Indirect addressing with long immediate specified
0123456789101112131415

101111010

16-Bit Constant

See Section 5.2

Execution Long immediate not specified:
(PC) + 1 →  PC
(dma)  AND  (DBMR) →  dma

Long immediate specified:
(PC) + 2 →  PC
(dma)  AND  lk →  dma

Status Bits Affects: TC

Description If a long immediate constant is specified, the constant is ANDed with the con-
tents of the data memory address (dma). If a constant is not specified, the con-
tents of the dma are ANDed with the contents of the dynamic bit manipulation
register (DBMR). In both cases, the result is written directly back to the dma
and the contents of the accumulator (ACC) are unaffected. The TC bit is set,
if the result of the AND operation is 0; otherwise, the TC bit is cleared.

APL is a parallel logic unit (PLU) instruction (see Table 6–6).

1 (Long immediate not specified)

2 (Long immediate specified)

Words
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Cycles for a Single Instruction (second operand DBMR)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (second operand DBMR)

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2,
2n+1†

2n–2+p

External 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate specified)

ROM DARAM SARAM External Memory

DARAM 2 2 2 2+2p

SARAM 2 2 2 2+2p

External 3+2d 3+2d 3+2d 6+2d+2p

Cycles for a Repeat (RPT) Execution (long immediate specified)

ROM DARAM SARAM External Memory

DARAM n+1 n+1 n+1 n+1+2p

SARAM 2n–1 2n–1 2n–1,
2n+2†

2n–1+2p

External 4n–1+2nd 4n–1+2nd 4n–1+2nd 4n+2+2nd+2p

† If the operand and the code reside in same SARAM block

Cycles
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Example 1 APL #0023h,DAT96 ;(DP = 0)

Before Instruction After Instruction

Data Memory Data Memory
60h X 00h 60h 1 00h

TC TC

Example 2 APL DAT96 ;(DP = 0)

Before Instruction After Instruction

DBMR FF00h DBMR FF00h

Data Memory Data Memory
60h X 1111h 60h 0 1100h

TC TC

Example 3 APL #0100h,*,AR6

Before Instruction After Instruction

ARP X 5 ARP 0 6

TC TC

AR5 300h AR5 300h

Data Memory Data Memory
300h 0FFFh 300h 0100h

Example 4 APL *,AR7

Before Instruction After Instruction

ARP X 6 ARP 0 7

TC TC

AR6 310h AR6 310h

DBMR 0303h DBMR 0303h

Data Memory Data Memory
310h 0EFFh 310h 0203h
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Syntax B  pma [, {ind} [,ARn ]]

Operands 0 ≤ pma ≤ 65535
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode 0123456789101112131415
110011110

16-Bit Constant

See Section 5.2

Execution pma →  PC
Modify current AR and ARP as specified

Status Bits None affected.

Description Control is passed to the program memory address (pma). The current auxiliary
register (AR) and auxiliary register pointer (ARP) are modified as specified.
The pma can be either a symbolic or numeric address.

B is a branch and call instruction (see Table 6–8).

Words 2

The B instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+4p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example B 191,*+,AR1

The value 191 is loaded into the program counter (PC), and the program con-
tinues executing from that location. The current AR is incremented by 1, and
ARP is set to 1.

Cycles
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Syntax BACC

Operands None

Opcode 0123456789101112131415
0000010001111101

Execution ACC(15–0)  →  PC

Status Bits None affected.

Description Control is passed to the 16-bit address residing in the accumulator low byte
(ACCL).

BACC is a branch and call instruction (see Table 6–8).

Words 1

The BACC instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example BACC ;(ACC contains the value 191)

The value 191 is loaded into the program counter (PC), and the program con-
tinues executing from that location.

Cycles
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Syntax BACCD

Operands None

Opcode 0123456789101112131415
1000010001111101

Execution ACC(15–0)  →  PC

Status Bits None affected.

Description The one 2-word instruction or two 1-word instructions following the BACCD
instruction are fetched from program memory and executed before the branch
is taken. After the instructions are executed, control is passed to the 16-bit ad-
dress residing in the accumulator low byte (ACCL).

BACCD is a branch and call instruction (see Table 6–8).

Words 1

The BACCD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+p

Example BACCD ;(ACC contains the value 191)

MAR *+,AR1

LDP #5

After the current AR, ARP, and DP are modified as specified, program execu-
tion continues from location 191.

Cycles
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Syntax BANZ  pma [, {ind} [,ARn ]]

Operands 0 ≤ pma ≤ 65535
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode 0123456789101112131415
111011110

16-Bit Constant

See Section 5.2

Execution If (current AR) ≠ 0:
pma →  PC

Else:
(PC) + 2  →  PC

Modify current AR as specified

Status Bits None affected.

Description If the contents of the current auxiliary register (AR) are not 0, control is passed
to the program memory address (pma); otherwise, control is passed to the
next instruction. The default modification to current AR is a decrement by 1.
You can cause N loop iterations to be executed by initializing the auxiliary reg-
ister loop counter to N–1 before loop entry. The pma can be either a symbolic
or numeric address.

BANZ is a branch and call instruction (see Table 6–8).

Words 2

The BANZ instruction is not repeatable.

Cycles for a Single Instruction

Condition ROM DARAM SARAM External Memory

True 4 4 4 4+4p†

False 2 2 2 2+2p

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Cycles
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Example 1 BANZ PGM0

Before Instruction After Instruction

ARP 0 ARP 0

AR0 5h AR0 4h

0 is loaded into the program counter (PC), and the program continues execut-
ing from that location.

or
Before Instruction After Instruction

ARP 0 ARP 0

AR0 0h AR0 FFFFh

The PC is incremented by 2, and execution continues from that location.

Example 2 MAR *,AR0

LAR AR1,#3

LAR AR0,#60h

PGM191 ADD *+,AR1

BANZ PGM191,AR0

The contents of data memory locations 60h–63h are added to the accumulator
(ACC).
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Syntax BANZD  pma [, {ind} [,ARn ]]

Operands 0 ≤ pma ≤ 65535
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode 0123456789101112131415

111111110

16-Bit Constant

See Section 5.2

Execution If (current AR) ≠ 0:
pma →  PC

Else:
(PC) + 2  →  PC

Modify current AR as specified

Status Bits None affected.

Description The one 2-word instruction or two 1-word instructions following the branch
instruction are fetched from program memory and executed before the branch
is taken.

After the instructions are executed if the contents of the current auxiliary regis-
ter (AR) are not 0, control is passed to the program memory address (pma);
otherwise, control is passed to the next instruction. The default modification
to current AR is a decrement by 1. You can cause N loop iterations to be
executed by initializing the auxiliary register loop counter to N–1 before loop
entry. The pma can be either a symbolic or numeric address.

BANZD is a branch and call instruction (see Table 6–8).

Words 2

The BANZD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+2p

Cycles
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Example BANZD PGM0

LACC #01h

LDP #5

Before Instruction After Instruction

ARP 0 ARP 0

AR0 5h AR0 4h

DP 4 DP 5

ACC 00h ACC 01h

After the current DP and accumulator (ACC) are modified as specified, pro-
gram execution continues from location 0.
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Syntax BCND  pma, cond [,cond1] [,...]

Operands 0 ≤ pma ≤ 65535

Conditions: ACC = 0 EQ
ACC ≠ 0 NEQ
ACC < 0 LT
ACC ≤ 0 LEQ
ACC > 0 GT
ACC ≥ 0 GEQ
C = 0 NC
C = 1 C
OV = 0 NOV
OV = 1 OV
TC = 0 NTC
TC = 1 TC
BIO low BIO
Unconditionally UNC

Opcode 0123456789101112131415

ZLVC †ZLVC †TP †000111
16-Bit Constant

† See Table 6–1 on page 6-2.

Execution If (condition(s)):
pma →  PC

Else:
(PC) + 2 →  PC

Status Bits None affected.

Description If the specified conditions are met, control is passed to the program memory
address (pma); otherwise, control is passed to the next instruction. Not all
combinations of the conditions are meaningful and testing BIO is mutually
exclusive to testing TC.

BCND is a branch and call instruction (see Table 6–8).

Words 2

The BCND instruction is not repeatable.

Cycles for a Single Instruction

Condition ROM DARAM SARAM External Memory

True 4 4 4 4+4p†

False 2 2 2 2+2p

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Cycles
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Example BCND PGM191,LEQ,C

If the accumulator (ACC) contents are less than or equal to 0 and the C bit is
set, program address 191 is loaded into the program counter (PC), and the
program continues executing from that location. If these conditions are not
met, execution continues from location PC + 2.
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Syntax BCNDD  pma, cond [,cond1] [,...]

Operands 0 ≤ pma ≤ 65535

Conditions: ACC = 0 EQ
ACC ≠ 0 NEQ
ACC < 0 LT
ACC ≤ 0 LEQ
ACC > 0 GT
ACC ≥ 0 GEQ
C = 0 NC
C = 1 C
OV = 0 NOV
OV = 1 OV
TC = 0 NTC
TC = 1 TC
BIO low BIO
Unconditionally UNC

Opcode 0123456789101112131415

ZLVC †ZLVC †TP †001111
16-Bit Constant

† See Table 6–1 on page 6-2.

Execution If (condition(s)):
pma →  PC

Else:
(PC) + 2 →  PC

Status Bits None affected.

Description The one 2-word instruction or two 1-word instructions following the branch are
fetched from program memory and executed before the branch is taken. The
two instruction words following the BCNDD instruction have no effect on the
conditions being tested.

After the instructions are executed if the specified conditions are met, control
is passed to the program memory address (pma); otherwise, control is passed
to the next instruction. Not all combinations of the conditions are meaningful
and testing BIO is mutually exclusive to testing TC.

BCNDD is a branch and call instruction (see Table 6–8).

Words 2

The BCNDD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+2p

Cycles
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Example BCNDD PGM191,OV

MAR *,AR1

LDP #5

After the current AR, ARP, and DP are modified as specified, program execu-
tion continues at location 191 if the overflow (OV) bit is set. If the OV bit is
cleared, execution continues at the instruction following the LDP instruction.
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Syntax BD  pma [, {ind} [,ARn ]]

Operands 0 ≤ pma ≤ 65535
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode 0123456789101112131415
110111110

16-Bit Constant

See Section 5.2

Execution pma →  PC
Modify current AR and ARP as specified

Status Bits None affected.

Description The one 2-word instruction or two 1-word instructions following the branch
instruction are fetched from program memory and executed before the branch
is taken.

After the instructions are executed, control is passed to the program memory
address (pma). The current auxiliary register (AR) and auxiliary register point-
er (ARP) are modified as specified. The pma can be either a symbolic or
numeric address.

BD is a branch and call instruction (see Table 6–8).

Words 2

The BD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example BD 191

MAR *+,AR1

LDP #5

After the current AR, ARP, and DP are modified as specified, program execu-
tion continues from location 191.

Cycles
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Syntax Direct:  BIT dma, bit code
Indirect: BIT {ind} , bit code [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤ bit code ≤15
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

0BITX †0010 dma
† See Table 6–1 on page 6-2.

Indirect addressing
0123456789101112131415

1BITX †0010 See Section 5.2
† See Table 6–1 on page 6-2.

Execution (PC) + 1 →  PC
(dma bit at bit address (15 – bit code))  →  TC

Status Bits Affects: TC

Description The specified bit of the data memory address (dma) value is copied to the TC
bit in ST1. The APL, BITT, CMPR, CPL, LST1, NORM, OPL, and XPL instruc-
tions also affect the TC bit. The bit code value corresponds to a specified bit
of the dma, as given by the following table:

Bit Bit Code

(LSB)  0 1    1    1    1
1 1    1    1    0
2 1    1    0    1
3 1    1    0    0
4 1    0    1    1
5 1    0    1    0
6 1    0    0    1
7 1    0    0    0
8 0    1    1    1
9 0    1    1    0

10 0    1    0    1
11 0    1    0    0
12 0    0    1    1
13 0    0    1    0
14 0    0    0    1

(MSB)  15 0    0    0    0

BIT is a control instruction (see Table 6–10).
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Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 BIT 0h,15 ;(DP = 6).Test LSB at 300h

Before Instruction After Instruction

Data Memory Data Memory
300h 4DC8h 300h 4DC8h

TC 0 TC 0

Example 2 BIT *,0,AR1 ;Test MSB at 310h

Before Instruction After Instruction

ARP 0 ARP 1

AR0 310h AR0 310h

Data Memory Data Memory
310h 8000h 310h 8000h

TC 0 TC 1

Cycles
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Syntax Direct:  BITT dma
Indirect: BITT {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011110110 dma

Indirect addressing
0123456789101112131415

111110110 See Section 5.2

Execution (PC) + 1 →  PC
(dma bit at bit address (15 –TREG2(3–0)))  →  TC

Status Bits Affects: TC

Description The specified bit of the data memory address (dma) value is copied to the TC
bit in ST1. The APL, BIT, CMPR, CPL, LST1, OPL, NORM, and XPL instruc-
tions also affect the TC bit. The bit code value contained in the 4 LSBs of the
TREG2 corresponds to a specified bit of the dma, as given by the following
table:

Bit Bit Code

(LSB)  0 1    1    1    1
1 1    1    1    0
2 1    1    0    1
3 1    1    0    0
4 1    0    1    1
5 1    0    1    0
6 1    0    0    1
7 1    0    0    0
8 0    1    1    1
9 0    1    1    0

10 0    1    0    1
11 0    1    0    0
12 0    0    1    1
13 0    0    1    0
14 0    0    0    1

(MSB)  15 0    0    0    0
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You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instructions that load TREG0 to write to all three TREGs.
Subsequent calls to the BITT instruction will use the TREG2 value (which is
the same as TREG0), maintaining ’C5x object-code compatibility with the
’C2x.

BITT is a control instruction (see Table 6–10).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 BITT 00h ;(DP = 6). Test bit 14 of data at 300h

Before Instruction After Instruction

Data Memory Data Memory
300h 4DC8h 300h 4DC8h

TREG2 1h TREG2 1h

TC 0 TC 1

Example 2 BITT * ;Test bit 1 of data at 310h

Before Instruction After Instruction

ARP 1 ARP 1

AR1 310h AR1 310h

Data Memory Data Memory
310h 8000h 310h 8000h

TREG2 0Eh TREG2 0Eh

TC 0 TC 0

Cycles
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Syntax General syntax: BLDD  src, dst

All valid cases have the general syntax:
Direct BMAR/DMA: BLDD BMAR , dma
Indirect BMAR/DMA: BLDD  BMAR , {ind} [,ARn]
Direct DMA/BMAR: BLDD  dma, BMAR
Indirect DMA/BMAR: BLDD  {ind}, BMAR  [,ARn]
Direct K/DMA: BLDD  #addr, dma
Indirect K/DMA: BLDD  #addr, {ind} [,ARn]
Direct DMA/K: BLDD  dma, #addr
Indirect DMA/K: BLDD  {ind}, #addr [,ARn]

Operands 0 ≤ addr ≤ 65535
0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing with SRC specified by BMAR
0123456789101112131415

000110101 dma

Indirect addressing with SRC specified by BMAR
0123456789101112131415

100110101 See Section 5.2

Direct addressing with DEST specified by BMAR
0123456789101112131415

010110101 dma

Indirect addressing with DEST specified by BMAR
0123456789101112131415

110110101 See Section 5.2

Direct addressing with SRC specified by long immediate
0123456789101112131415

dma000010101
16-Bit Constant

Indirect addressing with SRC specified by long immediate
0123456789101112131415

100010101

16-Bit Constant

See Section 5.2

Direct addressing with DEST specified by long immediate
0123456789101112131415

dma010010101

16-Bit Constant
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Indirect addressing with DEST specified by long immediate
0123456789101112131415

110010101
16-Bit Constant

See Section 5.2

Execution (PFC) → MCS
If long immediate:

(PC) + 2 →  PC
#lk →  PFC

Else: 
(PC) + 1  →  PC
(BMAR) →  PFC

While (repeat counter) ≠ 0:
(src, addressed by PFC) →  dst or src  →  (dst, addressed by PFC)
Modify current AR and ARP as specified
(PFC) + 1 →  PFC
(repeat counter) –1 →  repeat counter
(src, addressed by PFC) → dst or src →  (dst, addressed by PFC)
Modify current AR and ARP as specified
(MCS) →  PFC

Status Bits None affected.

Description The contents of the data memory address (dma) pointed at by src (source) are
copied to the dma pointed at by dst (destination). The source and/or destina-
tion space can be pointed at by a long immediate value, the contents of the
block move address register (BMAR), or a dma. Not all src/dst combinations
of pointer types are valid. The source and destination blocks do not have to
be entirely on-chip or off-chip.

In the indirect addressing mode, you can use the RPT instruction with the
BLDD instruction to move consecutive words in data memory. The number of
words to be moved is one greater than the number contained in the repeat
counter register (RPTC) at the beginning of the instruction. If a long immediate
value or the contents of the BMAR is specified in the repeat mode, the source
and/or destination address is automatically incremented. If a dma is specified
in the repeat mode, the dma address is not automatically incremented. When
used with the RPT instruction, the BLDD instruction becomes a single-cycle
instruction, once the RPT pipeline is started. Interrupts are inhibited during a
BLDD operation used with the RPT instruction.

BLDD is an I/O and data memory operation instruction (see Table 6–9).
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Neither the long immediate value nor the BMAR can be used as the
address to the on-chip memory-mapped registers. The direct or
indirect addressing mode can be used as the address to the
on-chip memory-mapped registers.

1 (One source or destination is specified by BMAR)

2 (One source or destination is specified by long immediate)

Cycles for a Single Instruction (SRC or DEST in BMAR) 

Operand ROM DARAM SARAM External Memory

Source: DARAM
Destination: DARAM

2 2 2 2+p

Source: SARAM
Destination: DARAM

2 2 2 2+p

Source: External
Destination: DARAM

2+dsrc 2+dsrc 2+dsrc 2+dsrc+p

Source: DARAM
Destination: SARAM

2 2 2, 3† 2+p

Source: SARAM
Destination: SARAM

2 2 2, 3† 2+p

Source: External
Destination: SARAM

2+dsrc 2+dsrc 2+dsrc,
3+dsrc†

2+dsrc+p

Source: DARAM
Destination: External

3+ddst 3+ddst 3+ddst 5+ddst+p

Source: SARAM
Destination: External

3+ddst 3+ddst 3+ddst 5+ddst+p

Source: External
Destination: External

3+dsrc+ddst 3+dsrc+ddst 3+dsrc+ddst 5+dsrc+ddst+p

† If the destination operand and the code are in the same SARAM block

Words

Cycles
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Cycles for a Repeat (RPT) Execution (SRC or DEST in BMAR) 

Operand ROM DARAM SARAM External Memory

Source: DARAM
Destination: DARAM

n+1 n+1 n+1 n+1+p

Source: SARAM
Destination: DARAM

n+1 n+1 n+1 n+1+p

Source: External
Destination: DARAM

n+1+ndsrc n+1+ndsrc n+1+ndsrc n+1+ndsrc+p

Source: DARAM
Destination: SARAM

n+1 n+1 n+1, n+3† n+1+p

Source: SARAM
Destination: SARAM

n+1, 2n–1‡ n+1, 2n–1‡ n+1, 2n–1‡,
n+3§, 2n+1§

n+1+p, 2n–1+p‡

Source: External
Destination: SARAM

n+1+ndsrc† n+1+ndsrc n+1+ndsrc,
n+3+ndsrc†

n+1+ndsrc+p

Source: DARAM
Destination: External

2n+1+nddst 2n+1+nddst 2n+1+nddst 2n+1+nddst+p

Source: SARAM
Destination: External

2n+1+nddst 2n+1+nddst 2n+1+nddst 2n+1+nddst+p

Source: External
Destination: External

4n–1+ndsrc
+nddst

4n–1+ndsrc
+nddst

4n–1+ndsrc
+nddst

4n+1+ndsrc+nddst+p

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Cycles for a Single Instruction (SRC or DEST long immediate) 

Operand ROM DARAM SARAM External Memory

Source: DARAM
Destination: DARAM

3 3 3 3+2p

Source: SARAM
Destination: DARAM

3 3 3 3+2p

Source: External
Destination: DARAM

3+dsrc 3+dsrc 3+dsrc 3+dsrc+2p

Source: DARAM
Destination: SARAM

3 3 3, 4† 3+2p

Source: SARAM
Destination: SARAM

3 3 3, 4† 3+2p

† If the destination operand and the code are in the same SARAM block
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Cycles for a Single Instruction (SRC or DEST long immediate) (Continued)

Operand External MemorySARAMDARAMROM

Source: External
Destination: SARAM

3+dsrc 3+dsrc 3+dsrc,  4+dsrc 3+dsrc+2p

Source: DARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2p

Source: SARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2p

Source: External
Destination: External

4+dsrc+ddst 4+dsrc+ddst 4+dsrc+ddst 6+dsrc+ddst+2p

Source: DARAM
Destination: DARAM

n+2 n+2 n+2 n+2+2p

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (SRC or DEST long immediate) 

Operand ROM DARAM SARAM External Memory

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+2p

Source: External
Destination: DARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc n+2+ndsrc

Source: DARAM
Destination: SARAM

n+2 n+2 n+2, n+4† n+2+2p

Source: SARAM
Destination: SARAM

n+2, 2n‡ n+2, 2n‡ n+2, 2n‡,
n+4†, 2n+2§

n+2+2p, 2n+2p‡

Source: External
Destination: SARAM

n+2ndsrc n+2ndsrc n+2ndsrc,
n+4+ndsrc†

n+2+ndsrc+2p

Source: DARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst  +2p

Source: SARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2p

Source: External
Destination: External

4n+ndsrc+nddst‡ 4n+ndsrc+nddst 4n+ndsrc+nddst 4n+2+ndsrc+nddst+2p

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block
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Example 1 BLDD #300h,20h ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
300h 0h 300h 0h

320h 0Fh 320h 0h

Example 2 BLDD *+,#321h,AR3

Before Instruction After Instruction

ARP 2 ARP 3

AR2 301h AR2 302h

Data Memory Data Memory
301h 01h 301h 01h

321h 0Fh 321h 01h

Example 3 BLDD BMAR,*

Before Instruction After Instruction

ARP 2 ARP 2

BMAR 320h BMAR 320h

AR2 340h AR2 340h

Data Memory Data Memory
320h 01h 320h 01h

340h 0Fh 340h 01h

Example 4 BLDD 00h,BMAR ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
300h 0Fh 300h 0Fh

BMAR 320h BMAR 320h

Data Memory Data Memory
320h 01h 320h 0Fh

Example 5 RPT 2

BLDD #300h,*+

Before Instruction After Instruction

ARP 0 ARP 0

AR0 320h AR0 323h

300h 7F98h 300h 7F98h

301h FFE6h 301h FFE6h

302h 9522h 302h 9522h

320h 8DEEh 320h 7F98h

321h 9315h 321h 0FFE6h

322h 2531h 322h 9522h
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Syntax Direct:  BLDP  dma
Indirect: BLDP  {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011101010 dma

Indirect addressing
0123456789101112131415

111101010 See Section 5.2

Execution (PC) + 1  →  PC
(PFC)  →  MCS
(BMAR) →  PFC

While (repeat counter) ≠ 0:
dma →  (dst, addressed by PFC)
Modify current AR and ARP as specified
(PFC) + 1  →  PFC
(repeat counter) –1 →  repeat counter

dma → (dst, addressed by PFC)
Modify current AR and ARP as specified
(MCS) →  PFC

Status Bits None affected.

Description The contents of the data memory address (dma) are copied to the program
memory address (pma) pointed at by the block move address register
(BMAR). The source and destination blocks do not have to be entirely on-chip
or off-chip.

In the indirect addressing mode, you can use the RPT instruction with the
BLDP instruction to move consecutive words in data memory to a contiguous
program memory space pointed at by the BMAR. The number of words to be
moved is one greater than the number contained in the repeat counter register
(RPTC) at the beginning of the instruction. The contents of the BMAR are auto-
matically incremented when used in the repeat mode. When used with the
RPT instruction, the BLDP instruction becomes a single-cycle instruction,
once the RPT pipeline is started. Interrupts are inhibited during a BLDP opera-
tion used with the RPT instruction.

BLDP is an I/O and data memory operation instruction (see Table 6–9).
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Words 1

Cycles for a Single Instruction 

Operand ROM DARAM SARAM External Memory

Source: DARAM
Destination: DARAM

2 2 2 2+p

Source: SARAM
Destination: DARAM

2 2, 3¶ 2 2+p

Source: External
Destination: DARAM

2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

Source: DARAM
Destination: SARAM

2 2 2, 3† 2+p

Source: SARAM
Destination: SARAM

2 2 2, 3† ¶, 4§ 2+p

Source: External
Destination: SARAM

2+dsrc 2+dsrc 2+dsrc, 3+dsrc† 3+dsrc+pcode

Source: DARAM
Destination: External

3+pdst 3+pdst 3+pdst 4+pdst+pcode

Source: SARAM
Destination: External

3+pdst 3+pdst 3+pdst , 4+pdst¶ 4+pdst+pcode

Source: External
Destination: External

3+dsrc+pdst 3+dsrc+pdst 3+dsrc+pdst 5+dsrc+pdst+pcode

† If the destination operand and the code are in the same SARAM block
§ If both operands and the code are in the same SARAM block
¶ If the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution 

Operand ROM DARAM SARAM External Memory

Source: DARAM
Destination: DARAM

n+1 n+1 n+1 n+1+pcode

Source: SARAM
Destination: DARAM

n+1 n+1 n+1, n+2¶ n+1+pcode

Source: External
Destination: DARAM

n+1+ndsrc n+1+ndsrc n+1+ndsrc n+2+ndsrc+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block
¶ If the source operand and the code are in the same SARAM block

Cycles
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Cycles for a Repeat (RPT) Execution (Continued)

Operand External MemorySARAMDARAMROM

Source: DARAM
Destination: SARAM

n+1 n+1 n+1, n+2† n+1+pcode

Source: SARAM
Destination: SARAM

n+1, 2n–1‡ n+1, 2n–1‡ n+1, 2n–1‡,
n+2† ¶, 2n+1§

n+1+pcode,
2n–1+pcode‡

Source: External
Destination: SARAM

n+1+ndsrc n+1+ndsrc n+1+ndsrc,
n+2+npsrc†

n+2+ndsrc+pcode

Source: DARAM
Destination: External

2n+1+npdst 2n+1+npdst 2n+1+npdst 2n+2+npdst+pcode

Source: SARAM
Destination: External

2n+1+npdst 2n+1+npdst 2n+1+npdst ,
2n+2+npdst¶

2n+2+npdst+pcode

Source: External
Destination: External

4n–1+ndsrc
+npdst

4n–1+ndsr
+npdst

4n–1+ndsrc
+npdst

4n+1+ndsrc+npdst
+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block
¶ If the source operand and the code are in the same SARAM block

Example 1 BLDP 00h ;(DP=6)

Before Instruction After Instruction

Data Memory Data Memory
300h A089h 300h A089h

BMAR 2800h BMAR 2800h

Program Memory Program Memory
2800h 1234h 2800h A089h

Example 2 BLDP *,AR0

Before Instruction After Instruction

ARP 7 ARP 0

AR7 310h AR7 310h

Data Memory Data Memory 
310h F0F0h 310h F0F0h

BMAR 2800h BMAR 2800h

Program Memory Program Memory
2800h 1234h 2800h F0F0h
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Syntax General syntax: BLPD  src, dst

All valid cases have the general syntax:
Direct BMAR/DMA: BLPD  BMAR , dma
Indirect BMAR/DMA: BLPD BMAR , {ind} [,ARn]
Direct K/DMA: BLPD  #pma, dma
Indirect K/DMA: BLPD  #pma, {ind} [,ARn]

Operands 0 ≤ pma ≤ 65535
0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing with SRC specified by BMAR
0123456789101112131415

000100101 dma

Indirect addressing with SRC specified by BMAR
0123456789101112131415

100100101 See Section 5.2

Direct addressing with SRC specified by long immediate
0123456789101112131415

dma010100101
16-Bit Constant

Indirect addressing with SRC specified by long immediate
0123456789101112131415

110100101
16-Bit Constant

See Section 5.2

Execution If long immediate:
(PC) + 2 →  PC
(PFC) →  MCS
lk → PFC

Else:
(PC) + 1 →  PC
(PFC) →  MCS 
(BMAR)  →  PFC
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While (repeat counter) ≠ 0:
(pma, addressed by PFC) →  dst
Modify current AR and ARP as specified
(PFC) + 1 →  PFC
(repeat counter) –1  →  repeat counter

(pma, addressed by PFC) →  dst
Modify current AR and ARP as specified
(MCS)  →  PFC

Status Bits None affected.

Description The contents of the program memory address (pma) pointed at by src (source)
are copied to the data memory address (dma) pointed at by dst (destination).
The source space can be pointed at by a long immediate value or the contents
of the block move address register (BMAR). The destination space can be
pointed at by a dma or the contents of current AR. Not all src/dst combinations
of pointer types are valid. The source and destination blocks do not have to
be entirely on-chip or off-chip.

In the indirect addressing mode, you can use the RPT instruction with the
BLPD instruction to move consecutive words in program memory to data
memory. The number of words to be moved is one greater than the number
contained in the repeat counter register (RPTC) at the beginning of the instruc-
tion. If a long immediate value or the contents of the BMAR is specified in the
repeat mode, the source address is automatically incremented. When used
with the RPT instruction, the BLPD instruction becomes a single-cycle instruc-
tion, once the RPT pipeline is started. Interrupts are inhibited during a BLPD
operation used with the RPT instruction.

BLPD is an I/O and data memory operation instruction (see Table 6–9).

1 (Source is specified by BMAR)

2 (Source is specified by long immediate)

Cycles for a Single Instruction (SRC in BMAR) 

Operand ROM DARAM SARAM External Memory

Source: DARAM/ROM
Destination: DARAM

2 2 2 2+pcode

Source: SARAM
Destination: DARAM

2 2 2 2+pcode

Source: External
Destination: DARAM

2+psrc 2+psrc 2+psrc 2+psrc+pcode

† If the destination operand and the code are in the same SARAM block

Words

Cycles
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Cycles for a Single Instruction (SRC in BMAR) (Continued)

Operand External MemorySARAMDARAMROM

Source: DARAM/ROM
Destination: SARAM

2 2 2, 3† 2+pcode

Source: SARAM
Destination: SARAM

2 2 2, 3† 2+pcode

Source: External
Destination: SARAM

2+psrc 2+psrc 2+psrc, 3+psrc† 2+psrc+2pcode

Source: DARAM/ROM
Destination: External

3+ddst 3+ddst 3+ddst 5+ddst+pcode

Source: SARAM
Destination: External

3+ddst 3+ddst 3+ddst 5+ddst+pcode

Source: External
Destination: External

3+psrc+ddst 3+psrc+ddst 3+psrc+ddst 5+psrc+ddst+pcode

† If the destination operand and the code are in the same SARAM block
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Cycles for a Repeat (RPT) Execution (SRC in BMAR) 

Operand ROM DARAM SARAM External Memory

Source: DARAM/ROM
Destination: DARAM

n+1 n+1 n+1 n+1+pcode

Source: SARAM
Destination: DARAM

n+1 n+1 n+1 n+1+pcode

Source: External
Destination: DARAM

n+1+npsrc n+1+npsrc n+1+npsrc n+1+npsrc+pcode

Source: DARAM/ROM
Destination: SARAM

n+1 n+1 n+1, n+3† n+1+pcode

Source: SARAM
Destination: SARAM

n+1, 2n–1‡ n+1, 2n–1‡ n+1, 2n–1‡,
n+3†, 2n+1§

n+1+pcode,
2n–1+pcode‡

Source: External
Destination: SARAM

n+1+npsrc n+1+npsrc n+1+npsrc,
n+3+npsrc†

n+1+npsrc+pcode

Source: DARAM/ROM
Destination: External

2n+1+nddst 2n+1+nddst 2n+1+nddst 2n+1+nddst+pcode

Source: SARAM
Destination: External

2n+1+nddst 2n+1+nddst 2n+1+nddst 2n+1+nddst+pcode

Source: External
Destination: External

4n–1+npsrc
+nddst

4n–1+npsrc
+nddst

4n–1+npsrc
+nddst

4n+1+npsrc+nddst
+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Cycles for a Single Instruction (SRC long immediate) 

Operand ROM DARAM SARAM External Memory

Source: DARAM/ROM
Destination: DARAM

3 3 3 3+2pcode

Source: SARAM
Destination: DARAM

3 3 3 3+2pcode

Source: External
Destination: DARAM

3+psrc 3+psrc 3+psrc 3+psrc+2pcode

Source: DARAM/ROM
Destination: SARAM

3 3 3, 4† 3+2pcode

Source: SARAM
Destination: SARAM

3 3 3, 4† 3+2pcode

† If the destination operand and the code are in the same SARAM block
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Cycles for a Single Instruction (SRC long immediate) (Continued)

Operand External MemorySARAMDARAMROM

Source: External
Destination: SARAM

3+psrc 3+psrc 3+psrc, 4+psrc† 3+psrc+2pcode

Source: DARAM/ROM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2pcode

Source: SARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2pcode

Source: External
Destination: External

4+psrc+ddst 4+psrc+ddst 4+psrc+ddst 6+psrc+ddst+2pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (SRC long immediate) 

Operand ROM DARAM SARAM External Memory

Source: DARAM/ROM
Destination: DARAM

n+2 n+2 n+2 n+2+2pcode

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+2pcode

Source: External
Destination: DARAM

n+2+npsrc n+2+npsrc n+2+npsrc n+2+npsrc+2pcode

Source: DARAM/ROM
Destination: SARAM

n+2 n+2 n+2, n+4† n+2+2pcode

Source: SARAM
Destination: SARAM

n+2, 2n‡ n+2, 2n‡ n+2, 2n‡,
n+4†, 2n+2§

n+2+2pcode,
2n+2pcode‡

Source: External
Destination: SARAM

n+2+npsrc† n+2+npsrc n+2+npsrc,
n+4+npsrc†

n+2+npsrc+2pcode

Source: DARAM/ROM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2pcode

Source: SARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2pcode

Source: External
Destination: External

4n+npsrc+nddst† 4n+npsrc+nddst 4n+npsrc+nddst 4n+2+npsrc+nddst
+2pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block
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Example 1 BLPD #800h,00h ;(DP=6)

Before Instruction After Instruction

Program Memory Program Memory
800h 0Fh 800h 0Fh

Data Memory Data Memory
300h 0h 300h 0Fh

Example 2 BLPD #800h,*,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 310h AR0 310h

Program Memory Program Memory
800h 1111h 800h 1111h

Data Memory Data Memory
310h 0100h 310h 1111h

Example 3 BLPD BMAR,00h ;(DP=6)

Before Instruction After Instruction

BMAR 800h BMAR 800h

Program Memory Program Memory
800h 0Fh 800h 0Fh

Data Memory Data Memory
300h 0h 300h 0Fh

Example 4 BLPD BMAR,*+,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 300h AR0 301h

BMAR 810h BMAR 810h

Program Memory Program Memory
810h 4444h 810h 4444h

Data Memory Data Memory
300h 0100h 300h 4444h
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Syntax BSAR  shift

Operands 1 ≤ shift ≤ 16

Opcode 0123456789101112131415
SHFT †011111111101

† See Table 6–1 on page 6-2.

Execution (PC) + 1 →  PC
(ACC) / 2shift →  ACC

Status Bits Affected by: SXM

Description The contents of the accumulator (ACC) are right-barrel arithmetic shifted 1 to
16 bits, as defined by the shift code, in a single cycle. If the SXM bit is
cleared, the high-order bits of the ACC are zero-filled; if the SXM bit is set, the
high-order bits of the ACC are sign-extended.

BSAR is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 BSAR 16 ;(SXM=0)

Before Instruction After Instruction

ACC 0001 0000h ACC 0000 0001h

Example 2 BSAR 4 ;(SXM=1)

Before Instruction After Instruction

ACC FFF1 0000h ACC FFFF 1000h

Cycles
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Syntax CALA

Operands None

Opcode 0123456789101112131415
0000110001111101

Execution (PC) + 1 →  TOS
(ACC(15–0))  →  PC

Status Bits None affected.

Description The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). The contents of the accumulator low byte (ACCL) are loaded
into the PC. Execution continues at this address.

The CALA instruction is used to perform computed subroutine calls. CALA is
a branch and call instruction (see Table 6–8).

Words 1

The CALA instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example CALA

Before Instruction After Instruction

PC 25h PC 83h

ACC 83h ACC 83h

TOS 100h TOS 26h

Cycles
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Syntax CALAD

Operands None

Opcode 0123456789101112131415
1011110001111101

Execution (PC) + 3 →  TOS
(ACC(15–0))  →  PC

Status Bits None affected.

Description The current program counter (PC) is incremented by 3 and pushed onto the
top of the stack (TOS).

Then, the one 2-word instruction or two 1-word instructions following the
CALAD instruction are fetched from program memory and executed before the
call is executed.

Then, the contents of the accumulator low byte (ACCL) are loaded into the PC.
Execution continues at this address.

The CALAD instruction is used to perform computed subroutine calls. CALAD
is a branch and call instruction (see Table 6–8).

Words 1

The CALAD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+p

Example CALAD

MAR *+,AR1

LDP #5

Before Instruction After Instruction

ARP 0 ARP 1

AR0 8 AR0 9

DP 0 DP 5

PC 25h PC 83h

ACC 83h ACC 83h

TOS 100h TOS 28h

After the current AR, ARP, and DP are modified as specified, the address of
the instruction following the LDP instruction is pushed onto the stack, and pro-
gram execution continues from location 83h.

Cycles
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Syntax CALL  pma [,{ind} [,ARn]]

Operands 0 ≤ pma ≤ 65535
0≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode 0123456789101112131415

101011110
16-Bit Constant

See Section 5.2

Execution (PC) + 2  →  TOS
pma  →  PC
Modify current AR and ARP as specified

Status Bits None affected.

Description The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). The program memory address (pma) is loaded into the PC.
Execution continues at this address. The current auxiliary register (AR) and
auxiliary register pointer (ARP) are modified as specified. The pma can be
either a symbolic or numeric address.

CALL is a branch and call instruction (see Table 6–8).

Words 2

The CALL instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+4p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example CALL PRG191,*+,AR0

Before Instruction After Instruction

ARP 1 ARP 0

AR1 05h AR1 06h

PC 30h PC 0BFh

TOS 100h TOS 32h

0BFh is loaded into the PC, and the program continues executing from that
location.

Cycles
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Syntax CALLD  pma [,{ind} [,ARn]]

Operands 0 ≤ pma ≤ 65535
0≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode 0123456789101112131415

101111110

16-Bit Constant

See Section 5.2

Execution (PC) + 4  →  TOS
pma  →  PC
Modify current AR and ARP as specified

Status Bits None affected.

Description The current program counter (PC) is incremented by 4 and pushed onto the
top of the stack (TOS).

Then, the one 2-word instruction or two 1-word instructions following the
CALLD instruction are fetched from program memory and executed before the
call is executed.

Then, the program memory address (pma) is loaded into the PC. Execution
continues at this address. The current auxiliary register (AR) and auxiliary reg-
ister pointer (ARP) are modified as specified. The pma can be either a symbol-
ic or numeric address.

CALLD is a branch and call instruction (see Table 6–8).

Words 2

The CALLD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+2p

Cycles
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Example CALLD PRG191

MAR *+,AR1

LDP #5

Before Instruction After Instruction

ARP 0 ARP 1

AR0 09h AR0 0Ah

DP 1 DP 5

PC 30h PC 0BFh

TOS 100h TOS 34h

After the current AR, ARP, and DP are modified as specified, the address of
the instruction following the LDP instruction is pushed onto the stack, and pro-
gram execution continues from location 0BFh.
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Syntax CC  pma cond [,cond1] [,...]

Operands 0 ≤ pma ≤ 65535

Conditions: ACC = 0 EQ
ACC ≠ 0 NEQ
ACC < 0 LT
ACC ≤ 0 LEQ
ACC > 0 GT
ACC ≥ 0 GEQ
C = 0 NC
C = 1 C
OV = 0 NOV
OV = 1 OV
TC = 0 NTC
TC = 1 TC
BIO low BIO
Unconditionally UNC

Opcode 0123456789101112131415

ZLVC †ZLVC †TP †010111
16-Bit Constant

† See Table 6–1 on page 6-2.

Execution If (condition(s)):
(PC) + 2 →  TOS
pma →  PC

Else:
(PC) + 2 →  PC

Status Bits None affected.

Description If the specified conditions are met, the current program counter (PC) is increm-
ented and pushed onto the top of the stack (TOS). The program memory ad-
dress (pma) is loaded into the PC. Execution continues at this address. The
pma can be either a symbolic or numeric address. Not all combinations of the
conditions are meaningful. In addition, the NTC, TC, and BIO conditions are
mutually exclusive. If the specified conditions are not met, control is passed
to the next instruction.

The CC instruction functions in the same manner as the CALL instruction
(page 6-85) if all conditions are true. CC is a branch and call instruction (see
Table 6–8).

Words 2
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The CC instruction is not repeatable.

Cycles for a Single Instruction

Condition ROM DARAM SARAM External Memory

True 4 4 4 4+4p†

False 2 2 2 2+2p

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example CC PGM191,LEQ,C

If the accumulator (ACC) contents are less than or equal to 0 and the C bit is
set, 0BFh is loaded into the program counter (PC), and the program continues
executing from that location. If the conditions are not met, execution continues
at the instruction following the CC instruction.

Cycles
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Syntax CCD  pma cond [,cond1] [,...]

Operands 0 ≤ pma ≤ 65535

Conditions: ACC = 0 EQ
ACC ≠ 0 NEQ
ACC < 0 LT
ACC ≤ 0 LEQ
ACC > 0 GT
ACC ≥ 0 GEQ
C = 0 NC
C = 1 C
OV = 0 NOV
OV = 1 OV
TC = 0 NTC
TC = 1 TC
BIO low BIO
Unconditionally UNC

Opcode 0123456789101112131415

ZLVC †ZLVC †TP †011111

16-Bit Constant
† See Table 6–1 on page 6-2.

Execution If (condition(s)):
(PC) + 4 →  TOS
pma →  PC

Else:
(PC) + 2 →  PC

Status Bits None affected.

Description If the specified conditions are met, the current program counter (PC) is
incremented by 4 and pushed onto the top of the stack (TOS).

Then, the one 2-word instruction or two 1-word instructions following the CCD
instruction are fetched from program memory and executed before the call is
executed.

Then, the program memory address (pma) is loaded into the PC. Execution
continues at this address. The pma can be either a symbolic or numeric ad-
dress. Not all combinations of the conditions are meaningful. In addition, the
NTC, TC, and BIO conditions are mutually exclusive.

If the specified conditions are not met, control is passed to the next instruction.

The CCD functions in the same manner as the CALLD instruction (page 6-86)
if all conditions are true. CCD is a branch and call instruction (see Table 6–8).
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Words 2

The CCD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example CCD PGM191,LEQ,C

MAR *+,AR1

LDP #5

The current AR, ARP, and DP are modified as specified. If the accumulator
(ACC) contents are less than or equal to 0 and the C bit is set, the address of
the instruction following the LDP instruction is pushed onto the stack and pro-
gram execution continues from location 0BFh. If the conditions are not met,
execution continues at the instruction following the LDP instruction.

Cycles
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Syntax CLRC  control bit

Operands control bit: {C, CNF, HM, INTM, OVM, SXM, TC, XF}

Opcode CLRC OVM  (Clear overflow mode)
0123456789101112131415
0100001001111101

CLRC SXM (Clear sign extension mode)
0123456789101112131415
0110001001111101

CLRC HM (Clear hold mode)
0123456789101112131415
0001001001111101

CLRC TC (Clear test/control)
0123456789101112131415
0101001001111101

CLRC C (Clear carry)
0123456789101112131415
0111001001111101

CLRC CNF (Clear configuration control)
0123456789101112131415
0010001001111101

CLRC INTM (Clear interrupt mode)
0123456789101112131415
0000001001111101

CLRC XF (Clear external flag pin)
0123456789101112131415
0011001001111101

Execution (PC) + 1 →  PC
0 →  control bit

Status Bits Affects selected control bit.

Description The specified control bit is cleared. The LST instruction can also be used to
load ST0 and ST1. See Section 4.4, Status and Control Registers, for more
information on each control bit.

CLRC is a control instruction (see Table 6–10).

Words 1
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Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example CLRC TC ;TC is bit 11 of ST1

Before Instruction After Instruction

ST1 x9xxh ST1 x1xxh

Cycles
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Syntax CMPL

Operands None

Opcode 0123456789101112131415
1000000001111101

Execution (PC) + 1  →  PC
(ACC) →  ACC

Status Bits Does not affect: C

Description The contents of the accumulator (ACC) are replaced with its logical inversion
(1s complement).

CMPL is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example CMPL

Before Instruction After Instruction

ACC X F798 2513h ACC X 0867 DAECh

C C

Cycles
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Syntax CMPR  CM

Operands 0 ≤ CM ≤ 3

Opcode 0123456789101112131415
CM †10001011111101

† See Table 6–1 on page 6-2.

Execution (PC) + 1  →  PC
Compare (current AR) to (ARCR)
If condition true:

1  →  TC
If condition false:

0  →  TC

Status Bits Affected by: Not affected by: Affects: Does not affect:
NDX SXM TC SXM

Description The contents of the current auxiliary register (AR) are compared with the con-
tents of the auxiliary register compare register (ARCR), as defined by the value
of CM:

If CM = 00, test for (current AR) = (ARCR)
If CM = 01, test for (current AR) < (ARCR)
If CM = 10, test for (current AR) > (ARCR)
If CM = 11, test for (current AR) ≠ (ARCR)

If the condition is true, the TC bit is set. If the condition is false, the TC bit is
cleared.

The ARs are treated as unsigned integers in the comparisons. You can main-
tain software compatibility with the ’C2x by clearing the NDX bit. This causes
any ’C2x instruction that loads auxiliary register 0 (AR0) to load the ARCR and
index register (INDX) also, maintaining ’C5x object-code compatibility with the
’C2x.

CMPR is an auxiliary registers and data memory page pointer instruction (see
Table 6–5).

Words 1
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Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example CMPR 2

Before Instruction After Instruction

ARP 4 ARP 4

ARCR FFFFh ARCR FFFFh

AR4 7FFFh AR4 7FFFh

TC 1 TC 0

Cycles
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Syntax Direct: CPL [,#lk ] dma
Indirect: CPL [,#lk ] {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
lk: 16-bit constant
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing with long immediate not specified
0123456789101112131415

011011010 dma

Indirect addressing with long immediate not specified
0123456789101112131415

111011010 See Section 5.2

Direct addressing with long immediate specified
0123456789101112131415

dma011111010
16-Bit Constant

Indirect addressing with long immediate specified
0123456789101112131415

111111010

16-Bit Constant

See Section 5.2

Execution Long immediate not specified:
(PC) + 1  →  PC
Compare (DBMR) to (dma)
If (DBMR) = (dma):

1  →  TC
Else:

0  →  TC

Long immediate specified:
(PC) + 2  →  PC
Compare lk to (dma)
If lk = (dma):

1  →  TC
Else:

0  →  TC

Status Bits Not affected by: Affects:
SXM TC



 6-98

Description If a long immediate constant is specified, the constant is compared with the
contents of the data memory address (dma). If a constant is not specified, the
contents of the dma are compared with the contents of the dynamic bit manipu-
lation register (DBMR). If the two quantities involved in the comparison are
equal, the TC bit is set. If the condition is false, the TC bit is cleared.

CPL is a parallel logic unit (PLU) instruction (see Table 6–6).

1 (Long immediate not specified)

2 (Long immediate specified)

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate specified)

Operand ROM DARAM SARAM External Memory

DARAM 2 2 2 2+2p

SARAM 2 2 2, 3† 2+2p

External 2+d 2+d 2+d 3+d+2p

† If the operand and the code are in the same SARAM block

Words

Cycles
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Cycles for a Repeat (RPT) Execution (long immediate specified)

Operand ROM DARAM SARAM External Memory

DARAM n+1 n+1 n+1 n+1+2p

SARAM n+1 n+1 n+1, n+2† n+1+2p

External n+1 n+1 n+1 n+2+2p

† If the operand and the code are in the same SARAM block

Example 1 CPL #060h,60h

Before Instruction After Instruction

Data Memory Data Memory
60h 066h 60h 066h

TC 1 TC 0

Example 2 CPL 60h

Before Instruction After Instruction

Data Memory Data Memory
60h 066h 60h 066h

DBMR 066h DBMR 066h

TC 0 TC 1

Example 3 CPL #0F1h,*,AR6

Before Instruction After Instruction

ARP 7 ARP 6

AR7 300h AR7 300h

Data Memory Data Memory
300h 0F1h 300h 0F1h

TC 1 TC 1

Example 4 CPL *,AR7

Before Instruction After Instruction

ARP 6 ARP 7

AR6 300h AR6 300h

Data Memory Data Memory
300h 0F1h 300h 0F1h

DBMR 0F0h DBMR 0F0h

TC 0 TC 0
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Syntax CRGT

Operands None

Opcode 0123456789101112131415
1101100001111101

Execution (PC) + 1 →  PC
Compare (ACC) to (ACCB)

If (ACC) > (ACCB):
(ACC)  →  ACCB
1 →  C

If (ACC) < (ACCB):
(ACCB) →  ACC
0 →  C

If (ACC) = (ACCB):
1 →  C

Status Bits Affects: C

Description The contents of the accumulator (ACC) are compared to the contents of the
accumulator buffer (ACCB). The larger value (signed) is loaded into both regis-
ters. If the contents of the ACC are greater than or equal to the contents of the
ACCB, the C bit is set; otherwise, the C bit is cleared.

CRGT is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Cycles
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Example 1 CRGT

Before Instruction After Instruction

ACCB 4h ACCB 5h

ACC 5h ACC 5h

C 0 C 1

Example 2 CRGT

Before Instruction After Instruction

ACCB 5h ACCB 5h

ACC 5h ACC 5h

C 0 C 1
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Syntax CRLT

Operands None

Opcode 0123456789101112131415
0011100001111101

Execution (PC) + 1 →  PC
Compare (ACC) to (ACCB)

If (ACC) < (ACCB):
(ACC)  →  ACCB
1  →  C

If (ACC) > (ACCB):
(ACCB) →  ACC
0 →  C

If (ACC) = (ACCB):
0  →  C

Status Bits Affects: C

Description The contents of the accumulator (ACC) are compared to the contents of the
accumulator buffer (ACCB). The smaller (signed) value is loaded into both reg-
isters. If the contents of the ACC are less than the contents of the ACCB, the
C bit is set; otherwise, the C bit is cleared.

CRLT is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Cycles
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Example 1 CRLT

Before Instruction After Instruction

ACCB 5h ACCB 4h

ACC 4h ACC 4h

C 0 C 1

Example 2 CRLT

Before Instruction After Instruction

ACCB 4h ACCB 4h

ACC 4h ACC 4h

C 1 C 0
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Syntax Direct: DMOV dma
Indirect: DMOV {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011101110 dma

Indirect addressing
0123456789101112131415

111101110 See Section 5.2

Execution (PC) + 1 →  PC
(dma)  →  dma + 1

Status Bits Affected by: CNF and OVLY

Description The contents of the data memory address (dma) are copied to the next higher
dma. The DMOV instruction works only within on-chip data RAM blocks and
within any configurable RAM block that is configured as data memory. In addi-
tion, the DMOV instruction is continuous across on-chip dual-access RAM
block B0 and B1 boundaries. The DMOV instruction cannot be used on exter-
nal data memory or memory-mapped registers. If the DMOV instruction is
used on external memory or memory-mapped registers, the DMOV instruction
will read the specified memory location but will perform no operations.

When data is copied from the addressed location to the next higher location,
the contents of the addressed location remain unaffected.

You can use the DMOV instruction in implementing the z–1 delay encountered
in digital signal processing. The DMOV function is included in the LTD, MACD,
and MADD instructions (see their individual descriptions on page 6-142,
6-153, and 6-158, respectively, for more information).

DMOV is an I/O and data memory operation instruction (see Table 6–9).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2,
2n+1†

2n–2+p

External 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block

Example 1 DMOV DAT8 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
308h 43h 308h 43h

Data Memory Data Memory
309h 2h 309h 43h

Example 2 DMOV *,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR1 30Ah AR1 30Ah

Data Memory Data Memory
30Ah 40h 30Ah 40h

Data Memory Data Memory
30Bh 41h 30Bh 40h

Cycles
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Syntax EXAR

Operands None

Opcode 0123456789101112131415
1011100001111101

Execution (PC) + 1 →  PC
(ACCB)  ↔  (ACC)

Status Bits None affected.

Description The contents of the accumulator (ACC) are exchanged (switched) with the
contents of the accumulator buffer (ACCB).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example EXAR

Before Instruction After Instruction

ACC 043h ACC 02h

ACCB 02h ACCB 043h

Cycles
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Syntax IDLE

Operands None

Opcode 0123456789101112131415
0100010001111101

Execution (PC) + 1  →  PC

Status Bits Affected by: INTM

Description The program being executed is forced to wait until an unmasked (external or
internal) interrupt or reset occurs. The program counter (PC) is incremented
only once, and the device remains in idle mode until interrupted.

The idle mode is exited by an unmasked interrupt, even if the INTM bit is set.
If the INTM bit is set, the program continues executing at the instruction follow-
ing the IDLE. If the INTM bit is cleared, the program branches to the corre-
sponding interrupt service routine (ISR).

When an interrupt causes IDLE to be exited with the interrupts disabled
(INTM = 1), no interrupt flag register (IFR) bits are cleared. The IFR bits are
cleared only if interrupts are enabled and IDLE is exited by entering the ISR.

Executing the IDLE instruction causes the ’C5x to enter the power-down
mode. During the idle mode, the timer and serial port peripherals are still
active. Therefore, timer and peripheral interrupts, as well as reset or external
interrupts, will remove the processor from the idle mode.

IDLE is a control instruction (see Table 6–10).

Words 1

Cycles The IDLE instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Example IDLE ;The processor idles until a reset or unmasked

;interrupt occurs.
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Syntax IDLE2

Operands None

Opcode 0123456789101112131415
1100010001111101

Execution (PC) + 1  →  PC

Status Bits Affected by: INTM

Description The program being executed is forced to wait until an unmasked (external or
internal) interrupt or reset occurs. The functional clock input is removed from
the internal device to make an extremely low-power mode possible. The pro-
gram counter (PC) is incremented only once, and the device remains in idle
mode until interrupted.

The idle2 mode is exited by an unmasked interrupt, even if the INTM bit is set.
If the INTM bit is set, the program continues executing at the instruction follow-
ing the IDLE2. If the INTM bit is cleared, then the program branches to the cor-
responding interrupt service routine (ISR).

When an interrupt causes IDLE2 to be exited with the interrupts disabled
(INTM = 1), no interrupt flag register (IFR) bits are cleared. The IFR bits are
cleared only if interrupts are enabled and IDLE2 is exited by entering the ISR.

Executing the IDLE2 instruction causes the ’C5x to enter the power-down
mode. During the idle2 mode, the timer and serial port peripherals are not
active. The idle2 mode is exited by a low logic level on an external interrupt
(INT1–INT4), RS, or NMI with a duration of at least five machine cycles be-
cause interrupts are not latched as in normal device operation.

IDLE2 is a control instruction (see Table 6–10).

Words 1

Cycles The IDLE2 instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Example IDLE2 ;The processor idles until a reset or unmasked

       ;external interrupt occurs.
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Syntax Direct: IN dma, PA
Indirect: IN {ind} ,PA [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤7
0 ≤  port address PA ≤ 65535
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

dma011110101

16-Bit Constant

Indirect addressing
0123456789101112131415

111110101
16-Bit Constant

See Section 5.2

Execution (PC) + 2  →  PC
While (repeat counter) ≠ 0

Port address →  address bus A15–A0
Data bus D15–D0  →  dma
Port address →  dma
Port address + 1  →  Port address
(repeat counter – 1)  →  repeat counter

Status Bits None affected.

Description A 16-bit value from an external I/O port is read into the data memory address
(dma). The IS line goes low to indicate an I/O access, and the STRB, RD, and
READY timings are the same as for an external data memory read. While port
addresses 50h–5Fh are memory-mapped (see subsection 9.1.1, Memory-
Mapped Peripheral Registers and I/O Ports); the other port addresses are not.

You can use the RPT instruction with the IN instruction to read consecutive
words in I/O space to data space. The number of words to be moved is one
greater than the number contained in the repeat counter register (RPTC) at the
beginning of the instruction. When used with the RPT instruction, the IN
instruction becomes a single-cycle instruction, once the RPT pipeline is
started, and the port address is incremented after each access.

IN is an I/O and data memory operation instruction (see Table 6–9).

Words 2
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

Destination: DARAM 2+iosrc 2+iosrc 2+iosrc 3+iosrc+2pcode

Destination: SARAM 2+iosrc 2+iosrc 2+iosrc, 3+iosrc† 3+iosrc+2pcode

Destination: External 3+ddst+iosrc 3+ddst+iosrc 3+ddst+iosrc 6+ddst+iosrc+2pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

Destination: DARAM 2n+niosrc 2n+niosrc 2n+niosrc 2n+1+niosrc+2pcode

Destination: SARAM 2n+niosrc 2n+niosrc 2n+niosrc,
2n+2+niosrc†

2n+1+niosrc+2pcode

Destination: External 4n–1+nddst
+niosrc

4n–1+nddst
+niosrc

4n–1+nddst
+niosrc

4n+2+nddst+niosrc
+2pcode

† If the destination operand and the code are in the same SARAM block

Example 1 IN DAT7,PA5 ;Read in word from peripheral on port

;address 5(i.e., I/O port 55h). Store in

;data memory location 307h (DP=6).

Example 2 IN *,1024 ;Read in word from peripheral on I/O

;port 400h. Store in data memory location

;specified by current auxiliary register.

Cycles
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Syntax INTR  K

Operands 0 ≤ K ≤ 31

Opcode 0123456789101112131415
INTR# †11001111101

† See Table 6–1 on page 6-2.

Execution (PC) + 1 →  stack
corresponding interrupt vector  →  PC

Status Bits Not affected by: Affects:
INTM INTM

Description A software interrupt that transfers program control to a program memory ad-
dress (pma) interrupt vector specified by K. The current program counter (PC)
is incremented and pushed onto the stack. The pma is loaded into the PC. The
K value corresponds to a pma specified by the following table:

K Interrupt Hex Location K Interrupt Hex Location

0 RS 0 16 Reserved 20

1 INT1 2 17 TRAP 22

2 INT2 4 18 NMI 24

3 INT3 6 19 Reserved 26

4 TINT 8 20 User-defined 28

5 RINT A 21 User-defined 2A

6 XINT C 22 User-defined 2C

7 TRNT E 23 User-defined 2E

8 TXNT 10 24 User-defined 30

9 INT4 12 25 User-defined 32

10 Reserved 14 26 User-defined 34

11 Reserved 16 27 User-defined 36

12 Reserved 18 28 User-defined 38

13 Reserved 1A 29 User-defined 3A

14 Reserved 1C 30 User-defined 3C

15 Reserved 1E 31 User-defined 3E

The INTR instruction allows any interrupt service routine (ISR) to be executed
from your software. The INTM bit has no affect on the INTR instruction. An INTR
interrupt for the INT1–INT4 interrupts looks exactly like an external interrupt
except the interrupt will not clear the appropriate bit in the IFR. See Section 4.8,
Interrupts, on page 4-36 for a complete description of interrupt operation.

INTR is a branch and call instruction (see Table 6–8).
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The reserved interrupt vectors can be used for the ’C50, ’C51, and
’C53. However, software compatibility with other fifth generation
devices is not guaranteed.

Words 1

Cycles The INTR instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example INTR 3 ;Control is passed to program memory location 6h

        ;PC + 1 is pushed onto the stack.
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Syntax LACB

Operands None

Opcode 0123456789101112131415
1111100001111101

Execution (PC) + 1  →  PC
(ACCB)   →  ACC

Status Bits None affected.

Description The contents of the accumulator buffer (ACCB) are loaded into the accumula-
tor (ACC).

LACB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example LACB

Before Instruction After Instruction

ACC 01376h ACC 5555 AAAAh

ACCB 5555 AAAAh ACCB 5555 AAAAh

Cycles
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Syntax Direct: LACC  dma [,shift ]
Indirect: LACC  {ind} [,shift [,ARn]]
Long immediate: LACC  #lk [,shift]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤ shift ≤ 16 (defaults to 0)
–32768 ≤ lk ≤ 32767
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing with shift
0123456789101112131415

0SHFT †1000 dma
† See Table 6–1 on page 6-2.

Indirect addressing with shift
0123456789101112131415

1SHFT †1000 See Section 5.2
† See Table 6–1 on page 6-2.

Direct addressing with shift of 16
0123456789101112131415

001010110 dma

Indirect addressing with shift of 16
0123456789101112131415

101010110 See Section 5.2

Long immediate addressing with shift
0123456789101112131415

SHFT †000111111101

16-Bit Constant

† See Table 6–1 on page 6-2.

Execution Direct or indirect addressing:
(PC) + 1 →  PC
(dma) × 2shift1  →  ACC

Long immediate addressing:
(PC) + 2 →  PC
lk  ×  2shift2 →  ACC

Status Bits Affected by: SXM
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Description The contents of the data memory address (dma) or a 16-bit constant are
shifted left, as defined by the shift code, and loaded into the accumulator
(ACC). During shifting, the low-order bits of the ACC are zero-filled. If the SXM
bit is cleared, the high-order bits of the ACC are zero-filled; if the SXM bit is
set, the high-order bits of the ACC are sign-extended.

LACC is an accumulator memory reference instruction (see Table 6–4).

1 (Direct or indirect addressing)

2 (Long immediate addressing)

For the long immediate addressing modes, the LACC instruction is not repeat-
able.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

Words

Cycles
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Example 1 LACC DAT6,4 ;(DP = 8, SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
406h 01h 406h 01h

ACC X 1234 5678h ACC X 10h

C C

Example 2 LACC *,4 ;(SXM = 0)

Before Instruction After Instruction

ARP 2 ARP 2

AR2 0300h AR2 0300h

Data Memory Data Memory
300h 0FFh 300h 0FFh

ACC X 1234 5678h ACC X 0FF0h

C C

Example 3 LACC #F000h,1 ;(SXM = 1)

Before Instruction After Instruction

ACC X 1234 5678h ACC X FFFF E000h

C C
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Syntax Direct: LACL  dma
Indirect: LACL  {ind} [,ARn]
Short immediate: LACL  #k

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤ k ≤ 255
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

010010110 dma

Indirect addressing
0123456789101112131415

110010110 See Section 5.2

Short immediate addressing
0123456789101112131415

10011101 8-Bit Constant

Execution (PC) + 1  →  PC

Direct or indirect addressing:
0  →  ACC(31–16)
(dma)  →  ACC(15–0)

Short immediate addressing:
0 →  ACC(31–8)
k →  ACC(7–0)

Status Bits Not affected by: SXM

Description The contents of the data memory address (dma) or a zero-extended 8-bit
constant are loaded into the accumulator low byte (ACCL). The accumulator
high byte (ACCH) is zero-filled. The data is treated as an unsigned 16-bit num-
ber rather than a 2s-complement number. The operand is not sign extended
with the LACL instruction, regardless of the state of the SXM bit.

LACL is an accumulator memory reference instruction (see Table 6–4).

Words 1
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For the short immediate addressing modes, the LACL instruction is not repeat-
able.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

ROM DARAM SARAM External Memory

1 1 1 1+p

Example 1 LACL DAT1 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
301h 0h 301h 0h

ACC X 7FFF FFFFh ACC X 0h

C C

Example 2 LACL *–,AR4

Before Instruction After Instruction

ARP 0 ARP 4

AR0 401h AR0 400h

Data Memory Data Memory
401h 00FFh 401h 00FFh

ACC X 7FFF FFFFh ACC X 0FFh

C C

Cycles
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Example 3 LACL #10h

Before Instruction After Instruction

ACC X ACC X

C 7FFF FFFFh C  010h
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Syntax Direct: LACT  dma
Indirect: LACT  {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011010110 dma

Indirect addressing
0123456789101112131415

111010110 See Section 5.2

Execution (PC) + 1  →  PC
(dma) × 2TREG1(3–0)  →  ACC

If SXM = 0:
(dma) is not sign extended

If SXM = 1:
(dma) is sign extended

Status Bits Affected by: SXM

Description The contents of the data memory address (dma) are shifted left from 0 to 15
bits, as defined by the 4 LSBs of TREG1, and loaded into the accumulator
(ACC). You can use the contents of TREG1 as a shift code to provide a dynam-
ic shift mechanism. During shifting, if the SXM bit is cleared, the high-order bits
are zero-filled; if the SXM bit is set, the high-order bits are sign-extended.

You may use the LACT instruction to denormalize a floating-point number, if
the actual exponent is placed in the 4 LSBs of the TREG1 and the mantissa
is referenced by the dma. You can use this method of denormalization only
when the magnitude of the exponent is 4 bits or less.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs.
Subsequent calls to the LACT instruction will shift the value by the TREG1 val-
ue (which is the same as TREG0), maintaining ’C5x object-code compatibility
with the ’C2x.

LACT is an accumulator memory reference instruction (see Table 6–4).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LACT DAT1 ;(DP = 6, SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
301h 1376h 301h 1376h

ACC X 98F7 EC83h ACC X 13760h

C C

TREG1 14h TREG1 14h

Example 2 LACT *–,AR3 ;(SXM = 1)

Before Instruction After Instruction

ARP 1 ARP 3

AR1 310h AR1 309h

Data Memory Data Memory
310h FF00h 310h FF00h

ACC X 98F7 EC83h ACC X FFFF FE00h

C C

TREG1 11h TREG1 11h

Cycles
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Syntax Direct: LAMM  dma
Indirect: LAMM  {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000010000 Data Memory Address

Indirect addressing
0123456789101112131415

100010000 See Section 5.2

Execution (PC) + 1  →  PC
(dma)  →  ACC(15–0)
0  →  ACC(31–16)

Status Bits Not affected by: SXM

Description The contents of the addressed memory-mapped register are loaded into the
accumulator low byte (ACCL). The accumulator high byte (ACCH) is zero-
filled. The 9 MSBs of the data memory address are cleared, regardless of the
current value of data memory page pointer (DP) bits or the upper 9 bits of the
current AR. The LAMM instruction allows any memory location on data
memory page 0 to be loaded into the ACC without modifying the DP bits.

LAMM is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

MMR† 1 1 1 1+p

MMPORT 1+iosrc 1+iosrc 1+iodsrc 1+2+p+iodsrc

† Add one more cycle for peripheral memory-mapped access

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

MMR‡ n n n n+p

MMPORT n+miosrc n+miosrc n+miosrc n+p+miosrc

‡ Add n more cycles for peripheral memory-mapped access

Cycles
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Example 1 LAMM BMAR ;(DP = 6)

Before Instruction After Instruction

ACC 2222 1376h ACC 5555h

BMAR 5555h BMAR 5555h

Data Memory Data Memory
31Fh 1000h 31Fh 1000h

Example 2 LAMM *

Before Instruction After Instruction

ARP 1 ARP 1

AR1 325h AR1 325h

ACC 2222 1376h ACC 0Fh

PRD 0Fh PRD 0Fh

Data Memory Data Memory
325h 1000h 325h 1000h

The value in data memory location 325h is not loaded into the ACC, the value
at data memory location 25h (address of the PRD) is loaded into the ACC.
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Syntax Direct:  LAR  ARx, dma
Indirect: LAR  ARx, {ind} [,ARn]
Short immediate: LAR  ARx, #k
Long immediate: LAR  ARx, #lk

Operands 0 ≤ x ≤ 7
0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤ k ≤ 255
0 ≤ lk ≤ 65535
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

0ARX †00000 dma
† See Table 6–1 on page 6-2.

Indirect addressing
0123456789101112131415

1ARX †00000 See Section 5.2
† See Table 6–1 on page 6-2.

Short immediate addressing
0123456789101112131415

8-Bit ConstantARX †01101

† See Table 6–1 on page 6-2.

Long immediate addressing
0123456789101112131415

ARX †1000011111101

16-Bit Constant
† See Table 6–1 on page 6-2.

Execution Direct or indirect addressing:
(PC) + 1 →  PC
(dma)  →  AR

Short immediate addressing:
(PC) + 1 →  PC
k  →  AR

Long immediate addressing:
(PC) + 2 →  PC
lk  →  AR

Status Bits Affected by: Not affected by:
NDX SXM
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Description The contents of the data memory address (dma), an 8-bit constant, or a 16-bit
constant are loaded into the auxiliary register (AR). The constant is acted upon
like an unsigned integer, regardless of the value of the SXM bit.

You can maintain software compatibility with the ’C2x by clearing the NDX bit.
This causes any ’C2x instruction that loads auxiliary register 0 (AR0) to load
the auxiliary register compare register (ARCR) and index register (INDX) also,
maintaining ’C5x object-code compatibility with the ’C2x.

You can use the LAR and SAR (store auxiliary register) instructions to load and
store the ARs during subroutine calls and interrupts. If you do not use an AR
for indirect addressing, LAR and SAR enable the register to be used as an
additional storage register, especially for swapping values between data
memory locations without affecting the contents of the accumulator (ACC).

LAR is an auxiliary registers and data memory page pointer instruction (see
Table 6–5).

1 (Direct, indirect, or short immediate addressing)

2 (Long immediate addressing)

Cycles For the short and long immediate addressing modes, the LAR instruction is not
repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

Source: DARAM 2 2 2 2+pcode

Source: SARAM 2 2 2, 3† 2+pcode

Source: External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

Source: DARAM 2n 2n 2n 2n+pcode

Source: SARAM 2n 2n 2n, 2n+1† 2n+pcode

Source: External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrc+pcode

† If the source operand and the code are in the same SARAM block

Words
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Cycles for a Single Instruction (short immediate addressing)

Operand ROM DARAM SARAM External Memory

2 2 2 2+pcode

† If the source operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example 1 LAR AR0,DAT16 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
310h 18h 310h 18h

AR0 6h AR0 18h

Example 2 LAR AR4,*–

Before Instruction After Instruction

ARP 4 ARP 4

Data Memory Data Memory
300h 32h 300h 32h

AR4 300h AR4 32h

Note:

LAR in the indirect addressing mode ignores any AR modifications if the AR
specified by the instruction is the same as that pointed to by the ARP. There-
fore, in Example 2, AR4 is not decremented after the LAR instruction.

Example 3 LAR AR4,#01h

Before Instruction After Instruction

AR4 FF09h AR4 01h

Example 4 LAR AR4,#3FFFh

Before Instruction After Instruction

AR4 0h AR4 3FFFh
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Syntax Direct: LDP dma
Indirect: LDP {ind} [,ARn]
Short immediate: LDP #k

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤ k ≤ 511
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

010110000 dma

Indirect addressing
0123456789101112131415

110110000 See Section 5.2

Short immediate addressing
0123456789101112131415

9-Bit Constant0111101

Execution (PC) + 1 →  PC

Direct or indirect addressing:
Nine LSBs of (dma) →  DP bits

Short immediate addressing:
k →  DP bits

Status Bits Affects: DP

Description The 9 LSBs of the data memory address (dma) contents or a 9-bit constant are
loaded into the data memory page pointer (DP) bits. The DP bits and the 7-bit
dma are concatenated to form the 16-bit dma. The DP bits can also be loaded
by the LST instruction.

LDP is an auxiliary registers and data memory page pointer instruction (see
Table 6–5).

Words 1
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Cycles For the short immediate addressing modes, the LDP instruction is not repeat-
able.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

Source: DARAM 2 2 2 2+pcode

Source: SARAM 2 2 2, 3† 2+pcode

Source: External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

Source: DARAM 2n 2n 2n 2n+pcode

Source: SARAM 2n 2n 2n, 2n+1† 2n+pcode

Source: External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrc+pcode

† If the source operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

Operand ROM DARAM SARAM External Memory

2 2 2 2+pcode

† If the source operand and the code are in the same SARAM block

Example 1 LDP DAT127 ;(DP = 511)

Before Instruction After Instruction

Data Memory Data Memory
FFFFh FEDCh FFFFh FEDCh

DP 1FFh DP 0DCh

Example 2 LDP #0h

Before Instruction After Instruction

DP 1FFh DP 0h
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Example 3 LDP *,AR5

Before Instruction After Instruction

ARP 4 ARP 5

AR4 300h AR4 300h

Data Memory Data Memory
300h 06h 300h 06h

DP 1FFh DP 06h
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Syntax Direct: LMMR dma, #addr
Indirect: LMMR {ind}, #addr [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤ addr ≤ 65535
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing

 dma

0123456789101112131415

010010001

16-Bit Constant

Indirect addressing

See Section 5.2

0123456789101112131415

110010001

16-Bit Constant

Execution PFC  →  MCS
(PC) + 2  →  PC
lk  →  PFC
While (repeat counter ≠ 0):

(src, addressed by PFC)  →  (dst, specified by lower 7 bits of dma)
(PFC) + 1  →  PFC
(repeat counter) – 1  →  repeat counter

MCS  →  PFC

Status Bits None affected.

Description The memory-mapped register pointed at by the lower 7 bits of the data
memory address (dma) is loaded with the contents of the data memory loca-
tion addressed by the 16-bit source address, #addr. The 9 MSBs of the dma
are cleared, regardless of the current value of the data memory page pointer
(DP) bits or the upper 9 bits of the current AR. The LMMR instruction allows
any memory location on data memory page 0 to be loaded from anywhere in
data memory without modification of the DP bits.

When you use the LMMR instruction with the RPT instruction, the source ad-
dress, #addr, is incremented after every memory-mapped load operation.

LMMR is an I/O and data memory operation instruction (see Table 6–9).

Words 2
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Cycles for a Single Instruction 

Operand ROM DARAM SARAM External Memory

Source: DARAM
Destination: MMR‡

2 2 2 2+2pcode

Source: SARAM
Destination: MMR‡

2 2 2, 3† 2+2pcode

Source: External
Destination: MMR‡

2+psrc 2+psrc 2+psrc 3+psrc+2pcode

Source: DARAM
Destination: MMPORT

3+iodst 3+iodst 3+iodst 5+2pcode+iodst

Source: SARAM
Destination: MMPORT

3+iodst 3+iodst 3+iodst , 4† 5+2pcode+iodst

Source: External
Destination: MMPORT

3+psrc+iodst 3+psrc+iodst 3+psrc+iodst 6+psrc+2pcode+iodst

† If the source operand and the code are in the same SARAM block
‡ Add one more cycle for peripheral memory-mapped register access

Cycles for a Repeat (RPT) Execution 

Operand ROM DARAM SARAM External Memory

Source: DARAM
Destination: MMR§

2n 2n 2n 2n+2pcode

Source: SARAM
Destination: MMR§

2n 2n 2n, 2n+1† 2n+2pcode

Source: External
Destination: MMR§

2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrc+2pcode

Source: DARAM
Destination: MMPORT

3n+niodst 3n+niodst 3n+niodst 3n+3+niodst+2pcode

Source: SARAM
Destination: MMPORT

3n+niodst 3n+niodst 3n+niodst ,
3n+1+niodst†

3n+3+niodst+2pcode

Source: External
Destination: MMPORT

4n–1+ndsrc
+niodst

4n–1+ndsrc
+niodst

4n–1+ndsrc
+niodst

4n+2+ndsrc+ niodst
+2pcode

† If the source operand and the code are in the same SARAM block
§ Add n more cycles for peripheral memory-mapped register access

Cycles
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Example 1 LMMR DBMR,#300h

Before Instruction After Instruction

Data Memory Data Memory
300h 1376h 300h 1376h

DBMR 5555h DBMR 1376h

Example 2 LMMR *,#300h,AR4 ;CBCR = 1Eh

Before Instruction After Instruction

ARP 0 ARO 4h

AR0 31Eh AR0 31Eh

Data Memory Data Memory
300h 20h 300h 20h

CBCR 0h CBCR 20h
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Syntax Direct: LPH dma
Indirect: LPH {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

010101110 dma

Indirect addressing
0123456789101112131415

110101110 See Section 5.2

Execution (PC) + 1 →  PC
(dma) →  PREG (31–16)

Status Bits None affected.

Description The contents of the data memory address (dma) are loaded into the product
register (PREG) high byte. The contents of the PREG low byte are unaffected.

You can use the LPH instruction to restore the contents of the PREG high byte
after interrupts and subroutine calls, if automatic context save is not used.

LPH is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 LPH DAT0 ;(DP = 4)

Before Instruction After Instruction

Data Memory Data Memory
200h F79Ch 200h F79Ch

PREG 3007 9844h PREG F79C 9844h

Example 2 LPH *,AR6

Before Instruction After Instruction

ARP 5 ARP 6

AR5 200h AR5 200h

Data Memory Data Memory
200h F79Ch 200h F79Ch

PREG 3007 9844h PREG F79C 9844h
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Syntax Direct:  LST #m, dma
Indirect: LST #m, {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
m = 0 or 1
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing for LST #0
0123456789101112131415

001110000 dma

Indirect addressing for LST #0
0123456789101112131415

101110000 See Section 5.2

Direct addressing for LST #1
0123456789101112131415

011110000 dma

Indirect addressing for LST #1
0123456789101112131415

111110000 See Section 5.2

Execution (PC) + 1  →  PC
(dma) →  STm
dma (13–15) →  ARP (regardless of n)

Status Bits Affects: Does not affect:
ARB, ARP, C, CNF, DP, HM, OV, INTM
OVM, PM, SXM, TC, and XF

Description The contents of the data memory address (dma) are loaded into status register
STm. The INTM bit is unaffected by an LST #0 instruction. In addition, the
LST #0 instruction does not affect the auxiliary register buffer (ARB), even
though a new auxiliary register pointer (ARP) is loaded. If a next ARP value
is specified via the indirect addressing mode, the specified value is ignored.
Instead, ARP is loaded with the value contained within the addressed data
memory word.

Note:

When ST1 is loaded (LST #1), the value loaded into ARB is also loaded into
ARP.

You can use the LST instruction to restore the status registers after subroutine
calls and interrupts. LST is a control instruction (see Table 6–10).
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Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

Source: DARAM 2 2 2 2+pcode

Source: SARAM 2 2 2, 3† 2+pcode

Source: External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

Source: DARAM 2n 2n 2n 2n+pcode

Source: SARAM 2n 2n 2n, 2n+1† 2n+pcode

Source: External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrc+pcode

† If the source operand and the code are in the same SARAM block

Example 1 MAR *,AR0

LST #0,*,AR1 ;The data memory word addressed by the contents

;of auxiliary register AR0 is loaded into

;status register ST0,except for the INTM bit.

;Note that even though a next ARP value is

;specified, that value is ignored, and the

;old ARP is not loaded into the ARB.

Example 2 LST #0,60h ;(DP = 0)

Before Instruction After Instruction

Data Memory Data Memory
60h 2404h 60h 2404h

ST0 6E00h ST0 2604h

ST1 0580h ST1 0580h

Cycles
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Example 3 LST #0,*–,AR1

Before Instruction After Instruction

ARP 4 ARP 7

AR4 3FFh AR4 3FEh

Data Memory Data Memory
3FFh EE04h 3FFh EE04h

ST0 1E00h ST0 EE04h

ST1 F7A0h ST1 F7A0h

Example 4 LST #1,00h ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
300h E1BCh 300h E1BCh

ST0 0406h ST0 E406h

ST1 09A0h ST1 E1BCh
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Syntax Direct: LT dma
Indirect: LT {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011001110 dma

Indirect addressing
0123456789101112131415

111001110 See Section 5.2

Execution (PC) + 1  →   PC
(dma) →  TREG0

If TRM = 0:
(dma) →  TREG1
(dma)  →  TREG2

Status Bits Affected by: TRM

Description The contents of the data memory address (dma) are loaded into TREG0. You
can use the LT instruction to load TREG0 in preparation for multiplication.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

LT is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LT DAT24 ;(DP = 8. TRM = 1)

Before Instruction After Instruction

Data Memory Data Memory
418h 62h 418h 62h

TREG0 3h TREG0 62h

Example 2 LT *,AR3 ;(TRM = 0)

Before Instruction After Instruction

ARP 2 ARP 3

AR2 418h AR2 418h

Data Memory Data Memory
418h 62h 418h 62h

TREG0 3h TREG0 62h

TREG1 4h TREG1 2h

TREG2 5h TREG2 2h

Cycles
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Syntax Direct: LTA  dma
Indirect: LTA  {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000001110 dma

Indirect addressing
0123456789101112131415

100001110 See Section 5.2

Execution (PC) + 1  →  PC
(dma) →  TREG0
(ACC) + (shifted PREG)  →  ACC

If TRM = 0:
(dma) →  TREG1
(dma)  →  TREG2

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV

Description The contents of the data memory address (dma) are loaded into TREG0. The
contents of the product register (PREG) are shifted, as defined by the PM bits,
and added to the accumulator (ACC). The result is stored in the ACC. The C
bit is set, if the result of the addition generates a carry; otherwise, the C bit is
cleared.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

LTA is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTA DAT36 ;(DP = 6, PM = 0, TRM = 1)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG0 3h TREG0 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Example 2 LTA *,5 ;(TRM = 0)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 324h AR4 324h

Data Memory Data Memory
324h 62h 324h 62h

TREG0 3h TREG0 62h

TREG1 4h TREG1 2h

TREG2 5h TREG2 2h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Cycles
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Syntax Direct: LTD dma
Indirect: LTD {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001001110 dma

Indirect addressing
0123456789101112131415

101001110 See Section 5.2

Execution (PC) + 1  →  PC
(dma) →  TREG0
(dma) →  dma + 1
(ACC) + (shifted PREG)  →  ACC

If TRM = 0:
(dma) →  TREG1
(dma)  →  TREG2

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV

Description The contents of the data memory address (dma) are loaded into TREG0. The
contents of the dma are also copied to the next higher dma. The contents of
the product register (PREG) are shifted, as defined by the PM bits, and added
to the accumulator (ACC). The result is stored in the ACC. The C bit is set, if
the result of the addition generates a carry; otherwise, the C bit is cleared. See
the DMOV instruction, page 6-104, for information on the data move feature.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

The LTD instruction functions in the same manner as the LTA instruction with
the addition of data move for on-chip RAM blocks. If you use the LTD instruc-
tion with external data memory, its function is identical to that of the LTA instruc-
tion (page 6-140).

LTD is a TREG0, PREG, and multiply instruction (see Table 6–7).



6-143

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2,
2n+1†

2n–2+p

External 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block

Example 1 LTD DAT126 ;(DP = 7, PM = 0, TRM = 1)

Before Instruction After Instruction

Data Memory Data Memory
3FEh 62h 3FEh 62h

Data Memory Data Memory
3FFh 0h 3FFh 62h

TREG0 3h TREG0 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Cycles



 6-144

Example 2 LTD *,AR3 ;(TRM = 0)

Before Instruction After Instruction

ARP 1 ARP 3

AR1 3FEh AR1 3FEh

Data Memory Data Memory
3FEh 62h 3FEh 62h

Data Memory Data Memory
3FFh 0h 3FFh 62h

TREG0 3h TREG0 62h

TREG1 4h TREG1 2h

TREG2 5h TREG2 2h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C
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Syntax Direct: LTP dma
Indirect: LTP {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

010001110 dma

Indirect addressing
0123456789101112131415

110001110 See Section 5.2

Execution (PC) + 1  →  PC
(dma) →  TREG0
(shifted PREG) →  ACC

If TRM = 0:
(dma) →  TREG1
(dma)  →  TREG2

Status Bits Affected by: PM and TRM

Description The contents of the data memory address (dma) are loaded into TREG0. The
contents of the product register (PREG) are shifted, as defined by the PM bits,
and stored in the accumulator (ACC).

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

LTP is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTP DAT36 ;(DP = 6, PM = 0, TRM = 1)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG0 3h TREG0 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC X 0Fh

C C

Example 2 LTP *,AR5 ;(PM = 0, TRM = 0)

Before Instruction After Instruction

ARP 2 ARP 5

AR2 324h AR2 324h

Data Memory Data Memory
324h 62h 324h 62h

TREG0 3h TREG0 62h

TREG1 4h TREG1 2h

TREG2 5h TREG2 2h

PREG 0Fh PREG 0Fh

ACC X 5h ACC X 0Fh

C C

Cycles
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Syntax Direct: LTS dma
Indirect: LTS {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000101110 dma

Indirect addressing
0123456789101112131415

100101110 See Section 5.2

Execution (PC) + 1 →  PC
(dma) →  TREG0
(ACC) – (shifted PREG) →  ACC

If TRM = 0:
(dma) →  TREG1
(dma)  →  TREG2

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV

Description The contents of the data memory address (dma) are loaded into TREG0. The
contents of the product register (PREG) are shifted, as defined by the PM bits,
and subtracted from the accumulator (ACC). The result is stored in the ACC.
The C bit is cleared, if the result of the subtraction generates a borrow; other-
wise, the C bit is set.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

LTS is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTS DAT36 ;(DP = 6, PM = 0, TRM = 1)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG0 3h TREG0 62h

PREG 0Fh PREG 0Fh

ACC X 05h ACC 0 FFFF FFF6h

C C

Example 2 LTS *,AR2 ;(TRM = 0)

Before Instruction After Instruction

ARP 1 ARP 2

AR1 324h AR1 324h

324h 62h 324h 62h

TREG0 3h TREG0 62h

TREG1 4h TREG1 2h

TREG2 5h TREG2 2h

PREG 0Fh PREG 0Fh

ACC X 05h ACC 0 FFFF FFF6h

C C

Cycles
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Syntax Direct:  MAC pma, dma
Indirect: MAC pma, {ind} [,ARn]

Operands 0 ≤ pma ≤ 65535
0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

dma001000101

16-Bit Constant

Indirect addressing
0123456789101112131415

101000101

16-Bit Constant

See Section 5.2

Execution (PC) + 2 →  PC
(PFC) →  MCS
(pma)  →  PFC

If (repeat counter) ≠ 0:
(ACC) + (shifted PREG)  →  ACC
(dma)  →  TREG0
(dma) × (pma, addressed by PFC) →  PREG
Modify current AR and ARP as specified
(PFC) + 1 →  PFC
(repeat counter) – 1 →  repeat counter

Else:
(ACC) + (shifted PREG)  →  ACC
(dma)  →  TREG0
(dma) × (pma, addressed by PFC) →  PREG
Modify current AR and ARP as specified

(MCS)  →  PFC

If TRM = 0:
(dma) →  TREG1
(dma)  →  TREG2

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the accumulator (ACC). The result is stored in the ACC. The
contents of the data memory address (dma) are loaded into TREG0. The
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contents of the dma are multiplied by the contents of the program memory ad-
dress (pma). The result is stored in the PREG. The C bit is set, if the result of
the addition generates a carry; otherwise, the C bit is cleared.

The data and program memory locations on the ’C5x can be any nonreserved
on-chip or off-chip memory locations. If the program memory is block B0 of on-
chip RAM, then the CNF bit must be set. When the MAC instruction is used in
the direct addressing mode, the dma cannot be modified during repetition of
the instruction.

When the MAC instruction is repeated, the pma contained in the prefetch
counter (PFC) is incremented by 1 during its operation. This allows access to
a series of operands in memory. When used with the RPT instruction, the MAC
instruction is useful for long sum-of-products operations because the instruc-
tion becomes a single-cycle instruction, once the RPT pipeline is started.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

MAC is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 2

Cycles

Cycles for a Single Instruction 

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM
2: DARAM

3 3 3 3+2pcode

1: SARAM
2: DARAM

3 3 3 3+2pcode

1: External
2: DARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

1: DARAM/ROM
2: SARAM

3 3 3 3+2pcode

1: SARAM
2: SARAM

3, 4† 3, 4† 3, 4† 3+2pcode, 4+2pcode†

1: External
2: SARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

† If both operands are in the same SARAM block.
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Cycles for a Single Instruction (Continued)

Operand External MemorySARAMDARAMROM

1: DARAM/ROM
2: External

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

1: SARAM
2: External

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

1: External
2: External

4+pop1+dop2 4+pop1+dop2 4+pop1+dop2 4+pop1+dop2+2pcode

† If both operands are in the same SARAM block.

Cycles for a Repeat (RPT) Execution 

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM
2: DARAM

n+2 n+2 n+2 n+2+2pcode

1: SARAM
2: DARAM

n+2 n+2 n+2 n+2+2pcode

1: External
2: DARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

1: DARAM/ROM
2: SARAM

n+2 n+2 n+2 n+2+2pcode

1: SARAM
2: SARAM

n+2, 2n+2† n+2, 2n+2† n+2, 2n+2† n+2+2pcode, 2n+2†

1: External
2: SARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

1: DARAM/ROM
2: External

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

1: SARAM
2: External

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

1: External
2: External

2n+2+npop1
+ndop2

2n+2+npop1
+ndop2

2n+2+npop1
+ndop2

2n+2+npop1+ndop2
+2pcode

† If both operands are in the same SARAM block.
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Example 1 MAC 0FF00h,02h ;(DP = 6, PM = 0, CNF = 1)

Before Instruction After Instruction

Data Memory Data Memory
302h 23h 302h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG0 45h TREG0 23h

PREG 0045 8972h PREG 8Ch

ACC X 0723 EC41h ACC 0 0769 75B3h

C C

Example 2 MAC 0FF00h,*,AR5 ;(PM = 0, CNF = 1)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 302h AR4 302h

Data Memory Data Memory
302h 23h 302h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG0 45h TREG0 23h

PREG 0045 8972h PREG 8Ch

ACC X 0723 EC41h ACC 0 0769 75B3h

C C
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Syntax Direct: MACD pma, dma
Indirect: MACD pma, {ind} [,ARn]

Operands 0 ≤ pma ≤ 65535
0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

dma011000101

16-Bit Constant

Indirect addressing
0123456789101112131415

111000101

16-Bit Constant

See Section 5.2

Execution (PC) + 2 →  PC
(PFC) →  MCS
(pma)  →  PFC

If (repeat counter) ≠ 0:
(ACC) + (shifted PREG)  →  ACC
(dma) →  TREG0
(dma) × (pma, addressed by PFC) →  PREG
Modify current AR and ARP as specified
(PFC) + 1 →  PFC
(dma) →  (dma) + 1
(repeat counter) – 1 →  repeat counter

Else:
(ACC) + (shifted PREG)  →  ACC
(dma) →  TREG0
(dma) × (pma, addressed by PFC) →  PREG
(dma) →  (dma) + 1
Modify current AR and ARP as specified

(MCS)  →  PFC

If TRM = 0:
(dma) →  TREG1
(dma)  →  TREG2

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV
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Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the accumulator (ACC). The result is stored in the ACC. The
contents of the data memory address (dma) are loaded into TREG0. The con-
tents of the dma are multiplied by the contents of the program memory address
(pma). The result is stored in the PREG. The C bit is set, if the result of the addi-
tion generates a carry; otherwise, the C bit is cleared. See the DMOV instruc-
tion, page 6-104, for information on the data move feature.

The data and program memory locations on the ’C5x can be any nonreserved
on-chip or off-chip memory locations. If the program memory is block B0 of on-
chip RAM, then the CNF bit must be set. When the MACD instruction is used
in the direct addressing mode, the dma cannot be modified during repetition
of the instruction. If the MACD instruction addresses one of the memory-
mapped registers or external memory as a data memory location, the effect
of the instruction will be that of a MAC instruction.

When the MACD instruction is repeated, the pma contained in the prefetch
counter (PFC) is incremented by 1 during its operation. This allows access to
a series of operands in memory. When used with the RPT instruction, the
MACD instruction becomes a single-cycle instruction, once the RPT pipeline
is started.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

The MACD instruction functions in the same manner as the MAC instruction
with the addition of data move for on-chip RAM blocks. The data move feature
makes the MACD instruction useful for applications such as convolution and
transversal filtering. If you use the MACD instruction with external data
memory, its function is identical to that of the MAC instruction (page 6-149).

MACD is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 2
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Cycles

Cycles for a Single Instruction 

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM
2: DARAM

3 3 3 3+2pcode

1: SARAM
2: DARAM

3 3 3 3+2pcode

1: External
2: DARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

1: DARAM/ROM
2: SARAM

3 3 3 3+2pcode

1: SARAM
2: SARAM

3 3 3, 4‡, 5§ 3+2pcode, 4+2pcode‡

1: External
2: SARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

1: DARAM/ROM
2: External¶

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

1: SARAM
2: External¶

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

1: External
2: External¶

4+pop1+dop2 4+pop1+dop2 4+pop1+dop2 4+pop1+dop2+2pcode

‡ If both operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.
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Cycles for a Repeat (RPT) Execution 

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM
2: DARAM

n+2 n+2 n+2 n+2+2pcode

1: SARAM
2: DARAM

n+2 n+2 n+2 n+2+2pcode

1: External
2: DARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

1: DARAM/ROM
2: SARAM

2n 2n 2n, 2n+2† 2n+2pcode

1: SARAM
2: SARAM

2n, 3n‡ 2n, 3n‡ 2n, 2n+2†,
3n‡, 3n+2§

2n+2pcode, 3n‡

1: External
2: SARAM

2n+npop1 2n+npop1 2n+npop1,
2n+2+npop1†

2n+npop1+2pcode

1: DARAM/ROM
2: External¶

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

1: SARAM
2: External¶

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

1: External
2: External¶

2n+2+npop1
+ndop2

2n+2+npop1
+ndop2

2n+2+npop1
+ndop2

2n+2+npop1+ndop2
+2pcode

† If operand2 and code are in the same SARAM block
‡ If both operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.

Example 1 MACD 0FF00h,08h ;(DP = 6, PM = 0, CNF = 1)

Before Instruction After Instruction

Data Memory Data Memory
308h 23h 308h 23h

Data Memory Data Memory
309h 18h 309h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG0 45h TREG0 23h

PREG 0045 8972h PREG 8Ch

ACC X 0723 EC41h ACC 0 0769 75B3h

C C
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Example 2 MACD 0FF00h,*,AR6 ;(PM = 0, CF = 1)

Before Instruction After Instruction

ARP 5 ARP 6

AR5 308h AR5 308h

Data Memory Data Memory
308h 23h 308h 23h

Data Memory Data Memory
309h 18h 309h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG0 45h TREG0 23h

PREG 0045 8972h PREG 8Ch

ACC X 0723 EC41h ACC 0 0769 75B3h

C C

The data move function for MACD can occur only within on-chip data RAM
blocks.
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Syntax Direct: MADD dma
Indirect: MADD {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011010101 dma

Indirect addressing
0123456789101112131415

111010101 See Section 5.2

Execution (PC) + 2 →  PC
(PFC) →  MCS
(BMAR)  →  PFC

If (repeat counter) ≠ 0:
(ACC) + (shifted PREG)  →  ACC
(dma) →  TREG0
(dma) × (pma, addressed by PFC) →  PREG
Modify current AR and ARP as specified
(PFC) + 1 →  PFC
(dma) → (dma) + 1
(repeat counter) – 1 →  repeat counter

Else:
(ACC) + (shifted PREG)  →  ACC
(dma) →  TREG0
(dma) × (pma, addressed by PFC) →  PREG
(dma) →  (dma) + 1
Modify current AR and ARP as specified

(MCS)  →  PFC

Status Bits Affected by: Affects:
OVM and PM C and OV

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the accumulator (ACC). The result is stored in the ACC. The
contents of the data memory address (dma) are loaded into TREG0. The con-
tents of the dma are multiplied by the contents of the program memory address
(pma). The result is stored in the PREG. The pma is contained in the block
move address register (BMAR) and is not specified by a long immediate
constant; this enables dynamic addressing of coefficient tables. The C bit is
set, if the result of the addition generates a carry; otherwise, the C bit is
cleared. See the DMOV instruction, page 6-104, for information on the data
move feature.
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The data and program memory locations on the ’C5x can be any nonreserved
on-chip or off-chip memory locations. If the program memory is block B0 of on-
chip RAM, then the CNF bit must be set. When the MADD instruction is used
in the direct addressing mode, the dma cannot be modified during repetition
of the instruction. If the MADD instruction addresses one of the memory-
mapped registers or external memory as a data memory location, the effect
of the instruction is that of a MADS instruction.

When the MADD instruction is repeated, the pma contained in the prefetch
counter (PFC) is incremented by 1 during its operation. This allows access to
a series of operands in memory. When used with the RPT instruction, the
MADD instruction becomes a single-cycle instruction, once the RPT pipeline
is started.

The MADD instruction functions in the same manner as the MADS instruction
with the addition of data move for on-chip RAM blocks. The data move feature
makes the MADD instruction useful for applications such as convolution and
transversal filtering. If you use the MADD instruction with external data
memory, its function is identical to that of the MADS instruction (page 6-162).

MADD is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1

Cycles

Cycles for a Single Instruction 

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM
2: DARAM

2 2 2 2+pcode

1: SARAM
2: DARAM

2 2 2 2+pcode

1: External
2: DARAM

2+pop1 2+pop1 2+pop1 2+pop1+pcode

1: DARAM/ROM
2: SARAM

2 2 2 2+pcode

1: SARAM
2: SARAM

2 2 2, 3‡, 4§ 2+pcode, 3+pcode‡

1: External
2: SARAM

2+pop1 2+pop1 2+pop1 2+pop1+pcode

‡ If both operands are in the same SARAM block
§ If both operands and code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.
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Cycles for a Single Instruction (Continued)

Operand External MemorySARAMDARAMROM

1: DARAM/ROM
2: External¶

2+dop2 2+dop2 2+dop2 2+dop2+pcode

1: SARAM
2: External¶

2+dop2 2+dop2 2+dop2 2+dop2+pcode

1: External
2: External¶

3+pop1+dop2 3+pop1+dop2 3+pop1+dop2 3+pop1+dop2+pcode

‡ If both operands are in the same SARAM block
§ If both operands and code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.

Cycles for a Repeat (RPT) Execution 

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM
2: DARAM

n+1 n+1 n+1 n+1+pcode

1: SARAM
2: DARAM

n+1 n+1 n+1 n+1+pcode

1: External
2: DARAM

n+1+npop1 n+1+npop1 n+1+npop1 n+1+npop1+pcode

1: DARAM/ROM
2: SARAM

2n–1 2n–1 2n–1, 2n+1† 2n–1+pcode

1: SARAM
2: SARAM

2n–1, 3n–1‡ 2n–1, 3n–1‡ 2n–1, 2n+1†,
3n–1‡, 3n+1§

2n–1+pcode, 3n–1‡

1: External
2: SARAM

2n–1+npop1 2n–1+npop1 2n–1+npop1,
2n+1+npop1†

2n–1+npop1+pcode

1: DARAM/ROM
2: External¶

n+1+ndop2 n+1+ndop2 n+1+ndop2 n+1+ndop2+pcode

1: SARAM
2: External¶

n+1+ndop2 n+1+ndop2 n+1+ndop2 n+1+ndop2+pcode

1: External
2: External¶

2n+1+npop1
+ndop2

2n+1+npop1
+ndop2

2n+1+npop1
+ndop2

2n+1+npop1+ndop2
+pcode

† If operand2 and code are in the same SARAM block
‡ If both operands are in the same SARAM block
§ If both operands and code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.
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Example 1 MADD DAT7 ;(DP = 6, PM = 0, CNF = 1)

Before Instruction After Instruction

Data Memory Data Memory
307h 8h 307h 8h

Data Memory Data Memory
308h 9h 308h 8h

BMAR FF00h BMAR FF00h

TREG0 4Eh TREG0 8h

FF00h 2h FF00h 2h

PREG 0045 8972h PREG 10h

ACC X 0723 EC41h ACC 0 0769 75B3h

C C

Example 2 MADD *,3 ;(PM = 0, CNF = 1)

Before Instruction After Instruction

ARP 2 ARP 3

AR2 307h AR2 307h

Data Memory Data Memory
307h 8h 307h 8h

Data Memory Data Memory
308h 9h 308h 8h

BMAR FF00h BMAR FF00h

TREG0 4Eh TREG0 8h

FF00h 2h FF00h 2h

PREG 0045 8972h PREG 10h

ACC X 0723 EC41h ACC 0 0769 75B3h

C C

The data move function for MADD can occur only within on-chip data RAM
blocks.
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Syntax Direct: MADS dma
Indirect: MADS {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001010101 dma

Indirect addressing
0123456789101112131415

101010101 See Section 5.2

Execution (PC) + 1  →  PC
(PFC) →  MCS
(BMAR)  →  PFC

If (repeat counter) ≠ 0:
(ACC) + (shifted PREG)  →  ACC
(dma) →  TREG0
(dma) � (pma, addressed by PFC) →  PREG
Modify current AR and ARP as specified
(PFC) + 1 →  PFC
(repeat counter) – 1 →  repeat counter

Else:
(ACC) + (shifted PREG)  →  ACC
(dma) →  TREG0
(dma) � (pma, addressed by PFC) →  PREG
Modify current AR and ARP as specified

(MCS)  →  PFC

Status Bits Affected by: Affects:
OVM and PM C and OV

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the accumulator (ACC). The result is stored in the ACC. The
contents of the data memory address (dma) are loaded into TREG0. The con-
tents of the dma are multiplied by the contents of the program memory address
(pma). The result is stored in the PREG. The pma is contained in the block
move address register (BMAR) and is not specified by a long immediate
constant; this enables dynamic addressing of coefficient tables. The C bit is
set, if the result of the addition generates a carry; otherwise, the C bit is
cleared.
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The data and program memory locations on the ’C5x can be any nonreserved
on-chip or off-chip memory locations. If the program memory is block B0 of on-
chip RAM, then the CNF bit must be set. When the MADS instruction is used
in the direct addressing mode, the dma cannot be modified during repetition
of the instruction.

When the MADS instruction is repeated, the pma contained in the prefetch
counter (PFC) is incremented by 1 during its operation. This allows access to
a series of operands in memory. When used with the RPT instruction, the
MADS instruction is useful for long sum-of-products operations because the
instruction becomes a single-cycle instruction, once the RPT pipeline is
started.

MADS is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1

Cycles

Cycles for a Single Instruction 

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM
2: DARAM

2 2 2 2+pcode

1: SARAM
2: DARAM

2 2 2 2+pcode

1: External
2: DARAM

2+pop1 2+pop1 2+pop1

1: DARAM/ROM
2: SARAM

2 2 2 2+pcode

1: SARAM
2: SARAM

2, 3† 2, 3† 2, 3† 2+pcode, 3+pcode†

1: External
2: SARAM

2+pop1 2+pop1 2+pop1 2+pop1+pcode

1: DARAM/ROM
2: External

2+dop2 2+dop2 2+dop2 2+dop2+pcode

1: SARAM
2: External

2+dop2 2+dop2 2+dop2 2+dop2+pcode

1: External
2: External

3+pop1+dop2 3+pop1+dop2 3+pop1+dop2 3+pop1+dop2+pcode

† If both operands are in the same SARAM block.
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Cycles for a Repeat (RPT) Execution 

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM
2: DARAM

n+1 n+1 n+1 n+1+pcode

1: SARAM
2: DARAM

n+1 n+1 n+1 n+1+pcode

1: External
2: DARAM

n+1+npop1 n+1+npop1 n+1+npop1 n+1+npop1+pcode

1: DARAM/ROM
2: SARAM

n+1 n+1 n+1 n+1+pcode

1: SARAM
2: SARAM

n+1, 2n+1† n+1, 2n+1† n+1, 2n+1† n+1+pcode, 2n+1†

1: External
2: SARAM

n+1+npop1 n+1+npop1 n+1+npop1 n+1+npop1+pcode

1: DARAM/ROM
2: External

n+1+ndop2 n+1+ndop2 n+1+ndop2 n+1+ndop2+pcode

1: SARAM
2: External

n+1+ndop2 n+1+ndop2 n+1+ndop2 n+1+ndop2+pcode

1: External
2: External

2n+1+npop1
+ndop2

2n+1+npop1
+ndop2

2n+1+npop1
+ndop2

2n+1+npop1+ndop2
+pcode

† If both operands are in the same SARAM block.

Example 1 MADS DAT12 ;(DP = 6, PM = 0, CNF = 1)

Before Instruction After Instruction

Data Memory Data Memory
30Ch 8h 30Ch 8h

BMAR FF00h BMAR FF00h

TREG0  4Eh TREG0 8h

Program Memory Program Memory
FF00h 2h FF00h 2h

PREG 0045 8972h PREG 10h

ACC X 0723 EC41h ACC 0 0769 75B3h

C C
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Example 2 MADS *,AR3 ;(PM = 0, CNF = 1)

Before Instruction After Instruction

ARP 2 ARP 3

AR2 30Ch AR2 30Ch

Data Memory Data Memory
30Ch 8h 30Ch 8h

BMAR FF00h BMAR FF00h

TREG0 4Eh TREG0 8h

Program Memory Program Memory
FF00h 2h FF00h 2h

PREG 0045 8972h PREG 10h

ACC X 0723 EC41h ACC 0 0769 75B3h

C C
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Syntax Direct: MAR dma
Indirect: MAR {ind} [,ARn]

Operands 0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011010001 dma

Indirect addressing
0123456789101112131415

111010001 See Section 5.2

Execution (PC) + 1 →  PC

Indirect addressing:
Modify current AR and ARP as specified

Direct addressing:
Executes as a NOP

Status Bits Affected by: NDX

Description In the indirect addressing mode, the auxiliary registers (ARs) and the auxiliary
register pointer (ARP) are modified; however, the memory being referenced
is unaffected.

You can maintain software compatibility with the ’C2x by clearing the NDX bit.
This causes any ’C2x instruction that modifies AR0 to modify the auxiliary reg-
ister compare register (ARCR) and index register (INDX) also, maintaining
’C5x object-code compatibility with the ’C2x.

The MAR instruction modifies the ARs or the ARP bits, and the old ARP bits
are copied to the auxiliary register buffer (ARB) bits. Any operation performed
with the MAR instruction can also be performed with any instruction that sup-
ports indirect addressing. The ARP bits can also be loaded by an LST instruc-
tion.

Note:

The LARP instruction from the ’C2x instruction set is a subset of the MAR
instruction (that is, MAR *,4 performs the same function as LARP 4).

MAR is an auxiliary registers and data memory page pointer instruction (see
Table 6–5).

Words 1
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Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 MAR *,AR1 ;Load ARP with 1

Before Instruction After Instruction

ARP 0 ARP 1

ARB 7 ARB 0

Example 2 MAR *+,AR5 ;Increment current auxiliary register (AR1)

 ;and load ARP with 5.

Before Instruction After Instruction

AR1 34h AR1 35h

ARP 1 ARP 5

ARB 0 ARB 1

Cycles
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Syntax Direct: MPY dma
Indirect: MPY {ind} [,ARn]
Short immediate: MPY #k
Long immediate: MPY #lk

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
–4096 ≤ k ≤ 4095
–32768 ≤ lk ≤ 32767
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000101010 dma

Indirect addressing
0123456789101112131415

100101010 See Section 5.2

Short immediate addressing
0123456789101112131415

13-Bit Constant011

Long immediate addressing
0123456789101112131415

0000000101111101
16-Bit Constant

Execution Direct or indirect addressing:
(PC) + 1  →  PC
(TREG0)  ×  (dma)   →  PREG

Short immediate addressing:
(PC) + 1  →  PC
(TREG0)  ×  k →  PREG

Long immediate addressing:
(PC) + 2 →  PC
(TREG0)  ×  lk →  PREG

Status Bits Affected by: Not affected by:
TRM SXM

Description If a constant is specified, the constant is multiplied by the contents of TREG0.
If a constant is not specified, the contents of TREG0 are multiplied by the con-
tents of the data memory address (dma). The result is stored in the product
register (PREG). Short immediate addressing multiplies TREG0 by a signed
13-bit constant. The short immediate constant is right-justified and sign-ex-
tended before the multiplication, regardless of the SXM bit.
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You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

MPY is a TREG0, PREG, and multiply instruction (see Table 6–7).

1 (Direct, indirect, or short immediate addressing)

2 (Long immediate addressing)

For the short and long immediate addressing modes, the MPY instruction is
not repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

Words

Cycles
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Example 1 MPY DAT13 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
40Dh 7h 40Dh 7h

TREG0 6h TREG0 6h

PREG 36h PREG 2Ah

Example 2 MPY *,AR2

Before Instruction After Instruction

ARP 1 ARP 2

AR1 40Dh AR1 40Dh

Data Memory Data Memory 
40Dh 7h 40Dh 7h

TREG0 6h TREG0 6h

PREG 36h PREG 2Ah

Example 3 MPY #031h

Before Instruction After Instruction

TREG0 2h TREG0 2h

PREG 36h PREG 62h

Example 4 MPY #01234h

Before Instruction After Instruction

TREG0 2h TREG0 2h

PREG 36h PREG 2468h
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Syntax Direct: MPYA dma
Indirect: MPYA {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000001010 dma

Indirect addressing
0123456789101112131415

100001010 See Section 5.2

Execution (PC) + 1 →  PC
(ACC) + (shifted PREG)  →  ACC
(TREG0)  × (dma)  →  PREG

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the contents of the accumulator (ACC). The result is stored
in the ACC. The contents of TREG0 are multiplied by the contents of the data
memory address (dma). The result is stored in the PREG. The C bit is set, if the
result of the addition generates a carry; otherwise, the C bit is cleared.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

MPYA is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYA DAT13 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG0 6h TREG0 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 0 8Ah

C C

Example 2 MPYA *,AR4 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 4

AR3 30Dh AR3 30Dh

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG0 6h TREG0 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 0 8Ah

C C

Cycles
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Syntax Direct: MPYS dma
Indirect: MPYS {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

010001010 dma

Indirect addressing
0123456789101112131415

110001010 See Section 5.2

Execution (PC) + 1  →  PC
(ACC) – (shifted PREG)  →  ACC
(TREG0)  ×  (dma)  →  PREG

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and subtracted from the contents of the accumulator (ACC). The result
is stored in the ACC. The contents of TREG0 are multiplied by the contents
of the data memory address (dma). The result is stored in the PREG. The C
bit is cleared, if the result of the subtraction generates a borrow; otherwise, the
C bit is set.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

MPYS is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYS DAT13 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG0 6h TREG0 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 1 1Eh

C C

Example 2 MPYS *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 30Dh AR4 30Dh

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG0 6h TREG0 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 1 1Eh

C C

Cycles
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Syntax Direct: MPYU dma
Indirect: MPYU {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

010101010 dma

Indirect addressing
0123456789101112131415

110101010 See Section 5.2

Execution (PC) + 1 →  PC
Unsigned (TREG0)  ×  unsigned (dma)  →  PREG

Status Bits Affected by: Not affected by:
TRM SXM

Description The unsigned contents of TREG0 are multiplied by the unsigned contents of
the data memory address (dma). The result is stored in the product register
(PREG). The multiplier acts as a signed 17 × 17-bit multiplier for this instruc-
tion, with the MSB of both operands forced to 0.

The p-scaler shifter at the output of the PREG always invokes sign-extension
on the PREG, when the PM bits are set to 112 (right-shift-by-6 mode). There-
fore, you should not use this shift mode if you want unsigned products.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

The MPYU instruction is particularly useful for computing multiple-precision
products, such as multiplying two 32-bit numbers to yield a 64-bit product.
MPYU is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYU DAT16 ;(DP = 4)

Before Instruction After Instruction

Data Memory Data Memory
210h FFFFh 210h FFFFh

TREG0 FFFFh TREG0 FFFFh

PREG 1h PREG FFFE 0001h

Example 2 MPYU *,AR6

Before Instruction After Instruction

ARP 5 ARP 6

AR5 210h AR5 210h

Data Memory Data Memory
210h FFFFh 210h FFFFh

TREG0 FFFFh TREG0 FFFFh

PREG 1h PREG FFFE 0001h

Cycles
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Syntax NEG

Operands None

Opcode 0123456789101112131415
0100000001111101

Execution (PC) + 1  →  PC
(ACC)  ×  –1  →  ACC

If (ACC) ≠ 0:
0  →  C

If (ACC) = 0:
1 →  C

Status Bits Affected by: Affects:
OVM C and OV

Description The contents of the accumulator (ACC) are replaced with its arithmetic com-
plement (2s complement). If the contents of the ACC are not 0, the C bit is
cleared; if the contents of the ACC are 0, the C bit is set.

When taking the 2s complement of 8000 0000h, the OV bit is set and: if the
OVM bit is set, the ACC is replaced with 7FFF FFFFh; if the OVM bit is cleared,
the ACC is replaced with 8000 0000h.

NEG is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 NEG ;(OVM = X)

Before Instruction After Instruction

ACC X FFFF F228h ACC 0 0DD8h

C C

X X

OV OV

Cycles
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Example 2 NEG ;(OVM = 0)

Before Instruction After Instruction

ACC X 8000 0000h ACC 0 8000 0000h

C C

X 1

OV OV

Example 3 NEG ;(OVM = 1)

Before Instruction After Instruction

ACC X 8000 0000h ACC 0 7FFF FFFFh

C C

X 1

OV OV
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Syntax NMI

Operands None

Opcode 0123456789101112131415
0100101001111101

Execution (PC) + 1 →  stack
24h →  PC
1 →  INTM

Status Bits Not affected by: Affects:
INTM INTM

Description The current program counter (PC) is incremented and pushed onto the stack.
The nonmaskable interrupt vector located at 24h is loaded into the PC. Execu-
tion continues at this address. Interrupts are globally disabled (INTM bit is set).
The NMI instruction has the same affect as a hardware nonmaskable interrupt.
Automatic context save is not performed.

NMI is a branch and call instruction (see Table 6–8).

Words 1

Cycles The NMI instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example NMI ;Control is passed to program memory location 24h

     ;and PC+1 is pushed onto the stack.
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Syntax NOP

Operands None

Opcode 0123456789101112131415
0000000011010001

Execution (PC) + 1 →  PC

Status Bits None affected.

Description No operation is performed. The NOP instruction affects only the program
counter (PC). You can use the NOP instruction to create pipeline and execu-
tion delays.

NOP is a control instruction (see Table 6–10).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example NOP ;No operation is performed

Cycles
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Syntax NORM   {ind}

Operands ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode 0123456789101112131415
100000101 See Section 5.2

Execution (PC) + 1  →  PC

If (ACC)  =  0:
TC →  1

Else:
If (ACC(31))  XOR  (ACC(30))  =  0:

TC →  0
(ACC) × 2 →  ACC
Modify current AR as specified

Else:
TC  →  1

Status Bits Affects: TC

Description The signed number contained in the accumulator (ACC) is normalized.
Normalizing a fixed-point number separates the number into a mantissa and
an exponent by finding the magnitude of the sign-extended number. ACC bit
31 is exclusive-ORed (XOR) with ACC bit 30 to determine if bit 30 is part of the
magnitude or part of the sign extension. If the bits are the same, then they are
both sign bits, and the ACC is shifted left to eliminate the extra sign bit. If the
result of the XOR operation is true, the TC bit is set; otherwise, the TC bit is
cleared.

The current AR is modified as specified to generate the magnitude of the expo-
nent. It is assumed that the current AR is initialized before normalization be-
gins. The default modification of the current AR is an increment.

Multiple executions of the NORM instruction may be required to completely
normalize a 32-bit number in the ACC. Although using NORM with RPT does
not cause execution of NORM to fall out of the repeat loop automatically when
the normalization is complete, no operation is performed for the remainder of
the repeat loop. The NORM instruction functions on both positive and negative
2s-complement numbers.

NORM is an accumulator memory reference instruction (see Table 6–4).
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The NORM instruction executes the auxiliary register operation
during the execution phase of the pipeline. Therefore, the auxiliary
register used in the NORM instruction should not be used by an
auxiliary register instruction in the next two instruction words
immediately following the NORM instruction. Also, the auxiliary
register pointer (ARP) should not be modified by the next two words.

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 NORM *+

Before Instruction After Instruction

ARP 2 ARP 2

AR2 00h AR2 01h

ACC X FFFF F001h ACC 0 0FFF E002h

TC TC

Example 2 31-bit normalization:

MAR *,AR1 ;Use AR1 to store the exponent.
LAR AR1,#0h ;Clear out exponent counter.

LOOP NORM *+ ;One bit is normalized.
BCND LOOP,NTC ;If TC = 0, magnitude not found yet.

Example 3 15-bit normalization:

MAR*,AR1 ;Use AR1 to store the exponent.
LAR AR1,#0Fh ;Initialize exponent counter.
RPT #14 ;15–bit normalization specified (yielding

;a 4–bit exponent and 16–bit mantissa).
NORM *– ;NORM automatically stops shifting when 

;first significant magnitude bit is found,
;performing NOPs for the remainder of the
;repeat loops

Cycles
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The method in Example 2 normalizes a 32-bit number and yields a 5-bit expo-
nent magnitude. The method in Example 3 normalizes a 16-bit number and
yields a 4-bit magnitude. If the number requires only a small amount of normal-
ization, the Example 2 method may be preferable to the Example 3 method
because the loop in Example 2 runs only until normalization is complete;
Example 3 always executes all 15 cycles of the repeat loop. Specifically,
Example 2 is more efficient if the number requires three or fewer shifts. If the
number requires six or more shifts, Example 3 is more efficient.

Note:

The NORM instruction can be used without a specified operand. In that case,
any comments on the same line as the instruction are interpreted as the
operand. If the first character is an asterisk (*), then the instruction is as-
sembled as NORM * with no auxiliary register modification taking place upon
execution. Therefore, TI recommends that you replace the NORM instruc-
tions with NORM *+ when you want the default increment modification.
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Syntax Direct: OPL [#lk ], dma
Indirect: OPL [#lk ], {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
lk: 16-bit constant
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing with long immediate not specified
0123456789101112131415

010011010 dma

Indirect addressing with long immediate not specified
0123456789101112131415

110011010 See Section 5.2

Direct addressing with long immediate specified

dma
0123456789101112131415

010111010
16-Bit Constant

Indirect addressing with long immediate specified
0123456789101112131415

110111010

16-Bit Constant

See Section 5.2

Execution Long immediate not specified:
(PC) + 1  →  PC
(dma)  OR  (DBMR)  →  dma

Long immediate specified:
(PC) +2 →  PC
(dma)  OR  lk  →  dma

Status Bits Affects: TC

Description If a long immediate constant is specified, the constant is ORed with the con-
tents of the data memory address (dma). If a constant is not specified, the con-
tents of the dma are ORed with the contents of the dynamic bit manipulation
register (DBMR). In both cases, the result is written directly back to the dma
and the contents of the accumulator (ACC) are unaffected. If the result of the
OR operation is 0, the TC bit is set; otherwise, the TC bit is cleared.

OPL is a parallel logic unit (PLU) instruction (see Table 6–6).

1 (Long immediate not specified)

2 (Long immediate specified)

Words
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2,
2n+1†

2n–2+p

External 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate specified)

Operand ROM DARAM SARAM External Memory

DARAM 2 2 2 2+2p

SARAM 2 2 2 2+2p

External 3+2d 3+2d 3+2d 6+2d+2p

Cycles for a Repeat (RPT) Execution (long immediate specified)

Operand ROM DARAM SARAM External Memory

DARAM n+1 n+1 n+1 n+1+2p

SARAM 2n–1 2n–1 2n–1,
2n+2†

2n–1+2p

External 4n–1+2nd 4n–1+2nd 4n–1+2nd 4n+2+2nd+2p

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 OPL DAT10 ;(DP=6)

Before Instruction After Instruction

DBMR FFF0h DBMR  FFF0h

Data Memory Data Memory
30Ah 0001h 30Ah FFF1h

Example 2 OPL #0FFFh,DAT10 ;(DP=6)

Before Instruction After Instruction

Data Memory Data Memory
30Ah 0001h 30Ah 0FFFh

Example 3 OPL *,AR6

Before Instruction After Instruction

ARP 3 ARP 6

AR3 300h AR3 300h

DBMR 00F0h DBMR 00F0h

Data Memory Data Memory
300h 000Fh 300h 00FFh

Example 4 OPL #1111h,*,AR3

Before Instruction After Instruction

ARP 6 ARP 3

AR6 306h AR6 306h

Data Memory Data Memory
306h 0Eh 306h 111Fh
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Syntax Direct: OR dma
Indirect: OR {ind} [,ARn]
Long immediate: OR #lk [,shift ]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
lk: 16-bit constant
0 ≤ shift ≤ 16
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

010110110 dma

Indirect addressing
0123456789101112131415

110110110 See Section 5.2

Long immediate addressing with shift
0123456789101112131415

SHFT †001111111101

16-Bit Constant
† See Table 6–1 on page 6-2.

Long immediate addressing with shift of 16
0123456789101112131415

0100000101111101

16-Bit Constant
† See Table 6–1 on page 6-2.

Execution Direct or indirect addressing:
(PC) + 1  →  PC
(ACC(15–0))  OR  (dma)  →  ACC(15–0)
(ACC(31–16))  →  ACC(31–16)

Long immediate addressing:
(PC) + 2 →  PC
(ACC)  OR  (lk � 2shift )  →  ACC

Status Bits Does not affect: C
Not affected by: SXM Long immediate addressing
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Description If a long immediate constant is specified, the constant is shifted, as defined by
the shift code, and zero-extended on both ends and is ORed with the contents
of the accumulator (ACC). The result is stored in the ACC. If a constant is not
specified, the contents of the data memory address (dma) are ORed with the
contents of the accumulator low byte (ACCL). The result is stored in the ACCL
and the contents of the accumulator high byte (ACCH) are unaffected.

OR is an accumulator memory reference instruction (see Table 6–4).

1 (Direct or indirect addressing)

2 (Long immediate addressing)

For the long immediate addressing modes, the OR instruction is not repeat-
able.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

Words

Cycles
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Example 1 OR DAT8 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
408h F000h 408h F000h

ACC X 0010 0002h ACC X 0010 F002h

C C

Example 2 OR *,AR0

Before Instruction After Instruction

ARP 1 ARP 0

AR1 300h AR1 300h

Data Memory Data Memory
300h 1111h 300h 1111h

ACC X 222h ACC X 1333h

C C

Example 3 OR #08111h,8

Before Instruction After Instruction

ACC X 00FF 0000h ACC X 00FF 1100h

C C
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Syntax ORB

Operands None

Opcode 0123456789101112131415
1100100001111101

Execution (PC) + 1 →  PC
(ACC)  OR  (ACCB)  →  ACC

Status Bits None affected.

Description The contents of the accumulator (ACC) are ORed with the contents of the ac-
cumulator buffer (ACCB). The result is stored in the ACC and the contents of
the ACCB are unaffected.

ORB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example ORB

Before Instruction After Instruction

ACC X 5555 5555h ACC X 5555 5557h

C C

ACCB 0000 0002h ACCB 0000 0002h

Cycles
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Syntax Direct: OUT dma , PA
Indirect: OUT {ind}, PA [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤  port address PA ≤ 65535
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

dma000110000

16-Bit Constant

Indirect addressing
0123456789101112131415

100110000

16-Bit Constant

See Section 5.2

Execution (PC) + 2  →  PC
While (repeat counter) ≠ 0

Port address →  address bus A15–A0
(dma)  →  data bus D15–D0 
Port address + 1 →  Port address
(repeat counter – 1)  →  (repeat counter)
(dma)  →  Port address

Status Bits None affected.

Description A 16-bit value from the data memory address (dma) is written to the specified
I/O port. The IS line goes low to indicate an I/O access, and the STRB, R/W,
and READY timings are the same as for an external data memory write. While
port addresses 50h–5Fh are memory-mapped (see subsection 9.1.1,
Memory-Mapped Peripheral Registers and I/O Ports); the other port address-
es are not.

You can use the RPT instruction with the OUT instruction to write consecutive
words in data memory to I/O space. The number of words to be moved is one
greater than the number contained in the repeat counter register (RPTC) at the
beginning of the instruction. When used with the RPT instruction, the OUT
instruction becomes a single-cycle instruction, once the RPT pipeline is
started, and the port address is incremented after each access.

OUT is an I/O and data memory operation instruction (see Table 6–9).

Words 2
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

Source: DARAM 3+iodst 3+iodst 3+iodst 5+iodst+2pcode

Source: SARAM 3+iodst 3+iodst 3+iodst , 4+iodst† 5+iodst+2pcode

Source: External 3+dsrc+iodst 3+dsrc+iodst 3+dsrc+iodst 6+dsrc+iodst+2pcode

† If the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

Source: DARAM 3n+niodst 3n+niodst 3n+niodst 3n+3+niodst+2pcode

Source: SARAM 3n+niodst 3n+niodst 3n+niodst , 
3n+1+niodst†

3n+3+niodst+2pcode

Source: External 5n–2+ndsrc
+niodst

5n–2+ndsrc+
+niodst

5n–2+ndsrc
+niodst

5n+1+ndsrc+niodst
+2pcode

† If the source operand and the code are in the same SARAM block

Example 1 OUT DAT0,57h ;(DP = 4) Output data word stored in data memory

  ;location 200h to peripheral on I/O port 57h.

Example 2 OUT *,PA15 ;Output data word referenced by current auxiliary

;register to peripheral on port address 15

;(i.e., I/O port 5Fh).

Cycles
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Syntax PAC

Operands None

Opcode 0123456789101112131415
1100000001111101

Execution (PC) + 1  →  PC
(shifted PREG)  →  ACC

Status Bits Affected by: PM

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and loaded into the accumulator (ACC).

PAC is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example PAC ;(PM = 0)

Before Instruction After Instruction

PREG 144h PREG 144h

ACC X 23h ACC X 144h

C C

Cycles
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Syntax POP

Operands None

Opcode 0123456789101112131415
0100110001111101

Execution (PC) + 1 →  PC
(TOS)  →  ACC(15–0)
0  →  ACC(31–16)
Pop stack one level

Status Bits None affected.

Description The contents of the top of the stack (TOS) are copied to the accumulator low
byte (ACCL). The stack is popped one level after the contents are copied. The
accumulator high byte (ACCH) is zero-filled.

The hardware stack is last-in, first-out with eight locations. Any time a pop oc-
curs, every stack value is copied to the next higher stack location, and the top
value is removed from the stack. After a pop, the bottom two stack words have
the same value. Because each stack value is copied, if more than seven stack
pops (POP, POPD, RET, RETC, RETE, or RETI instructions) occur before any
pushes occur, all levels of the stack contain the same value. No provision ex-
ists to check stack underflow.

POP is a control instruction (see Table 6–10).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Cycles
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Example POP

Before Instruction After Instruction

ACC X 82h ACC X 45h

C C

Stack 45h Stack 16h

16h   7h

  7h 33h

33h 42h

42h 56h

56h 37h

37h 61h

61h 61h
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Syntax Direct: POPD dma
Indirect: POPD {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001010001 dma

Indirect addressing
0123456789101112131415

101010001 See Section 5.2

Execution (PC) + 1 →  PC
(TOS)  →  dma
Pop stack one level

Status Bits None affected.

Description The contents of the top of the stack (TOS) are copied to the data memory ad-
dress (dma). The values are popped one level in the lower seven locations of
the stack. The value in the lowest stack location is unaffected. See the POP
instruction, page 6-194, for more information.

POPD is a control instruction (see Table 6–10).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 POPD DAT10 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
40Ah 55h 40Ah 92h

Stack 92h Stack 72h

72h   8h

  8h 44h

44h 81h

81h 75h

75h 32h

32h AAh

AAh AAh

Example 2 POPD *+,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 300h AR0 301h

Data Memory Data Memory
300h 55h 300h 92h

Stack 92h Stack 72h

72h   8h

  8h 44h

44h 81h

81h 75h

75h 32h

32h AAh

AAh AAh
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Syntax Direct: PSHD dma
Indirect: PSHD {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001101110 dma

Indirect addressing
0123456789101112131415

101101110 See Section 5.2

Execution (dma)  →  TOS
(PC) + 1  →  PC
Push all stack locations down one level

Status Bits None affected.

Description The contents of the data memory address (dma) are copied to the top of the
stack (TOS). The values are pushed down one level in the lower seven loca-
tions of the stack. The value in the lowest stack location is lost. See the PUSH
instruction, page 6-200, for more information.

PSHD is a control instruction (see Table 6–10).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 PSHD DAT127 ;(DP = 3)

Before Instruction After Instruction

Data Memory Data Memory
1FFh 65h 1FFh 65h

Stack   2h Stack 65h

33h   2h

78h 33h

99h 78h

42h 99h

50h 42h

  0h 50h

  0h   0h

Example 2 PSHD *,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 1FFh AR0 1FFh

Data Memory Data Memory
1FFh 12h 1FFh 12h

Stack   2h Stack 12h

33h   2h

78h 33h

99h 78h

42h 99h

50h 42h

  0h 50h

  0h   0h
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Syntax PUSH

Operands None

Opcode 0123456789101112131415
0011110001111101

Execution (PC) + 1 →  PC
Push all stack locations down one level
ACC(15–0)  →  TOS

Status Bits None affected.

Description The values are pushed down one level in the lower seven locations of the
stack. The contents of the accumulator low byte (ACCL) are copied to the top
of the stack (TOS). The values on the stack are pushed down before the ACC
value is copied.

The hardware stack is last-in, first-out with eight locations. If more than eight
pushes (CALA, CALL, CC, INTR, NMI, PSHD, PUSH, or TRAP instructions)
occur before a pop, the first data values written are lost with each succeeding
push.

PUSH is a control instruction (see Table 6–10).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Cycles
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Example PUSH

Before Instruction After Instruction

ACC X   7h ACC X   7h

C C

Stack   2h Stack   7h

  5h   2h

  3h   5h

  0h   3h

12h   0h

86h 12h

54h 86h

3Fh 54h
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Syntax RET

Operands None

Opcode 0123456789101112131415
0000000011110111

Execution (TOS)  →  PC
Pop stack one level

Status Bits None affected.

Description The contents of the top of the stack (TOS) are copied to the program counter
(PC). The stack is popped one level after the contents are copied. The RET
instruction is used with the CALA, CALL, and CC instructions for subroutines.

RET is a branch and call instruction (see Table 6–8).

Words 1

The RET instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example RET

Before Instruction After Instruction

PC 96h PC 37h

Stack 37h Stack 45h

45h 75h

75h 21h

21h 3Fh

3Fh 45h

45h 6Eh

6Eh 6Eh

6Eh 6Eh

Cycles
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Syntax RETC  cond [, cond1] [,...]

Operands Conditions: ACC = 0 EQ
ACC ≠ 0 NEQ
ACC < 0 LT
ACC ≤ 0 LEQ
ACC > 0 GT
ACC ≥ 0 GEQ
C = 0 NC
C = 1 C
OV = 0 NOV
OV = 1 OV
BIO low BIO
TC = 0 NTC
TC = 1 TC
Unconditional UNC

Opcode 0123456789101112131415
ZLVC †ZLVC †TP †110111

† See Table 6–1 on page 6-2.

Execution If (condition(s)):
(TOS)  →  PC
Pop stack one level

Else, continue

Status Bits None affected.

Description If the specified conditions are met, the contents of the top of the stack (TOS)
are copied to the program counter (PC). The stack is popped one level after
the contents are copied. Not all combinations of the conditions are meaningful.
If the specified conditions are not met, control is passed to the next instruction.

RETC is a branch and call instruction (see Table 6–8).

Words 1

The RETC instruction is not repeatable.

Cycles for a Single Instruction

Condition ROM DARAM SARAM External Memory

True 4 4 4 4+3p†

False 2 2 2 2+p

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Cycles
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Example RETC GEQ,NOV ;A return, RET, is executed if the

              ;accummulator contents are positive and the

              ;OV bit is a zero.
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Syntax RETCD  cond [, cond1] [,...]

Operands Conditions: ACC = 0 EQ
ACC ≠ 0 NEQ
ACC < 0 LT
ACC ≤ 0 LEQ
ACC > 0 GT
ACC ≥ 0 GEQ
C = 0 NC
C = 1 C
OV = 0 NOV
OV = 1 OV
BIO low BIO
TC = 0 NTC
TC = 1 TC
Unconditional UNC

Opcode 0123456789101112131415
ZLVC †ZLVC †TP †111111

† See Table 6–1 on page 6-2.

Execution If (condition(s)):
(TOS)  →  PC
Pop stack one level

Else, continue

Status Bits None affected.

Description The one 2-word instruction or two 1-word instructions following the RETCD
instruction are fetched from program memory and executed before the execu-
tion of the return. The two instruction words following the RETCD instruction
have no effect on the conditions being tested.

After the instructions are executed if the specified conditions are met, the con-
tents of the top of the stack (TOS) are copied to the program counter (PC). The
stack is popped one level after the contents are copied. Not all combinations
of the conditions are meaningful. If the specified conditions are not met, control
is passed to the next instruction.

RETCD is a branch and call instruction (see Table 6–8).

Words 1

The RETCD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+p

Cycles
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Example RETCD C     ;A return, RET, is executed if the carry

MAR *,4     ;bit is set. The two instructions following

LAR AR3,#1h ;the return instruction are executed

            ;before the return is taken.
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Syntax RETD

Operands None

Opcode 0123456789101112131415
0000000011111111

Execution (TOS)  →  PC
Pop stack one level

Status Bits None affected.

Description The one 2-word instruction or two 1-word instructions following the RETD
instruction are fetched from program memory and executed before the execu-
tion of the return.

After the instructions are executed the contents of the top of the stack (TOS)
are copied to the program counter (PC). The stack is popped one level after
the contents are copied.

RETD is a branch and call instruction (see Table 6–8).

Words 1

The RETD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+p

Example RETD

MAR *,4

LACC #1h

Before Instruction After Instruction

PC 96h PC 37h

ARP 0 ARP 4

ACC 0h ACC 01h

Stack 37h Stack 45h

45h 75h

75h 21h

21h 3Fh

3Fh 45h

45h 6Eh

6Eh 6Eh

6Eh 6Eh

Cycles
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Syntax RETE

Operands None

Opcode 0123456789101112131415
0101110001111101

Execution (TOS)  →  PC
Pop stack one level
0  →  INTM

Status Bits Affects: ARB, ARP, AVIS, BRAF, C, CNF, DP, HM, INTM, MP/MC, NDX, OV,
OVLY, OVM, PM, RAM, SXM, TC, TRM, and XF

Description The contents of the top of the stack (TOS) are copied to the program counter
(PC). The stack is popped one level after the contents are copied. The RETE
instruction automatically clears the INTM bit and pops the shadow register val-
ues (see the RETI description, page 6-209).

The RETE instruction is the equivalent of clearing the INTM bit and executing
a RETI instruction.

RETE is a branch and call instruction (see Table 6–8).

Words 1

The RETE instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example RETE

Before Instruction After Instruction

PC     96h PC     37h

ST0 xx6xh ST0 xx4xh

Stack     37h Stack     45h

    45h     75h

    75h     21h

    21h     3Fh

    3Fh     45h

    45h     6Eh

    6Eh     6Eh

    6Eh     6Eh

Cycles
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Syntax RETI

Operands None

Opcode 0123456789101112131415
0001110001111101

Execution (TOS) →  PC
Pop stack one level

Status Bits Affects: Does not affect:
ARB, ARP, AVIS, BRAF, C, CNF, DP, INTM
HM, MP/MC, NDX, OV, OVLY, OVM,
PM, RAM, SXM, TC, TRM, and XF

Description The contents of the top of the stack (TOS) are copied to the program counter
(PC). The values in the shadow registers (stored when an interrupt was taken)
are returned to their corresponding strategic registers. The following registers
are shadowed: ACC, ACCB, ARCR, INDX, PMST, PREG, ST0, ST1, TREG0,
TREG1, and TREG2. The INTM bit in ST0 and the XF bit in ST1 are not saved
or restored to or from the shadow registers during an interrupt service routine
(ISR).

RETI is a branch and call instruction (see Table 6–8).

Words 1

The RETI instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example RETI

Before Instruction After Instruction

PC 96h PC 37h

Stack 37h Stack 45h

45h 75h

75h 21h

21h 3Fh

3Fh 45h

45h 6Eh

6Eh 6Eh

6Eh 6Eh

Cycles
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Syntax ROL

Operands None

Opcode 0123456789101112131415
0011000001111101

Execution (PC)  + 1  →  PC
C  →  ACC(0)
(ACC(31))  →  C
(ACC(30–0))  →  ACC(31–1)

Status Bits Not affected by: Affects:
SXM C

Description The contents of the accumulator (ACC) are rotated left 1 bit. The value of the
C bit is shifted into the LSB of the ACC. The MSB of the original ACC is shifted
into the C bit.

MSB LSBACCC
(2)

(1)

ROL is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example ROL

Before Instruction After Instruction

ACC 0 B000 1234h ACC 1 6000 2468h

C C

Cycles
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Syntax ROLB

Operands None

Opcode 0123456789101112131415
0010100001111101

Execution (PC)  + 1  →  PC
C  →  ACCB(0)
(ACCB(30–0))  →  ACCB(31–1)
(ACCB(31))  →  ACC(0)
(ACC(30–0))  →  ACC(31–1)
(ACC(31))  →  C

Status Bits Not affected by: Affects:
SXM C

Description The ROLB instruction causes a 65-bit rotation. The contents of both the accu-
mulator (ACC) and accumulator buffer (ACCB) are rotated left 1 bit. The value
of the C bit is shifted into the LSB of the ACCB. The MSB of the original ACCB
is shifted into the LSB of the ACC. The MSB of the original ACC is shifted into
the C bit.

MSB LSBACCBMSB LSBACCC
(3) (2)

(1)

ROLB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example ROLB

Before Instruction After Instruction

ACC 1 0808 0808h ACC 0 1010 1011h

C C

ACCB FFFF FFFEh ACCB FFFF FFFDh

Cycles
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Syntax ROR

Operands None

Opcode 0123456789101112131415
1011000001111101

Execution (PC) + 1  →  PC
C  →  ACC(31)
(ACC(0))  →  C
(ACC(31–1))  →  ACC(30–0)

Status Bits Not affected by: Affects:
SXM C

Description The contents of the accumulator (ACC) are rotated right 1 bit. The value of the
C bit is shifted into the MSB of the ACC. The LSB of the original ACC is shifted
into the C bit.

MSB LSBACCC
(1)

(2)

ROR is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycle Timings for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example ROR

Before Instruction After Instruction

ACC 0 B000 1235h ACC 1 5800 091Ah

C C

Cycles
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Syntax RORB

Operands None

Opcode
1010100001111101
0123456789101112131415

Execution (PC) + 1  →  PC
C  →  ACC(31)
(ACC(31–1))  →  ACC(30–0)
(ACC(0))  →  ACCB(31)
(ACCB(31–1))  →  ACCB(30–0)
(ACCB(0))  →  C

Status Bits Not affected by: Affects:
SXM C

Description The RORB instruction causes a 65-bit rotation. The contents of both the accu-
mulator (ACC) and accumulator buffer (ACCB) are rotated right 1 bit. The val-
ue of the C bit is shifted into the MSB of the ACC. The LSB of the original ACC
is shifted into the MSB of the ACCB. The LSB of the original ACCB is shifted
into the C bit.

MSB LSBACCBMSB LSBACCC
(1) (2)

(3)

RORB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example RORB

Before Instruction After Instruction

ACC 1 0808 0808h ACC 0 8404 0404h

C C

ACCB FFFF FFFEh ACCB 7FFF FFFFh

Cycles
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Syntax Direct: RPT dma 
Indirect: RPT {ind} [,ARn]
Short immediate: RPT #k
Long immediate: RPT #lk

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤ k ≤ 255
0 ≤ lk ≤ 65535
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011010000 dma

Indirect addressing
0123456789101112131415

111010000 See Section 5.2

Short immediate addressing
0123456789101112131415

8-Bit Constant11011101

Long immediate addressing
0123456789101112131415

0010001101111101
16-Bit Constant

Execution Direct or indirect addressing:
(PC) + 1 →  PC
(dma)  →  RPTC

Short immediate addressing:
(PC) + 1 →  PC
k  →  RPTC

Long immediate addressing:
(PC) + 2  →  PC
lk  →  RPTC

Status Bits None affected.

Description The contents of the data memory address (dma), an 8-bit constant, or a 16-bit
constant are loaded into the repeat counter register (RPTC). The instruction
following the RPT instruction is repeated n times, where n is one more than
the initial value of the RPTC.
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Since the RPTC cannot be saved during a context switch, repeat loops are
regarded as multicycle instructions and are not interruptible. However, the
processor can halt a repeat loop in response to an external HOLD signal. The
execution restarts when HOLD/HOLDA are deasserted. The RPTC is cleared
on a device reset.

The RPT instruction is especially useful for block moves, multiply-accumu-
lates, normalization, and other functions. RPT is a control instruction (see
Table 6–10).

1 (Direct, indirect, or short immediate addressing)

2 (Long immediate addressing)

The RPT instruction is not repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example 1 RPT DAT127 ;(DP = 31)

Before Instruction After Instruction

Data Memory Data Memory
0FFFh 0Ch 0FFFh 0Ch

RPTC 0h RPTC 0Ch

Example 2 RPT *,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 300h AR0 300h

Data Memory Data Memory
300h 0FFFh 300h 0FFFh

RPTC 0h RPTC 0FFFh

Words

Cycles



 6-216

Example 3 RPT #1 ;Repeat next instruction 2 times.

Before Instruction After Instruction

RPTC 0h RPTC 1h

Example 4 RPT #1111h ;Repeat next instruction 4370 times.

Before Instruction After Instruction

RPTC 0h RPTC 1111h
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Syntax RPTB  pma

Operands 0 ≤ pma ≤ 65535

Opcode 0123456789101112131415

0110001101111101

16-Bit Constant

Execution 1  →   BRAF
(PC) + 2  →  PASR
pma  →  PAER

Status Bits Affected by: Affects:
BRAF BRAF

Description A block of instructions to be repeated a number of times is specified by the
memory-mapped block repeat counter register (BRCR) without any penalty for
looping. The BRCR must be loaded before execution of an RPTB instruction.
When the RPTB instruction is executed, the BRAF bit is set, the block repeat
program address start register (PASR) is loaded with the contents of the pro-
gram counter (PC) + 2, and the block repeat program address end register
(PAER) is loaded with the program memory address (pma). Block repeat can
be deactivated by clearing the BRAF bit. The number of loop iterations is given
as (BRCR) + 1.

The RPTB instruction is interruptible. However, RPTB instructions cannot be
nested unless the BRAF bit is properly set and the BRCR, PAER, and PASR
are appropriately saved and restored. Single-instruction repeat loops (RPT
and RPTZ) can be included as part of RPTB blocks.

Note:

The repeat block must contain at least 3 instruction words for proper
operation.

RPTB is a control instruction (see Table 6–10).

Words 2
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The RPTB instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example SPLK  #iterations_minus_1,BRCR   ;initialize BRCR

RPTB  end_block – 1

LACC  DAT1

ADD   DAT2

SACL  DAT1

end_block

Cycles
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Syntax RPTZ  #lk

Operands 0 ≤ lk ≤ 65535

Opcode 0123456789101112131415

1010001101111101

16-Bit Constant

Execution 0  →   ACC
0  →  PREG
(PC) + 1 →  PC
lk  →  RPTC

Status Bits None affected.

Description The contents of the accumulator (ACC) and product register (PREG) are
cleared. The 16-bit constant, lk, is loaded into the repeat counter register
(RPTC). The instruction following the RPTZ instruction is repeated lk + 1
times. The RPTZ instruction is equivalent to the following instruction sequence:

MPY #0
PAC
RPT #<lk>

RPTZ is a control instruction (see Table 6–10).

Words 2

The RPTZ instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example RPTZ #7FFh  ;Zero product register and accumulator.

MACD pma,*+  ;Repeat MACD 2048 times.

Cycles
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Syntax SACB

Operands None

Opcode 0123456789101112131415
0111100001111101

Execution (PC) + 1  →  PC
(ACC)  →  ACCB

Status Bits None affected.

Description The contents of the accumulator (ACC) are copied to the accumulator buffer
(ACCB). The contents of the ACC are unaffected.

SACB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example SACB

Before Instruction After Instruction

ACC 7C63 8421h ACC 7C63 8421h

ACCB 5h ACCB 7C63 8421h

Cycles
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Syntax Direct: SACH dma [,shift2]
Indirect: SACH {ind} [,shift2[,ARn]]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤ shift2 ≤ 7 (defaults to 0)
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

0SHF †11001 dma
† See Table 6–1 on page 6-2.

Indirect addressing
0123456789101112131415

1SHF †11001 See Section 5.2
† See Table 6–1 on page 6-2.

Execution (PC) + 1  →  PC
(ACC) � 2shift2 →  dma

Status Bits Not affected by: SXM

Description The contents of the accumulator (ACC) are shifted left from 0 to 7 bits, as
defined by the shift code, and the high-order bits are stored in the data memory
address (dma). During shifting, the high-order bits are lost. The contents of the
ACC are unaffected.

SACH is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 SACH DAT10,1 ;(DP = 4)

Before Instruction After Instruction

ACC X 0420 8001h ACC X 0420 8001h

C C

Data Memory Data Memory
20Ah 0h 20Ah 0841h

Example 2 SACH *+,0,AR2

Before Instruction After Instruction

ARP 1 ARP 2

AR1 300h AR1 301h

ACC X 0420 8001h ACC X 0420 8001h

C C

Data Memory Data Memory
300h 0h 300h 0420h
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Syntax Direct: SACL  dma [,shift2]
Indirect: SACL  {ind} [,shift2[,ARn]]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
0 ≤ shift2 ≤ 7 (defaults to 0)
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

0SHF †01001 dma
† See Table 6–1 on page 6-2.

Indirect addressing
0123456789101112131415

1SHF †01001 See Section 5.2
† See Table 6–1 on page 6-2.

Execution (PC) + 1  →  PC
(ACC(15–0)) � 2shift2  →  dma

Status Bits Not affected by: SXM

Description The contents of the accumulator low byte (ACCL) are shifted left from 0 to 7
bits, as defined by the shift code, and stored in the data memory address
(dma). During shifting, the low-order bits are zero-filled and the high-order bits
are lost. The contents of the ACC are unaffected.

SACL is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 SACL DAT11,1 ;(DP = 4)

Before Instruction After Instruction

ACC X 7C63 8421h ACC X 7C63 8421h

C C

Data Memory Data Memory
20Bh 05h 20Bh 0842h

Example 2 SACL *,0,AR7

Before Instruction After Instruction

ARP 6 ARP 7

AR6 300h AR6 300h

ACC X 00FF 8421h ACC X 00FF 8421h

C C

Data Memory Data Memory
300h 05h 300h 8421h
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Syntax Direct: SAMM dma
Indirect: SAMM {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000010001 dma

Indirect addressing
0123456789101112131415

100010001 See Section 5.2

Execution (PC) + 1  →  PC
(ACC(15–0))  →  dma(0–7)

Status Bits None affected.

Description The contents of the accumulator low byte (ACCL) are copied to the addressed
memory-mapped register. The 9 MSBs of the data memory address are
cleared, regardless of the current value of the data memory page pointer (DP)
bits or the upper 9 bits of the current AR. The SAMM instruction allows the ACC
to be stored to any memory location on data memory page 0 without modifying
the DP bits.

SAMM is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

MMR† 1 1 1 1+p

MMPORT 2+iodst 2+iodst 2+iodst 4+iodst

† Add one more cycle if source is a peripheral memory-mapped register access

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

MMR‡ n n n n+p

MMPORT 2+niodst 2+niodst 2+niodst 2n+2+p+p niodst

‡ Add n more cycles if source is a peripheral memory-mapped register access

Cycles
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Example 1 SAMM PRD ;(DP = 6)

Before Instruction After Instruction

ACC 80h  ACC 80h

PRD 05h PRD 80h

Data Memory Data Memory
325h 0Fh 325h 0Fh

Example 2 SAMM *,AR2 ;(BMAR = 1Fh)

Before Instruction After Instruction

ARP 7 ARP 2

AR7 31Fh AR7 31Fh

ACC 080h ACC 080h

BMAR 0h BMAR 080h

Data Memory Data Memory
31Fh 11h 31Fh 11h
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Syntax Direct:  SAR ARx, dma
Indirect: SAR ARx,{ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ x ≤ 7
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

0ARX †00001 dma
† See Table 6–1 on page 6-2.

Indirect addressing
0123456789101112131415

1ARX †00001 See Section 5.2
† See Table 6–1 on page 6-2.

Execution (PC) + 1 →  PC
(AR)  →  dma

Status Bits Affected by: NDX

Description The contents of the auxiliary register (AR) are stored in the data memory ad-
dress (dma). When the contents of the current AR are modified in the indirect
addressing mode, the SAR instruction stores the value of the AR contents be-
fore it is incremented, decremented, or indexed by the contents of the index
register (INDX).

You can maintain software compatibility with the ’C2x by clearing the NDX bit.
This causes any ’C2x instruction that loads AR0 to load the auxiliary register
compare register (ARCR) and INDX also, maintaining ’C5x object-code com-
patibility with the ’C2x.

The SAR and LAR (load auxiliary register) instructions can be used to store
and load the ARs during subroutine calls and interrupts. If an AR is not being
used for indirect addressing, LAR and SAR enable the register to be used as
an additional storage register, especially for swapping values between data
memory locations without affecting the contents of the accumulator (ACC).

SAR is an auxiliary registers and data memory page pointer instruction (see
Table 6–5).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SAR AR0,DAT30 ;(DP = 6)

Before Instruction After Instruction

AR0 37h AR0 37h

Data Memory Data Memory
31Eh 18h 31Eh 37h

Example 2 SAR AR0,*+

Before Instruction After Instruction

AR0 401h AR0 402h

Data Memory Data Memory
401h 0h 401h 401h

Cycles
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Syntax SATH

Operands None

Opcode 0123456789101112131415
0101101001111101

Execution (PC) + 1  →  PC
16 � (TREG1(4))  →  count
 (ACC) right-shifted by count  →  ACC

Status Bits Affected by: Does not affect:
SXM C

Description The SATH instruction, in conjunction with the SATL instruction, allows for a
2-cycle 0- to 31-bit shift right. The contents of the accumulator (ACC) are bar-
rel-shifted right 16 bits as defined by bit 4 of TREG1. If bit 4 of TREG1 is set,
the contents of the ACC are barrel-shifted right by 16 bits. If bit 4 of TREG1
is cleared, the contents of the ACC are unaffected.

If the SXM bit is cleared, the high-order bits are zero-filled; if the SXM bit is set,
the high-order bits of the ACC are filled with copies of ACC bit 31. The C bit
is unaffected.

SATH is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 SATH ;(SXM = 0)

Before Instruction After Instruction

ACC X FFFF 0000h ACC X 0000 FFFFh

C C

TREG1 xx1xh TREG1 xx1xh

Cycles
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Example 2 SATH ;(SXM = 1)

Before Instruction After Instruction

ACC X FFFF 0000h ACC X FFFF FFFFh

C C

TREG1 xx1xh TREG1 xx1xh
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Syntax SATL

Operands None

Opcode 0123456789101112131415
1101101001111101

Execution (PC) + 1 →  PC
(TREG1(3–0)) →  count
(ACC) right-shifted by count  →  ACC

Status Bits Affected by: Does not affect:
SXM C

Description The SATL instruction, in conjunction with the SATH instruction, allows for a
2-cycle 0- to 31-bit shift right. The contents of the accumulator (ACC) are bar-
rel-shifted right 0 to 15 bits as defined by the 4 LSBs of TREG1.

If the SXM bit is cleared, the high-order bits are zero-filled; if the SXM bit is set,
the high-order bits of the ACC are filled with copies of ACC bit 31. The C bit
is unaffected.

SATL is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 SATL ;(SXM = 0)

Before Instruction After Instruction

ACC X FFFF 0000h ACC X 3FFF C000h

C C

TREG1 x2h TREG1 x2h

Example 2 SATL ;(SXM = 1)

Before Instruction After Instruction

ACC X FFFF 0000h ACC X FFFF C000h

C C

TREG1 x2h TREG1 x2h

Cycles
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Syntax SBB

Operands None

Opcode 0123456789101112131415
0001100001111101

Execution (PC) + 1  →  PC
(ACC) – (ACCB)  →  ACC

Status Bits Affects: C

Description The contents of the accumulator buffer (ACCB) are subtracted from the con-
tents of the accumulator (ACC). The result is stored in the ACC and the con-
tents of the ACCB are unaffected. The C bit is cleared, if the result of the sub-
traction generates a borrow; otherwise, the C bit is set.

SBB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example SBB

Before Instruction After Instruction

ACC X 2000 0000h ACC 1 1000 0000h

C C

ACCB 1000 0000h ACCB 1000 0000h

Cycles
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Syntax SBBB

Operands None

Opcode 0123456789101112131415
1001100001111101

Execution (PC) + 1  →  PC
(ACC) – (ACCB) – (logical inversion of C)  →  ACC

Status Bits Affects: C

Description The contents of the accumulator buffer (ACCB) and the logical inversion of the
C bit are subtracted from the contents of the accumulator (ACC). The result
is stored in the ACC and the contents of the ACCB are unaffected. The C bit
is cleared, if the result of the subtraction generates a borrow; otherwise, the
C bit is set.

SBBB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 SBBB

Before Instruction After Instruction

ACC 1 2000 0000h ACC 1 1000 0000h

C C

ACCB 1000 0000h ACCB 1000 0000h

Example 2 SBBB

Before Instruction After Instruction

ACC 0 0009 8012h ACC 1         01h

C C

ACCB 0009 8010h ACCB 0009 8010h

Cycles
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Syntax SBRK  #k

Operands 0 ≤ k ≤ 255

Opcode 0123456789101112131415
8-Bit Constant00111110

Execution (PC) + 1  →  PC
(current AR) – 8-bit positive constant →  current AR

Status Bits None affected.

Description The 8-bit immediate value, right-justified, is subtracted from the current auxil-
iary register (AR). The result is stored in the current AR. The subtraction takes
place in the auxiliary register arithmetic unit (ARAU), with the immediate value
treated as a 8-bit positive integer.

SBRK is an auxiliary registers and data memory page pointer instruction (see
Table 6–5).

Words 1

The SBRK instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Example SBRK #0FFh

Before Instruction After Instruction

ARP 7 ARP 7

AR7 0h AR7 FF01h

Cycles
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Syntax SETC control bit

Operands control bit : {C, CNF, HM, INTM, OVM, SXM, TC, XF}

Opcode SETC OVM  (Set overflow mode)
0123456789101112131415
1100001001111101

 SETC SXM (Set sign extension mode)
0123456789101112131415
1110001001111101

 SETC HM (Set hold mode)
0123456789101112131415
1001001001111101

SETC TC (Set test/control)
0123456789101112131415
1101001001111101

SETC C (Set carry)
0123456789101112131415
1111001001111101

SETC XF (Set external flag pin)
0123456789101112131415
1011001001111101

SETC CNF (Set configuration control)
0123456789101112131415
1010001001111101

 SETC INTM (Set interrupt mode)
0123456789101112131415
1000001001111101

Execution (PC) + 1  →  PC
1  →  control bit

Status Bits Affects selected control bit.

Description The specified control bit is set. The LST instruction can also be used to load
ST0 and ST1. See Section 4.4, Status and Control Registers, for more in-
formation on each control bit.

SETC is a control instruction (see Table 6–10).
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An IDLE instruction must not follow a SETC INTM instruction;
otherwise, an unmasked interrupt may take the device out of idle
before the INTM bit is set.

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example SETC TC ;TC is bit 11 of ST1

Before Instruction After Instruction

ST1 x1xxh ST1 x9xxh

Cycles
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Syntax SFL

Operands None

Opcode 0123456789101112131415
1001000001111101

Execution (PC) + 1  →  PC
(ACC(31))  →  C
(ACC(30–0))  →  ACC(31–1)
0  →  ACC(0)

Status Bits Not affected by: Affects:
SXM C

Description The contents of the accumulator (ACC) are shifted left 1 bit. The MSB of the
ACC is shifted into the C bit. The LSB of the ACC is filled with a 0. The SFL
instruction, unlike the SFR instruction, is unaffected by the SXM bit.

MSB LSBACCC
(1)

0
(2)

SFL is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example SFL

Before Instruction After Instruction

ACC X B000 1234h ACC 1 6000 2468h

C C

Cycles



 6-238

Syntax SFLB

Operands None

Opcode 0123456789101112131415
0110100001111101

Execution (PC) + 1  →  PC
0  →  ACCB(0)
(ACCB(30–0)) →  ACCB(31–1)
(ACCB(31))  →  ACC(0)
(ACC(30–0))  →  ACC(31–1)
(ACC(31) →  C

Status Bits Not affected by: Affects:
SXM C

Description The contents of both the accumulator (ACC) and accumulator buffer (ACCB)
are shifted left 1 bit. The LSB of the ACCB is filled with a 0, and the MSB of the
ACCB is shifted into the LSB of the ACC. The MSB of the ACC is shifted into
the C bit. The SFLB instruction, unlike the SFRB instruction, is unaffected by
the SXM bit.

MSB LSBACCBMSB LSBACCC
(3) (2)

0
(1)

SFLB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example SFLB

Before Instruction After Instruction

ACC X B000 1234h ACC 1 6000 2469h

C C

ACCB B000 1234h ACCB 6000 2468h

Cycles
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Syntax SFR

Operands None

Opcode 0123456789101112131415
0101000001111101

Execution (PC) + 1  →  PC

If SXM = 0:
0  →  ACC(31)

If SXM = 1
(ACC(31))  →  ACC(31)

(ACC(31–1))  →  ACC(30–0)
(ACC(0))  →  C

Status Bits Affected by: Affects:
SXM C

Description The contents of the accumulator (ACC) are shifted right 1 bit. The type of shift
is determined by the SXM bit. If the SXM bit is cleared, the SFR instruction pro-
duces a logic right shift. The MSB of the ACC is filled with a 0. The LSB of the
ACC is shifted into the C bit.

MSB LSBACC C
(1)

0
(2)

If the SXM bit is set, the SFR instruction produces an arithmetic right shift. The
MSB (sign bit) of the ACC is unchanged and is copied into ACC bit 30. The LSB
of the ACC is shifted into the C bit.

MSB LSBACC C
(1) (2)

SFR is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Cycles



 6-240

Example 1 SFR ;(SXM = 0)

Before Instruction After Instruction

ACC X B000 1234h ACC 0 5800 091Ah

C C

Example 2 SFR ;(SXM = 1)

Before Instruction After Instruction

ACC X B000 1234h ACC 0 D800 091Ah

C C
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Syntax SFRB

Operands None

Opcode 0123456789101112131415
1110100001111101

Execution (PC) + 1  →  PC

If SXM=0: 
0  →  ACC(31)

If SXM=1:
(ACC(31)) →  ACC(31)

(ACC(31–1))  →  ACC(30–0)
(ACC(0)) →  ACCB (31)
(ACCB(31–1))  →  ACCB(30–0)
(ACCB(0))  →  C

Status Bits Affected by: Affects:
SXM C

Description The contents of both the accumulator (ACC) and accumulator buffer (ACCB)
are shifted right 1 bit. The type of shift is determined by the SXM bit. If the SXM
bit is cleared, the SFR instruction produces a logic right shift. The MSB of the
ACC is filled with a 0. The LSB of the ACC is shifted into the MSB of the ACCB.
The LSB of the ACCB is shifted into the C bit.

MSB LSBACC C
(1) (2)

MSB LSBACCB
(3)

0

If the SXM bit is set, the SFR instruction produces an arithmetic right shift. The
MSB (sign bit) of the ACC is unchanged and is copied into ACC bit 30. The LSB
of the ACC is shifted into the MSB of the ACCB. The LSB of the ACCB is shifted
into the C bit.

MSB LSBACCBMSB LSBACC C
(1) (2) (3)

SFRB is an accumulator memory reference instruction (see Table 6–4).

Words 1
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Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 SFRB ;(SXM = 0)

Before Instruction After Instruction

ACC X B000 1235h ACC 0 5800 091Ah

C C

ACCB B000 1234h ACCB D800 091Ah

Example 2 SFRB ;(SXM = 1)

Before Instruction After Instruction

ACC X B000 1234h ACC 0 D800 091Ah

C C

ACCB B000 1234h ACCB 5800 091Ah

Cycles
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Syntax Direct: SMMR dma, #addr
Indirect: SMMR {ind}, #addr [,ARn]

Operands 0 ≤ addr ≤ 65535
0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

dma010010000

16-Bit Constant

Indirect addressing
0123456789101112131415

110010000

16-Bit Constant

See Section 5.2

Execution PFC →  MCS
(PC) + 2 →  PC
lk →  PFC
While (repeat counter ≠ 0):

(src, specified by lower 7 bits of dma) →  (dst, addressed by PFC)
(PFC) + 1 →  PFC
(repeat counter) – 1 →  repeat counter

MCS →  PFC

Status Bits None affected.

Description The memory-mapped register value pointed at by the lower 7 bits of the data
memory address (dma) is stored to the data memory location addressed by
the 16-bit source address, #addr. The 9 MSBs of the dma are cleared, regard-
less of the current value of the data memory page pointer (DP) bits or the upper
9 bits of the current AR. The SMMR instruction allows any memory location
on data memory page 0 to be stored anywhere in data memory without modify-
ing the DP bits.

When using the SMMR instruction with the RPT instruction, the destination ad-
dress, #addr, is incremented after every memory-mapped store operation.

SMMR is an I/O and data memory operation instruction (see Table 6–9).

Words 2
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Cycles for a Single Instruction 

Operand ROM DARAM SARAM External Memory

Destination: DARAM
Source: MMR‡

2 2 2 2+2pcode

Destination: SARAM
Source: MMR‡

2 2 2, 3† 2+2pcode

Destination: External
Source: MMR‡

3+ddst 3+ddst 3+ddst 5+ddst+2pcode

Destination: DARAM
Source: MMPORT

3+iosrc 3+iosrc 3+iosrc 4+iosrc+2pcode

Destination: SARAM
Source: MMPORT

3+iosrc 3+iosrc 3+iosrc, 4+iosrc† 3+iosrc+2pcode

Destination: External
Source: MMPORT

4+iosrc+ddst 4+iosrc+ddst 4+iosrc+ddst 6+iosrc+ddst+2pcode

† If the destination operand and the code are in the same SARAM block
‡ Add one more cycle for peripheral memory-mapped register access.

Cycles for a Repeat (RPT) Execution 

Operand ROM DARAM SARAM External Memory

Destination: DARAM
Source: MMR§

2n 2n 2n 2n+2pcode

Destination: SARAM
Source: MMR§

2n 2n 2n, 2n+2† 2n+2pcode

Destination: External
Source: MMR§

3n+nddst 3n+nddst 3n+nddst 3n+3+nddst+2pcode

Destination: DARAM
Source: MMPORT

2n+niosrc 2n+niosrc 2n+niosrc 2n+1+niosrc+2pcode

Destination: SARAM
Source: MMPORT

2n+niosrc 2n+niosrc 2n+niosrc,
2n+2+niosrc†

2n+1+niosrc+2pcode

Destination: External
Source: MMPORT

5n–2+nddst
+niosrc

5n–2+nddst
+niosrc

5n–2+nddst
+niosrc

5n+1+nddst+niosrc
+2pcode

† If the destination operand and the code are in the same SARAM block
§ Add n more cycles for peripheral memory-mapped register access.

Cycles
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Example 1 SMMR CBCR,#307h ;(DP = 6, CBCR = 1Eh)

Before Instruction After Instruction

Data Memory Data Memory
307h 1376h 307h 5555h

CBCR 5555h CBCR 5555h

Example 2 SMMR *,#307h,AR6 ;(CBCR = 1Eh)

Before Instruction After Instruction

ARP 6 ARP 6

AR6 F01Eh AR6 F01Eh

Data Memory Data Memory
307h 1376h 307h 5555h

CBCR 5555h CBCR 5555h
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Syntax SPAC

Operands None

Opcode 0123456789101112131415
1010000001111101

Execution (PC) + 1  →  PC
(ACC) – (shifted PREG)  →  ACC

Status Bits Affected by: Not affected by: Affects:
OVM and PM SXM C and OV

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and subtracted from the contents of the accumulator (ACC). The result
is stored in the ACC. The C bit is cleared, if the result of the subtraction gener-
ates a borrow; otherwise, the C bit is set. The SPAC instruction is not affected
by the SXM bit and the PREG is always sign extended.

The SPAC instruction is a subset of the LTS, MPYS, and SQRS instructions.
SPAC is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example SPAC ;(PM = 0)

Before Instruction After Instruction

PREG 1000 0000h PREG 1000 0000h

ACC X 7000 0000h ACC 1 6000 0000h

C C

Cycles
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Syntax Direct: SPH dma
Indirect: SPH {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

010110001 dma

Indirect addressing
0123456789101112131415

110110001 See Section 5.2

Execution (PC) + 1  →  PC
(PREG shifter output (31–16))  →  dma

Status Bits Affected by: PM

Description The contents of the product register (PREG) high byte are shifted, as defined
by the PM bits, and stored in the data memory address (dma). The contents
of the PREG and the accumulator (ACC) are unaffected. When the right-shift-
by-6 mode (PM is set to 112) is selected, high-order bits are sign extended.
When left shifts are selected, low-order bits are filled from the PREG low byte.

SPH is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 SPH DAT3 ;(DP = 4, PM = 0)

Before Instruction After Instruction

PREG FE07 9844h PREG FE07 9844h

203h 4567h 203h FE07h

Example 2 SPH *,AR7 ;(PM = 2)

Before Instruction After Instruction

ARP 6 ARP 7

AR6 203h AR6 203h

PREG FE07 9844h PREG FE07 9844h

Data Memory Data Memory
203h 4567h 203h E079h
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Syntax Direct: SPL dma
Indirect: SPL {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000110001 dma

Indirect addressing
0123456789101112131415

100110001 See Section 5.2

Execution (PC) + 1  →  PC
(PREG shifter output (15–0))  →  dma

Status Bits Affected by: PM

Description The contents of the product register (PREG) low byte are shifted, as defined
by the PM bits, and stored in the data memory address (dma). The contents
of the PREG and the accumulator (ACC) are unaffected. When the right-shift-
by-6 mode (PM is set to 112) is selected, high-order bits are filled from the
PREG high byte. When left shifts are selected, low-order bits are zero-filled.

SPL is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 SPL DAT5 ;(DP = 1, PM = 2)

Before Instruction After Instruction

PREG FE07 9844h PREG FE07 9844h

Data Memory Data Memory
205h 4567h 205h 8440h

Example 2 SPL *,AR3 ;(PM = 0)

Before Instruction After Instruction

ARP 2 ARP 3

AR2 205h AR2 205h

PREG FE07 9844h PREG FE07 9844h

Data Memory Data Memory
205h 4567h 205h 9844h
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Syntax Direct: SPLK  #lk, dma
Indirect: SPLK  #lk, {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
lk: 16-bit constant
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing

dma0

16-Bit Constant

0123456789101112131415
01110101

Indirect addressing
0123456789101112131415

101110101

16-Bit Constant

See Section 5.2

Execution (PC) + 2  →  PC
lk  →  dma

Status Bits None affected.

Description The 16-bit constant is stored into the data memory address (dma). The parallel
logic unit (PLU) supports this bit manipulation independently of the arithmetic
logic unit (ALU), so the contents of the accumulator (ACC) are unaffected.

SPLK is a parallel logic unit (PLU) instruction (see Table 6–6).

Words 2

The SPLK instruction is not repeatable.

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 2 2 2 2+2p

SARAM 2 2 2, 3† 2+2p

External 3+d 3+d 3+d 5+d+2p

† If the operand and the code are in the same SARAM block

Example 1 SPLK #7FFFh,DAT3 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
303h FE07h 303h 7FFFh

Example 2 SPLK #1111h,*+,AR4

Before Instruction Af t

ARP 0 ARP

AR0 300h AR0

Data Memory Data Memory
300h 07h 300h

Cycles
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Syntax SPM  constant

Operands 0 ≤ constant ≤ 3

Opcode 0123456789101112131415
PM †00000011111101

† See Table 6–1 on page 6-2.

Execution (PC) + 1  →  PC
Constant  →  PM

Status Bits Not affected by: Affects:
SXM PM

Description The two low-order bits of the instruction word are copied into the product shift
mode (PM) bits of ST1. The PM bits control the product register (PREG) output
p-scaler shifter. The p-scaler shifter can shift the PREG output either 1 or 4 bits
to the left or 6 bits to the right. The PM bit combinations and their meanings
are shown below:

PM Field Action

00 Output is not shifted

01 Output is left-shifted 1 bit and LSB is zero filled

10 Output is left-shifted 4 bits and 4 LSBs are zero filled

11 Output is right-shifted 6 bits, sign extended and 6 LSBs are lost

The left shifts allow the product to be justified for fractional arithmetic. The right
shift by 6 accommodates up to 128 multiply-accumulate processes without
overflow occurring. The PM bits may also be loaded by an LST #1 instruction
(page 6-135).

SPM is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1

The SPM instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Example SPM 3 ;Product register shift mode 3 is selected, causing

       ;all subsequent transfers from the product register

       ;to the ALU to be shifted to the right six places.

Cycles
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Syntax Direct: SQRA dma
Indirect: SQRA {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001001010 dma

Indirect addressing
0123456789101112131415

101001010 See Section 5.2

Execution (PC) + 1  →  PC
(ACC) + (shifted PREG)  →  ACC
(dma)  →  TREG0
(dma) � (dma)  →  PREG

If TRM = 0:
(dma) →  TREG1
(dma)  →  TREG2

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the contents of the accumulator (ACC). The result is stored
in the ACC. The contents of the data memory address (dma) are loaded into
TREG0 and squared. The result is stored in PREG. The C bit is set, if the result
of the addition generates a carry; otherwise, the C bit is cleared.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

SQRA is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SQRA DAT30 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory

31Eh 0Fh 31Eh 0Fh

TREG0 3h TREG0 0Fh

PREG 12Ch PREG 0E1h

ACC X 1F4h ACC 0 320h

C C

Example 2 SQRA *,AR4 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 4

AR3 31Eh AR3 31Eh

Data Memory Data Memory
31Eh 0Fh 31Eh 0Fh

TREG0 3h TREG0 0Fh

PREG 12Ch PREG 0E1h

ACC X 1F4h ACC 0 320h

C C

Cycles
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Syntax Direct: SQRS dma
Indirect: SQRS {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011001010 dma

Indirect addressing
0123456789101112131415

111001010 See Section 5.2

Execution (PC) + 1  →  PC
(ACC) – (shifted PREG)  →  ACC
(dma)  →  TREG0
(dma) � (dma)  →  PREG

If TRM = 0:
(dma) →  TREG1
(dma)  →  TREG2

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV

Description The contents of the product register (PREG) are shifted, as defined by the PM
bits, and subtracted from the contents of the accumulator (ACC). The result
is stored in the ACC. The contents of the data memory address (dma) are
loaded into TREG0 and squared. The result is stored in PREG. The C bit is
cleared, if the result of the subtraction generates a borrow; otherwise, the C
bit is set.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs,
maintaining ’C5x object-code compatibility with the ’C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

SQRS is a TREG0, PREG, and multiply instruction (see Table 6–7).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SQRS DAT9 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory
309h 08h 309h 08h

TREG0 1124h TREG0 08h

PREG 190h PREG 40h

ACC X 1450h ACC 1 12C0h

C C

Example 2 SQRS *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 5

AR3 309h AR3 309h

Data Memory Data Memory
309h 08h 309h 08h

TREG0 1124h TREG0 08h

PREG 190h PREG 40h

ACC X 1450h ACC 1 12C0h

C C

Cycles
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Syntax Direct: SST #m, dma
Indirect: SST #m, {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
m = 0 or 1
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing for SST#0
0123456789101112131415

001110001 dma

Indirect addressing for SST#0
0123456789101112131415

101110001 See Section 5.2

Direct addressing for SST#1
0123456789101112131415

011110001 dma

Indirect addressing for SST#1
0123456789101112131415

111110001 See Section 5.2

Execution (PC) + 1  →  PC
(STm)  →  dma

Status Bits None affected.

Description The contents of the status register STm are stored in the data memory address
(dma). In the direct addressing mode, status register STm is always stored in
data memory page 0, regardless of the value of the data memory page pointer
(DP) bits. The processor automatically forces the data memory page to 0, and
the specific location within that data page is defined by the instruction. The DP
bits are not physically modified. This allows storage of the DP bits in the data
memory on interrupts, etc., in the direct addressing mode without having to
change the DP. In the indirect addressing mode, the dma is obtained from the
selected auxiliary register (see the LST instruction, page 6-135, for more in-
formation). In the indirect addressing mode, any page in data memory may be
accessed.

SST is a control instruction (see Table 6–10). Status registers ST0 and ST1
are defined in Section 4.4, Status and Control Registers.

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SST #0,DAT96 ;(DP = 6)

Before Instruction After Instruction

ST0 A408h ST0 A408h

Data Memory Data Memory
60h 0Ah 60h A408h

Example 2 SST #1,*,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 300h AR0 300h

ST1 2580h ST1   2580h

Data Memory Data Memory
300h 0h 300h 2580h

Cycles
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Syntax Direct:  SUB dma [,shift ]
Indirect: SUB {ind} [,shift [,ARn]]
Short immediate: SUB #k
Long immediate: SUB #lk [,shift ]

Operands 0 ≤ dma ≤ 127 
0 ≤ shift ≤ 16 (defaults to 0)
0 ≤ n ≤ 7
0 ≤ k ≤ 255
–32768 ≤ lk ≤ 32767
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing with shift
0123456789101112131415

0SHFT †1100 dma
† See Table 6–1 on page 6-2.

Indirect addressing with shift
0123456789101112131415

1SHFT †1100 See Section 5.2
† See Table 6–1 on page 6-2.

Direct addressing with shift of 16
0123456789101112131415

010100110 dma

Indirect addressing with shift of 16
0123456789101112131415

110100110 See Section 5.2

Short immediate addressing
0123456789101112131415

8-Bit Constant01011101

Long immediate addressing with shift
0123456789101112131415

SHFT †010111111101

16-Bit Constant
† See Table 6–1 on page 6-2.

Execution Direct or indirect addressing:
(PC) + 1  →  PC
(ACC) – ((dma) � 2shift ) →  ACC
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Short immediate addressing:
(PC) + 1  →  PC
(ACC) – k →  ACC

Long immediate addressing:
(PC) + 2 →  PC
(ACC) –  (lk � 2shift )  →  ACC

Status Bits Affected by: Affects:
OVM and SXM C and OV Direct or indirect addressing
OVM C and OV Short immediate addressing
OVM and SXM C and OV Long immediate addressing

Description If direct, indirect, or long immediate addressing is used, the contents of the
data memory address (dma) or a 16-bit constant are shifted left, as defined by
the shift code, and subtracted from the contents of the accumulator (ACC).
The result is stored in the ACC. During shifting, the accumulator low byte
(ACCL) is zero-filled. If the SXM bit is cleared, the high-order bits of the ACC
are zero-filled; if the SXM bit is set, the high-order bits of the ACC are sign-
extended.

Note that when the auxiliary register pointer (ARP) is updated during indirect
addressing, you must specify a shift operand. If you don’t want a shift, you must
enter a 0 for this operand. For example:

SUB*+,0,AR0

If short immediate addressing is used, an 8-bit positive constant is subtracted
from the contents of the ACC. The result is stored in the ACC. In this mode,
no shift value may be specified and the subtraction is unaffected by the SXM
bit.

The C bit is cleared, if the result of the subtraction generates a borrow; other-
wise, the C bit is set. If a 16-bit shift is specified with the SUB instruction, the
C bit is cleared only if the result of the subtraction generates a borrow; other-
wise, the C bit is unaffected.

SUB is an accumulator memory reference instruction (see Table 6–4).

1 (Direct, indirect, or short immediate)

2 (Long immediate)

Words
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For the short and long immediate addressing modes, the SUB instruction is
not repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example 1 SUB DAT80 ;(DP = 8, SXM=0)

Before Instruction After Instruction

Data Memory Data Memory
450h 11h 450h 11h

ACC X 24h ACC 1 13h

C C

Cycles
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Example 2 SUB *–,1,AR0 ;(SXM = 0)

Before Instruction After Instruction

ARP 7 ARP 0

Data Memory Data Memory
AR7 301h AR7 300h

301h 04h 301h 04h

ACC X 09h ACC 1 01h

C C

Example 3 SUB #8h ;(SXM = 1)

Before Instruction After Instruction

ACC X 07h ACC 0 FFFF FFFFh

C C

Example 4 SUB #0FFFh,4 ;(SXM = 0)

Before Instruction After Instruction

ACC X FFFFh ACC 1 0Fh

C C
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Syntax Direct: SUBB  dma
Indirect: SUBB  {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000100110 dma

Indirect addressing
0123456789101112131415

100100110 See Section 5.2

Execution (PC) + 1  →  PC
(ACC) – (dma) – (logical inversion of C)  →  ACC

Status Bits Affected by: Not affected by: Affects:
OVM SXM C and OV

Description The contents of the data memory address (dma) and the logical inversion of
the C bit are subtracted from the contents of the accumulator (ACC) with sign
extension suppressed. The result is stored in the ACC. The C bit is cleared,
if the result of the subtraction generates a borrow; otherwise, the C bit is set.

The SUBB instruction can be used in performing multiple-precision arithmetic.
SUBB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles
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Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBB DAT5 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
405h 06h 405h 06h

ACC 0 06h ACC 0 FFFF FFFFh

C C

Example 2 SUBB *

Before Instruction After Instruction

ARP 6 ARP 6

AR6 301h AR6 301h

301h 02h 301h 02h

ACC 1 04h ACC 1 02h

C C

In Example 1, the C bit is 0 from the result of a previous subtract instruction
that performed a borrow. The operation performed was 6 – 6 – (1) = –1, gener-
ating another borrow (C = 0) in the process. In Example 2, no borrow was pre-
viously generated (C = 1), and the result from the subtract instruction does not
generate a borrow.
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Syntax Direct: SUBC dma
Indirect: SUBC {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001010000 dma

Indirect addressing
0123456789101112131415

101010000 See Section 5.2

Execution (PC) + 1  →  PC
(ACC) – ((dma) � 215 ) →  ALU output

If ALU output ≥ 0:
(ALU output) � 2 + 1   →  ACC

Else:
(ACC) � 2  →  ACC

Status Bits Not affected by: Affects:
OVM (no saturation) and SXM C and OV

Description The SUBC instruction performs conditional subtraction, which may be used for
division. The 16-bit dividend is stored in the accumulator low byte (ACCL) and
the accumulator high byte (ACCH) is zero-filled. The divisor is in data memory.
The SUBC instruction is executed 16 times for 16-bit division. After completion
of the last SUBC instruction, the quotient of the division is in the ACCL and the
remainder is in the ACCH. The SUBC instruction assumes that the divisor and
the dividend are both positive. The divisor is not sign extended. The dividend,
in the ACCL, must initially be positive (bit 31 must be 0) and must remain posi-
tive following the ACC shift, which occurs in the first portion of the SUBC
execution.

If the 16-bit dividend contains fewer than 16 significant bits, the dividend may
be placed in the ACC and shifted left by the number of leading nonsignificant
zeroes. The number of SUBC executions is reduced from 16 by that number.
One leading zero is always significant.

The SUBC instruction affects the OV bit, but is not affected by the OVM bit, and
therefore the ACC does not saturate upon positive or negative overflows when
executing this instruction. The C bit is cleared, if the result of the subtraction
generates a borrow; otherwise, the C bit is set.

SUBC is an accumulator memory reference instruction (see Table 6–4).
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Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBC DAT2 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
302h 01h 302h 01h

ACC X 04h ACC 0 08h

C C

Example 2 RPT #15

SUBC *

Before Instruction After Instruction

ARP 3 ARP 3

AR3 1000h AR3 1000h

Data Memory Data Memory
1000h 07h 1000h 07h

ACC X 41h ACC 1 20009h

C C

Cycles
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Syntax Direct: SUBS dma
Indirect: SUBS {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001100110 dma

Indirect addressing
0123456789101112131415

101100110 See Section 5.2

Execution (PC) + 1  →  PC
(ACC) – (dma)  →  ACC
(dma) is an unsigned16-bit number

Status Bits Affected by: Not affected by: Affects:
OVM SXM C and OV

Description The contents of the data memory address (dma) are subtracted from the con-
tents of the accumulator (ACC) with sign extension suppressed. The result is
stored in the ACC. The data is treated as a 16-bit unsigned number, regardless
of the SXM bit. The contents of the ACC are treated as a signed number. The
C bit is cleared, if the result of the subtraction generates a borrow; otherwise,
the C bit is set.

The SUBS instruction produces the same results as a SUB instruction (page
6-259) with the SXM bit cleared and a shift count of 0. SUBS is an accumulator
memory reference instruction (see Table 6–4).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBS DAT2 ;(DP = 16, SXM = 1)

Before Instruction After Instruction

Data Memory Data Memory
802h F003h 802h F003h

ACC X F105h ACC 1 102h

C C

Example 2 SUBS * ;(SXM = 1)

Before Instruction After Instruction

ARP 0 ARP 0

AR0 310h AR0 310h

Data Memory Data Memory
310h F003h 310h F003h

ACC X 0FFF F105h ACC 1 0FFF 0102h

C C

Cycles
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Syntax Direct: SUBT dma
Indirect: SUBT {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011100110 dma

Indirect addressing
0123456789101112131415

111100110 See Section 5.2

Execution (PC) + 1  →  PC
(ACC) – ((dma) � 2TREG1(3–0) )  →  (ACC)

If SXM = 1:
(dma) is sign-extended

If SXM = 0:
(dma) is not sign-extended

Status Bits Affected by: Affects:
OVM, SXM, and TRM C and OV

Description The contents of the data memory address (dma) are shifted left from 0 to 15
bits, as defined by the 4 LSBs of TREG1, and subtracted from the contents of
the accumulator (ACC). The result is stored in the ACC. Sign extension on the
dma value is controlled by the SXM bit. The C bit is cleared, if the result of the
subtraction generates a borrow; otherwise, the C bit is set.

You can maintain software compatibility with the ’C2x by clearing the TRM bit.
This causes any ’C2x instruction that loads TREG0 to write to all three TREGs.
Subsequent calls to the SUBT instruction will shift the value by the TREG1 val-
ue (which is the same as TREG0), maintaining ’C5x object-code compatibility
with the ’C2x.

SUBT is an accumulator memory reference instruction (see Table 6–4).

Words 1
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBT DAT127 ;(DP = 4)

Before Instruction After Instruction

Data Memory Data Memory
2FFh 06h 2FFh  06h

TREG1 08h TREG1  08h

ACC X FDA5h ACC 1 F7A5h

C C

Example 2 SUBT *

Before Instruction After Instruction

ARP 1 ARP  1

AR1 800h AR1  800h

Data Memory Data Memory
800h 01h 800h  01h

TREG1 08h TREG1  08h

ACC X 0h ACC 0 FFFF FF00h

C C

Cycles
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Syntax Direct: TBLR  dma
Indirect: TBLR  {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

001100101 dma

Indirect addressing
0123456789101112131415

101100101 See Section 5.2

Execution (PC) + 1  →  PC
(PFC) →  MCS
(ACC(15–0))  →  PFC

If (repeat counter) ≠ 0:
(pma, addressed by PFC) →  dma
Modify current AR and ARP as specified
(PFC) + 1  →  PFC
(repeat counter) –1 →  repeat counter

Else:
(pma, addressed by PFC) →  dma
Modify current AR and ARP as specified

(MCS) →  PFC

Status Bits None affected.

Description The contents of the program memory address (pma) are transferred to the
data memory address (dma). The pma is specified by the contents of the accu-
mulator low byte (ACCL) and the dma is specified by the instruction. A read
from program memory is followed by a write to data memory to complete the
instruction. When used with the RPT instruction, the TBLR instruction be-
comes a single-cycle instruction, once the RPT pipeline is started, and the pro-
gram counter (PC) that contains the contents of the ACCL is incremented once
each cycle.

TBLR is an I/O and data memory operation instruction (see Table 6–9).

Words 1
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Cycles for a Single Instruction 

Operand ROM DARAM SARAM External Memory

Source: DARAM/ROM
Destination: DARAM

3 3 3 3+pcode

Source: SARAM
Destination: DARAM

3 3 3 3+pcode

Source: External
Destination: DARAM

3+psrc 3+psrc 3+psrc 3+psrc+pcode

Source: DARAM/ROM
Destination: SARAM

3 3 3, 4† 3+pcode

Source: SARAM
Destination: SARAM

3 3 3, 4† 3+pcode

Source: External
Destination: SARAM

3+psrc 3+psrc 3+psrc, 4+psrc† 3+psrc+pcode

Source: DARAM/ROM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+pcode

Source: SARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+pcode

Source: External
Destination: External

4+psrc+ddst 4+psrc+ddst 4+psrc+ddst 6+psrc+ddst+pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution 

Operand ROM DARAM SARAM External Memory

Source: DARAM/ROM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: External
Destination: DARAM

n+2+npsrc n+2+npsrc n+2+npsrc n+2+npsrc+pcode

Source: DARAM/ROM
Destination: SARAM

n+2 n+2 n+2, n+4† n+2+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Cycles
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Cycles for a Repeat (RPT) Execution (Continued)

Operand External MemorySARAMDARAMROM

Source: SARAM
Destination: SARAM

n+2, 2n‡ n+2, 2n‡ n+2, 2n‡,
2n+2§

n+2+pcode, 2n‡

Source: External
Destination: SARAM

n+2+npsrc n+2+npsrc n+2+npsrc,
n+4+npsrc†

n+2+npsrc+pcode

Source: DARAM/ROM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+4+nddst+pcode

Source: SARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+4+nddst+pcode

Source: External
Destination: External

4n+npsrc+nddst 4n+npsrc+nddst 4n+npsrc+nddst 4n+2+npsrc+nddst
+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 TBLR DAT6 ;(DP = 4)

Before Instruction After Instruction

ACC 23h ACC 23h

Program Memory Program Memory
23h 306h 23h 306h

Data Memory Data Memory
206h 75h 206h 306h

Example 2 TBLR *,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 300h AR0 300h

ACC 24h ACC 24h

Program Memory Program Memory
24h 307h 24h 307h

Data Memory Data Memory
300h 75h 300h 307h
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Syntax Direct: TBLW  dma
Indirect: TBLW  {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

011100101 dma

Indirect addressing
0123456789101112131415

111100101 See Section 5.2

Execution (PC) + 1 →  PC
(PFC) →  MCS
(ACC(15–0))  →  PFC

If (repeat counter) ≠ 0:
(dma, addressed by PFC) →  pma
Modify current AR and ARP as specified
(PFC) + 1  →  PFC
(repeat counter) –1  →  repeat counter

Else:
(dma, addressed by PFC) →  pma
Modify current AR and ARP as specified

(MCS) →  PFC

Status Bits None affected.

Description The contents of the data memory address (dma) are transferred to the pro-
gram memory address (pma). The dma is specified by the instruction and the
pma is specified by the contents of the accumulator low byte (ACCL). A read
from data memory is followed by a write to program memory to complete the
instruction. When used with the RPT instruction, the TBLW instruction be-
comes a single-cycle instruction, once the RPT pipeline is started, and the pro-
gram counter (PC) that contains the contents of the ACCL is incremented once
each cycle.

TBLW is an I/O and data memory operation instruction (see Table 6–9).

Words 1
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Cycles for a Single Instruction 

Operand ROM DARAM SARAM External Memory

Source: DARAM
Destination: DARAM

3 3 3 3+pcode

Source: SARAM
Destination: DARAM

3 3 3 3+pcode

Source: External
Destination: DARAM

3+dsrc 3+dsrc 3+dsrc 3+dsrc+pcode

Source: DARAM
Destination: SARAM

3 3 3, 4† 3+pcode

Source: SARAM
Destination: SARAM

3 3 3, 4† 3+pcode

Source: External
Destination: SARAM

3+dsrc 3+dsrc 3+dsrc, 4+dsrc† 3+dsrc+pcode

Source: DARAM
Destination: External

4+pdst 4+pdst 4+pdst 5+pdst+pcode

Source: SARAM
Destination: External

4+pdst 4+pdst 4+pdst 5+pdst+pcode

Source: External
Destination: External

4+dsrc+pdst 4+dsrc+pdst 4+dsrc+pdst 5+dsrc+pdst+pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution 

Operand ROM DARAM SARAM External Memory

Source: DARAM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: External
Destination: DARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc n+2+ndsrc+pcode

Source: DARAM
Destination: SARAM

n+2 n+2 n+2, n+3† n+2+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Cycles
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Cycles for a Repeat (RPT) Execution (Continued)

Operand External MemorySARAMDARAMROM

Source: SARAM
Destination: SARAM

n+2, 2n‡ n+2, 2n‡ n+2, 2n‡,
2n+1§

n+2+pcode, 2n‡

Source: External
Destination: SARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc,
n+3+ndsrc†

n+2+ndsrc+pcode

Source: DARAM
Destination: External

2n+2+npdst 2n+2+npdst 2n+2+npdst 2n+3+npdst+pcode

Source: SARAM
Destination: External

2n+2+npdst 2n+2+npdst 2n+2+npdst 2n+3+npdst+pcode

Source: External
Destination: External

4n+ndsrc+npdst 4n+ndsrc+npdst 4n+ndsrc+npdst 4n+1+ndsrc+npdst
+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 TBLW DAT5 ;(DP = 32)

Before Instruction After Instruction

ACC 257h ACC 257h

Data Memory Data Memory
1005h 4339h 1005h 4339h

Program Memory Program Memory
257h 306h 257h 4399h

Example 2 TBLW *

Before Instruction After Instruction

ARP 6 ARP 6

AR6 1006h AR6 1006h

ACC 258h ACC 258h

Data Memory Data Memory
1006h 4340h 1006h 4340h

Program Memory Program Memory
258h 307h 258h 4340h
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Syntax TRAP

Operands None

Opcode 0123456789101112131415
1000101001111101

Execution (PC) + 1  →  stack
22h  →  PC

Status Bits Not affected by: Does not affect:
INTM INTM

Description A software interrupt that transfers program control to program memory loca-
tion 22h. The current program counter (PC) is incremented and pushed onto
the stack. The address 22h is loaded into the PC. The instruction at address
22h may contain a branch instruction to transfer control to the TRAP routine.
Placing the PC onto the stack enables a return instruction to pop the return ad-
dress (pointing to the instruction after the TRAP) from the stack. The TRAP
instruction is not maskable.

TRAP is a branch and call instruction (see Table 6–8).

Words 1

The TRAP instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3p†

† The ’C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example TRAP ;Control is passed to program memory location 22h and

;PC + 1 is pushed onto the stack.

Cycles
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Syntax XC  n ,cond [,cond1] [,...]

Operands n = 1 or 2

Conditions: ACC = 0 EQ
ACC ≠ 0 NEQ
ACC < 0 LT
ACC ≤ 0 LEQ
ACC > 0 GT
ACC ≥ 0 GEQ
C = 0 NC
C = 1 C
OV = 0 NOV
OV = 1 OV
TC = 0 NTC
TC = 1 TC
BIO low BIO
Unconditional UNC

Opcode 0123456789101112131415
ZLVC †ZLVC †TP †10N †111

† See Table 6–1 on page 6-2.

Operand (n) value Opcode (N) value

1 0

2 1

Execution If (condition(s)):
next n instructions executed

Else:
execute NOPs for next n instructions

Status Bits None affected.

Description If n = 1 and the conditions are met, the 1-word instruction following the XC
instruction executes. If n = 2 and the conditions are met, the one 2-word
instruction or two 1-word instructions following the XC instruction execute. Not
all combinations of the conditions are meaningful. The XC instruction and the
two instruction words following the XC are uninterruptible. If the conditions are
not met, one or two NOPs are executed.

Conditions tested are sampled one full cycle before the XC is
executed. Therefore, if the instruction prior to the XC is a single-cycle
instruction, its execution will not affect the condition of the XC. If the
instruction prior to the XC does affect the condition being tested,
interrupt operation with the XC can cause undesired results.

XC is a branch and call instruction (see Table 6–8).
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Words 1

The XC instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Example XC 1,LEQ,C

MAR *+

ADD DAT100

If the contents of the accumulator are less than or equal to 0 and the C bit is
set, the ARP is modified prior to the execution of the ADD instruction.

Cycles
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Syntax Direct: XOR dma 
Indirect: XOR {ind} [,ARn]
Long immediate: XOR #lk, [,shift ]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
lk: 16-bit constant
0 ≤ shift ≤ 16
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000110110 dma

Indirect addressing
0123456789101112131415

100110110 See Section 5.2

Long immediate addressing with shift
0123456789101112131415

SHFT †101111111101

16-Bit Constant
† See Table 6–1 on page 6-2.

Long immediate addressing with shift of 16
0123456789101112131415

1100000101111101

16-Bit Constant

Execution Direct or indirect addressing:
(PC) + 1  →  PC
(ACC(15–0))  XOR  (dma)  →  ACC(15–0)
(ACC(31–16))  →  ACC(31–16)

Long immediate addressing:
(PC) + 2  →  PC
(ACC(31–0))  XOR  (lk � 2shift ) →  ACC(31–0)

Status Bits Does not affect: C
Not affected by: SXM Long immediate addressing
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Description If a long immediate constant is specified, the constant is shifted left, as defined
by the shift code, and zero-extended on both ends and is exclusive-ORed with
the contents of the accumulator (ACC). The result is stored in the ACC. If a
constant is not specified, the contents of the data memory address (dma) are
exclusive-ORed with the contents of the accumulator low byte (ACCL). The
result is stored in the ACCL and the contents of the accumulator high byte
(ACCH) are unaffected.

XOR is an accumulator memory reference instruction (see Table 6–4).

1 (Direct or indirect addressing)

2 (Long immediate addressing)

For the long immediate addressing modes, the XOR instruction is not repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

Words

Cycles
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Example 1 XOR DAT127 ;(DP = 511)

Before Instruction After Instruction

Data Memory Data Memory
FFFFh F0F0h FFFFh F0F0h

ACC X 1234 5678h ACC X 1234 A688h

C C

Example 2 XOR *+,AR0

Before Instruction After Instruction

ARP 7 ARP 0

AR7 300h AR7 301h

Data Memory Data Memory
300h FFFFh 300h FFFFh

ACC X 1234 F0F0h ACC X 1234 0F0Fh

C C

Example 3 XOR #0F0F0h,4
Before Instruction After Instruction

ACC X 1111 1010h ACC X 111E 1F10h

C C
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Syntax XORB

Operands None

Opcode 0123456789101112131415
0101100001111101

Execution (PC) + 1  →  PC
(ACC)  XOR  (ACCB)  →  ACC

Status Bits None affected.

Description The contents of the accumulator (ACC) are exclusive-ORed with the contents
of the accumulator buffer (ACCB). The result is stored in the ACC and the con-
tents of the ACCB are unaffected.

XORB is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example XORB

Before Instruction After Instruction

ACCB F0F0 F0F0h ACCB F0F0 F0F0h

ACC FFFF 0000h ACC 0F0F F0F0h

Cycles
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Syntax Direct: XPL [#lk,] dma
Indirect: XPL [#lk,] {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
lk: 16-bit constant
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing with long immediate not specified
0123456789101112131415

000011010 dma

Indirect addressing with long immediate not specified
0123456789101112131415

100011010 See Section 5.2

Direct addressing with long immediate specified
0123456789101112131415

dma000111010

16-Bit Constant

Indirect addressing with long immediate specified
012456789101112131415

100111010

16-Bit Constant

3

See Section 5.2

Execution Long immediate not specified:
(PC) + 1  →  PC
(dma)  XOR  (DBMR)  →  dma

Long immediate specified:
(PC) + 2 →  PC
(dma)  XOR  lk →  dma

Status Bits Affects: TC

Description If a long immediate constant is specified, the constant is exclusive-ORed with
the contents of the data memory address (dma). If a constant is not specified,
the contents of the dma are exclusive-ORed with the contents of the dynamic
bit manipulation register (DBMR). In both cases, the result is written directly
back to the dma. The contents of the accumulator (ACC) are unaffected. If the
result of the XOR operation is 0, the TC bit is set; otherwise, the TC bit is
cleared.

XPL is a parallel logic unit (PLU) instruction (see Table 6–6).

1 (Long immediate not specified)

2 (Long immediate specified)

Words
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Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2,
2n+1†

2n–2+p

External 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate specified)

Operand ROM DARAM SARAM External Memory

DARAM 2 2 2 2+2p

SARAM 2 2 2 2+2p

External 3+2d 3+2d 3+2d 6+2d+2p

Cycles for a Repeat (RPT) Execution (long immediate specified)

Operand ROM DARAM SARAM External Memory

DARAM n+1 n+1 n+1 n+1+2p

SARAM 2n–1 2n–1 2n–1,
2n+2†

2n–1+2p

External 4n–1+2nd 4n–1+2nd 4n–1+2nd 4n+2+2nd+2p

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 XPL #100h,DAT60 ;(DP = 0)

Before Instruction After Instruction

Data Memory Data Memory
60h 01h 60h 101h

Example 2 XPL DAT60 ;(DP=0)

Before Instruction After Instruction

DBMR FFFFh DBMR FFFFh

Data Memory Data Memory
60h 0101h 60h FEFEh

Example 3 XPL #1000h,*,AR6

Before Instruction After Instruction

ARP 0 ARP 6

AR0 300h AR0 300h

Data Memory Data Memory
300h FF00h 300h EF00h

Example 4 XPL *–,AR0

Before Instruction After Instruction

ARP 6 ARP 0

AR6 301h AR6 300h

DBMR FF00h DBMR FF00h

Data Memory Data Memory
301h EF00h 301h 1000h
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Syntax Direct: ZALR  dma
Indirect: ZALR  {ind} [,ARn]

Operands 0 ≤ dma ≤ 127
0 ≤ n ≤ 7
ind:   {* *+ *– *0+ *0– *BR0+ *BR0–}

Opcode Direct addressing
0123456789101112131415

000010110 dma

Indirect addressing
0123456789101112131415

100010110 See Section 5.2

Execution (PC) + 1 →  PC
8000h  →  ACC(15–0)
(dma)  →  ACC(31–16)

Status Bits Does not affect: C

Description The contents of the data memory address (dma) are loaded into the accumula-
tor high byte (ACCH). The ZALR instruction rounds the value by adding 1/2
LSB; that is, the 15 low-order bits (bits 0–14) of the accumulator low byte
(ACCL) are cleared, and ACCL bit 15 is set.

ZALR is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles
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Example 1 ZALR DAT3 ;(DP = 32)

Before Instruction After Instruction

Data Memory Data Memory
1003h 3F01h 1003h  3F01h

ACC X 0077 FFFFh ACC X  3F01 8000h

C C

Example 2 ZALR *–,AR4

Before Instruction After Instruction

ARP 7 ARP  4

AR7 FF00h AR7 FEFFh

Data Memory Data Memory
FF00h E0E0h FF00h E0E0h

ACC X 0010 7777h ACC X E0E0 8000h

C C
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Syntax ZAP

Operands None

Opcode 0123456789101112131415
1001101001111101

Execution (PC) + 1 →  PC
0  →  ACC
0  →  PREG

Status Bits None affected.

Description The contents of the accumulator (ACC) and product register (PREG) are
cleared. The ZAP instruction speeds up the preparation for a repeat multiply/
accumulate.

ZAP is an accumulator memory reference instruction (see Table 6–4).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example ZAP

Before Instruction After Instruction

PREG 3F01 1111h PREG 0000 0000h

ACC 77FF FF77h ACC 0000 0000h

Cycles
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Syntax ZPR

Operands None

Opcode 0123456789101112131415
0001101001111101

Execution (PC) + 1  →  PC
0  →  PREG

Status Bits None affected.

Description The contents of the product register (PREG) are cleared. ZPR is a TREG0,
PREG, and multiply instruction (see Table 6–7).

Words 1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example ZPR

Before Instruction After Instruction

PREG 3F01 1111h PREG 0000 0000h

Cycles
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Pipeline

In the operation of the pipeline, the instruction fetch, decode, operand read,
and execute operations are independent, which allows overall instruction
executions to overlap.
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7.1 Pipeline Structure

The four phases of the ’C5x pipeline structure and their functions are as
follows:

1) Fetch (F) — This phase fetches the instruction words from memory and
updates the program counter (PC).

2) Decode (D) — This phase decodes the instruction word and performs ad-
dress generation and ARAU updates of auxiliary registers.

3) Read (R) — This phase reads operands from memory, if required. If the
instruction uses indirect addressing mode, it will read the memory location
pointed at by the ARP before the update of the previous decode phase.

4) Execute (E) — This phase performs any specify operation, and, if re-
quired, writes results of a previous operation to memory.

Figure 7–1 illustrates the operation of the four-level pipeline for single-word
single-cycle instruction executing with no wait state. This is perfect overlap-
ping in the pipeline, where all four phases operate in parallel. When more than
one pipeline stage requires processing on the same resource, such as
memory and CPU registers, a pipeline conflict occurs. Since there is no priority
between these four phases, you can get unexpected results when pipeline
conflict occurs. Therefore, you should avoid any conflict between these four
phases in order to get the correct results.

Figure 7–1. Four Level Pipeline Operation
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7.2 Pipeline Operation

The pipeline is essentially invisible to the user except in some cases, such as
auxiliary register updates, memory-mapped accesses of the CPU registers,
the NORM instruction, and memory configuration commands. Furthermore,
the pipeline operation is not protected. The user has to understand the pipeline
operation to avoid the pipeline conflict by arranging the code. The following
sections show how the pipeline operation and how the pipeline conflict affect
the result.

7.2.1 Normal Pipeline Operation

Example 7–1 shows the pipeline operation of a 1-word instruction and
Example 7–2 shows the pipeline operation of a 2-word instruction.

1-Word Instruction

Example 7–1. Pipeline Operation of 1-Word Instruction

ADD *+
SAMM TREG0
MPY *+
SQRA *+, AR2
.
.
.

Table 7–1. Pipeline Operation of 1-Word Instruction

Pipeline operation

Cycle PC F D R E ARP AR6 TREG0 PREG ACC

1 [SAMM] ADD 6 60h XX XX 20h

2 [MPY] SAMM ADD 6 61h XX XX 20h

3 [SQRA] MPY SAMM ADD 6 61h XX XX 20h

4 SQRA MPY SAMM ADD 6 62h XX XX 30h

5 SQRA MPY SAMM 2 63h 30h XX 30h

6 SQRA MPY X XX 30h 90h 30h

7 SQRA X XX 06h 24h C0h
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Assume memory locations 60h = 10h, 61h = 3h, and 62h = 6h. The following
is the condition of the pipeline for each cycle.

Cycle 1: F) Fetch the ADD instruction and update PC to next instruction.

Cycle 2: F) Fetch the SAMM instruction and update PC.

D) Decode the ADD instruction, generate address, and update
AR6.

Cycle 3: F) Fetch the MPY instruction and update PC.

D) Decode the SAMM instruction, no address generate, and no
ARAU update.

R) Read data from memory location 60h (10h) which is the loca-
tion pointed at by AR6 before the update of cycle 2.

Cycle 4: F) Fetch the SQRA instruction and update PC.

D) Decode the MPY instruction and update AR6.

R) No operand read for the SAMM instruction.

E) Add data read in cycle 3 (10h) to data in ACC (20h) and store
result in ACC (ACC = 30h).

Cycle 5: F) Fetch the next instruction and update PC.

D) Decode the SQRA instruction, and update AR6 and ARP.

R) Read data from data memory location 61h (3h) which is the
location pointed at by AR6 before the update of cycle 4.

E) Store data in ACC to TREG0 (TREG0 = 30h).

Cycle 6: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 5.

R) Read data from data memory location 62h (6h) which is the
location pointed at by AR6 before the update of cycle 5.

E) Multiply data in TREG0 (30h) with data read in cycle 5 (3h) and
store result in PREG (PREG = 90h).

Cycle 7: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 6.

R) Depends on the instruction fetched in cycle 5.

E) Add data in ACC (30h) to data in PREG (90h) and store result
in ACC (ACC = C0h). Store data read in cycle 6 (6h) to TREG0.
Square data in TREG0 (6h) and store result in PREG
(PREG = 24h).
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2-Word Instruction

Example 7–2. Pipeline Operation of 2-Word Instruction

LACC *+
ADD #1000h
SACL *+, 0, AR2
.
.
.

Table 7–2. Pipeline Operation of 2-Word Instruction

Pipeline operation

Cycle PC F D R E ARP AR1 ACC [61]

1 [ADD] LACC 1 60h 20h 3h

2 [1000h] ADD LACC 1 61h 20h 3h

3 [SACL] 1000h ADD LACC 1 61h 20h 3h

4 SACL dummy ADD LACC 1 61h 10h 3h

5 SACL dummy ADD 2 62h 1010h 3h

6 SACL dummy X XX 1010h 3h

7 SACL X XX 1010h 1010h

Assume memory location 60h = 10h and 61h = 3h. The following is the condi-
tion of the pipeline for each cycle.

Cycle 1: F) Fetch the LACC instruction and update PC to next instruction.

Cycle 2: F) Fetch the ADD instruction and update PC.

D) Decode the LACC instruction and update AR1.

Cycle 3: F) Fetch the second word 1000h and update PC.

D) Decode the ADD instruction and no ARAU update.

R) Read data from data memory location 60h (10h) which is the
location pointed at by AR1 before the update of cycle 2.

Cycle 4: F) Fetch the SACL instruction and update PC.

D) Dummy operation (previous fetch phase is an operand).

R) No operand read for the ADD instruction.

E) Load ACC with data read in cycle 3 (ACC = 10h).
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Cycle 5: F) Fetch the next instruction and update PC.

D) Decode the SACL instruction, and update AR1 and ARP.

R) Dummy operation (operand fetch on fetch phase).

E) Add 1000h to data in ACC (10h) and store result in ACC
(ACC = 1010h).

Cycle 6: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 5.

R) No operand read for the SACL instruction.

E) Dummy operation (operand fetch on fetch phase).

Cycle 7: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 6.

R) Depends on the instruction fetched in cycle 5.

E) Store data in ACC (1010h) to data memory location 61h which
is the location pointed at by AR1 before the update of cycle 5.

7.2.2 Pipeline Operation on Branch and Subroutine Call

Since the pipeline is 4-levels deep, normally any branch, subroutine call, or
return from subroutine instruction (Table 6–8 on page 6-17) takes 4 cycles to
flush the pipeline. The conditional branch (BCND) instruction also takes
4 cycles, when the condition is true. Following are examples that show the
pipeline operations of the conditional branch, subroutine call, and return from
subroutine instructions.

Branch Taken

Example 7–3. Pipeline Operation with Branch Taken

ADD *+
BCND LBL, NEQ ; Branch if ACC ≠ 0
ADD *+
SUB #1
SACL *+,0,AR2
LBL
SUB *+
.
.
.
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Table 7–3. Pipeline Operation with Branch Taken

Pipeline operation

Cycle PC F D R E ARP AR1 ACC

1 [BCND] ADD 1 60h 20h

2 [LBL] BCND ADD 1 61h 20h

3 [ADD] LBL BCND ADD 1 61h 20h

4 [SUB] ADD dummy BCND ADD 1 61h 30h

5 LBL SUB dummy dummy BCND 1 61h 30h

6 SUB dummy dummy dummy 1 61h 30h

7 SUB dummy dummy 1 62h 30h

8 SUB dummy X XX 30h

9 SUB X XX 2Dh

Assume memory location 60h = 10h and 61h = 3h. The following is the condi-
tion of the pipeline for each cycle.

Cycle 1: F) Fetch the ADD instruction and update PC to next instruction.

Cycle 2: F) Fetch the BCND instruction and update PC.

D) Decode the ADD instruction and update AR1.

Cycle 3: F) Fetch the second word LBL and update PC.

D) Decode the BCND instruction and no ARAU update.

R) Read data from data memory location 60h (10h) which is the
location pointed at by AR1 before the update of cycle 2.

Cycle 4: F) Fetch the ADD instruction and update PC.

D) Dummy operation (previous fetch phase is an operand).

R) No operand read for the BCND instruction.

E) Add data read in cycle 3 (10h) to data in ACC (20h) and store
result in ACC (ACC = 30h).

The PC update and decode (D) phase on cycle 5 depends on the execute (E)
phase result of the BCND instruction. Since the condition is true, the PC will
update to point to the destination address and a dummy operation will be in-
serted in the decode (D) phase to flush the pipeline.

Cycle 5: F) Fetch the SUB instruction and update PC. Since the condition
is true, the operand of BCND (LBL) will copy to PC.

D) Dummy operation (flush the pipeline).
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R) Dummy operation (operand fetch on fetch phase).

E) Conditional testing.

Cycle 6: F) Fetch the SUB instruction and update PC.

D) Dummy operation (flush the pipeline).

R) Dummy operation (flush the pipeline).

E) Dummy operation (operand fetch on fetch phase).

Cycle 7: F) Fetch the next instruction and update PC.

D) Decode the SUB instruction and update AR1.

R) Dummy operation (flush the pipeline).

E) Dummy operation (flush the pipeline).

Cycle 8: F) Fetch the next instruction and update PC.

D) Decode the instruction in cycle 7.

R) Read data from data memory location 61h (3h) which is the
location pointed at by AR1 before the update of cycle 7.

E) Dummy operation (flush the pipeline).

Cycle 9: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 8.

R) Depends on the instruction fetched in cycle 7.

E) Subtract data read in cycle 8 (3h) from data in ACC (30h) and
store result in ACC (ACC = 2Dh).
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Branch Not Taken

Example 7–4. Pipeline Operation with Branch Not Taken

ADD *+
BCND LBL, EQ ;Branch if ACC = 0
ADD *+
SUB #1
SACL *+,0,AR2
.
.
LBL
SUB *+
.
.

Table 7–4. Pipeline Operation with Branch Not Taken

Pipeline operation

Cycle PC F D R E ARP AR1 ACC [62h]

1 [BCND] ADD 1 60h 20h 9h

2 [LBL] BCND ADD 1 61h 20h 9h

3 [ADD] LBL BCND ADD 1 61h 20h 9h

4 [SUB] ADD dummy BCND ADD 1 61h 30h 9h

5 SACL SUB ADD dummy BCND 1 62h 30h 9h

6 SACL SUB ADD dummy 1 62h 30h 9h

7 SACL SUB ADD 2 63h 33h 9h

8 SACL SUB X XX 32h 9h

9 SACL X XX 32h 32h

Assume memory location 60h = 10h, 61h = 3h, and 62h = 9h. The following
is the condition of the pipeline for each cycle.

Cycle 1: F) Fetch the ADD instruction and update PC to next instruction.

Cycle 2: F) Fetch the BCND instruction and update PC.

D) Decode the ADD instruction and update AR1.

Cycle 3: F) Fetch the second word LBL and update PC.

D) Decode the BCND instruction and no ARAU update.

R) Read data from data memory location 60h (10h) which is the
location pointed at by AR1 before the update of cycle 2.
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Cycle 4: F) Fetch the ADD instruction and update PC.

D) Dummy operation (previous fetch phase is an operand).

R) No operand read for the BCND instruction.

E) Add data read in cycle 3 (10h) to data in ACC (20h) and store
result in ACC (ACC = 30h).

The PC update and decode (D) phase on cycle 5 depends on the execute (E)
phase result of the BCND instruction. Since the condition is false, the PC will
update to point to the next instruction and BCND will be treated as 2-word
instruction.

Cycle 5: F) Fetch the SUB instruction and update PC.

D) Decode the ADD instruction and update AR1.

R) Dummy operation (operand fetch on fetch phase).

E) Conditional testing.

Cycle 6: F) Fetch the SACL instruction and update PC.

D) Decode the SUB instruction and no ARAU update.

R) Read data from data memory location 61h (3h) which is the
location pointed at by AR1 before the update of cycle 5.

E) Dummy operation (operand fetch on fetch phase).

Cycle 7: F) Fetch the next instruction and update PC.

D) Decode the SACL instruction, and update AR1 and ARP.

R) No operand read for the SUB instruction.

E) Add data read in cycle 6 (3h) to data in ACC (30h) and store
result in ACC (ACC = 33h).

Cycle 8: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 7.

R) No operand read for the SACL instruction.

E) Subtract 1h from data in ACC (33h) and store result in ACC
(ACC = 32h).

Cycle 9: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 8.

R) Depends on the instruction fetched in cycle 7.

E) Store data in ACC (32h) to data memory location 62h which is
the location pointed at by AR1 before the update of cycle 7.
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Subroutine Call and Return
Example 7–5. Pipeline Operation with Subroutine Call and Return

ADD *+
CALL LBL
ADD *+
SUB #1
SACL *+,0,AR2
.
.
LBL
SUBB *+
RET
NOP
NOP
NOP
.
.

Table 7–5. Pipeline Operation with Subroutine Call and Return

Pipeline operation

Cycle PC F D R E ARP AR1 ACC TOS [63h]

1 [CALL] ADD 1 60h 20h XX XX

2 [LBL] CALL ADD 1 61h 20h XX XX

3 [ADD] LBL CALL ADD 1 61h 20h XX XX

4 [SUB] ADD dummy CALL ADD 1 61h 30h XX XX

5 LBL SUB dummy dummy CALL 1 61h 30h [ADD] XX

6 [RET] SUBB dummy dummy dummy 1 61h 30h [ADD] XX

7 [NOP] RET SUBB dummy dummy 1 62h 30h [ADD] XX

8 [NOP] NOP RET SUBB dummy 1 62h 30h [ADD] XX

9 [NOP] NOP dummy RET SUBB 1 62h 2Dh [ADD] XX

10 [ADD] NOP dummy dummy RET 1 62h 2Dh XX XX

11 [SUB] ADD dummy dummy dummy 1 62h 2Dh XX XX

12 [SACL] SUB ADD dummy dummy 1 63h 2Dh XX XX

13 SACL SUB ADD dummy 1 63h 2Dh XX XX

14 SACL SUB ADD 2 64h 36h XX XX

15 SACL SUB XX XX 35h XX XX

16 SACL XX XX 35h XX 35h
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Assume memory location 60h = 10h, 61h = 3h, and 62h = 9h. The following
is the condition of the pipeline for each cycle.

Cycle 1: F) Fetch the ADD instruction and update PC to next instruction.

Cycle 2: F) Fetch the CALL instruction and update PC.

D) Decode the ADD instruction and update AR1.

Cycle 3: F) Fetch the second word LBL and update PC.

D) Decode the CALL instruction and no ARAU update.

R) Read data from data memory location 60h (10h) which is the
location pointed at by AR1 before the update of cycle 2.

Cycle 4: F) Fetch the ADD instruction and update PC.

D) Dummy operation (previous fetch phase is an operand).

R) No operand read for the CALL instruction.

E) Add data read in cycle 3 (10h) to data in ACC (20h) and store
result in ACC (ACC = 30h).

Cycle 5: F) Fetch the SUB instruction. PC will modify during the execution
(E) phase.

D) Dummy operation (flush the pipeline).

R) Dummy operation (operand fetch on fetch phase).

E) Push the address of ADD on top of stack (TOS). Update PC
equal to LBL (ready to enter the subroutine).

Cycle 6: F) Fetch the SUBB instruction and update PC.

D) Dummy operation (flush the pipeline).

R) Dummy operation (flush the pipeline).

E) Dummy operation (operand fetch on fetch phase).

Cycle 7: F) Fetch the RET instruction and update PC.

D) Decode the SUBB instruction and update AR1.

R) Dummy operation (flush the pipeline).

E) Dummy operation (flush the pipeline).

Cycle 8: F) Fetch the NOP instruction and update PC.

D) Decode the RET instruction and no ARAU update.

R) Read data from data memory location 61h (3h) which is the
location pointed at by AR1 before the update of cycle 7.

E) Dummy operation (flush the pipeline).
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Cycle 9: F) Fetch the NOP instruction and update PC.

D) Dummy operation (flush the pipeline).

R) No operand read for the RET instruction.

E) Subtract data read in cycle 8 (3h) from data in ACC (30h) and
store result in ACC (ACC = 2Dh).

Cycle 10: F) Fetch the NOP instruction. PC will modify during the execute
(E) phase.

D) Dummy operation (flush the pipeline).

R) Dummy operation (flush the pipeline).

E) Pop the address from TOS to PC (ready to return from subrou-
tine).

Cycle 11: F) Fetch the ADD instruction and update PC.

D) Dummy operation (flush the pipeline).

R) Dummy operation (flush the pipeline).

E) Dummy operation (flush the pipeline).

Cycle 12: F) Fetch the SUB instruction and update PC.

D) Decode the ADD instruction and update AR1.

R) Dummy operation (flush the pipeline).

E) Dummy operation (flush the pipeline).

Cycle 13: F) Fetch the SACL instruction and update PC.

D) Decode the SUB instruction and no ARAU update.

R) Read data from data memory location 62h (9h) which is the
location pointed at by AR1 before the update of cycle 12.

E) Dummy operation (flush the pipeline).

Cycle 14: F) Fetch the next instruction and update PC.

D) Decode the SACL instruction, and update AR1 and ARP.

R) No operand read for the SUB instruction.

E) Add data read in cycle 13 (9h) to data in ACC (2Dh) and store
result in ACC (ACC = 36h).

Cycle 15: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 14.

R) No operand read for the SACL instruction.

E) Subtract 1h from data in ACC (36h) and store result in ACC
(ACC = 35h).
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Cycle 16: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 15.

R) Depends on the instruction fetched in cycle 14.

E) Store data in ACC (35h) to data memory location 63h which is
the location pointed at by AR1 before the update of cycle 14.

7.2.3 Pipeline Operation on ARAU Memory-Mapped Registers

Auxiliary register arithmetic unit (ARAU) updates of the ARs occur during the
decode (D) phase of the pipeline. This allows the address to be generated be-
fore the operand read (R) phase. However, memory-mapped accesses (for
example, SAMM, LMMR, SACL, or SPLK) to the ARs occur in the execute (E)
phase of the pipeline. Therefore, the use of ARs for the next two instructions
after a memory-mapped load of the AR is prohibited. This means that the next
two instructions after a memory-mapped load of the AR should not use this AR.

Modifications to the index register (INDX) and auxiliary register compare regis-
ter (ARCR) also occur in the execute (E) phase of the pipeline. Therefore, any
AR updates using the INDX or the ARCR must take place at least two cycles
after a load of these registers. Example 7–6, Example 7–7, and Example 7–8
show the effects of a memory-mapped write to an auxiliary register.

Example 7–6. Pipeline Operation with ARx Load

LAR AR2,#67h
LACC #64h
SAMM AR2
LACC *–
ADD *–
.
.



Pipeline Operation

7-15Pipeline

Table 7–6. Pipeline Operation with ARx Load

Pipeline operation

Cycle PC F D R E ARP AR2 ACC

1 [LACC] LAR 2 XX XX

2 [#64h] LACC LAR 2 XX XX

3 [SAMM] 64h LACC LAR 2 XX XX

4 [LACC] SAMM dummy LACC LAR 2 67h XX

5 [ADD] LACC SAMM dummy LACC 2 67h 64h

6 ADD LACC SAMM dummy 2 66h 64h

7 ADD LACC SAMM 2 64h 64h

8 ADD LACC 2 64h 50h

9 ADD 2 64h 90h

Assume memory location 65h = 30h, 66h = 40h, and 67h = 50h. The following
is the condition of the pipeline for each cycle.

Cycle 1: F) Fetch the LAR instruction and update PC to next instruction.

Cycle 2: F) Fetch the LACC instruction and update PC.

D) Decode the LAR instruction and no ARAU update.

Cycle 3: F) Fetch the second word 64h and update PC.

D) Decode the LACC instruction and no ARAU update.

R) No operand read for the LAR instruction.

Cycle 4: F) Fetch the SAMM instruction and update PC.

D) Dummy operation (previous fetch phase is an operand).

R) No operand read for the LACC instruction.

E) Load AR2 with 67h.

Cycle 5: F) Fetch the LACC instruction and update PC.

D) Decode the SAMM instruction and no ARAU update.

R) Dummy operation (operand fetch on fetch phase).

E) Load ACC with 64h.

Cycle 6: F) Fetch the ADD instruction and update PC.

D) Decode the LACC instruction and update AR2.

R) No operand read for the SAMM instruction.

E) Dummy operation (operand fetch on fetch phase).
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Cycle 7: F) Fetch the next instruction and update PC.

D) Decode the ADD instruction and update AR2.

R) Read data from data memory location 67h (50h) which is the
location pointed at by AR2 before the update of cycle 6.

E) Store data in ACC (64h) to AR2. This conflicts with decode (D)
phase.

Cycle 8: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 7.

R) Read data from data memory location 66h (40h) which is the
location pointed at by AR2 before the update of cycle 7.

E) Load ACC with data read in cycle 7 (ACC = 50h).

Cycle 9: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 8.

R) Depends on the instruction fetched in cycle 7.

E) Add data read in cycle 8 (40h) to data in ACC (50h) and store
result in ACC (ACC = 90h).

Example 7–7. Pipeline Operation with ARx Load and NOP Instruction

LAR AR2,#67h
LACC #64h
SAMM AR2
LACC *–
NOP
ADD *–
.
.
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Table 7–7. Pipeline Operation with ARx Load and NOP Instruction

Pipeline operation

Cycle PC F D R E ARP AR2 ACC

1 [LACC] LAR 2 XX XX

2 [#64h] LACC LAR 2 XX XX

3 [SAMM] 64h LACC LAR 2 XX XX

4 [LACC] SAMM dummy LACC LAR 2 67h XX

5 [NOP] LACC SAMM dummy LACC 2 67h 64h

6 [ADD] NOP LACC SAMM dummy 2 66h 64h

7 ADD dummy LACC SAMM 2 64h 64h

8 ADD dummy LACC 2 63h 64h

9 ADD dummy 2 63h 50h

10 ADD 2 63h 70h

Assume memory location 63h = 10h, 64h = 20h, 65h = 30h, 66h = 40h, and
67h = 50h. The following is the condition of the pipeline for each cycle.

Cycle 1: F) Fetch the LAR instruction and update PC to next instruction.

Cycle 2: F) Fetch the LACC instruction and update PC.

D) Decode the LAR instruction and no ARAU update.

Cycle 3: F) Fetch the second word 64h and update PC.

D) Decode the LACC instruction and no ARAU update.

R) No operand read for the LAR instruction.

Cycle 4: F) Fetch the SAMM instruction and update PC.

D) Dummy operation (previous fetch (F) phase is an operand).

R) No operand read for the LACC instruction.

E) Load AR2 with 67h.

Cycle 5: F) Fetch the LACC instruction and update PC.

D) Decode the SAMM instruction and no ARAU update.

R) Dummy operation (operand fetch on fetch phase).

E) Load ACC with 64h.
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Cycle 6: F) Fetch the NOP instruction and update PC.

D) Decode the LACC instruction and update AR2.

R) No operand read for the SAMM instruction.

E) Dummy operation (operand fetch on fetch phase).

Cycle 7: F) Fetch the ADD instruction and update PC.

D) Dummy operation (flush the pipeline).

R) Read data from data memory location 67h (50h) which is the
location pointed at by AR2 before the update of cycle 6.

E) Store data in ACC to AR2 (AR2 = 64h).

Cycle 8: F) Fetch the next instruction and update PC.

D) Decode the ADD instruction and update AR2.

R) Dummy operation (flush the pipeline).

E) Load ACC with data read in cycle 7 (ACC = 50h).

Cycle 9: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 8.

R) Read data from data memory location 64h (20h) which is the
location pointed at by AR2 before the update of cycle 8.

E) Dummy operation (flush the pipeline).

Cycle 10: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 9.

R) Depends on the instruction fetched in cycle 8.

E) Add data read in cycle 9 (20h) to data in ACC (50h) and store
result in ACC (ACC = 70h).

Example 7–8. Pipeline Operation with ARx Load and NOP Instructions

LAR AR2,#67h
LACC #64h
SAMM AR2
NOP
NOP
LACC *–
ADD *–
.
.
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Table 7–8. Pipeline Operation with ARx Load and NOP Instructions

Pipeline operation

Cycle PC F D R E ARP AR2 ACC

1 [LACC] LAR 2 XX XX

2 [#64h] LACC LAR 2 XX XX

3 [SAMM] 64h LACC LAR 2 XX XX

4 [NOP] SAMM dummy LACC LAR 2 67h XX

5 [NOP] NOP SAMM dummy LACC 2 67h 64h

6 [LACC] NOP dummy SAMM dummy 2 67h 64h

7 [ADD] LACC dummy dummy SAMM 2 64h 64h

8 ADD LACC dummy dummy 2 63h 64h

9 ADD LACC dummy 2 62h 64h

10 ADD LACC 2 62h 20h

11 ADD 2 62h 30h

Assume memory location 63h = 10h, 64h = 20h, 65h = 30h, 66h = 40h, and
67h = 50h. The following is the condition of the pipeline for each cycle.

Cycle 1: F) Fetch the LAR instruction and update PC to next instruction.

Cycle 2: F) Fetch the LACC instruction and update PC.

D) Decode the LAR instruction and no ARAU update.

Cycle 3: F) Fetch the second word 64h and update PC.

D) Decode the LACC instruction and no ARAU update.

R) No operand read for the LAR instruction.

Cycle 4: F) Fetch the SAMM instruction and update PC.

D) Dummy operation (previous fetch (F) phase is an operand).

R) No operand read for the LACC instruction.

E) Load AR2 with 67h.

Cycle 5: F) Fetch the NOP instruction and update PC.

D) Decode the SAMM instruction and no ARAU update.

R) Dummy operation (operand fetch on fetch phase).

E) Load ACC with 64h.
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Cycle 6: F) Fetch the NOP instruction and update PC.

D) Dummy operation (flush the pipeline).

R) No operand read for the SAMM instruction.

E) Dummy operation (operand fetch on fetch phase).

Cycle 7: F) Fetch the LACC instruction and update PC.

D) Dummy operation (flush the pipeline).

R) Dummy operation (flush the pipeline).

E) Store data in ACC to AR2 (AR2 = 64h).

Cycle 8: F) Fetch the ADD instruction and update PC.

D) Decode the LACC instruction and update AR2.

R) Dummy operation (flush the pipeline).

E) Dummy operation (flush the pipeline).

Cycle 9: F) Fetch the next instruction and update PC.

D) Decode the ADD instruction and update AR2.

R) Read data from data memory location 64h (20h) which is the
location pointed at by AR2 before the update of cycle 8.

E) Dummy operation (flush the pipeline).

Cycle 10: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 9.

R) Read data from data memory location 63h (10h) which is the
location pointed at by AR2 before the update of cycle 9.

E) Load ACC with data read in cycle 9 (ACC = 20h).

Cycle 11: F) Fetch the next instruction and update PC.

D) Decode the instruction fetched in cycle 10.

R) Depends on the instruction fetched in cycle 9.

E) Add data read in cycle 10 (10h) to data in ACC (20h) and store
result in ACC (ACC = 30h).
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7.2.4 Pipeline Operation on External Memory Conflict

Since the ’C5x only has one set of external address and data buses, a bus con-
flict occurs between instruction fetch (F), operand read (R), and execute (E)
write phases if both program and data memory are external. While the bus
conflict is occurring, a dummy operation can be inserted to eliminate the bus
conflict. Example 7–9 shows pipeline operation with a bus conflict and a
dummy operation.

In Example 7–9, assume there is no bus conflict between the LACC instruction
and the previous instructions. In the operand read (R) phase of LACC, a bus
conflict occurs with the fetch of SACL. Therefore, a dummy fetch operation is
inserted. In the next fetch (F) phase, the SACL has a bus conflict with the ADD
operand read (R) phase. Therefore, the fetch of SACL is delayed again one
cycle. Two dummy instruction fetches are inserted between ADD and SACL
due to this delay. A similar situation occurred in the execute (E) phase of SACL.
Since external memory writes take 3 cycles, during the execution of SACL any
instruction fetch or operand read access on the external bus will be delayed
for 3 cycles.

Example 7–9. Pipeline Operation with External Bus Conflicts

LACC *+
ADD *+
SACL *+, AR2
NOP
.
.

Table 7–9. Pipeline Operation with External Bus Conflicts

Pipeline operation

Cycle PC F D R E ARP AR1 AR2 ACC [802h]

1 [ADD] LACC 1 800h 803h XX FFh

2 [SACL] ADD LACC 1 801h 803h XX FFh

3 [SACL] dummy ADD LACC 1 802h 803h XX FFh

4 [SACL] dummy dummy ADD LACC 1 802h 803h 10h FFh

5 NOP SACL dummy dummy ADD 1 802h 803h 13h FFh

6 NOP SACL dummy dummy 2 803h 803h 13h FFh

7 dummy SACL dummy 2 803h 802h 13h FFh

8 dummy SACL 2 803h 802h 13h 13h

9 dummy 2 803h 802h 13h 13h
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Assume memory location 800h = 10h, 801h = 3h, 802h = FFh, and 803h = 6h.
The following is the condition of the pipeline for each cycle.

Cycle 1: F) Fetch the LACC instruction and update PC to next instruction.

Cycle 2: F) Fetch the ADD instruction and update PC.

D) Decode the LACC instruction and update AR1.

Cycle 3: F) Since the read (R) phase occupies the external bus, insert a
dummy operation and no update on PC.

D) Decode the ADD instruction and update AR1.

R) External data read for the LACC instruction from data memory
location 800h (10h) which is the location pointed at by AR1 be-
fore the update of cycle 2.

Cycle 4: F) Since the read (R) phase occupies the external bus, insert a
dummy operation and no update on PC.

D) Dummy operation from previous fetch phase.

R) External data read for the ADD instruction from data memory
location 801h (3h) which is the location pointed at by AR1 be-
fore the update of cycle 3.

E) Load ACC with data read in cycle 3 (ACC = 10h).

Cycle 5: F) Fetch the SACL instruction and update PC.

D) Dummy operation from previous fetch phase.

R) Dummy operation from previous decode phase.

E) Add data read in cycle 4 (3h) to data in ACC (10h) and store
result in ACC (ACC = 13h).

Cycle 6: F) Fetch the NOP instruction and update PC.

D) Decode the SACL instruction, and update ARP and AR1.

R) Dummy operation from previous decode (D) phase.

E) Dummy operation from previous read (R) phase.

Cycle 7: F) Fetch the next instruction and update PC.

D) Dummy operation (flush the pipeline).

R) No operand read for the SACL instruction.

E) Dummy operation from previous read (R) phase.

Cycle 8: F) Since the execute (E) phase occupies the external bus and
takes 3 cycles for an external write, insert a dummy operation
in the next 3 fetch (F) phases and no update on PC.

D) Decode instruction fetched in cycle 7.
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R) Dummy operation (flush the pipeline).

E) Store data in ACC (13h) to external data memory location 802h
which is the location pointed at by AR1 before the update of
cycle 6.

Cycle 9: F) Dummy operation and no update on PC.

D) Dummy operation from previous fetch (F) phase.

R) Depends on the instruction fetched in cycle 7.

E) Dummy operation (flush the pipeline).
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7.3 Pipeline Latency

Memory-mapped registers are accessed by ’C5x instructions in the decode
(D) and operand fetch (F) phases of the pipeline. The pipeline operation
previously described requires writes to memory-mapped registers, however,
latency occurs while accessing and writing to the registers. Table 7–10 out-
lines the latency required between an instruction that writes to the register via
its memory-mapped address and the access of that register by subsequent
instructions. Note that all direct accesses to the registers that do not use
memory-mapped addressing (such as all ’C2x-compatible instructions: LAR,
LT) are pipeline-protected (stalled) and, therefore, do not cause any latency.

The current AR is affected by the NORM instruction during its execute (E)
phase of the pipeline. Similar pipeline management, as described above,
works in this case. The -p option of the assembler detects an AR update or
store (SAR) directly after a NORM instruction and inserts NOP instructions
automatically to maintain source-code compatibility with the ’C2x.

Table 7–10. Latencies Required

Register Description Words Affects

ARx Auxiliary registers 0–7 2 Next word uses previous value; second
word update gets over written

ARCR Auxiliary register compare register 2 Next 2 words use previous value

BMAR Block move address register 1 Next 1 word uses previous value

CBCR Circular buffer control register 2 Next 2 words cannot be end of buffer

CBER Circular buffer end registers 1 and 2 2 Next 2 words cannot be end of buffer

CBSR Circular buffer start registers 1 and 2 2 Next 2 words use previous value

CWSR Wait-state control register 1 Next 1 word uses previous modes

GREG Global memory allocation register 1 Next 1 word uses previous map

INDX Index register 2 Next 2 words use previous value

IOWSR I/O port wait-state register 1 Next 1 word uses previous count

PDWSR Program/data wait-state register 1 Next 1 word uses previous count

PMST Processor mode status register 2 Next 2 words use previous map

ST1 Configuration control (CNF) bit in ST1 2 Next 2 words use previous map

TREG1 Dynamic shift count 1 Next 1 word uses old shift count

TREG2 Dynamic bit address 1 Next 1 word uses old bit address
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The ’C5x core CPU supports reconfiguration of memory segments (internal
and external) during the execute (E) phase of the pipeline. Therefore, before
an instruction utilizes the new configuration, at least two instruction words
should follow the instruction that reconfigures memory.

In the following example, assume the current AR = 0200h and RAMB0 (0) = 1.

CLRC CNF ;Map RAM B0 to data space.
LACC #01234h ;ACC = 00001234.
ADD * ;ACC = 00001235.

Notice the use of the LACC #01234h to fill the 2-word requirement. Because
a long-immediate operand is used, this is a 2-word instruction and, therefore,
meets the requirement. This also applies to memory configurations controlled
by the PMST.

If the main code is running in the B0 block (CNF = 1) and an interrupt
service routine not in B0 changes CNF to 0, a RETE will not restore
CNF in time to fetch the next instruction from the B0 block.
Therefore, in the interrupt service routine, the CNF bit should be set
at least 2 words before the RETE.
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Memory

The total memory address range of the ’C5x devices is 224K 16-bit words. The
memory space is divided into four individually-selectable memory segments:

� 64K-word program
� 64K-word local data
� 64K-word input/output (I/O) ports
� 32K-word global data

Their parallel architecture lets the ’C5x devices perform three concurrent
memory operations in any given machine cycle: fetching an instruction, read-
ing an operand, and writing an operand.

This chapter discusses ’C5x memory configuration and operation.
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8.1 Memory Space Overview

The ’C5x design is based on the enhanced Harvard architecture, which has
multiple memory spaces that can be accessed on two parallel buses. This
makes it possible to access both program and data simultaneously. The two
parallel buses are the program bus (PB) and data read bus (DB). Each bus
accesses different memory spaces for different aspects of the device opera-
tion. The ’C5x memory is organized into four individually selectable spaces:
program memory, local data memory, global data memory, and I/O ports.
These memory spaces compose an address range of 224K words. Within any
of these spaces, RAM, ROM, EPROM, EEPROM, or memory-mapped periph-
erals can reside either on- or off-chip.

The 64K-word program space contains the instructions to be executed. The
64K-word local data space stores data used by the instructions. The 32K-word
global data space can share data with other processors within the system or
can serve as additional data space. The 64K-word I/O port space interfaces
to external memory-mapped peripherals and can also serve as extra data stor-
age space. Within a given machine cycle, the ALU can execute as many as
three concurrent memory operations.

The large on-chip memory of the ’C5x devices enhances system performance
and integration. This on-chip memory includes ROM in program space, single-
access RAM (SARAM) in program and/or data space, and dual-access RAM
(DARAM) in program and/or data space. The amount and types of memory
available on each device are listed in Table 1–1.

All ’C5x devices have 1056 words of DARAM configured in three blocks and
mapped at the same addresses: block 0 (B0) has 512 words at address
0100h–02FFh in local data memory or FE00h–FFFFh in program space; block
1 (B1) has 512 words at address 0300h–04FFh in local data memory; and
block 2 (B2) has 32 words at address 0060h–007Fh in local data memory. The
DARAM can be read from and written to in the same machine cycle.

The ’C5x devices have different sizes of SARAM (see Table 1–1) which is di-
vided into 2K-word and 1K-word blocks that are contiguous in program or data
memory space. The SARAM requires a full machine cycle to perform a read
or a write. However, the CPU can read or write one block while accessing
another block during the same machine cycle.

The ’C5x devices have different sizes of ROM in program space (see
Table 1–1 on page 1-6). This ROM could be maskable ROM or boot ROM. The
boot ROM resides in program space at address 0000h and includes a device
test (for internal use) and boot code. The maskable ROM is also located in the
lowest block of program memory. The ROM is enabled or disabled by the state
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of the MP/MC pin control input at reset, or by manipulating the MP/MC bit in
the processor mode status register (PMST) after reset.

The ’C50 (Figure 8–1) includes 2K words of boot ROM, 9K words program/
data SARAM, and 1056 words of DARAM. The boot ROM resides in program
space at address range 0000h–07FFh. The 9K words of SARAM can be
mapped into program or data space and reside at address range
0800h–2BFFh in either space.

The ’C51 (Figure 8–2) removes the 2K-word boot ROM from program memory
space and replaces 8K words of program/data SARAM with an 8K-word block
of maskable ROM. The ’C51 also includes 1K word of program/data SARAM
and 1056 words of DARAM. The 8K words of ROM reside in program space
at address range 0000h–1FFFh. The 1K word of SARAM can be mapped into
data space (address range 0800h–0BFFh), program space (address range
2000h–23FFh), or both spaces.

The ’C52 (Figure 8–3) includes 4K words of maskable ROM and 1056 words
of DARAM. No program/data SARAM is available on the ’C52. The 4K words
of ROM reside in program space at address range 0000h–0FFFh.

The ’C53 and ’C53S (Figure 8–4) include 16K words of maskable ROM, 3K
words of program/data SARAM, and 1056 words of DARAM. The 16K words
of ROM reside in program space at address range 0000h–3FFFh. The 3K
words of SARAM can be mapped into data space (address range
0800–13FFh), program space (address range 4000h–4BFFh), or both
spaces.

The ’LC56 and ’LC57 (Figure 8–5) include 32K words of maskable ROM, 6K
words of program/data SARAM, and 1056 words of DARAM. The 32K words
of ROM reside in program space at address range 0000h–7FFFh. The 6K
words of SARAM can be mapped into data space (address range
0800–1FFFh), program space (address range 8000h–97FFh), or both
spaces.

The ’C57S (Figure 8–6) includes 2K words of boot ROM, 6K words of program/
data SARAM, and 1056 words of DARAM. The boot ROM resides in program
space at address range 0000h–07FFh. The 6K words of SARAM can be
mapped into data space (address range 0800–1FFFh), program space (ad-
dress range 8000h–97FFh), or both spaces.
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Figure 8–1. ’C50 Memory Map
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Figure 8–3. ’C52 Memory Map
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Figure 8–5. ’LC56 and ’LC57 Memory Map
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8.2 Program Memory

The program memory space addresses up to 64K 16-bit words and includes
on-chip ROM in program space, SARAM (except in ’C52) in program and/or
data space, and DARAM in program and/or data space. The amount and types
of memory available on each device are listed in Table 1–1 on page 1-6. Soft-
ware can configure these memory cells to reside inside (on-chip) or outside
(off-chip) of the program address map. When the memory cells are mapped
into program space, the ’C5x automatically accesses them when it addresses
within their bounds. When the CALU generates an address outside these
bounds, the ’C5x automatically generates an external (off-chip) access. These
are the advantages of operating from internal (on-chip) memory:

1) Higher performance because no wait states are required for slower exter-
nal memories.

2) Lower cost than external memory.

3) Lower power than external memory.

The advantage of operating from external (off-chip) memory is the ability to
access a larger address space.

8.2.1 Program Memory Configurability

The program memory can reside both on- and off-chip. At reset, the ’C5x de-
vice configuration is set by the level on the MP/MC pin. If this pin is high, the
device is configured as a microprocessor, and the on-chip ROM is not ad-
dressed. If this pin is low, the device is configured as a microcomputer, and the
on-chip ROM is enabled.

The ’C5x devices fetch their reset vector in program memory at address loca-
tion 0000h; so, if the device is operating as a microcomputer, it starts running
from on-chip ROM. If the device is operating as a microprocessor, it starts run-
ning from off-chip memory. Once the program is running, the device configura-
tion can be changed by setting or clearing the MP/MC bit in the PMST. Note
that the MP/MC pin is sampled only at reset. The following instruction removes
the ROM from program space by setting the MP/MC bit in the PMST to 1:

OPL#8,PMST ;Remove boot ROM from program space.

Code can be submitted to be masked into the on-chip ROM for ’C51, ’C52,
’C53, ’C56, and ’C57 devices. The process-masked ROM cell requires ROM
codes to be submitted to Texas Instruments for implementation in the device,
as detailed in Appendix F, Submitting ROM Codes to TI.
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At reset, the SARAM and the 512-word DARAM block B0 are not resident in
program space. You make the SARAM resident in program space by setting
the RAM bit in the PMST. When the RAM bit is set, the RAM cells become ad-
dressable in program space. You make the DARAM block B0 resident in pro-
gram space (address range FE00h–FFFFh) by setting the CNF bit in the ST1.
The following instructions map the SARAM and DARAM blocks into program
space by setting the appropriate bit in the registers:

OPL #010h,PMST ;Map ’C5x single-access memory
;in program space.

SETC CNF ;Map B0 to program space.

Table 8–1 through Table 8–6 show program memory configurations available
on the ’C5x devices. Note that all addresses are specified in hexadecimal.

Table 8–1. ’C50 Program Memory Configuration
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ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0800–2BFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FE00–FFFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–07FF,
2C00–FDFF
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Table 8–2. ’C51 Program Memory Configuration

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Bit values ÁÁÁÁÁÁ
ÁÁÁÁÁÁROM

ÁÁÁÁÁ
ÁÁÁÁÁSARAM

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁDARAM B0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
CNF ÁÁÁÁ
ÁÁÁÁ

RAM ÁÁÁÁ
ÁÁÁÁ

MP/MCÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ROM
(8K-words)

ÁÁÁÁÁ
ÁÁÁÁÁ

SARAM
(1K-words)

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DARAM B0
(512-words)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-Chip
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–1FFF
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2000–FFFF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–FFFF

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–1FFF ÁÁÁÁÁ
ÁÁÁÁÁ

2000–23FFÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2400–FFFF

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

2000–23FFÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–1FFF,
2400–FFFF

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–1FFF ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FE00–FFFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2000–FDFF

ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FE00–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–FDFF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–1FFF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

2000–23FF
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FE00–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2400–FDFF

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

2000–23FFÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FE00–FFFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–1FFF,
2400–FDFF

Table 8–3. ’C52 Program Memory Configuration
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁBit values

ÁÁÁÁÁÁ
ÁÁÁÁÁÁROM

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁDARAM B0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

CNF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

RAM
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

MP/MC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ROM
(4K-words)

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

SARAM
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

DARAM B0
(512-words)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-Chip

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–0FFF ÁÁÁÁÁ
ÁÁÁÁÁ

None ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1000–FFFF

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ

None ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–FFFF
ÁÁÁÁ
ÁÁÁÁ1

ÁÁÁÁ
ÁÁÁÁX

ÁÁÁÁ
ÁÁÁÁ0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0000–0FFF

ÁÁÁÁÁ
ÁÁÁÁÁNone

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁFE00–FFFF

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ1000–FDFFÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

X
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

None
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FE00–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–FDFF

Legend : X = Don’t care condition
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Table 8–4. ’C53 and ’C53S Program Memory Configuration

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Bit values ÁÁÁÁÁÁ
ÁÁÁÁÁÁROM

ÁÁÁÁÁ
ÁÁÁÁÁSARAM

ÁÁÁÁÁÁ
ÁÁÁÁÁÁDARAM B0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
CNFÁÁÁÁÁ
ÁÁÁÁÁ

RAM ÁÁÁÁ
ÁÁÁÁ

MP/MC ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ROM
(16K-words)

ÁÁÁÁÁ
ÁÁÁÁÁ

SARAM
(3K-words)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

DARAM B0
(512-words)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-Chip
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–3FFF
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4000–FFFF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–FFFF

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–3FFF ÁÁÁÁÁ
ÁÁÁÁÁ

4000–4BFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4C00–FFFF

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

4000–4BFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–3FFF,
4C00–FFFF

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–3FFF ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FE00–FFFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4000–FDFF

ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FE00–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–FDFF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–3FFF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

4000–4BFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FE00–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4C00–FDFF

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

4000–4BFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FE00–FFFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–3FFF,
4C00–FDFF

Table 8–5. ’LC56 and ’LC57 Program Memory Configuration
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBit values

ÁÁÁÁÁÁ
ÁÁÁÁÁÁROM

ÁÁÁÁÁ
ÁÁÁÁÁSARAM

ÁÁÁÁÁÁ
ÁÁÁÁÁÁDARAM B0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁCNF
ÁÁÁÁÁ
ÁÁÁÁÁRAM

ÁÁÁÁ
ÁÁÁÁMP/MC

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ROM
(32K-words)

ÁÁÁÁÁ
ÁÁÁÁÁ

SARAM
(6K-words)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

DARAM B0
(512-words)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁOff-ChipÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–7FFF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8000–FFFF

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–FFFF

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–7FFF ÁÁÁÁÁ
ÁÁÁÁÁ

8000–97FF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9800–FFFF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

8000–97FF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–7FFF,
9800–FFFF

ÁÁÁÁ
ÁÁÁÁ1

ÁÁÁÁÁ
ÁÁÁÁÁ0

ÁÁÁÁ
ÁÁÁÁ0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0000–7FFF

ÁÁÁÁÁ
ÁÁÁÁÁOff-chip

ÁÁÁÁÁÁ
ÁÁÁÁÁÁFE00–FFFF

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ8000–FDFFÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FE00–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–FDFF

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–7FFF ÁÁÁÁÁ
ÁÁÁÁÁ

8000–97FF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FE00–FFFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9800–FDFF

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

8000–97FF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FE00–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–7FFF,
9800–FDFF
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Table 8–6. ’C57S Program Memory Configuration

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Bit values ÁÁÁÁÁÁ
ÁÁÁÁÁÁROM

ÁÁÁÁÁ
ÁÁÁÁÁSARAM

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁDARAM B0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
CNF ÁÁÁÁ
ÁÁÁÁ

RAM ÁÁÁÁ
ÁÁÁÁ

MP/MCÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ROM
(2K-words) ÁÁÁÁÁ

ÁÁÁÁÁ

SARAM
(6K-words) ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ

DARAM B0
(512-words) ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Off-Chip

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–07FF ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8000–FFFF
ÁÁÁÁ
ÁÁÁÁ0

ÁÁÁÁ
ÁÁÁÁ0

ÁÁÁÁ
ÁÁÁÁ1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁOff-chip

ÁÁÁÁÁ
ÁÁÁÁÁOff-chip

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOff-chip

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0000–FFFFÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–07FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

8000–97FF
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9800–FFFF

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

8000–97FFÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–7FFF,
9800–FFFF

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–07FF ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FE00–FFFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8000–FDFF

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FE00–FFFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–FDFF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–07FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

8000–97FF
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FE00–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9800–FDFF

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁ
ÁÁÁÁÁ

8000–97FFÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FE00–FFFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–7FFF,
9800–FDFF

8.2.2 Program Memory Address Map

The interrupt vectors are addressed in program space. These vectors are
soft — meaning that the processor, when taking the trap, loads the program
counter (PC) with the trap address and executes code at the vector location.
Two words are reserved at each vector location for a branch instruction to the
appropriate interrupt service routine (ISR). Table 8–7 lists the interrupt vector ad-
dresses after reset.

At reset, the interrupt vector is mapped absolutely to address 0000h in pro-
gram space. However, the interrupt vector can be remapped to the beginning
of any 2K-word page in program space after reset. To do this, load the interrupt
vector pointer (IPTR) bits in the PMST with the appropriate 2K-word page
boundary address. After IPTR is loaded, any user interrupt vector is mapped
to the new 2K-word page. For example:

OPL#05800h,PMST ;Remap vectors to start at 5800h.

In this example, the interrupt vectors move to off-chip program space begin-
ning at address 5800h. Any subsequent interrupt (except for a reset) will fetch
its interrupt vector from that new location. For example, if, after loading the
IPTR, an INT2 occurs, the interrupt service routine vector will be fetched from
address 5804h in program space as opposed to address 0004h. This feature
lets you move the desired vectors out of the boot ROM and then remove the
ROM from the memory map. Once the system code is booted into the system
from the boot-loader code resident in ROM, the application reloads the IPTR
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with a value pointing to the new vectors. In the above example, the OPL
instruction is used to modify the IPTR bits in the PMST. This example assumes
that the IPTR bits are currently cleared. To assure that the correct value for
IPTR is set, the bits must be cleared before this instruction is executed.

Note:

The reset vector can not be remapped, because reset loads the IPTR with
0. Therefore, the reset vector will always be fetched at location 0000h in pro-
gram memory. In addition, for the ’C51 and ’C53, 100 words are reserved in
the on-chip ROM for device-testing purposes. Application code written to be
implemented in on-chip ROM must reserve these 100 words at the top of the
ROM addresses.

Table 8–7. ’C5x Interrupt Vector Addresses

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Location ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Name ÁÁÁÁ

ÁÁÁÁ
Dec ÁÁÁÁÁ
ÁÁÁÁÁ

Hex ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Priority ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Function
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

RS ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 (highest) ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

External nonmaskable reset signal

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INT1 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

External user interrupt #1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁINT2

ÁÁÁÁ
ÁÁÁÁ4

ÁÁÁÁÁ
ÁÁÁÁÁ4

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ4

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁExternal user interrupt #2ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INT3
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

6
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

6
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

5
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

External user interrupt #3

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TINT ÁÁÁÁ
ÁÁÁÁ

8 ÁÁÁÁÁ
ÁÁÁÁÁ

8 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

6 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Internal timer interrupt

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

RINT ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁÁ
ÁÁÁÁÁ

A ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

7 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Serial port receive interrupt

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

XINT ÁÁÁÁ
ÁÁÁÁ

12 ÁÁÁÁÁ
ÁÁÁÁÁ

C ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

8 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Serial port transmit interrupt
ÁÁÁÁÁÁ
ÁÁÁÁÁÁTRNT�

ÁÁÁÁ
ÁÁÁÁ14

ÁÁÁÁÁ
ÁÁÁÁÁE

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ9

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁTDM port receive interruptÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TXNT‡
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

16
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

10
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

10
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

TDM port transmit interrupt

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INT4 ÁÁÁÁ
ÁÁÁÁ

18 ÁÁÁÁÁ
ÁÁÁÁÁ

12 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

11 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

External user interrupt #4

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

––– ÁÁÁÁ
ÁÁÁÁ

20–23ÁÁÁÁÁ
ÁÁÁÁÁ

14–17 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

N/A ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

HINT
ÁÁÁÁ
ÁÁÁÁ

24
ÁÁÁÁÁ
ÁÁÁÁÁ

18
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

–––
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

HINT (’C57 only)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ–––

ÁÁÁÁ
ÁÁÁÁ26–33

ÁÁÁÁÁ
ÁÁÁÁÁ1A–21

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁN/A

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁReservedÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TRAP
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

34
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

22
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

N/A
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Software trap instruction

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NMI ÁÁÁÁ
ÁÁÁÁ

36 ÁÁÁÁÁ
ÁÁÁÁÁ

24 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Nonmaskable interrupt

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

––– ÁÁÁÁ
ÁÁÁÁ

38–39ÁÁÁÁÁ
ÁÁÁÁÁ

26–27 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

N/A ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved for emulation and test
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

–––
ÁÁÁÁ
ÁÁÁÁ

40–63
ÁÁÁÁÁ
ÁÁÁÁÁ

28–3F
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

N/A
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Software interrupts

† RINT2 on ’C52; BRNT on ’C56/C57
‡ XINT2 on ’C52; BXNT on ’C56/C57
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8.2.3 Program Memory Addressing

The program memory space contains the code for applications. It can also
hold table information and immediate operands. The program memory is ac-
cessed only by the PAB. The address for this bus is generated by the PC when
instructions and long immediate operands are accessed. The PAB can also be
loaded with long immediate, low accumulator, or registered addresses for
block transfers, multiply/accumulates, and table read/writes.

The ’C5x fetches instructions by putting the PC on the PAB and reading the
appropriate location in program memory. While the read is executing, the PC
is incremented for the next fetch. If there is a program address discontinuity
(for example, branch, call, return, interrupt, or block repeat), the appropriate
address is loaded into the PC. The PC is also loaded when operands are
fetched from program memory, which occurs when the device reads from
(TBLR) or writes to (TBLW) tables, when it transfers data to (BLPD) or from
(BLDP) data space, or when it uses the program bus to fetch a second multipli-
cand (MAC, MACD, MADS, and MADD). See Section 4.1, Program Counter
(PC), on page 4-2.

The data used as instruction operands is obtained in one of the following
addressing modes:

� The direct addressing mode
� The indirect addressing mode
� The short immediate addressing mode
� The long immediate addressing mode
� The dedicated-register addressing mode
� The memory-mapped register addressing mode

Refer to Chapter 5, Addressing Modes, for a discussion about the addressing
modes.

Address Visibility

The address visibility (AVIS) feature can trace the address flow of a program
externally and can be used for debugging during program development. It is
enabled after reset and can be disabled by setting the AVIS bit in the PMST
and enable it by clearing the AVIS bit. The address visibility mode sends the
program address out to the address pins of the device, even when on-chip pro-
gram memory is addressed. Note that the memory control signals (PS, RD,
etc.) are not active in this mode.
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Instruction addresses can be externally clocked with the falling edge of the
instruction acquisition (IAQ) pin (refer to the TMS320C5x data sheet for IAQ
timings). These instruction addresses include both words of a 2-word instruc-
tion but do not include block transfers, table reads, or multiply/accumulate op-
erands. The address visibility mode also allows a specific interrupt trap to be
decoded in conjunction with the interrupt acknowledge (IACK) pin. While IACK
is low, address pins A1–A4 can be decoded to identify which interrupt is being
acknowledged (refer to the TMS320C5x data sheet for IACK timings).

Once the system is debugged, you can disable the address visibility mode by
setting the AVIS bit. Disabling the address visibility mode lowers the power
consumption of the device and the RF noise of the system. Note that if the pro-
cessor is running while HOLDA is active (HM = 0), the program address is not
available at the address pins, regardless of the address visibility mode.

8.2.4 Program Memory Protection Feature

The program memory protection feature prevents an instruction fetched from
off-chip memory from reading or writing on-chip program memory. The pipe-
line controller tracks instructions fetched from off-chip memory, and, if the op-
erand address resides in on-chip program space, the instruction reads invalid
data off the bus. The protection feature implements these limitations:

� Instructions fetched from off-chip memory cannot read or write on-chip
single-access and read-only program memory.

� Instructions fetched from DARAM block B0 cannot read or write on-chip
single-access and read-only program memory.

� Coefficients for off-chip multiply/accumulate instructions cannot reside in
on-chip single-access and read-only program memory.

� The on-chip single-access memory cannot be mapped to program space.

� The on-chip single-access memory cannot be mapped to data space.

� External DMA cannot be used.

� The emulator cannot access on-chip program memory.

� The program memory address range that corresponds to the on-chip
single-access RAM is not available for external memory.

This feature can be used with the on-chip ROM to secure program code that
is stored in external (off-chip) memory. The ROM code can include a decryp-
tion algorithm that takes encrypted off-chip code, decrypts it, and stores the
routine in on-chip single-access program RAM. This process-mask option, like
the ROM, must be submitted to Texas Instruments for implementation.
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8.3 Local Data Memory

The local data memory space on the ’C5x addresses up to 64K 16-bit words.
All the ’C5x devices have 1056 words of DARAM but different sizes of SARAM.
The amount and types of memory available on each device are listed in
Table 1–1 on page 1-6. You can use software to configure these memory cells
to reside inside (on-chip) or outside (off-chip) of the local data address map.
When the memory cells are mapped into local data space, the ’C5x automati-
cally accesses them when it addresses within their bounds. When the CALU
generates an address outside these bounds, the ’C5x automatically generates
an external (off-chip) access. These are the advantages of operating from
internal (on-chip) memory:

1) Higher performance because no wait states are required for slower exter-
nal memories.

2) Higher performance because of more efficient pipeline operation.

3) Lower cost than external memory.

4) Lower power than external memory.

The advantage of operating from external (off-chip) memory is the ability to ac-
cess a larger address space.

8.3.1 Local Data Memory Configurability

The local data memory can reside both on- and off-chip. At reset, the ’C5x de-
vice configuration maps the 1056 words of DARAM into local data space.
DARAM block B0 can be reconfigured into program space by setting the CNF
bit in ST1. SARAM can be mapped into data space by setting the OVLY bit in
the PMST.

Table 8–8 through Table 8–12 show local data memory configurations avail-
able on the ’C5x devices. Note that all locations in the address range
0000h–0800h that are not mapped into on-chip memory are on-chip reserved
locations. Address range 0000h–004Fh contains on-chip memory-mapped
registers, and address range 0050h–005Fh contains the memory-mapped I/O
ports. Note that all addresses are specified in hexadecimal.
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Table 8–8. ’C50 Local Data Memory Configuration

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Bit values ÁÁÁÁ
ÁÁÁÁRegisters

ÁÁÁÁÁ
ÁÁÁÁÁDARAM B2

ÁÁÁÁÁ
ÁÁÁÁÁDARAM B0

ÁÁÁÁÁ
ÁÁÁÁÁDARAM B1

ÁÁÁÁÁ
ÁÁÁÁÁSARAM

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁ
CNFÁÁÁÁ
ÁÁÁÁ

OVLY ÁÁÁÁ
ÁÁÁÁ

Registers
(96-words)

ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B2
(32-words)

ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B0
(512-words)

ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B1
(512-words)

ÁÁÁÁÁ
ÁÁÁÁÁ

SARAM
(9K-words)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-Chip
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

0000–005F
ÁÁÁÁÁ
ÁÁÁÁÁ

0060–007F
ÁÁÁÁÁ
ÁÁÁÁÁ

0100–02FF
ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FF
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF
ÁÁÁ
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000–005F
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0060–007F
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0100–02FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0800–2BFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2C00–FFFF

ÁÁÁ
ÁÁÁ

1ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007FÁÁÁÁÁ
ÁÁÁÁÁ

Reserved ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FFÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF

ÁÁÁ
ÁÁÁ

1ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007FÁÁÁÁÁ
ÁÁÁÁÁ

Reserved ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FFÁÁÁÁÁ
ÁÁÁÁÁ

0800–2BFFÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2C00–FFFF

Table 8–9. ’C51 Local Data Memory Configuration

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Bit values ÁÁÁÁ
ÁÁÁÁRegisters

ÁÁÁÁÁ
ÁÁÁÁÁDARAM B2

ÁÁÁÁÁ
ÁÁÁÁÁDARAM B0

ÁÁÁÁÁ
ÁÁÁÁÁDARAM B1

ÁÁÁÁÁ
ÁÁÁÁÁSARAM

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁ
CNFÁÁÁÁ
ÁÁÁÁ

OVLY ÁÁÁÁ
ÁÁÁÁ

Registers
(96-words)ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B2
(32-words)ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B0
(512-words)ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B1
(512-words)ÁÁÁÁÁ

ÁÁÁÁÁ

SARAM
(1K-words)ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Off-Chip

ÁÁÁ
ÁÁÁ

0ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007FÁÁÁÁÁ
ÁÁÁÁÁ

0100–02FFÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FFÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF
ÁÁÁ
ÁÁÁ0
ÁÁÁÁ
ÁÁÁÁ1

ÁÁÁÁ
ÁÁÁÁ0000–005F

ÁÁÁÁÁ
ÁÁÁÁÁ0060–007F

ÁÁÁÁÁ
ÁÁÁÁÁ0100–02FF

ÁÁÁÁÁ
ÁÁÁÁÁ0300–04FF

ÁÁÁÁÁ
ÁÁÁÁÁ0800–0BFF

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0C00–FFFFÁÁÁ

ÁÁÁ
ÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000–005F
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0060–007F
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF

ÁÁÁ
ÁÁÁ

1ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007FÁÁÁÁÁ
ÁÁÁÁÁ

Reserved ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FFÁÁÁÁÁ
ÁÁÁÁÁ

0800–0BFFÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0C00–FFFF

Table 8–10. ’C52 Local Data Memory Configuration

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Bit values ÁÁÁÁ
ÁÁÁÁ

Registers
ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B2
ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B0
ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B1
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁ
CNFÁÁÁÁ
ÁÁÁÁ

OVLY ÁÁÁÁ
ÁÁÁÁ

Registers
(96-words)ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B2
(32-words)ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B0
(512-words)ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B1
(512-words)ÁÁÁÁÁ

ÁÁÁÁÁ
SARAM ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Off-Chip

ÁÁÁ
ÁÁÁ

0ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007FÁÁÁÁÁ
ÁÁÁÁÁ

0100–02FFÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FFÁÁÁÁÁ
ÁÁÁÁÁ

None ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF

ÁÁÁ
ÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ

X
ÁÁÁÁ
ÁÁÁÁ

0000–005F
ÁÁÁÁÁ
ÁÁÁÁÁ

0060–007F
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved
ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FF
ÁÁÁÁÁ
ÁÁÁÁÁ

None
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF

Legend : X = Don’t care condition

Table 8–11. ’C53 and ’C53S Local Data Memory Configuration

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Bit values ÁÁÁÁ
ÁÁÁÁ

Registers
ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B2
ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B0
ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B1
ÁÁÁÁÁ
ÁÁÁÁÁ

SARAM
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁ
CNFÁÁÁÁ
ÁÁÁÁ

OVLY ÁÁÁÁ
ÁÁÁÁ

Registers
(96-words)ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B2
(32-words)ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B0
(512-words)ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B1
(512-words)ÁÁÁÁÁ

ÁÁÁÁÁ

SARAM
(3K-words)ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Off-Chip

ÁÁÁ
ÁÁÁ

0ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007FÁÁÁÁÁ
ÁÁÁÁÁ

0100–02FFÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FFÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF

ÁÁÁ
ÁÁÁ

0ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007FÁÁÁÁÁ
ÁÁÁÁÁ

0100–02FFÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FFÁÁÁÁÁ
ÁÁÁÁÁ

0800–13FFÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1400–FFFF
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0000–005F
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0060–007F
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF

ÁÁÁ
ÁÁÁ

1ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007FÁÁÁÁÁ
ÁÁÁÁÁ

Reserved ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FFÁÁÁÁÁ
ÁÁÁÁÁ

0800–13FFÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1400–FFFF
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Table 8–12. ’LC56, ’LC57, and ’C57S Local Data Memory Configuration

ÁÁÁÁÁ
ÁÁÁÁÁ

Bit values ÁÁÁÁÁ
ÁÁÁÁÁ

Registers
ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B2
ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B0
ÁÁÁÁÁ
ÁÁÁÁÁ

DARAM B1
ÁÁÁÁÁ
ÁÁÁÁÁ

SARAM
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁ
CNFÁÁÁ
ÁÁÁ

OVLYÁÁÁÁÁ
ÁÁÁÁÁ

Registers
(96-words) ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B2
(32-words) ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B0
(512-words) ÁÁÁÁÁ

ÁÁÁÁÁ

DARAM B1
(512-words) ÁÁÁÁÁ

ÁÁÁÁÁ

SARAM
(6K-words) ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Off-Chip

ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007F ÁÁÁÁÁ
ÁÁÁÁÁ

0100–02FF ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FF ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

0000–005F
ÁÁÁÁÁ
ÁÁÁÁÁ

0060–007F
ÁÁÁÁÁ
ÁÁÁÁÁ

0100–02FF
ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FF
ÁÁÁÁÁ
ÁÁÁÁÁ

0800–1FFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2000–FFFF
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁÁ
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0000–005F
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0060–007F
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0800–FFFF

ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0000–005FÁÁÁÁÁ
ÁÁÁÁÁ

0060–007F ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved ÁÁÁÁÁ
ÁÁÁÁÁ

0300–04FF ÁÁÁÁÁ
ÁÁÁÁÁ

0800–1FFF ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2000–FFFF

8.3.2 Local Data Memory Address Map

The 64K words of local data memory space include the memory-mapped reg-
isters for the device. The memory-mapped registers reside in data page 0.
Data page 0 has five sections of register banks: CPU registers, peripheral reg-
isters, test/emulation reserved area, I/O space, and scratch-pad RAM.
Table 8–13 lists the addresses of data page 0.

� The 28 CPU registers can be accessed with zero wait states. Some of
these registers can be accessed through paths other than the data bus —
for example, auxiliary registers can be loaded by the auxiliary register
arithmetic unit (ARAU) by using the LAR instruction.

� The peripheral registers are the control and data registers used in the pe-
ripheral circuits. These registers reside on a dedicated peripheral bus
structure called the TI Bus. They require one wait state when accessed.

� The test/emulation reserved area is used by the test and emulation sys-
tems for special information transfers.

Writing to the test/emulation reserved area can cause the device to
change its operational mode and, therefore, affect the operation of
the application.

� The I/O space provides access to 16 words of I/O space (other than IN and
OUT instructions) via the more extensive addressing modes available
within the data space. For example, the SAMM instruction can write to an
I/O memory-mapped port as an OUT instruction does. The external inter-
face functions as if an OUT instruction occurred (IS active). Port
addresses reside off-chip and are subject to external wait states. They are
also affected by the on-chip software wait-state generator, like any other
nonmemory-mapped I/O port.
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� The 32-word scratch-pad RAM of DARAM block B2 can be used to hold
overhead variables so that the larger blocks of RAM are not fragmented.
This RAM block supports dual-access operations and can be addressed
via the memory-mapped addressing mode or any data memory addressing
mode.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 8–13. Data Page 0 Address Map — CPU Registers 
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁAddress

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

Dec
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Hex
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Name
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁ
ÁÁÁÁ

0–3ÁÁÁÁ
ÁÁÁÁ

0–3 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

––– ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved

ÁÁÁÁ
ÁÁÁÁ

4 ÁÁÁÁ
ÁÁÁÁ

4 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

IMR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Interrupt mask register

ÁÁÁÁ
ÁÁÁÁ

5 ÁÁÁÁ
ÁÁÁÁ

5 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

GREG ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Global memory allocation register

ÁÁÁÁ
ÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

6 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

IFR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Interrupt flag register
ÁÁÁÁ
ÁÁÁÁ

7 ÁÁÁÁ
ÁÁÁÁ

7 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

PMST ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Processor mode status register
ÁÁÁÁ
ÁÁÁÁ

8
ÁÁÁÁ
ÁÁÁÁ

8
ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

RPTC
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Repeat counter register
ÁÁÁÁ
ÁÁÁÁ9

ÁÁÁÁ
ÁÁÁÁ9

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁBRCR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁBlock repeat counter registerÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

10
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

A
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PASR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Block repeat program address start register

ÁÁÁÁ
ÁÁÁÁ

11 ÁÁÁÁ
ÁÁÁÁ

B ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

PAER ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Block repeat program address end register

ÁÁÁÁ
ÁÁÁÁ

12 ÁÁÁÁ
ÁÁÁÁ

C ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

TREG0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Temporary register 0 (used for multiplicand)

ÁÁÁÁ
ÁÁÁÁ

13 ÁÁÁÁ
ÁÁÁÁ

D ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

TREG1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Temporary register 1 (used for dynamic shift count)

ÁÁÁÁ
ÁÁÁÁ

14 ÁÁÁÁ
ÁÁÁÁ

E ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

TREG2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Temporary register 2 (used as bit pointer in dynamic bit test)
ÁÁÁÁ
ÁÁÁÁ

15
ÁÁÁÁ
ÁÁÁÁ

F
ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

DBMR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Dynamic bit manipulation register
ÁÁÁÁ
ÁÁÁÁ16

ÁÁÁÁ
ÁÁÁÁ10

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁAR0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAuxiliary register 0ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

17
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

11
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

AR1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Auxiliary register 1

ÁÁÁÁ
ÁÁÁÁ

18 ÁÁÁÁ
ÁÁÁÁ

12 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

AR2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Auxiliary register 2

ÁÁÁÁ
ÁÁÁÁ

19 ÁÁÁÁ
ÁÁÁÁ

13 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

AR3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Auxiliary register 3

ÁÁÁÁ
ÁÁÁÁ

20 ÁÁÁÁ
ÁÁÁÁ

14 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

AR4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Auxiliary register 4

ÁÁÁÁ
ÁÁÁÁ

21 ÁÁÁÁ
ÁÁÁÁ

15 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

AR5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Auxiliary register 5
ÁÁÁÁ
ÁÁÁÁ

22
ÁÁÁÁ
ÁÁÁÁ

16
ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

AR6
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Auxiliary register 6
ÁÁÁÁ
ÁÁÁÁ23

ÁÁÁÁ
ÁÁÁÁ17

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁAR7

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAuxiliary register 7ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

24
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

18
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

INDX
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Index register

ÁÁÁÁ
ÁÁÁÁ

25 ÁÁÁÁ
ÁÁÁÁ

19 ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

ARCR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Auxiliary register compare register

ÁÁÁÁ
ÁÁÁÁ

26 ÁÁÁÁ
ÁÁÁÁ

1A ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

CBSR1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Circular buffer 1 start register
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 8–13. Data Page 0 Address Map — CPU Registers (Continued)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescription

ÁÁÁÁÁ
ÁÁÁÁÁName

Á
Á

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Address

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DescriptionÁÁÁÁÁ
ÁÁÁÁÁ

NameÁ
Á

ÁÁÁÁ
ÁÁÁÁ

HexÁÁÁÁ
ÁÁÁÁ

Dec

ÁÁÁÁ
ÁÁÁÁ

27 ÁÁÁÁ
ÁÁÁÁ

1B Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

CBER1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Circular buffer 1 end register
ÁÁÁÁ
ÁÁÁÁ

28 ÁÁÁÁ
ÁÁÁÁ

1C Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

CBSR2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Circular buffer 2 start register
ÁÁÁÁ
ÁÁÁÁ

29
ÁÁÁÁ
ÁÁÁÁ

1D
Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

CBER2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Circular buffer 2 end register
ÁÁÁÁ
ÁÁÁÁ30

ÁÁÁÁ
ÁÁÁÁ1E

Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁCBCR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁCircular buffer control registerÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

31
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1F
Á
Á
Á

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

BMAR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Block move address register

ÁÁÁÁ
ÁÁÁÁ

32–35 ÁÁÁÁ
ÁÁÁÁ

20–23 Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

––– ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory-mapped serial port registers†

ÁÁÁÁ
ÁÁÁÁ

36–42 ÁÁÁÁ
ÁÁÁÁ

24–2A Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

––– ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory-mapped peripheral registers†

ÁÁÁÁ
ÁÁÁÁ

43–47 ÁÁÁÁ
ÁÁÁÁ

2B–2F Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

––– ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved for test/emulation

ÁÁÁÁ
ÁÁÁÁ

48–55 ÁÁÁÁ
ÁÁÁÁ

30–37 Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

––– ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory-mapped serial port registers†

ÁÁÁÁ
ÁÁÁÁ

56–79
ÁÁÁÁ
ÁÁÁÁ

38–4F
Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ

–––
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved
ÁÁÁÁ
ÁÁÁÁ80–95

ÁÁÁÁ
ÁÁÁÁ50–5F

Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ–––

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMemory-mapped I/O ports†

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

96–127
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

60–7F
Á
Á
Á

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

–––
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scratch-pad RAM (DARAM block B2)

† See subsection 9.1.1, Memory-Mapped Peripheral Registers and I/O Ports, on page 9-2

8.3.3 Local Data Memory Addressing

The local data space address generation is controlled by the decode of the cur-
rent instruction. Local data memory is read via data address bus 1 (DAB) on
instructions with only one data memory operand and via program address bus
(PAB) on instructions with a second data memory operand. An instruction op-
erand is provided to the CALU as described in subsection 8.2.3 on page 8-13.
However, data memory addresses are generated in one of the following ways:

� The direct addressing mode
� The indirect addressing mode
� The long immediate operand addressing mode
� The dedicated-register addressing mode
� The memory-mapped register addressing mode

Refer to Chapter 5, Addressing Modes, for a discussion about the addressing
modes.
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8.4 Global Data Memory

For multiprocessing applications, the ’C5x devices can allocate global data
memory space and communicate with that space via the BR (bus request) and
READY control signals. This capability can be used to extend the data memory
address map by overlaying the address space.

Since global memory is shared by more than one processor, access to it must
be arbitrated. When global memory is used, the processor’s address space is
divided into local and global sections. The local section is used by the proces-
sor to perform its individual function, and the global section is used to commu-
nicate with other processors. This implementation facilitates shared data mul-
tiprocessing in which data is transferred between two or more processors. Un-
like a direct memory access (DMA) between two processors, reading or writing
global memory does not require that one of the processors be halted.

8.4.1 Global Data Memory Configurability

The global memory allocation register (GREG) specifies part of the ’C5x data
memory as global external memory. The 8-bit GREG is memory-mapped to
data memory address location 05h and is connected to the eight LSBs of the
internal data bus. The upper eight bits of location 05h are unused and are read
as 1s.

The contents of GREG determine the size (between 256 and 32K words) of
the global memory space. The legal values of GREG and the corresponding
local and global memory spaces are listed in Table 8–14.

Note:

In Table 8–14 all addresses are specified in hexadecimal; values in GREG
other than those listed will lead to fragmented memory maps and should be
avoided.

8.4.2 Global Data Memory Addressing

When a data memory address, either direct or indirect, corresponds to a global
data memory address (as defined by GREG), BR is asserted low with DS to
indicate that the ’C5x device is starting a global memory access. External logic
then arbitrates for control of the global memory, asserting READY when the
’C5x device has control. The length of the memory cycle is controlled by the
READY signal. In addition, the software wait-state generators can be used to
extend the access times for slower, external memories. The wait-state genera-
tors corresponding to the overlapped memory address space in local data
space generate the wait states for the corresponding addresses in global data
memory space.
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Table 8–14. Global Data Memory Configurations

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Local Memory ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Global Memory
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GREG value ÁÁÁÁÁ
ÁÁÁÁÁ

Range ÁÁÁÁÁ
ÁÁÁÁÁ

# Words ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Range ÁÁÁÁ
ÁÁÁÁ

# Words
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000 00XX
ÁÁÁÁÁ
ÁÁÁÁÁ

0000–FFFF
ÁÁÁÁÁ
ÁÁÁÁÁ

65 536
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

        —
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1000 0000
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0000–7FFF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

32 768
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

8000–FFFF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

32 768

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1100 0000 ÁÁÁÁÁ
ÁÁÁÁÁ

0000–BFFFÁÁÁÁÁ
ÁÁÁÁÁ

49 152 ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

C000–FFFF ÁÁÁÁ
ÁÁÁÁ

16 384

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1110 0000 ÁÁÁÁÁ
ÁÁÁÁÁ

0000–DFFFÁÁÁÁÁ
ÁÁÁÁÁ

57 344 ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

E000–FFFF ÁÁÁÁ
ÁÁÁÁ

8192

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1111 0000
ÁÁÁÁÁ
ÁÁÁÁÁ

0000–EFFF
ÁÁÁÁÁ
ÁÁÁÁÁ

61 440
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

F000–FFFF
ÁÁÁÁ
ÁÁÁÁ

4096
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1111 1000
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0000–F7FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

63 488
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

F800–FFFF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2048

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1111 1100 ÁÁÁÁÁ
ÁÁÁÁÁ

0000–FBFFÁÁÁÁÁ
ÁÁÁÁÁ

64 512 ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

FC00–FFFF ÁÁÁÁ
ÁÁÁÁ

1024

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1111 1110 ÁÁÁÁÁ
ÁÁÁÁÁ

0000–FDFFÁÁÁÁÁ
ÁÁÁÁÁ

65 024 ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

FE00–FFFF ÁÁÁÁ
ÁÁÁÁ

512
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1111 1111
ÁÁÁÁÁ
ÁÁÁÁÁ

0000–FEFF
ÁÁÁÁÁ
ÁÁÁÁÁ

65 280
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

FF00–FFFF
ÁÁÁÁ
ÁÁÁÁ

256

Legend : X = Don’t care condition
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8.5 Input/Output (I/O) Space

The ’C5x devices support an I/O address space of 64K 16-bit parallel input and
output (I/O) ports. The I/O ports allow access to peripherals typically used in
DSP applications such as codecs, digital-to-analog (D/A) converters, and ana-
log-to-digital (A/D) converters. This section discusses addressing I/O ports
and interfacing I/O ports to external devices.

8.5.1 Addressing I/O Ports

Access to external parallel I/O ports is multiplexed over the same address and
data bus for program/data memory accesses. All 64K I/O ports can be ac-
cessed via the IN and OUT instructions, as shown in the following example:

IN DAT7,0FFFEh ;Read data to data memory from external
;device on port 65534.

OUTDAT7,0FFFFh ;Write data from data memory to external
;device on port 65535.

Sixteen of the 64K I/O ports are memory-mapped to data memory address
locations 50h–5Fh. The I/O ports can be accessed by using the IN and OUT
instructions or any instruction that reads or writes a location in data memory
space. See Section 9.6, Parallel I/O Ports, on page 9-22.

The access times to I/O ports can be modified through the software wait-state
registers (IOWSR and CWSR). The BIG bit in the CWSR determines how the
I/O space is partitioned. See Section 9.4, Software-Programmable Wait-State
Generators, on page 9-13.
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8.6 Direct Memory Access (DMA)

The ’C5x supports multiprocessing designs that require direct memory access
(DMA) of external memory or of on-chip single-access RAM. The DMA feature
can be used for multiprocessing by temporarily halting the execution of one or
more processors to allow another processor to read from or write to local off-
chip memory or on-chip single-access RAM. External memory access can be
controlled via the HOLD and HOLDA signals and on-chip RAM access via the
HOLD, HOLDA, R/W, STRB, BR, and IAQ signals.

8.6.1 DMA in a Master-Slave Configuration

Multiprocessing systems typically utilize a master-slave configuration. The
master may initialize a slave by downloading a program into the slave’s pro-
gram memory space and/or may provide the slave with the necessary data by
using external memory to complete a task. In a typical ’C5x DMA scheme, the
master may be a general-purpose CPU, another ’C5x, or even an A/D convert-
er. A simple ’C5x master-slave configuration is shown in Figure 8–7.

Figure 8–7. Direct Memory Access Using a Master-Slave Configuration
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Memory (RAM)

Master Program
Memory (ROM)

Master Data
 Memory (RAM)

’C5x
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The ’C5x master device takes complete control of the slave’s external memory
by asserting the slave’s HOLD low via the master’s external flag (XF) pin. This
causes the slave to place its address, data, and control lines in a high-imped-
ance state.

When the master gains control of the slave’s buses, the slave asserts HOLDA.
This signal may be tied to the master BIO pin. The slave’s XF pin can indicate
to the master when the slave has finished performing its task and needs to be
reprogrammed or requires additional data to continue processing. In a multi-
ple-slave configuration, priority of each slave’s task can be determined by
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connecting the slave’s XF signals to the appropriate INT1–INT4 pin on the
master device. The external bus interface of the slave device is put in high-im-
pedance mode when its HOLDA signal is asserted. Once HOLDA goes active,
the IAQ pin does not indicate an instruction acquisition. While the HOLDA is
active and the CPU is in hold mode (HM = 0), the CPU continues running code
from internal memory (internal ROM or single/dual access RAM). If the CPU
is not in hold mode (HM = 1), the CPU halts internal execution. See Section
4.9, Reset, on page 4-45 for interaction between HOLD, RS, and external
interrupts.

8.6.2 External DMA

The ’C5x also provides access of the on-chip single-access RAM by external
devices through a mechanism called external DMA. External DMA requires
the following signals:

A(15–0) Address inputs when HOLDA and BR are low.

BR Bus request signal externally driven low in hold mode to indicate
a request for access.

D(15–0) DMA data.

HOLD External request for control of address, data, and control lines.

HOLDA Indication to external circuitry that the memory address, data,
and control lines are in high impedance, allowing external access.

IAQ Acknowledge BR request for access while HOLDA is low.

R/W Read/write signal indicates the data bus direction for DMA reads
(high) and DMA writes (low).

STRB When IAQ and HOLDA are low, STRB selects the memory
access and determines its duration.

To access the ’C5x on-chip SARAM, a master processor must control the ’C5x
device. The master processor initiates a DMA transfer by asserting the ’C5x
device HOLD low. The ’C5x responds by asserting HOLDA. The master gains
control of the ’C5x bus and access to the SARAM by asserting BR low. The
’C5x responds by asserting IAQ low to acknowledge the access. Once access
is granted, the master drives the R/W signal to indicate the direction of the
transfer. On a DMA write, the master must drive the address and data lines for
a write. On a DMA read, the master must drive the address lines and latch the
data. Each memory access (read or write) is selected when STRB is low.
External access wait states are added by extending the STRB signal. The
address decode of the DMA access includes only address lines A13–A0 (A14
and A15 are ignored). Table 8–15 lists the address ranges during DMA
access, effectively overlaying address lines A13–A0.
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Table 8–15. Address Ranges for On-Chip Single-Access RAM During External DMA

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Device
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

SARAM
(words)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Address Bus
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Hex Address Ranges

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

’C50 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

9K ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A15–A14 ignored, A13–A0 used ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0000–2BFF

4000–6BFF

8000–ABFF

C000–EBFF

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

’C51 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1K ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A15–A14 ignored, A13–A10 must be 0, A9–A0 used ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0000–03FF

4000–43FF

8000–83FF

C000–C3FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

’C53
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

3K
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A15–A14 ignored, A13–A12 must be 0, A11–A0 used
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0000–0BFF

4000–4BFF

8000–8BFF

C000–CBFF

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

’LC56 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

6K ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A15–A14 ignored, A13 must be 0, A12–A0 used ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0000–17FF

4000–57FF

8000–97FF

C000–D7FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

’C57S/ ’LC57
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

6K
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A15–A14 ignored, A13 must be 0, A12–A0 used
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0000–17FF

4000–57FF

8000–97FF

C000–D7FF

DMA access to on-chip single-access RAM is not supported if the
device is in concurrent hold mode (HM = 0).

Using DMA on a ’C50 and writing to address 01h affects the second memory
location of the SARAM. Furthermore, writing to address 4001h on a ’C50 is
equivalent to writing to addresses 01h, 8001h, and C001h, since address lines
A14 and A15 are ignored.

Note that the external parallel interface signals are asynchronously disabled
during reset; therefore, external DMA is not supported during reset.
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8.7 Memory Management

The ’C5x programmable memory map can vary for each application. Instruc-
tions are provided for integrating the device memory into the system memory
map. The amount and types of memory available on each device are listed in
Table 1–1 on page 1-6. Examples of moving and configuring memory are giv-
en in this section.

8.7.1 Memory-to-Memory Moves

The following instructions for data and program block moves, word transfers,
and the data move function efficiently utilize ’C5x memory spaces.

� Data and program block move instructions

� BLDD instruction moves a block within data memory

� BLDP instruction moves a block from data memory to program
memory

� BLPD instruction moves a block from program memory to data
memory

� Data and program word transfer instructions

� The table read (TBLR) instruction reads words from program memory
into data memory

� The table write (TBLW) instruction writes words from data memory to
program memory

� Data move (DMOV) instruction allows access to data and operation on
that data simultaneously in the same cycle.

For block move instructions, one address is derived from the data address
generator, while the other is derived from a long immediate constant or from
the BMAR. When used with the repeat instructions (RPT and RPTZ), these
instructions efficiently perform block moves from on-chip or off-chip memory.

The DMOV function, implemented in on-chip data RAM, is equivalent to that
of the ’C2x. DMOV copies a word from the currently addressed data memory
location in on-chip RAM to the next-higher location, while the data from the ad-
dressed location is being operated upon in the same cycle (for example, by the
CALU). An ARAU operation can also be performed in the same cycle when the
indirect addressing mode is used. The DMOV function can implement algo-
rithms that use the z –1 delay operation, such as convolution and digital filter-
ing, in which data is passed through a time window.
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The DMOV function is most efficient when operating in dual-access on-chip
RAM. When operating in single-access RAM, DMOV requires an additional
cycle. The DMOV function is contiguous across the boundary of dual-access
on-chip RAM blocks B0 and B1. The DMOV function is used by these instruc-
tions:

� LTD — load TREG0 and accumulate product with data move

� MACD — multiply and accumulate with data move

� MADD — multiply and accumulate with data move and coefficient address
contained in BMAR

Note:

The DMOV operation cannot be performed on external data memory.

8.7.2 Memory Block Moves

The ’C5x devices can address a large amount of off-chip memory but are lim-
ited in the amount of on-chip memory. Several instructions can move blocks
of data from slower off-chip memories to on-chip memory for faster program
execution. In addition, data can be transferred from on-chip to off-chip memory
for storage or multiprocessor applications.

8.7.2.1 Moving Data With the BLDD Instruction

The BLDD instruction transfers data in the following ways:

� From external data memory to external data memory
� From external data memory to internal data memory
� From internal data memory to internal data memory
� From internal data memory to external data memory

Example 8–1 illustrates how to use the BLDD instruction to move external data
(for example, a table of coefficients) to internal DARAM block B1.

Example 8–1. Moving External Data to Internal Data Memory With the BLDD Instruction

*
* This routine uses the BLDD instruction to move external data memory to
* internal data memory.
*
MOVED LACC #8000h

SAMM BMAR ;BMAR contains source address in data memory
LAR AR7,#300h ;AR7 contains dest. address in data memory
MAR *,AR7 ;ARP = AR7
RPT #511 ;Move 512 values from data memory to data memory block B1
BLDD BMAR,*+
RET
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8.7.2.2 Moving Data From Data Memory to Program Memory

The BLDP and TBLW instructions transfer data to program memory in the fol-
lowing ways:

� From external data memory to external program memory
� From external data memory to internal program memory
� From internal data memory to internal program memory
� From internal data memory to external program memory

For systems with external data memory but no external program memory, you
can use the BLDP instruction to move additional blocks of code into internal
program memory. Example 8–2 illustrates how to use the BLDP instruction to
move external data to internal program memory.

You can also use the TBLW instruction to transfer data memory to program
memory. The TBLW instruction differs from the BLDP instruction in that the ac-
cumulator contains the destination program memory address. This lets you
specify a calculated, rather than predetermined, location of a block of data in
program memory. Example 8–3 illustrates how to use the TBLW instruction to
move external data to internal program memory.

Example 8–2. Moving External Data to Internal Program Memory With the BLDP Instruction

*
* This routine uses the BLDP instruction to move external data memory to
* internal program memory. This instruction could be used to boot load a
* program to the on chip program RAM from external data memory.
*
MOVEDP LACC #2000h

SAMM BMAR ;BMAR contains dest. address in program memory (’C51)
LAR AR7,#0F000h ;AR7 contains source address in data memory
MAR *,AR7 ;ARP=AR7
RPT #1023 ;Move 1k values from data memory to program memory
BLDP *+
RET
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Example 8–3. Moving External Data to Internal Program Memory With the TBLW Instruction

*
* This routine uses the TBLW instruction to move data memory to program memory.
* The calling routine must contain the destination program memory address in
* the accumulator.
*
TABLEW LAR AR4,#300h ;AR4 contains source address in data memory

MAR *,AR4 ;ARP = AR4
RPT #511 ;Move 512 values from data memory to program memory
TBLW *+ ;Accumulator contains dest. address of program memory
RET

8.7.2.3 Moving Data From Program Memory to Data Memory

The BLPD and TBLR instructions transfer program data to data memory in the
following ways:

� From external program memory to external data memory
� From external program memory to internal data memory
� From internal program memory to internal data memory
� From internal program memory to external data memory

When no external data memory is available, program memory may contain
necessary coefficient tables that should be loaded into internal data memory.
Example 8–4 illustrates how to use the BLPD instruction to move external pro-
gram memory to internal DARAM block B1.

You can also use the TBLR instruction to transfer program data to data
memory. The TBLR instruction differs from the BLPD instruction in that the ac-
cumulator contains the source program memory address. This lets you specify
a calculated, rather than predetermined, location of a block of data in program
memory. Example 8–5 illustrates how to use the TBLR instruction to move ex-
ternal program to internal DARAM block B1.
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Example 8–4. Moving External Program to Internal Data Memory With the BLPD
Instruction

*
* This routine uses the BLPD instruction to move external program memory to
* internal data memory. This routine is useful for loading a coefficient
* table stored in external program memory to data memory when no external
* data memory is available.
*
MOVEPD LAR AR7,#300h ;AR7 contains dest. address in data memory

MAR *,AR7 ;ARP=AR7
RPT #127 ;Move 128 values from program memory to data block B1
BLPD #0FD00h,*+
RET

Example 8–5. Moving External Program to Internal Data Memory With the TBLR
Instruction

*
* This routine uses the TBLR instruction to move external program memory to
* internal data memory. The calling routine must contain the source program
* memory address in the accumulator.
*
TABLER LAR AR3,#300h ;AR3 contains dest. address in data memory

MAR *,AR3 ;ARP=AR3
RPT #127 ;Move 128 values from program memory to data block B1
TBLR *+ ;Accumulator contains external program memory address
RET
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8.7.2.4 Moving Data From Data Memory to I/O Space With the LMMR Instruction

The LMMR instruction can be used to transfer data from external or internal
data memory to an external I/O port. Example 8–6 illustrates how to use the
LMMR instruction to move data from internal data memory to a memory-
mapped I/O port.

Example 8–6. Moving Data From Internal Data Memory to I/O Space With the
LMMR Instruction

*
* This routine uses the LMMR instruction to move data from internal data memory
* to a memory-mapped I/O port. Note that 16 I/O ports are mapped in data
* page 0 of the ’C5x memory map.
*
OUTPUT:

LDP #0 ;DP=0
RPT #63 ;Move 64 values from a table beginning at 800h in data
LMMR 50h,#800h ;memory to port 50h. Source address is incremented
RET

8.7.2.5 Moving Data From I/O Space to Data Memory With the SMMR Instruction

The SMMR instruction can be used to transfer data from an external I/O port
to external or internal data memory. Example 8–7 illustrates how to use the
SMMR instruction to move data from a memory-mapped I/O port to internal
data memory.

Example 8–7. Moving Data from I/O Space to Internal Data Memory With the
SMMR Instruction

*
* This routine uses the SMMR instruction to move data from a memory-mapped
* I/O port to internal data memory. Note that 16 I/O ports are mapped in data
* page 0 of the ’C5x memory map.
*
INPUT:

LDP #0 :DP=0
RPT #511 ;Move 512 values from port 51h to table beginning at
SMMR 51h,#800h ;800h in data memory. Dest. address is incremented
RET
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8.8 Boot Loader

Several of the ’C5x devices include a boot loader program contained in the
on-chip ROM (see Appendix G, Development Support and Part Order In-
formation, for part numbering nomenclature). The main function of the boot
loader is to transfer code from an external source to the program memory at
power-up. This can be done in several different ways, depending on the sys-
tem requirements. For some applications, a serial interface is appropriate. If
the code is already stored in nonvolatile memory (ROM), a parallel interface
is more appropriate.

If the MP/MC pin of the ’C5x is sampled low during a hardware reset, program
execution begins at address location 0000h of the on-chip ROM. This location
contains a branch instruction to the start of the boot-loader program. The on-
chip ROM is factory programmed with the boot-loader program. The boot-
loader program sets up the CPU status registers before initiating the boot load:

� Interrupts are globally disabled (INTM = 1).

� On-chip DARAM block B0 is mapped into program space (CNF = 1).

� On-chip SARAM block is mapped into program space (RAM = 1, OVLY = 0).

� Entire program and data memory spaces are enabled with seven wait
states.

� 32K words of global data memory are enabled initially in data spaces
8000h to FFFFh. After the code transfer is complete, the global memory
is disabled before control is transferred to the destination address in pro-
gram memory.

Note that both DARAM and SARAM memory blocks are enabled in program
memory space; this allows you to transfer code to on-chip program memory.

The boot-loader program reads global data memory location FFFFh by driving
the bus request (BR) and data strobe (DS) pins low. The lower 8 bits of the
word at address FFFFh specify the boot mode; the higher 8 bits are ignored
by the boot loader.

Figure 8–8 lists the available boot mode options and the corresponding values
for the boot routine selection word.
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Figure 8–8. Boot Routine Selection Word

15

XXXXXXXXXXXX

08 7 4 3

0000

XXXXXXXXXXXX 0100

XXXXXXXXXXXX 1000

XXXXXXXXXXXX 1100

SRCXXXXXXXX 01

XXXXXXXX 10

16-bit serial mode

8-bit serial mode

At Address FFFFh

16-bit parallel I/O mode

8-bit parallel I/O mode

8-bit parallel EPROM mode

16-bit parallel EPROM mode

XXXXXXXX 11 Warm boot

SRC

ADDR

Legend : X = Don’t care condition
SRC = 6-bit page address for parallel EPROM modes
ADDR = 6-bit page address for warm boot mode

8.8.1 HPI Boot Mode (’C57 only)

In HPI boot mode, the boot-loader program first verifies if the host port inter-
face (HPI) boot mode is selected. To select the HPI boot mode, connect the
HINT pin to the INT3 pin; this sets the INT3 bit in the interrupt flag register (IFR)
when the HINT pin is asserted low. The boot loader asserts HINT low, waits
for 10 CLKOUT1 cycles, and reads the INT3 bit. If the INT3 bit is set (indicating
an INT3 interrupt is pending), the boot loader transfers program control to the
start address (8800h in program space) of the on-chip HPI RAM and starts
executing user code from there. If the INT3 bit is not set (indicating that HINT
is not connected to INT3), the boot loader skips the HPI boot mode and reads
the boot routine selection word (Figure 8–8) at global data memory location
FFFFh to identify the boot mode.

If the HPI boot mode is selected, the host must download code to the HPI RAM
before it brings the ’C5x out of reset. Note that the boot loader keeps HPI in
the shared-access mode (SMOD = 1) during the entire boot loading operation.
Once HINT is asserted low by the boot loader, HINT remains low until a host
controller (if any) clears HINT by writing to the host port interface control regis-
ter (HPIC).

Instead of connecting the HINT pin to the INT3 pin, you can send a valid inter-
rupt to the INT3 pin within 30 CLKOUT1 cycles after the ’C5x fetches the reset
vector. For ’C5x reset vector fetch timing specifications, refer to the
TMS320C5x data sheet.
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An alternative to the HPI boot mode is the warm boot mode described in sub-
section 8.8.5 on page 8-37. The warm boot mode may be preferred to the HPI
boot mode, if it is not convenient to connect the HINT pin to the INT3 pin or if
the program has already been transferred to program memory.

8.8.2 Serial Boot Mode

To select the serial boot mode, the serial port control register (SPC) is set to
00F8h for a16-bit word transfer or to 00FCh for an 8-bit word transfer. See sub-
section 9.7.1, Serial Port Interface Registers, on page 9-24 for a description
of each SPC bit.

The external flag (XF) pin signals that the ’C5x is ready to respond to the serial
port receive section. The XF pin is set high at reset and is driven low to initiate
reception. No frame sync pulses should appear on the FSR pin before XF goes
low. The receive clock must be supplied by an external device to the ’C5x.

8.8.2.1 16-Bit Word Serial Transfer

If the 16-bit word transfer is selected (Figure 8–9), the first 16-bit word re-
ceived by the device from the serial port specifies the destination address
(Destination16) of code in program memory. The next 16-bit word specifies the
length (Length16) of the actual code that follows. These two 16-bit words are
followed by N number of code words to be transferred to program memory.
Note that the number of 16-bit words specified by the parameter N does not
include the first two 16-bit words received (Destination16 and Length16). After
the specified number of code words are transferred to program memory, the
’C5x branches to the destination address. The length N is defined as:

length N = number of 16-bit words – 1

Figure 8–9. 16-Bit Word Transfer

15

Legend : Destination16 16-bit destination address
Length16 16-bit word that specifies the length of the code

(N) that follows
Code Word(N)16  N number of 16-bit words to be transferred

8.8.2.2 8-Bit Word Serial Transfer

If the 8-bit word transfer is selected (Figure 8–10), a higher-order byte and a
lower-order byte form a 16-bit word. The first 16-bit word received by the de-
vice from the serial port specifies the destination address (Destinationh and
Destinationl) of code in program memory. The next 16-bit word specifies the
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length (Lengthh and Lengthl) of the actual code that follows. These two 16-bit
words are followed by N number of code words to be transferred to program
memory. Note that the number of 16-bit words specified by the parameter N
does not include the first four bytes (first two 16-bit words) received (Destina-
tion and Length). After the specified number of code words are transferred to
program memory, the ’C5x branches to the destination address. The length N
is defined as:

length N = number of 16-bit words – 1

or

length N = (number of bytes to be transferred � 2) – 1

Figure 8–10. 8-Bit Word Transfer
7

Legend : Destinationh High byte of destination address
Destinationl Low byte of destination address
Lengthh High byte that specifies the length of the code (N)

that follows
Lengthl Low byte that specifies the length of the code (N)

that follows
Code Word(N)h High byte of N number of 16-bit words to be

transferred
Code Word(N)l Low byte of N number of 16-bit words to be

transferred

8.8.3 Parallel EPROM Boot Mode

The parallel EPROM boot mode is used only when code is stored in EPROMs
(8-bit or 16-bit wide). The code is transferred from global data memory (start-
ing at the source address) to program memory (starting at the destination ad-
dress). The six MSBs of the source address are specified by the SRC field of
the boot routine selection word (Figure 8–8 on page 8-33). A 16-bit source ad-
dress is defined by this SRC field as shown in Figure 8–11. The ’C5x transfers
control to the source address after disabling global data memory.

Figure 8–11.16-Bit Source Address for Parallel EPROM Boot Mode

SRC 0

15 010 9

0 0 0 0 0 0 0 0 0

Source address

Legend : SRC = 6-bit page address

8.8.3.1 16-Bit Word Parallel Transfer

If the 16-bit word parallel boot mode is selected (Figure 8–9 on page 8-34),
boot code will be read in 16-bit words starting at the source address. The
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source address is incremented by 1 after every read operation. The first 16-bit
word read from the source address specifies the destination address (Destina-
tion16) of code in program memory. The next 16-bit word specifies the length
(Length16) of the actual code that follows. These two 16-bit words are followed
by N number of code words to be transferred to program memory. Note that
the number of 16-bit words specified by the parameter N does not include the
first two 16-bit words received (Destination16 and Length16). After the speci-
fied number of code words are transferred to program memory, the ’C5x
branches to the destination address. The length N is defined as:

length N = number of 16-bit words – 1

Note that there is at least a 4-instruction-cycle delay between a read from the
EPROM and a write to the destination address. This delay ensures that if the
destination is in external memory (for example, fast SRAM), there is enough
time to turn off the source memory (for example, EPROM) before the write
operation is performed.

8.8.3.2 8-Bit Word Parallel Transfer

If the 8-bit word parallel boot mode is selected (Figure 8–10 on page 8-35), two
consecutive memory locations (starting at the source address) are read to
form a 16-bit word. The high-order byte of the 16-bit word is followed by the
low-order byte. Data is read from the lower eight data lines, ignoring the higher
byte on the data bus. The first 16-bit word specifies the destination address
(Destinationh and Destinationl) of code in program memory. The next 16-bit
word specifies the length (Lengthh and Lengthl) of the actual code that follows.
These two 16-bit words are followed by N number of code words to be trans-
ferred to program memory. Note that the number of 16-bit words specified by
the parameter N does not include the first four bytes (first two 16-bit words)
received (Destination and Length). After the specified number of code words
are transferred to program memory, the ’C5x branches to the destination ad-
dress. The length N is defined as:

length N = number of 16-bit words – 1

or

length N = (number of bytes to be transferred � 2) – 1

Note that there is at least a 4-instruction-cycle delay between a read from the
EPROM and a write to the destination address. This delay ensures that if the
destination is in external memory (for example, fast SRAM), there is enough
time to turn off the source memory (for example, EPROM) before the write
operation is performed.
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8.8.4 Parallel I/O Boot Mode

The parallel I/O boot mode asynchronously transfers code from the I/O port
at address 50h to internal or external program memory. Each word can be 16
bits or 8 bits long. The ’C5x communicates with the external device via the BIO
and XF lines. This allows a slow host processor to communicate easily with the
’C5x by polling/driving the BIO and XF lines. The handshake protocol shown
in Figure 8–12 on page 8-37 must be used to successfully transfer each word
via I/O port 50h.

If the 8-bit boot mode is selected, two consecutive 8-bit words are read to form
a 16-bit word. The high-order byte of the 16-bit word is followed by the low-
order byte. Data is read from the lower eight data lines of I/O port 50h, ignoring
the higher byte on the data bus. For both the 8-bit and 16-bit parallel I/O boot
modes, refer to subsection 8.8.3, Parallel EPROM Boot Mode, for the descrip-
tion of destination and length code words.

Note that there is at least a 4-instruction-cycle delay between the XF rising
edge and a write operation to the destination address. This delay ensures that
if the destination is in external memory (for example, fast SRAM), the host pro-
cessor has enough time to turn off the data buffers before the write operation
is performed. The ’C5x accesses the external bus only when XF is high.

Figure 8–12. Handshake Protocol

Host request
data transmit

’C5x ready
to receive

Host data
valid

’C5x
acknowledges
data received

BIO

XF

1-word transfer Next word transfer

8.8.5 Warm Boot Mode

In a warm boot, the boot loader runs but does not move any code. Control is
simply transferred to the entry address. The warm boot mode can be used if
the program has already been transferred to internal or external memory by
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other means (for example, HPI or external DMA) or if only a warm device reset
is required. The six MSBs of the entry address are specified by the ADDR field
of the boot routine selection word (Figure 8–8 on page 8-33). A 16-bit entry
address is defined by this ADDR field as shown in Figure 8–13. The ’C5x trans-
fers control to the entry address after disabling global data memory. For ’C57
devices, the warm boot mode can be used instead of the HPI boot mode to
transfer control to the on-chip HPI RAM.

Figure 8–13. 16-Bit Entry Address for Warm Boot Mode

ADDR 0

15 010

0 0 0 0 0 0 0 0 0

Entry address

9

Legend : ADDR = 6-bit page address
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8.9 External Parallel Interface Operation

All bus cycles comprise integral numbers of CLKOUT1 cycles. One CLKOUT1
cycle is defined to be from one falling edge of CLKOUT1 to the next falling edge
of CLKOUT1. For full-speed, 0-wait-state operation, reads require one cycle.
A write immediately preceded by a read or immediately followed by a read re-
quires three cycles. Refer to Figure 8–14 on page 8-40, Figure 8–15 on page
8-41, and Figure 8–16 on page 8-41 for timings for both read and write cycles.

For read cycles, STRB goes low and ADDRESS becomes valid with the falling
edge of CLKOUT1. For 0-wait-state read cycles, the RD signal goes low with
the rising edge of CLKOUT1 and then goes high at the next falling edge of
CLKOUT1. For 1-wait-state (multicycle) read cycles, the RD stays low but
goes high with the falling edge of CLKOUT1 before the next cycle, even if the
cycles are contiguous. Read data is sampled at the rising edge of RD.

The R/W signal goes high at least one half cycle of CLKOUT1 before any read
cycle; for contiguous read cycles, STRB stays low. At the end of a read cycle
or sequence of reads, STRB and RD go high on the falling edge of CLKOUT1.

Write cycles always have at least one inactive (pad) cycle of CLKOUT1 before
and after the actual write operation, including contiguous writes. This allows
a smooth transition between the write and any adjacent bus operations or oth-
er writes. For this pad cycle, STRB and WE are always high. The R/W signal
always changes state on the rising edge of CLKOUT1 during the pad cycle be-
fore and after a write or series of writes. This prevents bus contention during
a transition between read and write operations. Note that for a series of writes,
R/W stays low.

Timing of valid addresses for writes differs, depending on what activities occur
before and after the write. Between writes, and for the first and last write in a
series, ADDRESS becomes valid on the rising edge of CLKOUT1. If a read
immediately follows a write or series of writes, ADDRESS becomes valid for
that read cycle one half cycle of CLKOUT1 early — that is, on the rising edge,
rather than on the falling edge, of CLKOUT1. This is an exception to the usual
read cycle address timing.

For the actual write operation, STRB and WE both go low on the falling edge
of CLKOUT1 and stay low until the next falling edge of CLKOUT1 (for 0-wait-
state write cycles). For 1-wait-state (multicycle) writes, STRB and WE remain
low but go high again on the falling edge of CLKOUT1 at the beginning of the
pad cycle. Write data is driven approximately at the falling edge of STRB and
WE and is held for approximately one half cycle of CLKOUT1 after STRB and
WE go high (refer to the TMS320C5x data sheet for actual timing specifica-
tions).
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Transitions on the external parallel interface control outputs (CLKOUT1,
STRB, WE, and RD) are all initiated by the same two internal clocks. Since
these signals also use the same output buffer circuitry, they all switch within
close tolerances of each other, as specified in the TMS320C5x data sheet.

Transitions on the address bus and other related outputs (IS, PS, DS, R/W, and
BR) are initiated by the same internal signals that cause transitions on the con-
trol outputs; however, the internal device logic that generates these outputs is
different from the circuitry used for the control outputs. Therefore, transitions
on the address bus and related outputs typically occur later than control-line
transitions.

Timings of control outputs with respect to CLKOUT1 are specified in the
TMS320C5x data sheet. Address timings with respect to CLKOUT1 can be
derived from address timings for control signals and control signal timings for
CLKOUT1. For example, the delay from CLKOUT1 falling to address bus valid
at the beginning of a read cycle is calculated as:

[H – (address setup to RD)] + maximum positive RD to CLKOUT1 skew
(refer to the TMS320C5x data sheet for specific timing values)

Other interface timings with respect to CLKOUT1 can be calculated in the
same manner.

Figure 8–14. External Interface Operation for Read-Read-Write (Zero Wait States)

1-cycle Read
1-cycle Read

ReadRead

STRB

IS,DS,PS

WE

RD

R/W

DATA

ADDRESS

CLKOUT1

3-cycle Write

Write Data
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Figure 8–15. External Interface Operation for Write-Write-Read (Zero Wait States)

STRB

IS,DS,PS

WE

RD

R/W

DATA

ADDRESS

CLKOUT1

1-cycle Read

Read

2-cycle Write

3-cycle Write

Write Data Write Data

Figure 8–16. External Interface Operation for Read-Write (One Wait State)

Read

2-cycle Read
with one READY
generated wait

state

4-cycle Write
with one READY
generated wait

state

STRB

IS,PS,DS

WE

RD

R/W

DATA

ADDRESS

CLKOUT1

READY

Write Data
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8.10 Software Wait-State Generation

The software-programmable wait-state generators can be used to extend ex-
ternal bus cycles by up to seven machine cycles. All external reads require at
least one machine cycle, while all external writes require at least two machine
cycles. However, as shown in Figure 8–14 and Figure 8–15, an external write
immediately followed or immediately preceded by an external read cycle
requires three cycles. This provides a convenient way for interfacing external
devices that do not satisfy the full-speed access-time requirements of the
’C5x. The ’C5x can generate wait states to extend the memory read/write
cycles by software-programmable wait-state generators or by an interface
with the hardware READY line. The software-programmable wait-state gener-
ators can only generate up to seven wait states. External devices requiring
more than seven wait states can use the hardware READY line to generate
the wait states.

Note that if the on-chip wait-state generator is used to add wait states for exter-
nal accesses, the number of CLKOUT1 cycles required for writes is not
effected until two or more wait states are specified, contrary to wait states gen-
erated with the external READY input. Table 8–16 shows the number of cycles
required for the different types of external device accesses.

Table 8–16. Number of CLKOUT1 Cycles Per Access for Various Numbers of Wait States

Number of CLKOUT1 Cycles †

N mber of
Hardware Wait State Software Wait State

Number of
Wait States Read Write Read Write

0 1 2n + 1 1 2n + 1

1 2 3n + 1 2 2n + 1

2 3 4n + 1 3 3n + 1

3 4 5n + 1 4 4n + 1

† Where n is the number of consecutive write cycles.

Also, note that the external READY input is sampled only after the internal soft-
ware wait states are completed. Therefore, if the READY input is driven low
before the completion of the internal software wait states, no wait states are
added to the external memory access until the specified number of software
wait states is completed. Wait states are only added if the READY input is still
low after the software wait states are completed. Additionally, it should be
noted that the READY input is not an asynchronous input and input setup and
hold times for this signal as specified in the TMS320C5x data sheet must be
met or significant device malfunction will result.
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On-Chip Peripherals

The on-chip peripheral interfaces connected to the ’C5x CPU include the
divide-by-one clock, timer, software-programmable wait-state generators,
general purpose I/O pins, parallel I/O ports, serial ports, and host port inter-
face. These peripherals are controlled through registers that reside in the
memory map. The serial ports and timer are synchronized to the processor via
interrupts.
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9.1 Peripheral Control

Peripheral circuits are operated and controlled through access of memory-
mapped control and data registers. The operation of the serial ports and the
timer is synchronized to the processor via interrupts or through interrupt pol-
ling. Setting and clearing bits can enable, disable, initialize, and dynamically
reconfigure the peripherals. Data is transferred to and from the peripherals
through memory-mapped data registers. When a peripheral is not in use, the
internal clocks can be shut off from that peripheral, allowing for lower power
consumption when the device is in normal run mode or idle mode.

9.1.1 Memory-Mapped Peripheral Registers and I/O Ports

There are 28 processor registers, 17 peripheral registers, and 16 I/O ports
mapped into the data memory space. Table 9–1 lists the memory-mapped reg-
isters and I/O ports of the ’C5x. Note that all writes to memory-mapped periph-
eral registers (but not processor registers or memory-mapped I/O ports)
require one additional CLKOUT1 cycle.

Table 9–1. Data Page 0 Address Map — Peripheral Registers and I/O Ports

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Address ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
Dec ÁÁÁ
ÁÁÁ

HexÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

Name ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁ
ÁÁÁÁ

0–3 ÁÁÁ
ÁÁÁ

0–3ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

––– ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4–31
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

4–1F
ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–––
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory-mapped processor registers (see sub-
section 8.3.2, Local Data Memory Address Map,
on page 8-17).

ÁÁÁÁ
ÁÁÁÁ

32 ÁÁÁ
ÁÁÁ

20ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

DRR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data receive register
ÁÁÁÁ
ÁÁÁÁ

33
ÁÁÁ
ÁÁÁ

21
ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

DXR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data transmit register
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

34
ÁÁÁ
ÁÁÁ
ÁÁÁ

22
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

SPC
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Serial port control register

ÁÁÁÁ
ÁÁÁÁ

35 ÁÁÁ
ÁÁÁ

23ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

––– ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved

ÁÁÁÁ
ÁÁÁÁ

36 ÁÁÁ
ÁÁÁ

24ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

TIM ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Timer counter register
ÁÁÁÁ
ÁÁÁÁ37

ÁÁÁ
ÁÁÁ25
ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁPRD

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁTimer period registerÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

38
ÁÁÁ
ÁÁÁ
ÁÁÁ

26
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

TCR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Timer control register

ÁÁÁÁ
ÁÁÁÁ

39 ÁÁÁ
ÁÁÁ

27ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

––– ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved

ÁÁÁÁ
ÁÁÁÁ

40 ÁÁÁ
ÁÁÁ

28ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

PDWSR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Program/data wait-state register
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

41
ÁÁÁ
ÁÁÁ
ÁÁÁ

29
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

IOWSR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port wait-state register

ÁÁÁÁ
ÁÁÁÁ

42 ÁÁÁ
ÁÁÁ

2AÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

CWSR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Wait-state control register
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Table 9–1.Data Page 0 Address Map — Peripheral Registers and I/O Ports (Continued)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁ
ÁÁÁÁ

Name

Á
Á

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Address
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁ
ÁÁÁÁ

Name
Á
Á

ÁÁÁÁ
ÁÁÁÁ

HexÁÁÁ
ÁÁÁ

Dec
ÁÁÁ
ÁÁÁ

43–47
ÁÁÁÁ
ÁÁÁÁ

2B–2F
Á
Á
ÁÁÁÁ
ÁÁÁÁ

–––
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved for test/emulation
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

48
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

30
Á
Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

TRCV

BDRR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TDM data receive register

BSP data receive register

ÁÁÁ
ÁÁÁ
ÁÁÁ

49ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

31 Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

TDXR

BDXR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TDM data transmit register

BSP data transmit register
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

50
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

32
Á
Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

TSPC

BSPC

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TDM serial port control register

BSP control register

ÁÁÁ
ÁÁÁ
ÁÁÁ

51ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

33 Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

TCSR

SPCE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TDM channel select register

BSP control extension register

ÁÁÁ
ÁÁÁ
ÁÁÁ

52ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

34 Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

TRTA

AXR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TDM receive/transmit address register

BSP address transmit register
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

53
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

35
Á
Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

TRAD

BKX

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TDM receive address register

BSP transmit buffer size register

ÁÁÁ
ÁÁÁ

54ÁÁÁÁ
ÁÁÁÁ

36 Á
Á
ÁÁÁÁ
ÁÁÁÁ

ARR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BSP address receive register

ÁÁÁ
ÁÁÁ

55
ÁÁÁÁ
ÁÁÁÁ

37
Á
Á
ÁÁÁÁ
ÁÁÁÁ

BKR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

BSP receive buffer size register
ÁÁÁ
ÁÁÁ
ÁÁÁ

56–79
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

38–4F
Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

–––
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ

80ÁÁÁÁ
ÁÁÁÁ

50 Á
Á
ÁÁÁÁ
ÁÁÁÁ

PA0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 50h

ÁÁÁ
ÁÁÁ

81ÁÁÁÁ
ÁÁÁÁ

51 Á
Á
ÁÁÁÁ
ÁÁÁÁ

PA1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 51h
ÁÁÁ
ÁÁÁ
ÁÁÁ

82
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

52
Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PA2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 52h

ÁÁÁ
ÁÁÁ

83ÁÁÁÁ
ÁÁÁÁ

53 Á
Á
ÁÁÁÁ
ÁÁÁÁ

PA3 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 53h

ÁÁÁ
ÁÁÁ

84ÁÁÁÁ
ÁÁÁÁ

54 Á
Á
ÁÁÁÁ
ÁÁÁÁ

PA4 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 54h
ÁÁÁ
ÁÁÁ
ÁÁÁ

85
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

55
Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PA5
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 55h

ÁÁÁ
ÁÁÁ

86ÁÁÁÁ
ÁÁÁÁ

56 Á
Á
ÁÁÁÁ
ÁÁÁÁ

PA6 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 56h

ÁÁÁ
ÁÁÁ

87ÁÁÁÁ
ÁÁÁÁ

57 Á
Á
ÁÁÁÁ
ÁÁÁÁ

PA7 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 57h
ÁÁÁ
ÁÁÁ
ÁÁÁ

88
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

58
Á
Á
Á

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PA8
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 58h

ÁÁÁ
ÁÁÁ

89ÁÁÁÁ
ÁÁÁÁ

59 Á
Á
ÁÁÁÁ
ÁÁÁÁ

PA9 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 59h
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Table 9–1.Data Page 0 Address Map — Peripheral Registers and I/O Ports (Continued)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁ
ÁÁÁÁ

Name

ÁÁ
ÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Address
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁ
ÁÁÁÁ

Name
ÁÁ
ÁÁ

ÁÁÁ
ÁÁÁ

HexÁÁÁÁ
ÁÁÁÁ

Dec
ÁÁÁÁ
ÁÁÁÁ

90
ÁÁÁ
ÁÁÁ

5A
ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

PA10
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 5Ah
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

91
ÁÁÁ
ÁÁÁ
ÁÁÁ

5B
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PA11
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 5Bh

ÁÁÁÁ
ÁÁÁÁ

92 ÁÁÁ
ÁÁÁ

5CÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

PA12 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 5Ch

ÁÁÁÁ
ÁÁÁÁ

93 ÁÁÁ
ÁÁÁ

5DÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

PA13 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 5Dh
ÁÁÁÁ
ÁÁÁÁ94

ÁÁÁ
ÁÁÁ5E
ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁPA14

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁI/O port 5EhÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

95
ÁÁÁ
ÁÁÁ
ÁÁÁ

5F
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PA15
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

I/O port 5Fh

ÁÁÁÁ
ÁÁÁÁ

96–127ÁÁÁ
ÁÁÁ

60–7FÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

––– ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scratch-pad RAM (DARAM B2)

9.1.2 External Interrupts

The ’C5x has four external, maskable user interrupts (INT4–INT1) that exter-
nal devices can use to interrupt the processor, and one external nonmaskable
interrupt (NMI). Internal interrupts are generated by the timer (TINT), the serial
port (RINT, XINT, TRNT, TXNT, BRNT, and BXNT), the host port (HINT), and
the software interrupt instructions (TRAP, NMI and INTR). Interrupt priorities
are set so that reset (RS) has the highest priority and INT4 has the lowest prior-
ity. The NMI has the second highest priority. For further information regarding
interrupt operation, see Section 4.8, Interrupts, on page 4-36.

Interrupts may be asynchronously triggered. In the functional logic organiza-
tion for INT4–INT1, shown in Figure 9–1, the external interrupt INTn is syn-
chronized to the core via a five flip-flop synchronizer. The actual implementa-
tion of the interrupt circuits is similar to this logic implementation. If a 1-1-0-0-0
sequence on five consecutive CLKOUT1 cycles is detected, a 1 is loaded into
the interrupt flag register (IFR).
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Figure 9–1. External Interrupt Logic Diagram
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The ’C5x devices sample the external interrupt pins multiple times to avoid
noise-generated interrupts. To detect an active interrupt, the ’C5x must sample
the signal low on at least three consecutive machine cycles. Once an interrupt
is detected, the ’C5x must sample the signal high on at least two consecutive
machine cycles to be able to detect another interrupt. The external interrupt
pins are sampled on the rising edge of CLKOUT1. If the external interrupts are
running asynchronously, the pulses should be stretched to guarantee three
consecutive low samples. Note that if the CPU is in IDLE2 mode, an interrupt
input must be high for at least four CLKOUT1 cycles and low for a minimum
of five CLKOUT1 cycles to be properly recognized.

If the INTM bit and mask register are properly enabled, the interrupt signal is
accepted by the processor. INTM is set and the appropriate IFR bit is cleared
when the INTR instruction is jammed into the pipeline, and then after three
CLKOUT1 cycles, IACK is generated (see Figure 4–9 on page 4-44). NMI
uses the same logic as for INT1–INT4, except that NMI is not affected by the
status of the interrupt mask register (IMR) or the INTM bit.
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9.1.3 Peripheral Reset

A number of actions occur when the ’C5x is reset. Section 4.9, Reset, on
page 4-45 describes the events that occur when the ’C5x is reset. On a device
reset, the central processing unit (CPU) sends an SRESET signal to the pe-
ripheral circuits. The SRESET signal affects the peripheral circuits in the fol-
lowing ways:

1) The two software wait-state registers (IOWSR and PDWSR) are set to
FFFFh, causing all external accesses to occur with seven wait states. The
CWSR is loaded with 0Fh.

2) The FO bits of the SPC and TSPC/BSPC are cleared, which selects a word
length of 16 bits for each serial port.

3) The FSM bits of the SPC and TSPC/BSPC are cleared. The FSM bit must
be set for operation with frame sync pulses.

4) The TXM bits of the SPC and TSPC/BSPC are cleared, which configures
the FSX and TFSX pins as inputs.

5) The SPC and TSPC/BSPC are loaded with 0y00h, where the two MSBs
of y are 102 and the two LSBs of y reflect the current levels on the transmit
and receive clock pins of the respective port.

6) The TIM and PRD are loaded with FFFFh. The TDDR and TSS fields of
the TCR are cleared and the timer starts.

7) On the HPI, HINT and SMOD are cleared while in reset, and then set after
reset goes high.

Refer to Section 4.9 for further details of reset operation.



Clock Generator

9-7On-Chip Peripherals

9.2 Clock Generator

The ’C5x clock generator consists of an internal oscillator and a phase lock
loop (PLL) circuit that provides the flexibility for the system designer to select
the clock source. The clock generator is driven by a crystal resonator circuit
or by an external clock source.

9.2.1 Standard Clock Options (’C50, ’C51, ’C52, ’C53, and ’C53S only)

Table 9–2 lists the standard clock options available. When the internal divide-
by-2 option is selected, the internal oscillator is enabled by connecting a crystal
across the X1 and X2/CLKIN pins. The frequency of CLKOUT1 is one-half the
crystal oscillating frequency. When the external divide-by-2 option is selected,
the external clock source is connected directly to the X2/CLKIN pin and the X1
pin is unconnected. The external frequency is divided by two to generate the
internal machine cycle.

When the PLL option is selected, the external clock source is connected direct-
ly to the CLKIN2 pin, the X1 pin is disconnected from VDD, and the X2/CLKIN
pin is connected to VDD. For the ’C50, ’C51, ’C53, and ’C53S, the external
frequency is multiplied by one to generate the internal machine cycle. For the
’C52, the external frequency is multiplied by two to generate the internal
machine cycle.

Table 9–2. Standard Clock Options (’C50, ’C51, ’C52, ’C53, and ’C53S only)

ÁÁÁÁ
ÁÁÁÁ

CLKMD1ÁÁÁÁ
ÁÁÁÁ

CLKMD2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock Mode

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

External divide-by-2 option with internal oscillator
disabled.

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved for test purposes.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

PLL clock generator option.
� For ’C50, ’C51, ’C53, and ’C53S: multiply-by-1 option
� For ’C52: multiply-by-2 option

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

External divide-by-2 option or internal divide-by-2 option
with an external crystal.
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9.2.2 PLL Clock Options (’LC56, ’C57S, and ’LC57 only)

Table 9–3 lists the PLL clock options available. The PLL circuit provides the
capability to supply lower external frequency sources than the machine cycle
rate of the CPU. This is a desirable feature because it reduces a system’s high-
frequency noise that is due to a high-speed switching clock. When the PLL op-
tion is selected, the external clock source is connected directly to the
X2/CLKIN pin.

The PLL has a maximum operating frequency of 28.6 MHz (on a 35-ns ’C5x
device). The PLL requires a transitory locking time which is specified in the
TMS320C5x data sheet. When the device is in idle2 power-down mode or in
stop mode, the PLL stops; in idle power-down mode, the PLL continues oper-
ating. See the TMS320C5x data sheet for more information on the external
input frequency specification.

Note that the clock mode should not be reconfigured with the clock mode pins
during the normal operation. During the idle2 mode, the clock mode can be
reconfigured after CLKOUT1 settling high.

Table 9–3. PLL Clock Options (’LC56, ’C57S, and ’LC57 only)

ÁÁÁÁ
ÁÁÁÁ

CLKMD1ÁÁÁÁÁ
ÁÁÁÁÁ

CLKMD2 ÁÁÁÁ
ÁÁÁÁ

CLKMD3ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Clock Mode
ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

PLL multiply-by-3 option
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

External divide-by-2 option with internal
oscillator disabled

ÁÁÁÁ
ÁÁÁÁ0

ÁÁÁÁÁ
ÁÁÁÁÁ1

ÁÁÁÁ
ÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁPLL multiply-by-4 optionÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

PLL multiply-by-2 option

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

PLL multiply-by-5 option

ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

PLL multiply-by-1 option
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

PLL multiply-by-9 option

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

External divide-by-2 option or internal divide-
by-2 option with an internal oscillator enabled
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9.3 Timer

The timer is an on-chip down counter that can be used to periodically generate
CPU interrupts. Figure 9–2 shows a logical block diagram of the timer. The tim-
er is driven by a prescaler which is decremented by 1 at every CLKOUT1 cycle.
A timer interrupt (TINT) is generated each time the counter decrements to 0.
The timer provides a convenient means of performing periodic I/O or other
functions. When the timer is stopped (TSS = 1), the internal clocks to the timer
are shut off, allowing the circuit to run in a low-power mode of operation.

Figure 9–2. Timer Block Diagram

PRD

TIM

Borrow

TDDR

PSC

Borrow

SRESET

TRB

CLKOUT1

TSS

TINT

TOUT

9.3.1 Timer Registers

The timer operation is controlled via the timer control register (TCR), the timer
counter register (TIM), and the timer period register (PRD). Figure 9–3 shows
and Table 9–4 describes the TCR bit fields.



Timer

 9-10

Figure 9–3. Timer Control Register (TCR) Diagram

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

15–12 ÁÁÁ
ÁÁÁ

11ÁÁÁ
ÁÁÁ

10ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

9–6 ÁÁÁ
ÁÁÁ

5 ÁÁ
ÁÁ

4ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

3–0

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Reserved ÁÁÁ
ÁÁÁ

SoftÁÁÁ
ÁÁÁ

FreeÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

PSC ÁÁÁ
ÁÁÁ

TRBÁÁ
ÁÁ

TSSÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

TDDR

Table 9–4. Timer Control Register (TCR) Bit Summary

Bit Name
Reset
value Function

15–12 Reserved — These bits are reserved and are always read as 0.

11 Soft 0 This bit is used in conjunction with the Free bit to determine the state of the timer
when a halt is encountered. When the Free bit is cleared, the Soft bit selects the
emulation mode.

Soft = 0 The timer stops immediately.

Soft = 1 The timer stops after decrementing to zero.

10 Free 0 This bit is used in conjunction with the Soft bit to determine the state of the timer
when a halt is encountered. When the Free bit is cleared, the Soft bit selects the
emulation mode.

Free = 0 The Soft bit selects the timer mode.

Free = 1 The timer runs free regardless of the Soft bit.

9–6 PSC — Timer prescaler counter bits. These bits specify the count for the on-chip timer.
When the PSC is decremented past 0 or the timer is reset, the PSC is loaded with
the contents of the TDDR, and the TIM is decremented.

5 TRB — Timer reload bit. This bit resets the on-chip timer. When the TRB is set, the TIM
is loaded with the value in the PRD and the PSC is loaded with the value in the
TDDR. The TRB is always read as a 0.

4 TSS 0 Timer stop status bit. This bit stops or starts the on-chip timer. At reset, the TSS
bit is cleared and the timer immediately starts timing.Note that due to timer logic
implementation, two successive writes of one to the TSS bit are required to prop-
erly stop the timer.

TSS = 0 The timer is started.

TSS = 1 The timer is stopped.

3–0 TDDR 0000 Timer divide-down register bits. These bits specify the timer divide-down ratio (pe-
riod) for the on-chip timer. When the PSC bits are decremented past 0, the PSC
is loaded with the contents of the TDDR.
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9.3.2 Timer Operation

When the PSC decrements to 0 or when the timer is reset by setting the TRB
bit, the contents of the TDDR are loaded into the PSC and the TIM is decrem-
ented.

When the TIM decrements to 0 or when the timer is reset by setting the TRB
bit, the contents of the PRD are loaded into the TIM. The TRB bit is always read
as 0. When a 1 is written to the TRB, the timer is reset, but TRB is still read as
0.

Note:

The current value in the timer can be read by reading the TIM; the PSC can
be read by reading the TCR. Because it takes two instructions to read both
registers, there may be a change between the two reads as the counter
decrements. Therefore, when making precise timing measurements, it may
be more accurate to stop the timer to read these two values. Due to timer log-
ic implementation, two instructions are also required to properly stop the tim-
er; therefore, two successive writes of one to the TSS bit should be made
when the timer must be stopped.

The timer interrupt (TINT) rate is given by:

TINT rate �
1

tc(C) � u � v �
1

tc(C) � (TDDR � 1) � (PRD � 1)

where tc(C) is the period of CLKOUT1, u is the sum of the TDDR contents + 1,
and v is the sum of the PRD contents + 1.

The TINT rate equals the CLKOUT1 frequency divided by two independent
factors. The two divisors are implemented with a down counter and period
register (see Figure 9–2 on page 9-9) in each stage. The PSC and TDDR
fields of the TCR are used for the first stage and the TIM and PRD are used
for the second stage. Each time a down counter (PSC or TIM) decrements to
0, a borrow is generated on the next CLKOUT1 cycle, and the down counter
is reloaded with the contents of its corresponding period register (TDDR or
PRD). The output of the second stage is the TINT signal sent to the CPU and
to the timer output (TOUT) pin. The width of the borrow pulse that appears on
the output of the second stage equals tc(C).

The timer can be used to generate a sample clock for an analog interface.
Example 9–1 uses the timer to generate a sample rate of 50 kHz. Consider an
analog-to-digital converter operating at this sample rate. Example 9–2 shows
a typical interrupt service routine (ISR).
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Example 9–1. Code Initialization for Generating a 50-kHz Clock Signal

*Clkin frequency = 20 MHz, timer is running at 10 MHz.
*

LDP #0
SPLK #199,PRD ;Load timer period for 20 us period.
OPL #8,IMR ;Set timer interrupt mask bit
SPLK #20h,TCR ;reload and start timer.
SPLK #1000b,IFR ;Clear any pending timer interrupts.
CLRC INTM ;global interrupt enable.

*

Example 9–2. Interrupt Service Routine for a 50-kHz Sample Rate

*50 kHz sample rate A/D interrupt service routine
*
TIMER_ISR MAR *,AR3 ;Use auxiliary register reserved for

;timer ISR.
IN *,14 ;Read A/D. 
RETE ;Re–enable interrupts and return.

*
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9.4 Software-Programmable Wait-State Generators

The software-programmable wait-state generators can extend external bus
cycles by up to seven machine cycles. This operation provides a convenient
means to interface the ’C5x to external devices that do not satisfy the full-
speed access-time requirement of the ’C5x. Devices that require more than
seven wait states can be interfaced using the hardware READY line. When all
external accesses are configured for zero wait states, the internal clocks to the
wait-state generators are shut off; shutting off the internal clocks allows this
circuitry to run with lower power consumption.

Note:

The wait-state generators affect external accesses only.

Two 16-bit wait-state registers and a 5-bit control register control the software-
programmable wait-state generators. Each of the three external spaces
(program, data, and I/O spaces) has an assigned field in a software wait-state
register.

9.4.1 Program/Data Wait-State Register (PDWSR)

The program and data memory spaces each consist of 64K word addresses.
You can view each 64K-word space as being composed of four 16K-word
blocks. Each 16K-word block in program and data space is associated with a
2-bit wait-state field in the PDWSR, as shown in Figure 9–4 and listed in
Table 9–5. The value of the 2-bit field in PDWSR specifies the number of wait
states to be inserted for each access in the given address range. At reset, the
PDWSR is set to FFFFh.

Figure 9–4. Program/Data Wait-State Register (PDWSR) Diagram
(’C50, ’C51, and ’C52 only)

ÁÁ
ÁÁ

15ÁÁÁ
ÁÁÁ

14ÁÁÁ
ÁÁÁ

13 ÁÁ
ÁÁ

12ÁÁÁ
ÁÁÁ

11ÁÁÁ
ÁÁÁ

10 ÁÁ
ÁÁ

9ÁÁÁ
ÁÁÁ

8ÁÁÁ
ÁÁÁ

7 ÁÁÁ
ÁÁÁ

6 ÁÁÁ
ÁÁÁ

5 ÁÁÁ
ÁÁÁ

4 ÁÁÁ
ÁÁÁ

3 ÁÁÁ
ÁÁÁ

2 ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

0

ÁÁÁÁ
ÁÁÁÁ

Data 4ÁÁÁÁ
ÁÁÁÁ

Data 3ÁÁÁÁÁ
ÁÁÁÁÁ

Data 2 ÁÁÁÁ
ÁÁÁÁ

Data 1 ÁÁÁÁÁ
ÁÁÁÁÁ

Program 4ÁÁÁÁÁ
ÁÁÁÁÁ

Program 3 ÁÁÁÁÁ
ÁÁÁÁÁ

Program 2 ÁÁÁÁÁ
ÁÁÁÁÁ

Program 1



Software-Programmable Wait-State Generators

 9-14

Table 9–5. Program/Data Wait-State Register (PDWSR) Address Ranges
(’C50, ’C51, and ’C52 only)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

PDWSR Bits
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Memory
Space

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Hex Address Range

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

15–14 ÁÁÁÁÁ
ÁÁÁÁÁ

Data 4 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

C000–FFFF

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

13–12 ÁÁÁÁÁ
ÁÁÁÁÁ

Data 3 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

8000–BFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ11–10

ÁÁÁÁÁ
ÁÁÁÁÁData 2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ4000–7FFFÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

9–8
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Data 1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0000–3FFF

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

7–6 ÁÁÁÁÁ
ÁÁÁÁÁ

Program 4ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

C000–FFFF

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5–4 ÁÁÁÁÁ
ÁÁÁÁÁ

Program 3ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

8000–BFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3–2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Program 2
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

4000–7FFF

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1–0 ÁÁÁÁÁ
ÁÁÁÁÁ

Program 1ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0000–3FFF

The ’C53S, ’LC56, and ’C57 implement a simpler version of the software wait
states. Program, data, and I/O space wait states are specified by a single wait-
state value. All external addresses in each space may be independently set
from 0 to 7 wait states by the 3-bit wait-state field in the PDWSR, as shown in
Figure 9–5 and listed in Table 9–6.

Figure 9–5. Program/Data Wait-State Register (PDWSR) Diagram
(’C53S, ’LC56, and ’C57 only)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

15–9 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8–6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5–3 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2–0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reserved ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

I/O ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Data ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Program

Table 9–6. Program/Data Wait-State Register (PDWSR) Address Ranges
(’C53S, ’LC56, and ’C57 only)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Wait-State
Field Bits

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Space

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Hex Address Range

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

15–9 ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

—

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8–6 ÁÁÁÁÁ
ÁÁÁÁÁ

I/O ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0000–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5–3
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Data
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0000–FFFF

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2–0 ÁÁÁÁÁ
ÁÁÁÁÁ

Program ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0000–FFFF
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Note that if the on-chip wait-state generator is used to add wait states for exter-
nal accesses, the number of CLKOUT1 cycles required for writes is not
effected until two or more wait states are specified, contrary to wait states gen-
erated with the external READY input. Table 9–7 shows the number of cycles
required for the different types of external device accesses.

Also, note that the external READY input is sampled only after the internal soft-
ware wait states are completed. Therefore, if the READY input is driven low
before the completion of the internal software wait states, no wait states are
added to the external memory access until the specified number of software
wait states is completed. Wait states are only added if the READY input is still
low after the software wait states are completed. Additionally, it should be
noted that the READY input is not an asynchronous input and input setup and
hold times for this signal as specified in the TMS320C5x data sheet must be
met or significant device malfunction will result.

Table 9–7. Number of CLKOUT1 Cycles per Access for Various Numbers of Wait States

Number of CLKOUT1 Cycles †

Hardware Wait State Software Wait State

Number of Wait States Read Write Read Write

0 1 2n + 1 1 2n + 1

1 2 3n + 1 2 2n + 1

2 3 4n + 1 3 3n + 1

3 4 5n + 1 4 4n + 1

† Where n is the number of consecutive write cycles.
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9.4.2 I/O Wait-State Register (IOWSR)

The I/O space consists of 64K word addresses. The IOWSR, shown in
Figure 9–6, can be mapped in either of two ways, as specified by the BIG bit
in the wait-state control register (CWSR). The value of the 2-bit field in IOWSR
specifies the number of wait states to be inserted for each access in the given
port or address range (Table 9–8). At reset, the IOWSR is set to FFFFh.

If the BIG bit is cleared, each of eight pairs of memory-mapped I/O ports is
associated with a 2-bit wait-state field in IOWSR. The value of the 2-bit field
in IOWSR specifies the number of wait states to be inserted for each access
in the given port. The entire I/O space is configured with wait states on 2-word
boundaries (that is, port 0/1, port 10/11, and port 20/21 all have the same num-
ber of wait states). This configuration provides maximum flexibility when I/O
bus-cycles access peripherals such as D/A and A/D devices.

If the BIG bit is set, the 64K-word space is divided into eight 8K-word blocks.
Each 8K-word block in I/O space is associated with a 2-bit wait-state field in
the IOWSR. The value of the 2-bit field in IOWSR specifies the number of wait
states to be inserted for each access in the given address range.

Figure 9–6. I/O Port Wait-State Register (IOWSR) Diagram
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ÁÁÁ
ÁÁÁ
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ÁÁÁ
ÁÁÁ

5
ÁÁ
ÁÁ
ÁÁ

4
ÁÁÁ
ÁÁÁ
ÁÁÁ

3
ÁÁÁ
ÁÁÁ
ÁÁÁ

2
ÁÁ
ÁÁ
ÁÁ

1
ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁÁÁ
ÁÁÁÁÁ

I/O 8 ÁÁÁÁÁ
ÁÁÁÁÁ

I/O 7 ÁÁÁÁÁ
ÁÁÁÁÁ

I/O 6 ÁÁÁÁ
ÁÁÁÁ

I/O 5ÁÁÁÁÁ
ÁÁÁÁÁ

I/O 4 ÁÁÁÁ
ÁÁÁÁ

I/O 3 ÁÁÁÁÁ
ÁÁÁÁÁ

I/O 2 ÁÁÁÁ
ÁÁÁÁ
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Table 9–8. I/O Port Wait-State Register (IOWSR) Address Ranges

ÁÁÁÁÁ
ÁÁÁÁÁ

Wait-StateÁÁÁÁ
ÁÁÁÁ

I/O ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ports/Hex Address Range

ÁÁÁÁÁ
ÁÁÁÁÁ

Wait-State
Field BitsÁÁÁÁ

ÁÁÁÁ

I/O
SpaceÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BIG = 0 ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

BIG = 1

ÁÁÁÁÁ
ÁÁÁÁÁ

0–1 ÁÁÁÁ
ÁÁÁÁ

I/O 1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Port 0/1, port 10/11, etc. ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–1FFF

ÁÁÁÁÁ
ÁÁÁÁÁ

2–3 ÁÁÁÁ
ÁÁÁÁ

I/O 2 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Port 2/3, port 12/13, etc. ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2000–3FFF
ÁÁÁÁÁ
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9.4.3 Wait-State Control Register (CWSR)

The CWSR allows you to select one of two mappings of the IOWSR and one
of two mappings between 2-bit wait-state fields and the number of wait states
for the corresponding space in the PDWSR and IOWSR. The CWSR bit fields
are shown in Figure 9–7 and described in Table 9–9. If a bit is cleared, the
number of wait states for external accesses in that space is equal to the wait-
state field value. If a bit is set, the number of wait states for external accesses
in that space is determined by the wait-state field values listed in Table 9–10.
Always program the CWSR before configuring the PDWSR and IOWSR to
avoid configuring memory with too few wait states during the set-up of wait-
state registers.

Figure 9–7. Wait-State Control Register (CWSR) Diagram
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3 ÁÁÁ
ÁÁÁ

2 ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
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ÁÁÁ
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ÁÁÁÁ

I/O High ÁÁÁ
ÁÁÁ

I/O LowÁÁÁ
ÁÁÁ

DÁÁÁ
ÁÁÁ

P

Table 9–9. Wait-State Control Register (CWSR) Bit Summary 

Bit Name
Reset
value Function

15–5 Reserved 0 These bits are reserved.

4 BIG 0 This bit specifies how the IOWSR is mapped.

BIG = 0 The IOWSR is divided into eight pairs of I/O ports with a 2-bit
wait-state field assigned to each pair of ports.

BIG = 1 The I/O space is divided into eight 8K-word blocks with a 2-bit
wait-state field assigned to each block.

3 I/O High 1 This bit is used in conjunction with the 2-bit wait-state field in the IOWSR to deter-
mine the number of wait states for the I/O space upper half (I/O 5–I/O 8). See
Table 9–10 for the wait state  configurations.

I/O High = 0 The number of wait states assigned to the I/O space upper half
is 0, 1, 2, or 3.

I/O High = 1 The number of wait states assigned to the I/O space upper half
is 0, 1, 3, or 7.
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Table 9–9. Wait-State Control Register (CWSR) Bit Summary (Continued)

Bit Function
Reset
valueName

2 I/O Low 1 This bit is used in conjunction with the 2-bit wait-state field in the IOWSR to deter-
mine the number of wait states for the I/O space lower half (I/O 1–I/O 4). See
Table 9–10 for the wait state configurations.

I/O Low = 0 The number of wait states assigned to the I/O space lower half
is 0, 1, 2, or 3.

I/O Low = 1 The number of wait states assigned to the I/O space lower half
is 0, 1, 3, or 7.

1 D 1 Data memory space bit. This bit is used in conjunction with the 2-bit wait-state field
in the PDWSR to determine the number of wait states for the data memory space.
See Table 9–10 for the wait state configurations.

D = 0 The number of wait states assigned to the data memory space
is 0, 1, 2, or 3.

D = 1 The number of wait states assigned to the data memory space
is 0, 1, 3, or 7.

0 P 1 Program memory space bit. This bit is used in conjunction with the 2-bit wait-state
field in the PDWSR to determine the number of wait states for the program memory
space. See Table 9–10 for the wait state configurations.

P = 0 The number of wait states assigned to the program memory
space is 0, 1, 2, or 3.

P = 1 The number of wait states assigned to the program memory
space is 0, 1, 3, or 7.

Table 9–10. Wait-State Field Values and Number of Wait States as a Function of 
CWSR Bits 0–3

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
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of PDWSR or IOWSR †

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

No. of Wait States
(CWSR Bit 0–3 = 0)

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

No. of Wait States
(CWSR Bit 0–3 = 1)ÁÁÁÁÁÁÁÁÁ
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ÁÁÁÁÁÁÁÁÁ
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0
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3
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ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

11
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ÁÁÁÁÁÁÁÁ

3
ÁÁÁÁÁÁÁÁ
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ÁÁÁÁÁÁÁÁ

7

† This bit field corresponds to the wait-state field bits in Figure 9–4 and Figure 9–6.
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9.4.4 Logic for External Program Space

Figure 9–8 shows a block diagram of the wait-state generator logic for external
program space. When an external program access is decoded, the appropri-
ate field of the PDWSR is loaded into the counter. If the field is not 0002, a not-
ready signal is sent to the CPU. The not-ready condition is maintained until the
counter decrements to 0 and the external READY line is set high. The external
READY and the wait-state READY are ORed to generate the CPU WAIT sig-
nal. The READY line is sampled at the rising edge of CLKOUT1.

Note:

The external READY line is sampled only at the last cycle of an external ac-
cess if the on-chip wait-state generator is used to insert software wait states.

Figure 9–8. Software-Programmable Wait-State Generator Block Diagram
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9.5 General-Purpose I/O Pins

The ’C5x has two general-purpose pins that are software controlled. The
branch control input (BIO) pin and the external flag output (XF) pin. For de-
tailed timing specifications of BIO and XF signals, refer to the TMS320C5x
data sheet.

9.5.1 Branch Control Input (BIO )

The BIO pin monitors peripheral device status—especially as an alternative
to an interrupt when time-critical loops must not be disturbed. A branch can be
conditionally executed dependent upon the state of the BIO input. The timing
diagram, shown in Figure 9–9, shows the BIO operation (refer to the
TMS320C5x data sheet for actual timing specifications). This timing diagram
is for a sequence of single-cycle, signal-word instructions located in external
memory. When used with the XC instruction, the BIO condition is tested during
the decode (second) phase of the pipeline; all other instructions (BCND,
BCNDD, CC, CCD, RETC, and RETCD), test BIO during the execute (fourth)
phase of the pipeline.

Figure 9–9. BIO Timing Diagram
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9.5.2 External Flag Output (XF)

The XF pin signals to external devices via software. It is set high by the SETC
XF instruction and reset low by the CLRC XF instruction. XF is set high at de-
vice reset. Figure 9–10 shows the relationship between the time the SETC or
CLRC instruction is fetched, and the time the XF pin is set or reset (refer to the
TMS320C5x data sheet for actual timing specifications). The timing diagram
is for a sequence of single-cycle, single-word instructions located in external
memory. Actual timing can vary with different instruction sequences.

Figure 9–10. XF Timing Diagram
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9.6 Parallel I/O Ports

The ’C5x has 64K parallel I/O ports. Sixteen of the 64K I/O ports are memory-
mapped in data page 0 as listed in Table 9–1 on page 9-2. You can access
the 64K I/O ports using the IN and OUT instructions or any instruction that
reads or writes a location in data memory space. Accesses to memory-
mapped I/O space are distinguished from program and data accesses by the
IS signal going low; the DS signal is not active, even though the I/O port is actu-
ally accessed through data space. The following example shows how to use
direct addressing to access an I/O device on port 51h:

SACL 51h ;(DP = 0) Store accumulator to external
;device on port 81.

The RD signal can be used in conjunction with chip-select logic to generate
an output enable signal for an external peripheral. The WE signal can be used
in conjunction with chip-select logic to generate a write enable signal for an ex-
ternal peripheral. Figure 9–11 shows a typical I/O port interface circuitry. The
decode section can be simplified if fewer I/O ports are used.

Figure 9–11.I/O Port Interface Circuitry
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9.7 Serial Port Interface

Several ’C5x devices implement a variety of types of flexible serial port inter-
faces. These serial port interfaces provide full duplex, bidirectional, commu-
nication with serial devices such as codecs, serial analog to digital (A/D) con-
verters, and other serial systems. The serial port interface signals are directly
compatible with many industry-standard codecs and other serial devices. The
serial port may also be used for interprocessor communication in multiproces-
sing applications (the time-division multiplexed (TDM) serial port is especially
optimized for multiprocessing).

Three different types of serial port interfaces are available on ’C5x devices.
The basic standard serial port interface (SP) is implemented on all ’C5x de-
vices. The TDM serial port interface is implemented on the ’C50, ’C51, and
’C53 devices. The ’C56 and ’C57 devices include the buffered serial port
(BSP), which implements an automatic buffering feature that greatly reduces
CPU overhead required in handling serial data transfers. See Table 1–1 on
page 1-6 for information about features included in various ’C5x devices.

The BSP operates in either autobuffering or nonbuffered mode. When oper-
ated in nonbuffered (or standard) mode, the BSP functions the same as the
basic standard serial port (except where specifically indicated) and is de-
scribed in this section. The TDM serial port operates in either TDM or non-TDM
mode. When operated in non-TDM (or standard) mode, the TDM serial port
also functions the same as the basic standard serial port and is described in
this section.

The BSP also implements several enhanced features in standard mode, and
these features, as well as operation of the BSP in autobuffering mode, are de-
scribed in Section 9.8, Buffered Serial Port (BSP) Interface, on page 9-53.
Therefore, when using the ’C56 or ’C57 devices, Section 9.8 should be con-
sulted. Operation of the TDM serial port in TDM mode is described in Section
9.9, Time-Division Multiplexed (TDM) Serial Port Interface, on page 9-74. Note
that the BSP and TDM serial ports initialize to a standard serial port compatible
mode upon reset.

In all ’C5x serial ports, both receive and transmit operations are double-buff-
ered, thus allowing a continuous communications stream with either 8- or
16-bit data packets. The continuous mode provides operation that, once initi-
ated, requires no further frame synchronization pulses (FSR and FSX) when
transmitting at maximum packet frequency. The serial ports are fully static and
thus will function at arbitrarily low clocking frequencies. The maximum operat-
ing frequency for the standard serial port of one-fourth of CLKOUT1 (5M bps
at 50 ns, 7.14M bps at 35 ns) is achieved when using internal serial port clocks.
The maximum operating frequency for the BSP is CLKOUT1. When the serial
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ports are in reset, the device may be configured to turn off the internal serial
port clocks, allowing the device to run in a lower power mode of operation.

9.7.1 Serial Port Interface Registers

The serial port operates through the three memory-mapped registers (SPC,
DXR, and DRR) and two other registers (RSR and XSR) that are not directly
accessible to the program, but are used in the implementation of the double-
buffering capability. These five registers are listed in Table 9–11.

Table 9–11. Serial Port Registers
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ÁÁÁÁÁÁ
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Data transmit shift register

� Data receive register (DRR). The 16-bit memory-mapped data receive
register (DRR) holds the incoming serial data from the RSR to be written
to the data bus. At reset, the DRR is cleared.

� Data transmit register (DXR). The 16-bit memory-mapped data transmit
register (DXR) holds the outgoing serial data from the data bus to be
loaded in the XSR. At reset, the DXR is cleared.

� Serial port control register (SPC). The 16-bit memory-mapped serial port
control register (SPC) contains the mode control and status bits of the seri-
al port.

� Data receive shift register (RSR). The 16-bit data receive shift register
(RSR) holds the incoming serial data from the serial data receive (DR) pin
and controls the transfer of the data to the DRR.

� Data transmit shift register (XSR). The 16-bit data transmit shift register
(XSR) controls the transfer of the outgoing data from the DXR and holds
the data to be transmitted on the serial data transmit (DX) pin.

During normal serial port operation, the DXR is typically loaded with data to
be transmitted on the serial port by the executing program, and its contents
read automatically by the serial port logic to be sent out when a transmission
is initiated. The DRR is loaded automatically by the serial port logic with data
received on the serial port and read by the executing program to retrieve the
received data.
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At times during normal serial port operation, however, it may be desirable for
a program to perform other operations with the memory-mapped serial port
registers besides simply writing to DXR and reading from DRR.

On the SP, the DXR and DRR may be read or written at any time regardless
of whether the serial port is in reset or not. On the BSP, access to these regis-
ters is restricted; the DRR can only be read, and the DXR can only be written
when autobuffering is disabled (see subsection 9.8.2, Autobuffering Unit
(ABU) Operation, on page 9-60). The DRR can only be written when the BSP
is in reset. The DXR can be read at any time.

Note, however, that on both the SP and the BSP, care should be exercised
when reading or writing to these registers during normal operation. With the
DRR, since, as mentioned previously, this register is written automatically by
the serial port logic when data is received, if a write to DRR is performed, sub-
sequent reads may not yield the result written if a serial port receive occurs
after the write but before the read is performed. With the DXR, care should be
exercised when this register is written, since if previously written contents in-
tended for transmission have not yet been sent, these contents will be over-
written and the original data lost. As mentioned previously, the DXR can be
read at any time.

Alternatively, DXR and DRR may also serve as general purpose storage if they
are not required for serial port use. If these registers are to be used for general
purpose storage, the transmit and/or receive sections of the serial port should
be disabled either by tying off (by pulling up or down, whichever is appropriate)
external input pins which could spuriously cause serial port transfers, or by
putting the port in reset.

9.7.2 Serial Port Interface Operation

This section describes operation of the basic standard serial port interface,
which includes operation of the TDM and BSP serial ports when configured in
standard mode. Table 9–12 lists the pins used in serial port operation.
Figure 9–12 shows these pins for two ’C5x serial ports connected for a one-
way transfer from device 0 to device 1. Only three signals are required to con-
nect from a serial port transmitter to a receiver for data transmission. The
transmitted serial data signal (DX) sends the actual data. The transmit frame
synchronization signal (FSX) initiates the transfer (at the beginning of the
packet), and the transmit clock signal (CLKX) clocks the bit transfer. The corre-
sponding pins on the receive device are DR, FSR and CLKR, respectively.
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Table 9–12. Serial Port Pins

ÁÁÁÁÁ
ÁÁÁÁÁ

Pin ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁÁ
ÁÁÁÁÁ

CLKR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Receive clock signal
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLKX
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Transmit clock signal

ÁÁÁÁÁ
ÁÁÁÁÁ

DR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Received serial data signal

ÁÁÁÁÁ
ÁÁÁÁÁ

DX ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Transmitted serial data signal
ÁÁÁÁÁ
ÁÁÁÁÁ

FSR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Receive framing synchronization signal
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

FSX
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Transmit frame synchronization signal

Figure 9–12. One-Way Serial Port Transfer
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Figure 9–13 shows how the pins and registers are configured in the serial port
logic and how the double-buffering is implemented.

Transmit data is written to the DXR, while received data is read from the DRR.
A transmit is initiated by writing data to the DXR, which copies the data to the
XSR when the XSR is empty (when the last word has been transmitted serially,
that is, driven on the DX pin). The XSR manages shifting the data to the DX
pin, thus allowing another write to DXR as soon as the DXR-to-XSR copy is
completed.

During transmits, upon completion of the DXR-to-XSR copy, a 0-to-1 transition
occurs on the transmit ready (XRDY) bit in the SPC. This 0-to-1 transition gen-
erates a serial port transmit interrupt (XINT) that signals that the DXR is ready
to be reloaded. See Section 4.8, Interrupts, on page 4-36 and subsection
9.1.2, External Interrupts, on page 9-4 for more information on ’C5x inter-
rupts.
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Figure 9–13. Serial Port Interface Block Diagram
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The process is similar in the receiver. Data from the DR pin is shifted into the
RSR, which is then copied into the DRR from which it may be read. Upon
completion of the RSR-to-DRR copy, a 0-to-1 transition occurs on the receive
ready (RRDY) bit in the SPC. This 0-to-1 transition generates a serial port
receive interrupt (RINT). Thus, the serial port is double-buffered because data
can be transferred to or from DXR or DRR while another transmit or receive
is being performed. Note that transfer timing is synchronized by the frame sync
pulse in burst mode (discussed in more detail in subsection 9.7.4, Burst Mode
Transmit and Receive Operations, on page 9-37).

9.7.3 Setting the Serial Port Configuration

The SPC contains control bits which configure the operation of the serial port.
The SPC bit fields are shown in Figure 9–14 and described in Table 9–13.
Note that seven bits in the SPC are read only and the remaining nine bits are
read/write.



Serial Port Interface

 9-28

Figure 9–14. Serial Port Control Register (SPC) Diagram
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Note: R = Read, W = Write

Table 9–13. Serial Port Control Register (SPC) Bit Summary 

Bit Name
Reset
Value Function

15 Free 0 This bit is used in conjunction with the Soft bit to determine the state of the serial
port clock when a halt is encountered. See Table 9–14 on page 9-37 for the serial
port clock configurations.

Free = 0 The Soft bit selects the emulation mode.

Free = 1 The serial port clock runs free regardless of the Soft bit.

14 Soft 0 This bit is used in conjunction with the Free bit to determine the state of the serial
port clock when a halt is encountered. When the Free bit is cleared to 0, the Soft
bit selects the emulation mode. See Table 9–14 on page 9-37 for the serial port
clock configurations.

Soft = 0 The serial port clock stops immediately, thus aborting any
transmission.

Soft = 1 The clock stops after completion of the current transmission.

13 RSRFULL 0 Receive Shift Register Full. This bit indicates whether the receiver has experi-
enced overrun. Overrun occurs when RSR is full and DRR has not been read since
the last RSR-to-DRR transfer. On the SP, when FSM = 1, the occurrence of a frame
sync pulse on FSR qualifies the generation of RSRFULL = 1. When FSM = 0, and
on the BSP, only the basic two conditions apply; that is, RSRFULL goes high with-
out waiting for an FSR pulse.

RSRFULL = 0 Any one of the following three events clears the RSRFULL
bit to 0: reading DRR, resetting the receiver (RRST bit to 0),
or resetting the device.

RSRFULL = 1 The port has recognized an overrun. When RSRFULL = 1,
the receiver halts and waits for DRR to be read, and any data
sent on DR is lost. On the SP, the data in RSR is preserved;
on the BSP, the contents of RSR are lost.
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Table 9–13. Serial Port Control Register (SPC) Bit Summary (Continued)

Bit Function
Reset
ValueName

12 XSREMPTY 0 Transmit Shift Register Empty. This bit indicates whether the transmitter has expe-
rienced underflow. Underflow occurs when XSR is empty and DXR has not been
loaded since the last DXR-to-XSR transfer.

XSREMPTY = 0 Any one of the following three events clears the XSREMPTY
bit to 0: underflow has occurred, resetting the transmitter
(XRST bit to 0), or resetting the device.

XSREMPTY = 1 On the SP, XSREMPTY is deactivated (set to 1) directly as
a result of writing to DXR; on the BSP, XSREMPTY is only
deactivated after DXR is loaded followed by the occurrence
of an FSX pulse.

11 XRDY 1 Transmit Ready. A transition from 0 to 1 of the XRDY bit indicates that the DXR
contents have been copied to XSR and that DXR is ready to be loaded with a new
data word. A transmit interrupt (XINT) is generated upon the transition. This bit can
be polled in software instead of using serial port interrupts. Note that on the SP,
XRDY is generated directly as a result of writing to DXR; while on the BSP, XRDY
is only generated after DXR is loaded followed by the occurrence of an FSX pulse.
At reset or serial port transmitter reset (XRST = 0), the XRDY bit is set to 1.

10 RRDY 0 Receive Ready. A transition from 0 to 1 of the RRDY bit indicates that the RSR con-
tents have been copied to the DRR and that the data can be read. A receive inter-
rupt (RINT) is generated upon the transition. This bit can be polled in software
instead of using serial port interrupts. At reset or serial port receiver reset
(RRST = 0), the RRDY bit is cleared to 0.

9 IN1 x Input 1. This bit allows the CLKX pin to be used as a bit input. IN1 reflects the cur-
rent level of the CLKX pin of the device. When CLKX switches levels, there is a
latency of between 0.5 and 1.5 CLKOUT1 cycles before the new CLKX value is
represented in the SPC.

8 IN0 x Input 0. This bit allows the CLKR pin to be used as a bit input. IN0 reflects the cur-
rent level of the CLKR pin of the device. When CLKR switches levels, there is a
latency of between 0.5 and 1.5 CLKOUT1 cycles before the new CLKR value is
represented in the SPC.

7 RRST 0 Receive Reset. This signal resets and enables the receiver. When a 0 is written
to the RRST bit, activity in the receiver halts.

RRST = 0 The serial port receiver is reset. Writing a 0 to RRST clears
the RSRFULL and RRDY bits to 0.

RRST = 1 The serial port receiver is enabled.
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Table 9–13. Serial Port Control Register (SPC) Bit Summary (Continued)

Bit Function
Reset
ValueName

6 XRST 0 Transmitter Reset. This signal is used to reset and enable the transmitter. When
a 0 is written to the XRST bit, activity in the transmitter halts. When the XRDY bit
is 0, writing a 0 to XRST generates a transmit interrupt (XINT).

XRST = 0 The serial port transmitter is reset. Writing a 0 to XRST clears
the XSREMPTY bit to 0 and sets the XRDY bit to 1.

XRST = 1 The serial port transmitter is enabled.

5 TXM 0 Transmit Mode. This bit configures the FSX pin as an input (TXM = 0) or as an out-
put (TXM = 1).

TXM = 0 External frame sync. The transmitter idles until a frame
sync pulse is supplied on the FSX pin.

TXM = 1 Internal frame sync. Frame sync pulses are generated in-
ternally when data is transferred from the DXR to XSR to initi-
ate data transfers. The internally generated framing signal is
synchronous with respect to CLKX.

4 MCM 0 Clock Mode. This bit specifies the clock source for CLKX.

MCM = 0 CLKX is taken from the CLKX pin.

MCM = 1 CLKX is driven by an on-chip clock source. For the SP and
the BSP in standard mode, this on-chip clock source is at a
frequency of one-fourth of CLKOUT1. The BSP also allows
the option of generating clock frequencies at additional ratios
of CLKOUT1. For a detailed description of this feature, see
Section 9.8, Buffered Serial Port (BSP) Interface, on page
9-53. Note that if MCM = 1 and DLB = 1, a CLKR signal is
also supplied by the internal source.

3 FSM 0 Frame Sync Mode. This bit specifies whether frame synchronization pulses (FSX
and FSR) are required after the initial frame sync pulse for serial port operation.
See subsection 9.7.2, Serial Port Interface Operation, on page 9-25 for more de-
tails on the frame sync signals.

FSM = 0 Continuous mode. Frame sync pulses are not required af-
ter the initial frame sync pulse, but they are not ignored;
therefore, improperly timed frame syncs may cause errors in
serial transfers. See subsection 9.7.6, Serial Port Interface
Exception Conditions, on page 9-46 for information about
serial port operation under various exception conditions.

FSM = 1 Burst mode. A frame sync pulse is required on FSX/FSR
for the transmission/reception of each word.
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Table 9–13. Serial Port Control Register (SPC) Bit Summary (Continued)

Bit Function
Reset
ValueName

2 FO 0 Format. This bit specifies the word length of the serial port transmitter and receiver.

FO = 0 The data is transmitted and/or received as 16-bit words.

FO = 1 The data is transferred as 8-bit bytes. The data is transferred
with the MSB first. The BSP also allows the capability of 10-
and 12-bit transfers. For a detailed description of this feature,
see Section 9.8, Buffered Serial Port (BSP) Interface, on
page 9-53.

1 DLB 0 Digital Loopback Mode. This bit can be used to put the serial port in digital loopback
mode.

DLB = 0 The digital loopback mode is disabled. The DR, FSR, and
CLKR signals are taken from their respective device pins.

DLB = 1 The digital loopback mode is enabled. The DR and FSR sig-
nals are connected to DX and FSX, respectively, through
multiplexers, as shown in Figure 9–15(a) and (b) on page
9-32. Additionally, CLKR is driven by CLKX if MCM = 1. If
DLB = 1 and MCM = 0, CLKR is taken from the CLKR pin of
the device. This configuration allows CLKX and CLKR to be
tied together externally and supplied by a common external
clock source. The logic diagram for CLKR is shown in
Figure 9–15(c) on page 9-32. Note also that in DLB mode,
the FSX and DX signals appear on the device pins, but FSR
and DR do not. Either internal or external FSX signals may
be used in DLB mode, as defined by the TXM bit.

0 Res 0 Reserved. Always read as a 0 in the serial port. This bit performs a function in
the TDM serial port discussed in Section 9.9, Time-Division-Multiplexed (TDM) Se-
rial Port Interface, on page 9-74.

Reserved Bit

Bit 0 is reserved and is read as 0, although it performs a function in the TDM
serial port (discussed in Section 9.9, Time-Division-Multiplexed (TDM) Serial
Port Interface, on page 9-74).
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DLB Bit

The DLB (bit 1) selects digital loopback mode, which allows testing of serial
port code with a single ’C5x device. When DLB = 1, DR and FSR are connected
to DX and FSX, respectively, through multiplexers, as shown in Figure 9–15.

When in loopback mode, CLKR is driven by CLKX if on-chip serial port clock
generation is selected (MCM = 1), but if MCM = 0, then CLKR is driven by the
external CLKR signal. This allows for the capability of external serial port clock
generation in digital loopback mode. If DLB = 0, then normal operation occurs
where DR, FSR, and CLKR are all taken from their respective pins.

Figure 9–15. Receiver Signal MUXes
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FO Bit

The FO (bit 2) specifies whether data is transmitted as 16-bit words (FO = 0)
or 8-bit bytes (FO = 1). Note that in the latter case, only the lower byte of what-
ever is written to DXR is transmitted, and the lower byte of data read from DRR
is what was received. To transmit a whole 16-bit word in 8-bit mode, two writes
to DXR are necessary, with the appropriate shifts of the value because the up-
per eight bits written to DXR are ignored. Similarly, to receive a whole 16-bit
word in 8-bit mode, two reads from DRR are required, with the appropriate
shifts of the value. In the SP, the upper eight bits of DRR are indeterminate in
8-bit receptions; in the BSP, the unused bits of DRR are sign-extended. Addi-
tionally, in the BSP, transfers of 10- and 12-bit words are provided for additional
flexibility. For a detailed description of this feature, refer to Section 9.8, Buff-
ered Serial Port (BSP) Interface, on page 9-53.
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FSM Bit

The FSM (bit 3) specifies whether or not frame sync pulses are required in
consecutive serial port transmits. If FSM = 1, a frame sync must be present for
every transfer, although FSX may be either externally or internally generated
depending on TXM. This mode is referred to as burst mode, because there are
normally periods of inactivity on the serial port between transmits.

The frequency with which serial port transmissions occur is called packet fre-
quency, and data packets can be 8, 10, 12, or 16 bits long. Therefore, as pack-
et frequency increases, it reaches a maximum that occurs when the time, in
serial port clock cycles, from one packet to the next, is equal to the number of
bits being transferred. If transmission occurs at the maximum rate for multiple
transfers in a row, however, frame sync essentially becomes redundant. Note
that frame sync actually becomes redundant in burst mode only at maximum
packet frequency with FSX configured as an output (TXM = 1). When FSX is
an input (TXM = 0), its presence is required for transmissions to occur.

FSM = 0 selects the continuous mode of operation which requires only an ini-
tial frame sync pulse as long as a write to DXR (for transmit), or a read from
DRR (for receive), is executed during each transfer. Note that when FSM = 0,
frame sync pulses are not required, but they are not ignored, therefore, im-
properly timed frame syncs may cause errors in serial transfers. The timing of
burst and continuous modes is discussed in detail in subsections 9.7.4, 9.7.5,
and 9.7.6.

MCM Bit

The serial port clock source is set by MCM (bit 4). If MCM = 0, CLKX is config-
ured as an input and thus accepts an external clock. If MCM = 1, then CLKX
is configured as an output, and is driven by an internal clock source. For the
SP, and the BSP operating in standard mode, this on-chip clock is at a frequen-
cy of one-fourth of CLKOUT1. The BSP also allows the option of generating
clock frequencies at additional ratios of CLKOUT1. For a detailed description
of this feature, refer to Section 9.8, Buffered Serial Port (BSP) Interface, on
page 9-53. Note that the CLKR pin is always configured as an input.

TXM Bit

The transmit frame synchronization pulse source is set by TXM (bit 5). Like
MCM, if TXM = 1, FSX is configured as an output and generates a pulse at the
beginning of every transmit. If TXM = 0, FSX is configured as an input, and ac-
cepts an external frame sync signal. Note that the FSR pin is always config-
ured as an input.
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XRST and RRST Bits

The serial port transmitter and receiver are reset with XRST (bit 6) and RRST
(bit 7). These signals are active low, so that if XRST = RRST = 0, the serial port
is in a reset state. To reset and reconfigure the serial port, a total of two writes
to the SPC are required.

� The first write to the SPC should:
� write a 0 to the XRST and RRST bits
� write the desired configuration to the remainder of the bits.

� The second write to the SPC should:
� write 1 to the XRST and RRST bits
� resend the desired configuration to the remainder of the bits.

The second write takes the serial port out of reset. Note that the transmitter and
receiver may be reset individually if desired. When a 0 is written to XRST or
RRST, activity in the corresponding section of the serial port stops. This mini-
mizes the switching and allows the device to operate with lower power con-
sumption. When XRST = RRST = MCM = 0, power requirements are further
reduced since CLKX is no longer driven as an output.

Note that in IDLE2 mode, SP operation halts as with other parts of the ’C5x
device. On the BSP, however, if the external serial port clock is being used, op-
eration continues after an IDLE2 is executed. This allows power savings to still
be realized in IDLE2 mode, while still maintaining operation of critical serial
port functions if necessary (see Section 9.8, Buffered Serial Port (BSP) Inter-
face, on page 9-53 for further information about BSP operation).

It should also be noted that, on the SP, the serial port may be taken out of reset
at any time. Depending on the timing of exiting reset, however, a frame sync
pulse may be missed. On the BSP, for receive and transmit with external frame
sync, a setup of at least one CLKOUT1 cycle plus 1/2 serial port clock cycle
is required prior to FSX being sampled active in standard mode. In autobuffer-
ing mode, additional setup is required (see Section 9.8, Buffered Serial Port
(BSP) Interface, on page 9-53 for further information about BSP initialization
timing requirements).
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IN0 and IN1 Bits

IN0 (bit 8) and IN1 (bit 9) allow the CLKR and CLKX pins to be used as bit in-
puts. IN0 and IN1 reflect the current states of the CLKR and CLKX pins. The
data on these pins can be sampled by reading the SPC. This can be
accomplished using the BIT instruction (page 6-63), BITT instruction (page
6-65), or PLU instructions (Table 6–6 on page 6-14). Note that there is a laten-
cy of between 0.5 and 1.5 CLKOUT1 cycles in duration from CLKR/CLKX
switching to the new CLKR/CLKX value being available in the SPC. Note that
even if the serial port is reset, IN0 and IN1 can still be used as bit inputs, and
DRR and DXR as general-purpose registers.

RRDY and XRDY Bits

Bits 10–13 in the SPC are read-only status bits that indicate various states of
serial port operation. Writes and reads of the serial port may be synchronized
by polling RRDY (bit 10) and XRDY (bit 11), or by using the interrupts that they
generate. A transition from 0 to 1 of the RRDY bit indicates that the RSR con-
tents have been copied to the DRR and that the received data may be read.
A receive interrupt (RINT) is generated upon this transition.

A transition from 0 to 1 of the XRDY bit indicates that the DXR contents have
been copied to XSR and that DXR is ready to be loaded with a new data word.
A transmit interrupt (XINT) is generated upon this transition. Polling XRDY and
RRDY in software may either substitute for or complement the use of serial
port interrupts (both polling and interrupts may be used together if so desired).
Note that with external FSX, on the SP, XSR is loaded directly as a result of
loading DXR, while on the BSP, XSR is not loaded until an FSX occurs.

XSREMPTY Bit

The XSREMPTY (bit 12) indicates whether the transmitter has experienced
underflow. XSREMPTY is an active low bit; therefore, when XSREMPTY = 0,
an underflow has occurred.

Any one of the following three conditions causes XSREMPTY to become
active (XSREMPTY = 0):

� DXR has not been loaded since the last DXR-to-XSR transfer, and XSR
empties (the actual transition of XSREMPTY occurs after the last bit has
been shifted out of XSR),

� or the transmitter is reset (XRST = 0),

� or the ’C5x device is reset (RS = 0).
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When XSREMPTY = 0, the transmitter halts and stops driving DX (the DX pin
is in a high-impedance state) until the next frame sync pulse. Note that under-
flow does not constitute an error condition in the burst mode, although it does
in the continuous mode (error conditions are further discussed in subsection
9.7.6, Serial Port Interface Exception Conditions, on page 9-46).

The following condition causes XSREMPTY to become inactive (XSREMPTY = 1):

� A write to DXR occurs on the SP, or on the BSP a write to DXR occurs fol-
lowed by an FSX pulse (see subsection 9.7.4, Burst Mode Transmit and
Receive Operations, on page 9-37 for further information about transmit
timing).

RSRFULL Bit

The RSRFULL (bit 13) indicates whether the receiver has experienced over-
run. RSRFULL is an active high bit; therefore, when RSRFULL = 1, RSR is full.

In burst mode (FSM = 1), all three of the following must occur to cause
RSRFULL to become active (RSRFULL = 1):

� The DRR has not been read since the last RSR-to-DRR transfer,
� RSR is full,
� and a frame sync pulse appears on FSR.

In continuous mode (FSM = 0), and on the BSP, only the first two conditions
are necessary to set RSRFULL:

� The DRR has not been read since the last RSR-to-DRR transfer
� and RSR is full.

Therefore, in continuous mode, and on the BSP, RSRFULL occurs after the
last bit has been received.

When RSRFULL = 1, the receiver halts and waits for the DRR to be read, and
any data sent on DR is lost. On the SP, the data in RSR is preserved; on the
BSP, the RSR contents are lost.

Any one of the following three conditions causes RSRFULL to become inactive
(RSRFULL = 0):

� The DRR is read,
� or the serial port is reset (RRST = 0),
� or the ’C5x device is reset (RS = 0).



Serial Port Interface

9-37On-Chip Peripherals

Soft and Free Bits

Soft (bit 14) and Free (bit 15) are special emulation bits that determine the state
of the serial port clock when a breakpoint is encountered in the high-level lan-
guage debugger. If the Free bit is set to 1, then upon a software breakpoint,
the clock continues to run (free runs) and data is still shifted out. When
Free = 1, the Soft bit is a don’t care. If the Free bit is cleared to 0, then the Soft
bit takes effect. If the Soft bit is cleared to 0, then the clock stops immediately,
thus aborting any transmission. If the Soft bit is set to 1 and a transmission is
in progress, the transmission continues until completion of the transfer, and
then the clock halts. These options are listed in Table 9–14.

The receive side functions in a similar fashion. Note that if an option other than
immediate stop (Soft = Free = 0) is chosen, the receiver continues running and
an overflow error is possible. The default value for these bits is immediate stop.

Table 9–14. Serial Port Clock Configuration

Free Soft Serial Port Clock Configuration

0 0 Immediate stop, clocks are stopped. (Reset values)

0 1 Transmitter stops after completion of word. Receiver is not
affected.

1 X Free run.

Note: X = Don’t care

9.7.4 Burst Mode Transmit and Receive Operations

In burst mode operation, there are periods of serial port inactivity between
packet transmits. The data packet is marked by the frame sync pulse occurring
on FSX (see Figure 9–16). On the transmit device, the transfer is initiated by
a write to DXR. The value in DXR is then transferred to XSR, and, upon a frame
sync pulse on FSX (generated internally or externally depending on TXM), the
value in XSR is shifted out and driven on the DX pin. Note that on the SP, the
DXR to XSR transfer occurs on the second rising edge of CLKX after DXR is
loaded, while on the BSP this transfer does not occur until an FSX occurs,
when FSX is external. When FSX is internal on the BSP, the DXR to XSR trans-
fer and generation of FSX occur directly after loading DXR. On both the SP and
the BSP, once XSR is loaded with the value from DXR, XRDY goes high, gen-
erating a transmit interrupt (XINT) and setting XSREMPTY to a 1.
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Figure 9–16. Burst Mode Serial Port Transmit Operation
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Note that in both the SP and the BSP, DXR to XSR transfers occur only if the
XSR is empty and the DXR has been loaded since the last DXR to XSR trans-
fer. If DXR is reloaded before the old DXR contents have been transferred to
XSR, the previous DXR contents are overwritten. Accordingly, unless overwrit-
ing DXR is intended, the DXR should only be loaded if XRDY = 1. This is
assured if DXR writes are made only in response to a transmit interrupt or
polling XRDY.

It should be noted that in the following discussions, the timings are slightly dif-
ferent for internally (TXM = 1, FSX is an output) and externally (TXM = 0, FSX
is an input) generated frame syncs. This distinction is made because in the for-
mer case, the frame sync pulse is generated by the transmitting device as a
direct result of a write to DXR. In the latter case, there is no such direct effect.
Instead, the transmitting device must write to DXR and wait for an externally
generated frame sync.

If internal frame sync pulse generation is selected (TXM = 1), a frame sync
pulse is generated on the second rising edge of CLKX following a write to DXR.
For externally generated frame syncs, the events described here will occur as
soon as a properly timed frame sync pulse occurs (see the data sheet for
detailed serial port interface timings).
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On the next rising edge of CLKX after FSX goes high, the first data bit (MSB
first) is driven on the DX pin. Thus, if the frame sync pulse is generated internal-
ly (TXM = 1), there is a 2-CLKX cycle latency (approximately) after DXR is
loaded, before the data is driven on the line. If frame sync is externally gener-
ated, data transmission is delayed indefinitely after a DXR load until the FSX
pulse occurs (this is described in further detail later in this subsection). With
the falling edge of frame sync, the rest of the bits are shifted out. When all the
bits are transferred, DX enters a high-impedance state.

At the end of each transmission, if DXR was not reloaded when XINT was gen-
erated, XSREMPTY becomes active (low) at this point, indicating underflow.
With externally generated frame sync, if XSREMPTY is active and a frame
sync pulse is generated, any old data in the DXR is transmitted. This is ex-
plained in detail in subsection 9.7.6, Serial Port Interface Exception Condi-
tions, on page 9-46.

Note that the first data bit transferred could have variable length if frame sync
is generated externally and does not fall within one CLKX cycle (this is illus-
trated in Figure 9–17). Internally generated frame syncs are assured by ’C5x
timings to be one CLKX cycle in duration.

Figure 9–17. Serial Port Transmit With Long FSX Pulse
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Serial port transmit with external frame sync pulses is similar to that with inter-
nal frame sync, with the exception that transfers do not actually begin until the
external frame sync occurs. If the external frame sync occurs many CLKX
cycles after DXR is loaded, however, the double buffer is filled and frozen until
frame sync appears.

On the SP (Figure 9–18), when the delayed frame sync occurs, A is trans-
mitted on DX; after the transmit, a DXR-to-XSR copy of B occurs, XINT is gen-
erated, and again, the transmitter remains frozen until the next frame sync.
When frame sync finally occurs, B is transmitted on DX. Note that when B is
loaded into DXR, a DXR-to-XSR copy of B does not occur immediately be-
cause A has not been transmitted, and no XINT is generated. Any subsequent
writes to DXR before the next delayed frame sync occurs overwrite B in the
DXR.
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Figure 9–18. Burst Mode Serial Port Transmit Operation With Delayed Frame Sync
in External Frame Sync Mode (SP)
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On the BSP (Figure 9–19), since DXR was reloaded with B shortly after being
loaded with A when the delayed frame sync finally occurs, B is transmitted on
DX. After the transmit, the transmitter remains frozen until the next frame sync.
When frame sync finally occurs, B is again transmitted on DX. Note that when
B is loaded into DXR, a DXR-to-XSR copy of B does not occur immediately
since the BSP requires a frame sync to initiate transmitting. Any subsequent
writes to DXR before the next delayed frame sync occurs overwrite B in the
DXR.

Figure 9–19. Burst Mode Serial Port Transmit Operation With Delayed Frame Sync
in External Frame Sync Mode (BSP)
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During a receive operation, shifting into RSR begins on the falling edge of the
CLKR cycle after frame sync has gone low (as shown in Figure 9–20). Then,
as the last data bit is being received, the contents of the RSR are transferred
to the DRR on the falling edge of CLKR, and RRDY goes high, generating a
receive interrupt (RINT).

Figure 9–20. Burst Mode Serial Port Receive Operation
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If the DRR from a previous receive has not been read, and another word is re-
ceived, no more bits can be accepted without causing data corruption since
DRR and RSR are both full. In this case, the RSRFULL bit is set indicating this
condition. On the SP, this occurs with the next FSR; on the BSP, RSRFULL is
set on the falling edge of CLKR during the last bit received. RSRFULL timing
on both the SP and BSP is shown in Figure 9–21.

Figure 9–21. Burst Mode Serial Port Receive Overrun
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Unlike transmit underflow, overrun (RSRFULL = 1) constitutes an actual error
condition. While DRR contents are preserved in overrun, its occurrence can
often result in loss of other received data.

Overrun is handled differently on the SP and on the BSP. On the SP, the con-
tents of RSR are preserved on overrun, but since RSRFULL is not set to 1 until
the next FSR occurs after the overflowing reception, incoming data usually be-
gins being lost as soon as RSRFULL is set. Data loss can only be avoided if
RSRFULL is polled in software and the DRR is read immediately after
RSRFULL is set to 1. This is normally possible only if the CLKR frequency is
slow with respect to CLKOUT1, since RSRFULL is set on the falling edge of
CLKR during FSR, and data begins being received on the following rising edge
of CLKR. The time available for polling RSRFULL and reading the DRR to
avoid data loss is, therefore, only half of one CLKR cycle.

On the BSP, RSRFULL is set on the last valid bit received, but the contents of
RSR are never transferred to DRR, therefore, the complete transferred word
in RSR is lost. If the DRR is read (clearing RSRFULL) before the next FSR oc-
curs, subsequent transfers can be received properly.

Overrun and various other serial port exception conditions such as the occur-
rence of frame sync during a receive are discussed in further detail in subsec-
tion 9.7.6, Serial Port Interface Exception Conditions, on page 9-46.

If the serial port receiver is provided with FSR pulses significantly longer than
one CLKR cycle, timing of data reception is effected in a similar fashion as with
long FSX pulses. With long FSR pulses, however, the reception of all bits, in-
cluding the first one, is simply delayed until FSR goes low. Serial port receive
operation with a long FSR pulse is illustrated in Figure 9–22.

Figure 9–22. Serial Port Receive With Long FSR pulse
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Note that if the packet transmit frequency is increased, the inactivity period be-
tween the data packets for adjacent transfers decreases to zero. This corre-
sponds to a minimum period between frame sync pulses (equivalent to 8 or
16 CLKX/R cycles, depending on FO) that corresponds to a maximum packet
frequency at which the serial port may operate. At maximum packet frequency,
transmit timing is a compressed version of Figure 9–16, as shown in
Figure 9–23.
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Figure 9–23. Burst Mode Serial Port Transmit at Maximum Packet Frequency
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At maximum packet frequency, the data bits in consecutive packets are trans-
mitted contiguously with no inactivity between bits. The frame sync pulse over-
laps the last bit transmitted in the previous packet. Maximum packet frequency
receive timing is similar and is shown in Figure 9–24.

Figure 9–24. Burst Mode Serial Port Receive at Maximum Packet-Frequency
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As shown in Figure 9–23 and Figure 9–24, with the transfer of multiple data
packets at maximum packet frequency in burst mode, packets are transmitted
at a constant rate, and the serial port clock provides sufficient timing informa-
tion for the transfer, which permits a continuous stream of data. Therefore, the
frame sync pulses are essentially redundant. Theoretically, then, only an initial
frame sync signal is required to initiate the multipacket transfer. The ’C5x does
support operation of the serial port in this fashion, referred to as continuous
mode, which is selected by clearing the FSM bit in the SPC to 0. Continuous
mode serial port operation is described in detail in subsection 9.7.5, Continu-
ous Mode Transmit and Receive Operations.

9.7.5 Continuous Mode Transmit and Receive Operations

In continuous mode, a frame sync on FSX/FSR is not necessary for consecu-
tive packet transfers at maximum packet frequency after the initial pulse. Con-
tinuous mode is selected by setting FSM = 0. Note that when FSM = 0, frame
sync pulses are not required, but they are not ignored, therefore, improperly
timed frame syncs may cause errors in serial transfers. Serial port operation
under various error conditions is described in detail in subsection 9.7.6, Serial
Port Interface Exception Conditions, on page 9-46.

In continuous mode transmission, one frame sync is generated following the
first DXR load, and no further frame syncs are generated. As long as DXR is
reloaded once every transmission, continuous transfers are maintained. Fail-
ing to update DXR causes the serial port to halt, as in the burst mode case
(XSREMPTY becomes asserted, etc). If DXR is reloaded after a halt, the de-
vice begins continuous mode transmission again and generates a single FSX,
assuming that internal frame sync generation is selected.

The distinction between internal and external frame syncs for continuous
mode is similar to that of burst mode, as discussed in subsection 9.7.4, Burst
Mode Transmit and Receive Operations. If frame sync is externally generated
(TXM = 0), then when DXR is loaded, the appearance of the frame sync pulse
initiates continuous mode transmission. Continuous mode transmission may
be discontinued (and burst mode resumed) only by reconfiguring and resetting
the serial port (see subsection 9.7.2, Serial Port Interface Operation, on page
9-25). Simply changing the FSM bit during transmit or halt will not properly
switch to burst mode.

Continuous mode transmit timing, shown in Figure 9–25, is similar to maxi-
mum packet frequency transmission in burst mode as shown in Figure 9–23.
The major difference is the lack of a frame sync pulse after the initial one. As
long as DXR is updated once per transmission, this mode will continue. Over-
writes to DXR behave just as in burst mode; the last data written will be
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transmitted. XSR operation is the same as in burst mode. A new external FSX
pulse will abort the present transmission, cause one data packet to be lost, and
initiate a new continuous mode transmit. This is explained in more detail in
subsection 9.7.6, Serial Port Interface Exception Conditions, on page 9-46.

Figure 9–25. Continuous Mode Serial Port Transmit
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Continuous mode reception is similar to the transmit operation. After the initial
frame sync pulse on FSR, no further frame syncs are required. This mode will
continue as long as DRR is read every transmission. If DRR is not read by the
end of the next transfer, the receiver will halt, and RSRFULL is set, indicating
overrun. See subsection 9.7.6, Serial Port Interface Exception Conditions, on
page 9-46.

Overrun in continuous mode effects the SP and the BSP differently. On the SP,
once overrun has occurred, reading DRR will restart continuous mode at the
next word/byte boundary after DRR is read; no new FSR pulse is required. On
the BSP, continuous mode reception does not resume until DRR is read and
an FSR occurs.

Continuous mode reception may only be discontinued by reconfiguring and re-
setting the serial port. Simply changing the FSM bit during a reception or halt
will not properly switch to burst mode. Continuous mode receive timing is
shown in Figure 9–26.
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Figure 9–26. Continuous Mode Serial Port Receive
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Figure 9–26 shows only one frame sync pulse; otherwise, it is similar to
Figure 9–24. If a pulse occurs on FSR during a transfer (an error), then the
receive operation is aborted, one packet is lost, and a new receive cycle is
begun. This is discussed in more detail in subsection 9.7.2, Serial Port Inter-
face Operation, on page 9-25 and in subsection 9.7.6, Serial Port Interface Ex-
ception Conditions.

9.7.6 Serial Port Interface Exception Conditions

Exception (or error) conditions result from an unexpected event occurring on
the serial port. These conditions are operational aberrations such as overrun,
underflow, or a frame sync pulse during a transfer. Understanding how the
serial port handles these errors and the state it acquires during these error
conditions is important for efficient use of the serial port. Because the error
conditions differ slightly in burst and continuous modes, they are discussed
separately.

Burst Mode

In burst mode, one type of error condition (presented in subsection 9.7.2, Seri-
al Port Interface Operation) is receive overrun, indicated by the RSRFULL flag.
This flag is set when the device has not read incoming data and more data is
being sent. If this condition occurs, the processor halts serial port receives until
DRR is read. Thus, any further data sent may be lost.

Overrun is handled differently on the SP and on the BSP. On the SP, the con-
tents of RSR are preserved on overrun, but since RSRFULL is not set to 1 until
the next FSR occurs after the overflowing reception, incoming data usually be-
gins being lost as soon as RSRFULL is set. Data loss can only be avoided if
RSRFULL is polled in software and the DRR is read immediately after
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RSRFULL is set to 1. This is normally possible only if the CLKR frequency is
slow with respect to CLKOUT1, since RSRFULL is set on the falling edge of
CLKR during FSR, and data begins being received on the following rising edge
of CLKR. The time available for polling RSRFULL and reading the DRR to
avoid data loss is, therefore, only half of one CLKR cycle.

On the BSP, RSRFULL is set on the last valid bit received, but the contents of
RSR are never transferred to DRR, therefore, the complete transferred word
in RSR is lost. If the DRR is read (clearing RSRFULL) before the next FSR oc-
curs, subsequent transfers can be received properly.

Another type of receive error is caused if frame sync occurs during a receive
(that is, data is being shifted into RSR from DR). If this happens, the present
receive is aborted and a new one begins. Thus, the data that was being loaded
into RSR is lost, but the data in DRR is not (no RSR-to-DRR copy occurs).
Burst mode serial port receiver behavior under normal and error conditions for
the SP is shown in Figure 9–27 and for the BSP is shown in Figure 9–28.

Figure 9–27. SP Receiver Functional Operation (Burst Mode)
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Figure 9–28. BSP Receiver Functional Operation (Burst Mode)
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Transmitter exception conditions in burst mode may occur for several possible
reasons. Underflow, which is described in subsection 9.7.3, Setting the Serial
Port Configuration, on page 9-27 is an exception condition that may occur in
burst mode, however, underflow is not normally considered an error. An ex-
ception condition that causes errors in transmitted data occurs when frame
sync pulses occur at inappropriate times during a transfer. If a transmit is in
progress (that is, XSR data is being driven on DX) when a frame sync pulse
occurs, the transmission is aborted, and the data in XSR is lost. Then, whatev-
er data is in DXR at the time of the frame sync pulse is transferred to XSR
(DXR-to-XSR copy) and is transmitted. Note, however, that in this case an
XINT is generated only if the DXR has been written to since the last transmit.
Also, if XSREMPTY is active and a frame sync pulse occurs, the old data in
DXR is shifted out. Figure 9–29 summarizes serial port transmit behavior un-
der error and nonerror conditions. Note that if an FSX occurs when no transmit
is in progress, and DXR has been reloaded since the last transmit, the DXR-to-
XSR copy and generation of transmit interrupt occur at this point only on the
BSP. On the SP, these two events occur at the time the DXR was reloaded.

Figure 9–29. SP/BSP Transmitter Functional Operation (Burst Mode)
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Continuous Mode

In continuous mode, errors take on a broader meaning, since data transfer is
intended to occur at all times. Thus, underflow (XSREMPTY = 0) constitutes
an error in continuous mode because data will not be transmitted. As in burst
mode, overrun (RSRFULL = 1) is also an error, and in continuous mode, both
overrun and underflow cause the serial port receive or transmit sections, re-
spectively, to halt (see subsection 9.7.3, Setting the Serial Port Configuration,
on page 9-27 for a description of these conditions). Fortunately, underflow and
overrun errors may not be catastrophic; they can often be corrected simply by
reading DRR or writing to DXR.

The SP and the BSP are affected differently when overrun occurs in continu-
ous mode. In the SP, when DRR is read to deactivate RSRFULL, a frame sync
pulse is not required in order to resume continuous mode operation. The
receiver keeps track of the transfer word boundary, even though it is not
receiving data. Therefore, when the RSRFULL flag is deactivated by a read
from DRR, the receiver begins reading from the correct bit. On the BSP, since
an FSR pulse is required to restart continuous reception, this also reesta-
blishes the proper bit alignment, in addition to restarting reception.
Figure 9–30 shows receiver functional operation in continuous mode.

Figure 9–30. SP/BSP Receiver Functional Operation (Continuous Mode)
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During a receive in continuous mode, if a frame sync pulse occurs, this causes
a receive abort condition, and one packet of data is lost (this is caused because
the frame sync pulse resets the RSR bit counter). The data present on DR then
begins being shifted into RSR, starting again from the first bit. Note that if a
frame sync occurs after deactivating the RSRFULL flag by reading DRR, but
before the beginning of the next word boundary, this also creates a receive
abort condition.
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Another cause for error is the appearance of extraneous frame syncs during
a transmission. After the initial frame sync in continuous mode, no others are
required; if an improperly timed frame sync pulse occurs during a transmit, the
current transfer (that is, serially driving XSR data onto DX) is aborted, and data
in XSR is lost. A new transmit cycle is initiated, and transfers continue as long
as the DXR is updated once per transmission afterward. Figure 9–31 shows
continuous mode transmitter functional operation.

Note that if XSREMPTY is active in continuous mode and an external frame
sync occurs, the previous DXR data is transmitted as in burst mode operation.

Figure 9–31. SP/BSP Transmitter Functional Operation (Continuous Mode)
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9.7.7 Example of Serial Port Interface Operation

The following two code examples illustrate a one-way transmit from device 0
to device 1 of an arithmetic sequence of numbers. The numbers are written
in each device in a block from 9000h to B000h in data memory. Device 0 waits
in a BIO loop for a ready-to-receive signal (XF) from device 1 and initializes
the transfer with a value of 0. Both routines assume that the DP is cleared to
0, and that ARP = 7.

Example 9–3 shows the code running on device 0. Only its transmit interrupt
(XINT) is enabled; its transmit ISR writes the value it will send into its own
memory.
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Example 9–3. Device 0 Transmit Code (Serial Port Interface Operation)

* Device 0 – Transmit side
: : :

;Setup SPC as CLK source
;and internal frame sync

SPLK #0038h, SPC ;Set TXM=MCM=FSM=1,
;TDM=DLB=FO=0.
;And put SP into reset
;(XRST=RRST=0)

SPLK #00F8h, SPC ;Take SP out of reset
;Setup interrupts

SPLK #0ffffh, IFR ;clear IFR
SPLK #020h, IMR ;Turn on XINT
CLRC INTM ;enable interrupts

ILOOP BCND SENDZ, BIO ;Wait for ready–to–receive
B ILOOP ;from other device

SENDZ LACL #0 ;First transmit/write
;value is 0

LAR AR7, #9000h ;Setup where to write
SACL * ;Write first value
SACL DXR ;Transmit first value

SELF1 B SELF1 ;Wait for interrupts
XMT_ISR LACC AR7 ;Check if past 0x0b000

SUB #0B000h ;i.e. end of block
BCND END_SERP,GEQ ;Go to tight loop if so

;Add one and transmit
LACL *+ ;Load value
ADD #1 ;Add one
SACL * ;Write value
SACL DXR ;Transmit value
RETE

END_SERP B END_SERP ;Sit in tight loop after
;block is complete.
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Example 9–4 shows the code for device 1. It sends a ready-to-receive signal
(XF) to device 0. Only its receive interrupt (RINT) is enabled, and its receive
ISR reads from the DRR, writes to the block, and checks to see if the end of
the block has been reached.

Example 9–4. Device 1 Receive Code (Serial Port Interface Operation)

Device 1 – Receive
;Set SP as CLK, frame
;sync receive

SPLK #0008h, SPC ;Set TXM=MCM=DLB=FO=0,
;FSM=1.
;And put SP into reset
;(XRST=RRST=0)

SPLK #00C8h, SPC ;Take SP out of reset
;Setup interrupts

SPLK #0ffffh, IFR ;clear IFR
SPLK #010h, IMR ;Turn on RINT
CLRC INTM ;Enable interrupts
LAR AR7, #9000h ;Setup where to write

;received data
CLRC XF

;Signal ready to receive
SELF1 B SELF1 ;Wait for interrupts
RCV_ISR

LACL DRR ;Load received value
SACL *+ ;Write to memory block
LACC AR7 ;Check if past 0x0b000
SUB #0b000h ;i.e. end of block
BCND END_SERP,GEQ ;Go to tight loop if so

END_SERP B END_SERP ;Sit in tight loop after
;block is complete.
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9.8 Buffered Serial Port (BSP) Interface

The buffered serial port (BSP) is made up of a full-duplex, double-buffered se-
rial port interface, which functions in a similar manner to the ’C5x standard seri-
al port (SP), and an autobuffering unit (ABU) (see Figure 9–32). The SP sec-
tion of the BSP is an enhanced version of the ’C5x standard serial port as im-
plemented on the ’C50, ’C51, ’C52, and ’C53. The ABU is an additional section
of logic which allows the SP section to read/write directly to ’C5x internal
memory independent of the CPU. This results in a minimum overhead for seri-
al port transfers and faster data rates. The BSP is available on the ’LC56,
’LC57, and ’C57S devices.

The full duplex BSP serial interface provides direct communication with serial
devices such as codecs, serial A/D converters, and other serial devices with
a minimum of external hardware. The double-buffered BSP allows transfer of
a continuous communication stream in 8-,10-,12- or 16-bit data packets.
Frame synchronization pulses as well as a programmable frequency serial
clock can be provided by the BSP for transmission and reception. The polarity
of frame sync and clock signals are also programmable. The maximum operat-
ing frequency is CLKOUT1 (28.6M bps at 35ns, 40M bps at 25 ns). The BSP
transmit section includes a pulse coded modulation (PCM) mode that allows
easy interface with a PCM line. Operation of the BSP in standard (nonbuffered)
mode is detailed in subsection 9.8.1 on page 9-55.

The ABU has its own set of circular addressing registers, each with corre-
sponding address generation units. Memory for transmit and receive buffers
resides within a special 2K word block of ’C5x internal memory. This memory
can also be used by the CPU as general purpose storage, however, this is the
only memory block in which autobuffering can occur.

Using autobuffering, word transfers occur directly between the SP section and
the ’C5x internal memory automatically using the ABU embedded address
generators. The length and starting addresses of the buffers within the 2K
block are programmable, and a buffer empty/full interrupt can be generated
to the CPU. Buffering can easily be halted using the autodisabling capability.
ABU operation is detailed in subsection 9.8.2 on page 9-60.

The BSP autobuffering capability can be separately enabled for the transmit
and receive sections. When autobuffering is disabled (standard mode), data
transfers with the SP section occur under software control in the same fashion
as with the standard ’C5x serial port. In this mode, the ABU is transparent, and
the WXINT and WRINT interrupts generated each time a word is transmitted
or received are sent to the CPU as transmit interrupt (XINT) and receive inter-
rupt (RINT). When autobuffering is enabled, the XINT and RINT interrupts are
only generated to the CPU each time half of the buffer is transferred.
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Figure 9–32. BSP Block Diagram
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Most aspects of BSP operation are similar to that of the ’C5x standard serial
port. Section 9.7, Serial Port Interface, on page 9-23 discusses operation of
both the ’C5x standard serial port and the BSP in standard mode. Since stan-
dard mode BSP operation is a superset of standard SP operation, Section 9.7
should first be studied before the rest of this section is read.

System considerations of BSP operation such as initialization and low power
modes are discussed in subsection 9.8.3 on page 9-69.
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9.8.1 BSP Operation in Standard Mode

BSP operation in standard mode is discussed in Section 9.7, Serial Port Inter-
face, on page 9-23. This subsection summarizes the differences between SP
operation and standard mode BSP operation. The enhanced BSP features are
available both in standard mode and in autobuffering mode. ABU is discussed
in subsection 9.8.2 on page 9-60. Information presented in this section as-
sumes familiarity with standard mode operation as described in Section 9.7.

The BSP uses its own dedicated memory-mapped data transmit, data receive
and serial port control registers (BDXR, BDRR, and BSPC). The BSP also uti-
lizes an additional control register, the BSP control extension register (SPCE),
in implementing its enhanced features and controlling the ABU. The BDRR,
BDXR, and BSPC registers function similarly to their counterparts in the SP
as described in Section 9.7. As with the SP, the BSP transmit and receive shift
registers (BXSR and BRSR) are not directly accessible in software but facili-
tate the double-buffering capability. If the serial port is not being used, the
BDXR and the BDRR registers can be used as general purpose registers. In
this case, BFSR should be set to an inactive state to prevent a possible receive
operation from being initiated. Note, however, that program access to BDXR
or BDRR is limited when autobuffering is enabled for transmit or receive, re-
spectively. BDRR can only be read, and BDXR can only be written when the
ABU is disabled. BDRR can only be written when the BSP is in reset. BDXR
can be read any time.

The buffered serial port registers are summarized in Table 9–15. The ABU
utilizes several additional registers which are discussed in subsection 9.8.2,
Autobuffering Unit (ABU) Operation, on page 9-60.

Table 9–15. Buffered Serial Port Registers

ÁÁÁÁ
ÁÁÁÁ

Address
ÁÁÁÁÁ
ÁÁÁÁÁ

Register
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁ
ÁÁÁÁ0030h

ÁÁÁÁÁ
ÁÁÁÁÁBDRR

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ16-bit BSP data receive registerÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

0031h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

BDXR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

16-bit BSP data transmit register

ÁÁÁÁ
ÁÁÁÁ

0032hÁÁÁÁÁ
ÁÁÁÁÁ

BSPC ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

16-bit BSP control register

ÁÁÁÁ
ÁÁÁÁ

0033hÁÁÁÁÁ
ÁÁÁÁÁ

SPCE ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

16-bit BSP control extension register
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

—
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

BRSR
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

16-bit BSP data receive shift register

ÁÁÁÁ
ÁÁÁÁ

— ÁÁÁÁÁ
ÁÁÁÁÁ

BXSR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

16-bit BSP data transmit shift register



Buffered Serial Port (BSP) Interface

 9-56

9.8.1.1 Differences Between SP and BSP Operation in Standard Mode

The differences between SP and BSP operation in standard mode are dis-
cussed in detail in the standard mode serial port operation (Section 9.7 on
page 9-23). These differences relate primarily to boundary conditions, howev-
er, in some systems, these differences may be significant. The differences are
summarized in Table 9–16.

Table 9–16. Differences Between SP and BSP Operation in Standard
Mode 

Condition SP BSP

RSRFULL is set. RSRFULL is set when RSR is full
and then an FSR occurs, except in
continuous mode where RSRFULL
is set as soon as RSR is full.

RSRFULL is set as soon as BRSR
is full.

Preservation of data in RSR on
overrun.

RSR contents are preserved on
overrun.

BRSR contents are not preserved
on overrun.

Continuous mode receive restart
after overrun.

Receive restarts as soon as DRR
is read (see subsection 9.7.6, Seri-
al Port Interface Exception Condi-
tions, on page 9-46).

Receive does not restart until
BDRR is read and then a BFSR
occurs.

Sign extension in DRR on 8-, 10-,
or 12-bit transfers.

No Yes

XSR load, XSREMPTY clear,
XRDY/XINT generation.

Occur when DXR is loaded. Occur when when a BFSX occurs
after BDXR is loaded.

Program accessibility to DXR and
DRR.

DRR and DXR can be read or writ-
ten under program control at any
time. Note that caution should be
exercised when reads and writes of
the DRR may be close in time to
serial port receptions. In this case,
a DRR read may not yield the re-
sult that was previously written by
the program. Also note that re-
writes of DXR may cause loss (and
therefore non-transmission) of pre-
viously written data depending on
the relative timing of the writes and
FSX (see subsection 9.7.4, Burst
Mode Transmit and Receive Op-
erations, on page 9-37).

BDRR can only be read and BDXR
can only be written when the ABU
is disabled. BDRR can only be writ-
ten when the BSP is in reset.
BDXR can be read any time. The
same precautions with regard to
reads and writes to these registers
apply as in SP.

Maximum serial port clock rate. CLKOUT1/2 CLKOUT1



Buffered Serial Port (BSP) Interface

9-57On-Chip Peripherals

Table 9–16. Differences Between SP and BSP Operation in Standard
Mode (Continued)

Condition BSPSP

Initialization timing requirements. On the SP, the serial port may be
taken out of reset at any time with
respect to FSX/FSR, however, if
XRST/RRST go high during or
after the frame sync, the frame
sync may be ignored.

On the BSP, exiting serial port re-
set under certain conditions must
precede FSX timing by one
CLKOUT1 cycle in standard mode
and by six CLKOUT1 cycles in au-
tobuffering mode (see subsection
9.8.3, System Considerations of
BSP Operation, on page 9-69).

Operates in IDLE2 mode. No Yes (see subsection 9.8.3, System
Considerations of BSP Operation,
on page 9-69).

9.8.1.2 Enhanced BSP Features

The enhanced features that the BSP offers include the capability to generate
programmable rate serial port clocks, select positive or negative polarities for
clock and frame sync signals, and to perform transfers of 10- and 12-bit words,
in addition to the 8- and 16-bit transfers offered by the SP. Additionally, the BSP
implements the capability to specify that frame sync signals be ignored until
instructed otherwise, and provides a dedicated operating mode which facili-
tates its use with PCM interfaces.

The SPCE contains the control and status bits that are used in the implementa-
tion of these enhanced BSP features and the ABU. The 10 LSBs of SPCE are
dedicated to the enhanced features control, whereas the 6 MSBs are used for
ABU control, which is discussed in subsection 9.8.2, Autobuffering Unit (ABU)
Operation, on page 9-60. Figure 9–33 shows the SPCE bit positions and
Table 9–17 summarizes the function of the SPCE bits. The value of the SPCE
upon reset is 3. This results in standard mode operation compatible with the
SP.

Figure 9–33. BSP Control Extension Register (SPCE) Diagram — Serial Port Control Bits
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Table 9–17. BSP Control Extension Register (SPCE) Bit Summary — Serial Port Control
Bits 

Bit Name
Reset
value Function

15–10 ABU
control

— Reserved for autobuffering unit control (see subsection 9.8.2, Autobuffering Unit
(ABU) Operation, on page 9-60).

9 PCM 0 Pulse Code Modulation Mode. This control bit puts the serial port in pulse-code
modulation (PCM) mode. The PCM mode only affects the transmitter. BDXR-to-
BXSR transfer is not affected by the PCM bit value.

PCM = 0 Pulse-coded modulation mode is disabled.

PCM = 1 Pulse-coded modulation mode is enabled. In PCM mode, BDXR
is transmitted only if its most significant B bit is set to 0. If this bit
is set to 1, BDXR is not transmitted and BDX is put in high imped-
ance during the transmission period.

8 FIG 0 Frame Ignore. This control bit operates only in transmit continuous mode with ex-
ternal frame and in receive continuous mode.

FIG = 0 Frame sync pulses following the first frame pulse restart the trans-
fer.

FIG = 1 Frame sync pulses following the first frame pulse that initiates a
transfer operation are ignored.

7 FE 0 Format Extension. The FE bit in conjunction with FO in the SPC register
(Table 9–13 on page 9-28) specifies the word length. When FO FE = 00, the for-
mat is 16-bit words; when FO FE = 01, the format is 10-bit words; when
FO FE = 10, the format is 8-bit words; and when FO FE = 11, the format is 12-bit
words. Note that for 8-, 10-, and 12-bit words, the received words are right justified
and the sign bit is extended to form a 16-bit word. Words to transmit must be right
justified. See Table 9–18 for the word length configurations.

6 CLKP 0 Clock Polarity. This control bit specifies when the data is sampled by the receiver
and transmitter.

CLKP = 0 Data is sampled by the receiver on BCLKR falling edge and sent
by the transmitter on BCLKX rising edge.

CLKP = 1 Data is sampled by the receiver on BCLKR rising edge and sent
by the transmitter on BCLKX falling edge.



Buffered Serial Port (BSP) Interface

9-59On-Chip Peripherals

Table 9–17. BSP Control Extension Register (SPCE) Bit Summary — Serial Port Control
Bits (Continued)

Bit Function
Reset
valueName

5 FSP 0 Frame Sync Polarity. This control bit specifies whether frame sync pulses (BFSX
and BFSR) are active high or low.

FSP = 0 Frame sync pulses (BFSX and BFSR) are active high.

FSP = 1 Frame sync pulses (BFSX and BFSR) are active low.

4–0 CLKDV 00011 Internal Transmit Clock Division factor. When the MCM bit of BSPC is set to 1,
CLKX is driven by an on-chip source having a frequency equal to 1/(CLKDV+1)
of CLKOUT. CLKDV range is 0–31. When CLKDV is odd or equal to 0, the CLKX
duty cycle is 50%. When CLKDV is an even value (CLKDV=2p), the CLKX high
and low state durations depend on CLKP. When CLKP is 0, the high state duration
is p+1 cycles and the low state duration is p cycles; when CLKP is 1, the high state
duration is p cycles and the low state duration is p+1 cycles.

Table 9–18. Buffered Serial Port Word Length Configuration

FO FE Buffered Serial Port Word Length Configuration

0 0 16-bit words transmitted and received. (Reset values)

0 1 10-bit words transmitted and received.

1 0 8-bit words transmitted and received.

1 1 12-bit words transmitted and received.

These enhanced features allow greater flexibility in serial port interface in a va-
riety of areas. In particular, the frame ignore feature offers a capability which
allows a mechanism for effectively compressing transferred data packets if
they are not transferred in 16 bit format. This feature is used with continuous
receptions and continuous transmits with external frame sync. When FIG=0,
if a frame sync pulse occurs after the initial one, the transfer is restarted; when
FIG=1, this frame sync is ignored. Setting FIG to 1 allows, for example, effec-
tively achieving continuous 16-bit transfers under circumstances where frame
sync pulses occur every 8-, 10- or 12-bits. Without using FIG, each transfer
of less than 16 bits requires an entire 16-bit memory word, and each 16 bits
transferred as two 8-bit bytes requires two memory words and two transfer op-
erations, rather than one of each. Using FIG, therefore, can result in a signifi-
cant improvement in buffer size requirement in both autobuffered and stan-
dard mode, and a significant improvement in CPU cycle overhead required to
handle serial port transfers in standard mode. Figure 9–34 shows an example
with the BSP configured in 16-bit format but with a frame sync after 8 bits.
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Figure 9–34. Transmit Continuous Mode with External Frame and FIG = 1
(Format is 16 bits)
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9.8.2 Autobuffering Unit (ABU) Operation

Since ABU functionality is a superset of standard mode serial port operation,
Section 9.7, Serial Port Interface, on page 9-23 and subsection 9.8.1, BSP Op-
eration in Standard Mode, on page 9-55 should first be studied before this sub-
section is read. Also, note that when operating in autobuffering mode, the seri-
al port control and status bits in BSPC and SPCE function in the same fashion
as in standard mode.

The ABU implements the capability to move data transferred on the serial port
to and from internal ’C5x memory independent of CPU intervention.

The ABU utilizes five memory-mapped registers: the address transmit register
(AXR), the block size transmit register (BKX), the address receive register
(ARR), and the block size receive register (BKR), along with the SPCE. These
registers are summarized in Table 9–19.

Table 9–19. Autobuffering Unit Registers
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Figure 9–35 shows the block diagram of the ABU. The SPCE contains bits
which control ABU operation and will be discussed in detail later in this subsec-
tion. AXR, BKX, ARR, and BKR, along with their associated circular addres-
sing logic, allow address generation for accessing words to be transferred be-
tween the ’C5X internal memory and the BSP data transmit register (BDXR)
and BSP data receive register (BDRR) in autobuffering mode. The address
and block size registers as well as circular addressing are also discussed in
detail later in this subsection.

Note that the 11-bit memory mapped AXR, BKX, ARR, and BKR registers are
read as 16-bit words, with the five most significant bits read as zeroes and the
11-bit register contents right justified in the least significant 11 bits. If autobuf-
fering is not used, these registers can be used for general purpose storage of
11-bit data.

The transmit and receive sections of the ABU can be enabled separately.
When either section is enabled, access to its corresponding serial port data
register (BDXR or BDRR) through software is limited. The BDRR can only be
read, and the BDXR can only be written when the ABU is disabled. The BDRR
can only be written when the BSP is in reset. The BDXR can be read any time.
When either transmit or receive autobuffering is disabled, that section oper-
ates in standard mode, and its portion of the ABU is transparent.

The ABU also implements the capability to generate CPU interrupts when
transmit and receive buffers have been halfway or entirely filled or emptied.
These interrupts take the place of the transmit and receive interrupts in stan-
dard mode operation, which are not generated in autobuffering mode. This
mechanism features an autodisabling capability which can be used to auto-
matically terminate autobuffering when either the half-of- or bottom-of-buffer
boundary is crossed. These features are also described in detail later in this
subsection.
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Figure 9–35. ABU Block Diagram
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Burst or continuous mode, as described in Section 9.7, Serial Port Interface,
can be used in conjunction with the autobuffering capability. Note that due to
the nature of autobuffering mode, however, if burst mode with internal frame
sync is selected, this will effectively result in continuous transmission with FSX
generated by the BSP at the start of each transmission.
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The internal ’C5X memory used for autobuffering consists of a 2K-word block
of single-access memory that can be configured as data, program, or both (as
with other single-access memory blocks). This memory can also be used by
the CPU as general purpose storage, however, this is the only memory block
in which autobuffering can occur. Since the BSP is implemented on several dif-
ferent TMS320 devices, the actual base address of the ABU memory may not
be the same in all cases. The 2K-word block of BSP memory is lcoated at
800h–FFFh in data memory or at 8000h–87FFh in program memory as speci-
fied by the RAM and OVLY control bits.

When the ABU is enabled, this 2K-word block of memory can still be accessed
by the CPU within data and/or program spaces. Conflicts may therefore occur
between the CPU and the ABU if the 2K-word block is accessed at the same
time by both. If a conflict does occur, priority is given to the ABU, resulting in
the CPU access being delayed by one cycle. Accordingly, the worst case situa-
tion is that a CPU access could be delayed one cycle each time the ABU ac-
cesses the memory block, that is, for every new word transmitted or received.
Note that external DMA can only be performed in the 2K-word block of ABU
memory when autobuffering is disabled. Also note that when on-chip program
memory is secured using the ROM protection feature, the 2K-word block of
ABU memory cannot be mapped to program memory. For further information
regarding the ROM protection feature, refer to subsection 8.2.4, Program
Memory Protection Feature, on page 8-14.

When the ABU is enabled for both transmit and receive, if transmit and receive
requests from the serial port interface occur at same time, the transmit request
takes priority over the receive request. In this case, the transmit memory ac-
cess occurs first, delaying the receive memory access by generating a wait
state. When the transmit memory access is completed, the receive memory
access takes place.

9.8.2.1 Autobuffering Control Register

The most-significant six bits in the SPCE constitute the ABU control register
(ABUC). Some of these bits are read only, while others are read/write.
Figure 9–36 shows the ABUC bit positions and Table 9–20 summarizes the
function of each ABUC bit in the SPCE. The value of the SPCE upon reset is 3.

Figure 9–36. BSP Control Extension Register (SPCE) Diagram — ABU Control Bits
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Table 9–20. BSP Control Extension Register (SPCE) Bit Summary — 
ABU Control Bits 

Bit Name Reset
value

Function

15 HALTR 0 Autobuffering Receive Halt. This control bit determines whether autobuffering
receive is halted when the current half of the buffer has been received.

HALTR = 0 Autobuffering continues to operate when the current half of the
buffer has been received.

HALTR = 1 Autobuffering is halted when the current half of the buffer has
been received. When this occurs, the BRE bit is cleared to 0
and the serial port continues to operate in standard mode.

14 RH 0 Receive Buffer Half Received. This read-only bit indicates which half of the
receive buffer has been filled. Reading RH when the RINT interrupt occurs
(seen either as a program interrupt or by polling IFR) is a convenient way to
identify which boundary has just been crossed.

RH = 0 The first half of the buffer has been filled and that receptions
are currently placing data in the second half of the buffer.

RH = 1 The second half of the buffer has been filled and that recep-
tions are currently placing data in the first half of the buffer.

13 BRE 0 Autobuffering Receive Enable. This control bit enables autobuffering receive.

BRE = 0 Autobuffering is disabled and the serial port interface operates
in standard mode.

BRE = 1 Autobuffering is enabled for the receiver.

12 HALTX 0 Autobuffering Transmit Halt. This control bit determines whether autobuffering
transmit is halted when the current half of the buffer has been transmitted.

HALTX = 0 Autobuffering continues to operate when the current half of the
buffer has been transmitted.

HALTX = 1 Autobuffering is halted when the current half of the buffer has
been transmitted. When this occurs, the BXE bit is cleared to
0 and the serial port continues to operate in standard mode.
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Table 9–20. BSP Control Extension Register (SPCE) Bit Summary — 
ABU Control Bits (Continued)

Bit FunctionReset
value

Name

11 XH 0 Transmit Buffer Half Transmitted. This read-only bit indicates which half of the
transmit buffer has been transmitted. Reading XH when the XINT interrupt
occurs (seen either as a program interrupt or by polling IFR) is a convenient
way to identify which boundary has just been crossed.

XH = 0 The first half of the buffer has been transmitted and transmis-
sions are currently taking data from the second half of the
buffer.

XH = 1 The second half of the buffer has been transmitted and trans-
missions are currently taking data from the first half of the
buffer.

10 BXE 0 Autobuffering Transmit Enable. This control bit enables the autobuffering trans-
mit.

BXE = 0 Autobuffering is disabled and the serial port operates in stan-
dard mode.

BXE = 1 Autobuffering is enabled for the transmitter.

9–0 SP control — Serial Port Interface Control bits (see subsection 9.8.1.2, Enhanced BSP Fea-
tures, on page 9-57).

9.8.2.2 Autobuffering Process

The autobuffering process occurs between the ABU and the 2K-word block of
ABU memory. Each time a serial port transfer occurs, the data involved is auto-
matically transferred to or from a buffer in the 2K-word block of memory under
control of the ABU. During serial port transfers in autobuffering mode, inter-
rupts are not generated with each word transferred as they are in standard
mode operation. This prevents the overhead of having the CPU directly
involved in each serial port transfer. Interrupts are generated to the CPU only
each time one of the half-buffer boundaries is crossed.

Within the 2K-word block of ABU memory, the starting address and size of the
buffers allocated is programmable using the 11-bit address registers (AXR and
ARR) and the 11-bit block size registers (BKX and BKR). The transmit and
receive buffers can reside in independent areas, overlapping areas or the
same area, which allows transmitting from a buffer while receiving into the
same buffer if desired.
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The autobuffering process utilizes a circular addressing mechanism to access
buffers within the 2K word block of ABU memory. This mechanism operates
in the same fashion for transmit and receive. For each direction (transmit or
receive), two registers specify the buffer size and the current address in the
buffer. These registers are the block size and address register for transmit and
receive. Each of the BK/AR register pairs fully specify the top and bottom of
buffer addresses for transmit and receive. Note that this circular addressing
mechanism only effects accesses into the 2K word block by the ABU.
Accesses to this memory by the CPU are performed strictly according to the
addressing mode(s) selected in the assembly language instructions which
perform the memory access.

The circular addressing mechanism automatically recirculates ABU memory
accesses through the specified buffer, returning to the top of the buffer each
time the bottom of the buffer is reached. The circular addressing mechanism
is initialized by loading BK with the exact size of the desired buffer (as opposed
to size–1) and AR with a value which contains both the base address of the
buffer within the 2K word block and the initial starting address within this buffer
(this is explained in detail below). Often the initial starting address within the
buffer is 0, indicating the start of the buffer (the top-of-buffer address), but the
initial starting address may be any point within the defined buffer range.

Once initialized, BK can be considered to consist of two parts; the most signifi-
cant or higher part (BKH), which corresponds to the all of the most significant
0 bits of BK, and the lower part (BKL), which is the remaining bits, of which the
most significant bit is a 1 and whose bit position is designated bit position N.
The N bit position also defines the two parts (ARH and ARL) of the address
register. The top of buffer address (TBA) is defined by the concatenation of
ARH with N+1 least significant 0 bits. The bottom of buffer address (BBA) is
defined by the concatenation of ARH and BKL–1, and the current address
within the buffer is specified by the complete contents of AR. A circular buffer
of size BK must therefore start on an N-bit boundary (the N least significant bits
of the address register are 0) where N is smallest integer that satisfies
2N > BK, or at the lowest address within the 2K memory block. The buffer con-
sists of two halves, the address range for the first half is:

ARH|0...0 to ARH|[(BKL >> 1) –1]

and the address range for the second half is:

 ARH|(BKL >> 1) to ARH|(BKL–1)

Figure 9–37 illustrates all of the relationships between the defined buffer and
the BK and AR registers, the bottom of circular buffer address (BBA), and the
top of circular buffer address (TBA).
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Figure 9–37. Circular Addressing Registers
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The minimum block size for an ABU buffer is two; the maximum block size is
2047, and any buffer of 2047 to 1024 words must start at a relative address
of 0x0000 with respect to the base address of the 2K block of ABU memory.
If either of the address registers (AXR or ARR) is loaded with a value specifying
a location that is outside the range of the currently allocated buffer size as de-
fined by BK, improper operation may result. Subsequent memory accesses
will be performed starting at the location specified, despite the fact that they
will be to locations which are outside the range of the desired buffer, and the
AR will be incremented with each access until its contents reach the next per-
mitted buffer start address. Any further accesses are then performed using the
correct circular buffering algorithm with the new AR contents as the updated
buffer start address. It should be noted that any accesses performed with
improperly loaded ARs may therefore unexpectedly corrupt some memory
locations.

The following example illustrates some of these functional aspects of the auto-
buffering process. Consider a transmit buffer of size 5 (BKX = 5) and a receive
buffer of size 8 (BKR = 8) as shown in Figure 9–38. The transmit buffer may
start at any relative address that is a multiple of 8 (address 0x0000, 0x0008,
0x0010, 0x0018, ..., 0x07F8), and the receive buffer may start at any relative
address that is a multiple of 16 (0x0000, 0x0010, 0x0020, ..., 0x07F0). In this
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example, the transmit buffer starts at relative address 0x0008 and the receive
buffer starts at relative address 0x0010. AXR may therefore contain any value
in the range 0x0008–0x000C and ARR may contain any value in the range
0x0010–0x0017. If AXR in this example had been loaded with the value
0x000D (not acceptable in a modulo 5 buffer), memory accesses would be per-
formed and AXR incremented until it reaches address 0x0010 which is an ac-
ceptable starting address for a modulo 5 buffer. Note, however, that if this had
occurred, AXR would then specify a transmit buffer starting at the same base
address as the receive buffer, which may cause improper buffer operation.

Figure 9–38. Transmit Buffer and Receive Buffer Mapping Example
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The autobuffering process is activated upon request from serial port interface
when XRDY or RRDY goes high, indicating that a word has been received. The
required memory access is then performed, following which an interrupt is
generated if half of the defined buffer (first or second) has been processed.
The RH and XH flags in the SPCE register indicate which half has been
processed when the interrupt occurs.
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When autodisabling is selected (HALTX or HALTR bit is set), then when the
next half (first or second) buffer boundary is encountered, the autobuffering
enable bit in the SPCE (BXE or BRE) is cleared so that autobuffering is dis-
abled and does not generate any further requests. When transmit autobuffer-
ing is halted, transmission of the current XSR contents and the last value
loaded in DXR are completed, since these transfers have already been initi-
ated. Therefore, when using the HALTX function, some delay will normally oc-
cur between crossing a buffer boundary and transmission actually stopping.
If it is necessary to identify when transmission has actually ended, software
should poll for the condition of XRDY = 1 and XSREMPTY = 0, which occurs
after last bit has been transmitted.

In the receiver, when using HALTR, since autobuffering is stopped when the
most recent buffer boundary is crossed, future receptions may be lost, unless
software begins servicing receive interrupts at this point, since BDRR is no
longer being read and transferred to memory automatically by the ABU. For
explanation of how the serial port operates in standard mode when DRR is not
being read, refer to subsection 9.7.6, Serial Port Interface Exception Condi-
tions, on page 9-46.

The sequence of events involved in the autobuffering process is summarized
as follows:

1) The ABU performs the memory access to the buffer.

2) The appropriate address register is incremented unless the bottom of buff-
er has been reached, in which case the address register is modified to
point to the top of buffer address.

3) Generate an XINT or RINT and update XH/RH if the half buffer or bottom
of buffer boundary has been crossed.

4) Autodisable the ABU if this function has been selected and if the half buffer
or bottom of buffer boundary has been crossed.

9.8.3 System Considerations of BSP Operation

This subsection discusses several system-level considerations of BSP opera-
tion. These considerations include initialization timing issues, software initial-
ization of the ABU, and power down mode operation.

9.8.3.1 Timing of Serial Port Initialization

The ’C5x device utilizes a fully static design, and accordingly, in both the SP
and the BSP, serial port clocks need not be running between transfers or prior
to initialization. Therefore, proper operation can still result if FSX/FSR occurs
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simultaneously with CLKX/CLKR starting. Regardless of whether serial port
clocks have been running previously, however, the timing of serial port initial-
ization, and most importantly, when the port is taken out of reset, can be critical
for proper serial port operation. The most significant consideration of this is
when the port is taken out of reset with respect to when the first frame sync
pulse occurs.

Initialization timing requirements differ on the SP and the BSP. On the SP, the
serial port may be taken out of reset at any time with respect to FSX/FSR, how-
ever, if XRST/RRST go high during or after the frame sync, the frame sync may
be ignored. In standard mode operation on the BSP for receive, and for trans-
mit with external frame sync (TXM = 0), the BSP must be taken out of reset at
least one full CLKOUT1 cycle plus 1/2 serial port clock cycle prior to the edge
of the clock which detects the active frame sync pulse (whether the clock has
been running previously or not) for proper operation. See Figure 9–39.

Transmit operations with internal clock and frame sync are not subject to this
requirement since frame sync is internally generated automatically (after
XRST is cleared (set to 1)) when BDXR is loaded.

Note, however, that if external serial port clock is used with internal frame sync,
frame sync generation may be delayed depending on the timing of clearing
XRST with respect to the clock.

Figure 9–39 illustrates the standard mode BSP initialization timing require-
ments for the transmitter. The figure shows standard mode operation with ex-
ternal frame (TXM = 0) and clock (MCM = 0), active high frame sync (FSP = 0)
and data samples on rising edge (CLKP = 0). In this example, if the BFSX
pulse occurs during the first BCLKX, the transmission is still properly initiated.

Figure 9–39. Standard Mode BSP Initialization Timing
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In autobuffering mode, for receive, and transmit with external frame sync
(TXM = 1), the BSP must be taken out of reset at least six CLKOUT1 cycles
plus 1/2 serial port clock cycle prior to the edge of the clock which detects the
active frame sync pulse (whether the clock has been running previously or not)
for proper operation. This is due to the time delay for the ABU logic to be acti-
vated. See Figure 9–40.

Transmit operations with internal clock and frame sync are not subject to this
requirement since frame sync is internally generated automatically after XRST
is cleared.

Note, however, that if external serial port clock is used with internal frame sync,
and if the clock is not running when XRST is cleared, frame sync generation
may be delayed depending on the timing of clearing XRST with respect to the
clock.

Figure 9–40 illustrates autobuffering mode initialization timing requirements
for the transmitter with external clock and frame sync. The figure shows
standard mode operation with external frame (TXM = 0) and clock (MCM = 0),
active high frame sync (FSP = 0), and data sampled on rising edge
(CLKP = 0).

Figure 9–40. Autobuffering Mode Initialization Timing
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9.8.3.2 Software Initialization Examples

In order to start or restart BSP operation in standard mode, the same steps are
performed in software as with initializing the SP (see Section 9.7, Serial Port
Interface, on page 9-23), in addition to which, the SPCE register must be initial-
ized to configure any of the enhanced features desired. To start or restart the



Buffered Serial Port (BSP) Interface

 9-72

BSP in autobuffering mode, a similar set of steps must also be performed, in
addition to which, the autobuffering registers must be initialized.

The following two code examples illustrate initializing the serial port interface
for autobuffering mode operation. In both cases, the code is written assuming
that transmit and receive interrupts are used to service the ABU interrupts,
however, polling of the interrupt flag register (IFR) could also be used. Both the
transmit and receive sections can be initialized at the same time or separately
depending upon system requirements.

Example 9–5 initializes the serial port for transmit operations only, with burst
mode, external frame sync and external clock selected. The selected data for-
mat is 10 bits, with frame sync and clock polarities selected to be high true.
Transmit autobuffering is enabled by setting the BXE bit in the ABUC section
of SPCE, and HALTX has been set to 1, which causes transmission to halt
when half of the defined buffer is transmitted.

Example 9–6 initializes the serial port for receive operations only, with continu-
ous mode selected. Frame sync and clock polarities are selected to be low
true, data format is 16 bits, and frame ignore is selected so that two received
data bytes are packed into a single received word to minimize memory require-
ments. Receive autobuffering is enabled by setting the BRE bit in the ABUC
section of SPCE.

Note that in Example 9–5 and Example 9–6, the transmit and receive inter-
rupts used are those that the BSP occupies on the ’C56 and ’C57, the two main
devices which include the BSP. However, on other devices which use the BSP,
different interrupts may be used, therefore, appropriate device documentation
should be consulted. Also, for both examples, it is assumed that DP has been
initialized to 0 and that interrupts are disabled (INTM = 1) when entering the
routines.

Example 9–5. Transmit Initialization in Burst Mode with External Frame Sync and
External Clock (Format is 10 bits)

OPL #00080h,IMR ;enable transmit interrupt (XINT)
SPLK #00008h,BSPC ;configure serial port SPC register

;(XRST=0)
SPLK #01480h,SPCE ;configure serial port SPCE register
SPLK #XTOP,AXR ;init address of buffer start in AXR
SPLK #XSIZE,BKX ;init size of buffer
OPL #00080h,IFR ;clear any latched transmit interrupt
OPL #00040h,BSPC ;start transmit part (XRST=1)
CLRC INTM ;enable interrupts
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Example 9–6. Receive Initialization in Continuous Mode (Format is 16 bits)

OPL #00040h,IMR ;enable receive interrupt (RINT)
SPLK #00000h,BSPC ;reset and configure serial port SPC

;(RRST=0)
SPLK #02160h,SPCE ;configure serial port SPCE register
SPLK #RTOP,ARR ;init pointer with top of buffer address
SPLK #RSIZE,BKR ;init size of receive buffer
OPL #00040h,IFR ;clear any latched receive interrupt
OPL #0080h,BSPC ;start receive part
CLRC INTM ;enable interrupts

9.8.4 BSP Operation in Power-Down Mode

The ’C5x offers several power down modes which allow part or all of the device
to enter a dormant state and dissipate considerably less power than when run-
ning normally. Power down mode may be invoked in several ways, including
either executing the IDLE/IDLE2 instructions or driving the HOLD input low
with the HM status bit set to 1. The BSP, like other peripherals (timer, standard
serial port), can take the CPU out of IDLE using the transmit interrupt (XINT)
or receive interrupt (RINT).

When in IDLE or HOLD mode, the BSP continues to operate, as is the case
with the SP. When in IDLE2, unlike the SP and other on-chip peripherals which
are stopped with this power-down mode, the BSP can still be operated.

In standard mode, if the BSP is using external clock and frame sync while the
device is in IDLE2, the port will continue to operate, and a transmit interrupt
(XINT) or receive interrupt (RINT) will take the device out of IDLE2 mode if
INTM = 0 before the device executes the IDLE2 instruction. With internal clock
and/or frame sync, the BSP remains in IDLE2 until the CPU resumes opera-
tion.

In autobuffering mode, if the BSP is using external clock and frame sync while
the device is in IDLE2, a transmit/receive event will cause the internal BSP
clock to be turned on for the cycles required to perform the DXR (or DRR) to
memory transfer. The internal BSP clock is then turned off automatically as
soon as the transfer is complete so the device will remain in IDLE2 mode. The
device is awakened from IDLE2 by the ABU transmit interrupt (XINT) or re-
ceive interrupt (RINT) when the transmit/receive buffer has been halfway or
entirely emptied or filled if INTM = 0 before the device executes the IDLE2
instruction.
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9.9 Time-Division Multiplexed (TDM) Serial Port Interface

The time-division multiplexed (TDM) serial port allows the ’C5x device to com-
municate serially with up to seven other devices. The TDM port, therefore, pro-
vides a simple and efficient interface for multiprocessing applications.

The TDM serial port is a superset of the serial port described in Section 9.7 on
page 9-23. By means of the TDM bit in the TDM serial port control register
(TSPC), the port can be configured in multiprocessing mode (TDM = 1) or
stand-alone mode (TDM = 0). When in stand-alone mode, the port operates
as described in Section 9.7. When in multiprocessing mode, the port operates
as described in this section. The port can be shut down for low power con-
sumption via the XRST and RRST bits, as described in Section 9.7.

9.9.1 Basic Time-Division Multiplexed Operation

Time-division multiplexing is the division of time intervals into a number of sub-
intervals, with each subinterval representing a communications channel
according to a prespecified arrangement. Figure 9–41 shows a 4-channel
TDM scheme. Note that the first time slot is labeled chan 1 (channel 1), the next
chan 2 (channel 2), etc. Channel 1 is active during the first communications
period and during every fourth period thereafter. The remaining three channels
are interleaved in time with channel 1.

Figure 9–41. Time-Division Multiplexing
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The ’C5x TDM port uses eight TDM channels. Which device is to transmit and
which device or devices is/are to receive for each channel may be indepen-
dently specified. This results in a high degree of flexibility in interprocessor
communications.

9.9.2 TDM Serial Port Interface Registers

The TDM serial port operates through six memory-mapped registers and two
other register (TRSR and TXSR) that are not directly accessible to the pro-
gram, but are used in the implementation of the double-buffering capability.
These eight registers are listed in Table 9–21. 
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Table 9–21. TDM Serial Port Registers
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TDM data receive register
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TDM data transmit register
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TDM serial port control register
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TDM receive address register
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TDM data receive shift register
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TDM data transmit shift register

� TDM data receive register (TRCV). The 16-bit TDM data receive register
(TRCV) holds the incoming TDM serial data. The TRCV has the same
function as the DRR, described in Section 9.7 on page 9-23.

� TDM data transmit register (TDXR). The 16-bit TDM data transmit register
(TDXR) holds the outgoing TDM serial data. The TDXR has the same
function as the DXR, described in Section 9.7 on page 9-23.

� TDM serial port control register (TSPC). The 16-bit TDM serial port control
register (TSPC) contains the mode control and status bits of the TDM seri-
al port interface. The TSPC is identical to the SPC (Figure 9–14) except
that bit 0 serves as the TDM mode enable control bit in the TSPC. The
TDM bit configures the port in TDM mode (TDM = 1) or stand-alone mode
(TDM = 0). In stand-alone mode, the port operates as a standard serial
port as described in Section 9.7 on page 9-23.

� TDM channel select register (TCSR). The 16-bit TDM channel select reg-
ister (TCSR) specifies in which time slot(s) each ’C5x device is to transmit.

� TDM receive/transmit address register (TRTA). The 16-bit TDM receive/
transmit address register (TRTA) specifies in the eight LSBs (RA0–RA7)
the receive address of the ’C5x device and in the eight MSBs (TA0–TA7)
the transmit address of the ’C5x device.

� TDM receive address register (TRAD). The 16-bit TDM receive address
register (TRAD) contains various information regarding the status of the
TDM address line (TADD).
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� TDM data receive shift register (TRSR). The 16-bit TDM data receive shift
register (TRSR) controls the storing of the data, from the input pin, to the
TRCV. The TRSR has the same function as the RSR, described in Sec-
tion 9.7 on page 9-23.

� TDM data transmit shift register (TXSR). The 16-bit TDM data transmit
shift register (TXSR) controls the transfer of the outgoing data from the
TDXR and holds the data to be transmitted on the data-transmit (TDX) pin.
The TXSR has the same function as the XSR, described in Section 9.7 on
page 9-23.

9.9.3 TDM Serial Port Interface Operation

Figure 9–42(a) shows the ’C5x TDM port architecture. Up to eight devices can
be placed on the four-wire serial bus. This four-wire bus consists of a conven-
tional serial port’s bus of clock, frame, and data (TCLK, TFRM, and TDAT)
wires plus an additional wire (TADD) that carries the device addressing in-
formation. Note that the TDAT and TADD signals are bidirectional signals and
are often driven by different devices on the bus during different time slots within
a given frame of operation.

Figure 9–42. TDM 4-Wire Bus
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The TADD line, which is driven by a particular device for a particular time slot,
determines which device(s) in the TDM configuration should execute a valid
TDM receive during that time slot. This is similar to a valid serial port read
operation, as described in Section 9.7, Serial Port Interface, on page 9-23,
except that some corresponding TDM registers are named differently. The
TDM receive register is TRCV, and the TDM receive shift register is TRSR.
Data is transmitted on the bidirectional TDAT line.

Note that in Figure 9–42(b) the device TDX and TDR pins are tied together
externally to form the TDAT line. Also, note that only one device can drive the
data and address line (TDAT and TADD) in a particular slot. All other devices’
TDAT and TADD outputs should be in the high-impedance state during that
slot, which is accomplished through proper programming of the TDM port
control registers (this is described in detail later in this section). Meanwhile, in
that particular slot, all the devices (including the one driving that slot) sample
the TDAT and TADD lines to determine if the current transmission represents
valid data to be read by any one of the devices on the bus (this is also
discussed in detail later in this section). When a device recognizes an address
to which it is supposed to respond, a valid TDM read then occurs, the value
is transferred from TRSR to the TRCV register. A receive interrupt (TRNT) is
generated, which indicates that TRCV has valid receive data and can be read.

All TDM port operations are synchronized by the TCLK and TFRM signals.
Each of them are generated by only one device (typically the same device),
referred to as the TCLK and TFRM source(s). The word master is not used
here because it implies that one device controls the other, which is not the
case, and TCSR must be set to prevent slot contention. Consequently, the
remaining devices in the TDM configuration use these signals as inputs.
Figure 9–42(b) shows that TCLKX and TCLKR are externally tied together to
form the TCLK line. Also, TFRM and TADD originate from the TFSX and TFSR
pins respectively. This is done to make the TDM serial port also easy to use
in standard mode.

TDM port operation is controlled by six memory-mapped registers. The layout
of these registers is shown in Figure 9–43. The TRCV and TDXR registers
have the same functions as the DRR and DXR registers respectively,
described in Section 9.7, Serial Port Interface. The TSPC register is identical
to the SPC register except that bit 0 serves as the TDM mode enable control
bit in the TSPC. This bit configures the port in TDM mode (TDM=1) or
stand-alone mode (TDM=0). In stand-alone mode, the port operates as a
standard serial port as described in Section 9.7. Refer to Section 9.7, Serial
Port Interface, on page 9-23 for additional information about the function of the
bits in these registers.
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Figure 9–43. TDM Serial Port Registers Diagram
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Note: X=Don’t care.

When TDM mode is selected, the DLB and FO bits in the TSPC are hard-
configured to 0, resulting in no access to the digital loopback mode and in a
fixed word length of 16 bits (a different type of loopback is discussed in the
example in subsection 9.9.6 on page 9-82). Also, the value of FSM does not
affect the port when TDM=1, and the states of the underflow and overrun flags
are indeterminate (subsection 9.9.5, TDM Serial Port Interface Exception
Conditions, on page 9-82 explains how exceptions are handled in TDM mode).
If TDM=1, changes made to the contents of the TSPC become effective upon
completion of channel 7 of the current frame. Thus the TSPC value cannot be
changed for the current frame; any changes made will take effect in the next
frame.

The source device for the TCLK and TFRM timing signals is set by the MCM
and TXM bits, respectively. The TCLK source device is identified by setting the
MCM bit of its TSPC register to 1. Typically, this device is the same one that
supplies the TDM port clock signal TCLK. The TCLKX pin is configured as an
input if MCM=0 and an output if MCM=1. In the latter case (internal ’C5x clock),
the device whose MCM=1 supplies the clock (TCLK frequency=one fourth of
CLKOUT1 frequency) for all devices on the TDM bus. The clock can be
supplied by an external source if MCM=0 for all devices. TFRM can also be
supplied externally if TXM=0. An external TFRM, however, must meet TDM
receive timing specifications with respect to TCLK for proper operation. No
more than one device should have MCM or TXM set to 1 at any given time. The
specification of which device is to supply clock and framing signals is typically
made only once, during system initialization.

The TDM channel select register (TCSR) of a given device specifies in which
time slot(s) that device is to transmit. A 1 in any one or more of bits 0–7 of the
TCSR sets the transmitter active during the corresponding time slot. Again, a
key system-level constraint is that no more than one device can transmit
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during the same time slot; devices do not  check for bus contention, and slots
must be consistently assigned. As in TSPC operation, a write to TCSR during
a particular frame is valid only during the next frame. However, a given device
can transmit in more than one slot. This is discussed in more detail in sub-
section 9.9.4, TDM Mode Transmit and Receive Operations, on page 9-80,
with an emphasis on the utilization of TRTA, TDXR, and TCSR in this respect.

The TDM receive/transmit address register (TRTA) of a given device specifies
two key pieces of information. The lower half specifies the receive address of
the device, while the upper half of TRTA specifies the transmit address. The
receive address (RA7–RA0, refer to Figure 9–43) is the 8-bit value that a
device compares to the 8-bit value it samples on the TADD line in a particular
slot to determine whether it should execute a valid TDM receive. The receive
address, therefore, establishes the slots in which that device may receive,
dependent on the addresses present in those slots, as specified by the trans-
mitting devices. This process occurs on each device during every slot.

The transmit address (TA7–TA0, refer to Figure 9–43) is the address that the
device drives on the TADD line during a transmit operation on an assigned slot.
The transmit address establishes which receiving devices may execute a valid
TDM receive on the driven data.

Only one device at a time can drive a transmit address on TADD. Each proces-
sor bit-wise-logically-ANDs the value it samples on the TADD line with its
receive address (RA7–RA0). If this operation results in a nonzero value, then
a valid TDM receive is executed on the processor(s) whose receive addresses
match the transmitted address. Thus, for one device to transmit to another,
there must be at least one bit in the upper half of the transmitting device’s TRTA
(the transmit address) with a value of 1 that matches one bit with a value of 1
in the lower half of TRTA (the receive address) of the receiving device. This
method of configuration of TRTA allows one device to transmit to one or more
devices, and for any one device to receive from one or more than one transmit-
ter. This can also allow the transmitting device to control which devices
receive, without the receive address on any of the devices having to be
changed.

The TDM receive address register (TRAD) contains various information
regarding the status of the TADD line which can be polled to verify the previous
values of this signal and to verify the relationship between instruction cycles
and TDM port timing.

Bits 13–11 (X2–X0) contain the current slot number value, regardless of
whether a valid data receive was executed in that slot or not. This value is
latched at the beginning of the slot and retained only until the end of the slot.
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Bits 10–8 (S02–S0) hold the number of the last slot plus one (modulo eight)
in which data was received (that is, if the last valid data read occurred in slot 5
in the previous frame, these bits would contain the number six). This value is
latched during the TDM receive interrupt (TRNT) at the end of the slot in which
the last valid data receive occurred, and maintained until the end of the next
slot in which a valid receive occurs.

Bits 7–0 (A7–A0) hold the last address sampled on the TADD line, regardless
of whether a valid data receive was executed or not. This value is latched half-
way through each slot (so the value on the TADD may be shifted in) and main-
tained until halfway through the next slot, whether a valid receive is executed
or not.

9.9.4 TDM Mode Transmit and Receive Operations

Figure 9–44 shows the timing for TDM port transfers. The TCLK and TFRM
signals are generated by the timing source device. The TCLK frequency is one
fourth the frequency of CLKOUT1 if generated by a ’C5x device. The TFRM
pulse occurs every 128 TCLK cycles and is timed to coincide with bit 0 of slot 7,
which is the last bit of the previous frame. The relationship of TFRM and TCLK
allows 16 data bits for each of eight time slots to be driven on the TDAT line,
which also permits the processor to execute a maximum of 64 instructions dur-
ing each slot, assuming that a ’C5x internal clock is used. Beginning with slot 0
and with the MSB first, the transmitter drives 16 data bits for each slot, with
each bit having a duration of one TCLK cycle, with the exception of the first bit
of each slot, which lasts only half of one bit time. Note that data is both clocked
onto the TDAT line by the transmitting device and sampled from the TDAT line
by receiving devices on the rising edge of TCLK (see the data sheet for
detailed TDM interface timings).

Figure 9–44. Serial Port Timing (TDM Mode)
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Simultaneous with data transfer, the transmitting device also drives the TADD
line with the transmit address for each slot. This information, unlike that on
TDAT, is only one byte long and is transmitted with the LSB first for the first half
of the slot. During the second half of the slot (that is, the last eight TCLK peri-
ods) the TADD line is driven high. The TDM receive logic samples the TADD
line only for the first eight TCLK periods, ignoring it during the second half of
the slot. Therefore, the transmitting device (if not a ’C5x) could drive TADD
high or low during that time period. Note that, like TDAT, the first TADD bit
transmitted lasts for only one half of one TCLK cycle.

If no device on the TDM bus is configured to transmit in a slot (that is, none of
the devices has a 1 for the corresponding slot in their TCSR register), that slot
is considered empty. In an empty slot, both TADD and TDAT are high imped-
ance. This condition has the potential for spurious receives, however, because
TDAT and TADD are always sampled, and a device performs a valid TDM re-
ception if its receive address matches the address on the TADD line. To avoid
spurious reads, a 1-kilohm pull-down resistor must be tied to the TADD line.
This causes the TADD line to read low on empty slots. Otherwise, any noise
on the TADD line that happens to match a particular receive address would
result in a spurious read. If power dissipation is a concern and the resistor is
not desired, then an arbitrary processor with transmit address equal to 0h can
drive empty slots by writing to TDXR in those slots. Slot manipulation is
explained later in this section. The 1-kilohm resistor is not required on the
TDAT line.

An empty TDM slot can result in the following cases: the first obvious case, as
mentioned above, occurs when no device has its TCSR configured to transmit
in that slot. A second more subtle case occurs when TDXR has not been
loaded before a transmit slot in a particular frame. This may also happen when
the TCSR contents are changed, since the actual TCSR contents are not
updated until the next TFRM pulse occurs. Therefore, any subsequent change
takes effect only in the next frame. The same is true for the receive address
(the lower half of TRTA). The transmit address (upper half of TRTA), however,
and TDXR, clearly, may be changed within the current frame for a particular
slot, assuming that the slot has not yet been reached when the instruction to
load the TRTA or TDXR is executed. Note that it is not necessary to load the
transmit address each time TDXR is loaded; when a TDXR load occurs and
a transmission begins, the current transmit address in TRTA is transmitted on
TADD.

The current slot number may be obtained by reading the X2–X0 bits in TRAD.
This affords the flexibility of reconfiguring the TDM port on a slot-by-slot basis,
and even slot sharing if desired. The key to utilizing this capability is to under-
stand the timing relationship between the instructions being executed and the
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frame/slots of the TDM port. If the TDM port is to be manipulated on a slot-by-
slot basis, changes must be made to appropriate registers quickly enough for
the desired effect to take place at the desired time. It is also important to take
into account that the TCSR and the receive address (lower half of TRTA) take
effect only at the start of a new frame, while the transmit address (upper half
of TRTA) and TDXR (transmit data) can take effect at the start of a new slot,
as mentioned previously.

Note that if the transmit address is being changed on the fly, care should be
exercised not to corrupt the receive address, since both addresses are located
in the TRTA register, thus maintaining the convention of allowing the transmit-
ting device to specify which devices can receive.

9.9.5 TDM Serial Port Interface Exception Conditions

Because of the nature of the TDM architecture, with the ability for one proces-
sor to transmit in multiple slots, the concepts of overrun and underflow become
indeterminate. Therefore, the overrun and underflow flags are not active in
TDM mode.

In the receiver, if TRCV has not been read and a valid receive operation is initi-
ated (because of the value on TADD and the device’s receive address), the
present value of TRCV is overwritten; the receiver is not halted. On the other
hand, if TDXR has not been updated before a transmission, the TADD or TDAT
lines are not driven, and these pins remain in the high-impedance state. This
mode of operation prevents spurious transmits from occurring.

If a TFRM pulse occurs at an improper time during a frame, the TDM port is
not able to continue functioning properly, since slot and bit numbers become
ambiguous when this occurs. Only one TFRM should occur every 128 TCLK
cycles. Unlike the serial port, the TDM port cannot be reinitialized with a frame
sync pulse during transmission. To correct an improperly timed TFRM pulse,
the TDM port must be reset.

9.9.6 Examples of TDM Serial Port Interface Operation

The following is an example of TDM serial port operation, showing the contents
of some of the key device registers involved, and explaining the effect of this
configuration on port operation. In this example, eight devices are connected
to the TDM serial port as shown in Figure 9–42 on page 9-76.

Table 9–22 shows the TADD value during each of the eight channels given the
transmitter and receiver designations shown. This example shows the config-
uration for eight devices to communicate with each other. In this example,
device 0 broadcasts to all other device addresses during slot 0. In subsequent
frames, devices 1–7 each communicate to one other processor.
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Table 9–22. Interprocessor Communications Scenario
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Table 9–23 shows the TDM serial port register contents of each device that
results in the scenario given in Table 9–22. Device 0 provides the clock and
frame control signals for all channels and devices. The TCSR and TRTA con-
tents specify which device is to transmit on a given channel and which devices
are to receive.

Table 9–23. TDM Register Contents
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In this example, the transmit address of a given device (the upper byte of
TRTA) matches the receive address (the lower byte of TRTA) of the receiving
device. Note, however, that it is not necessary for the transmit and receive
addresses to match exactly; the matching operation implemented in the
receiver is a bitwise AND operation. Thus, it is only necessary that one bit in
the field matches for a receive to occur. The advantage of this scheme is that
a transmitting device can select the device or devices to receive its transmitted
data by simply changing its transmit address (as long as each devices’ receive
address is unique, the receive address of the receiving device does not need
to be changed). In the example, device 0 can transmit to any combination of
the other devices by merely writing to the upper byte of TRTA. Therefore, if a
transmitting device changed its TRTA to 8001h on the fly, it would transmit only
to device 7.

A device may also transmit to itself, because both the transmit and receive
operations are executed on the rising edge of TCLK (see the data sheet for
detailed TDM interface timings). To enable this type of loopback, it is neces-
sary to use the standard TDM port interface connections as shown in
Figure 9–42. Then, if device 0 has a TRTA of 0101h, it would transmit only to
itself.

Another example of TDM port operation is provided in the code sequence of
Example 9–7 in which a one-way transmit of a sequence of values from de-
vice 0 to device 1 is shown. The values are stored in each device in a block
from 4000h to 6000h in data memory. Device 0 transmits in slot 0 and has a
transmit address of 01h. It waits in a BIO loop for a ready-to-receive signal (XF)
from device 1, and initializes the transfer data with a value of 0. Only its trans-
mit interrupt is enabled and its transmit ISR writes the value it will send into its
own memory.
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Example 9–7. Device 0 Transmit Code (TDM Operation)

* Device 0 – Transmit side

              :
              :
              :

        SPLK #1h, TCSR          ;Setup TCSR to xmt on
                                ;slot 0
        SPLK #100h, TRTA        ;Setup transmit address

                                ;Set up TSPC as TCLK, TFRM
                                ;source
        SPLK #0039h, TSPC       ;Set TXM=MCM=FSM=TDM=1,
                                ;DLB=FO=0.
                                ;And put TDM into reset
                                ;(XRST=RRST=0)
        SPLK #00F9h, TSPC       ;Take TDM out of reset

                                ;Setup interrupts
        SPLK #0ffffh, IFR       ;clear IFR
        SPLK #080h, IMR         ;Turn on TXNT

        CLRC INTM               ;enable interrupts

TILOOP  BCND TSENDZ, BIO        ;Wait for ready–to–
        B    TILOOP             ;receive from other device

TSENDZ  LACL #0                 ;First transmission/write
                                ;value is 0.
        LAR  AR7, #4000h        ;Setup where to write
        SACL *                  ;Write first value
        SACL TDXR               ;Transmit first value

SELF2   B    SELF2              ;Wait for interrupts

_ISR
        LACC AR7                ;Check if past 0x6000
        SUB  #6000h             ;i.e. end of block
        BCND END_TDMP, GEQ      ;Go to tight loop if so.

                                ;Add one and transmit
        LACL *+                 ;Load value
        ADD  #1                 ;Add one
        SACL *                  ;Write value
        SACL TDXR               ;Transmit value
        RETE

END_TDMP   B  END_TDMP          ;Sit in tight loop after
                                ;block is complete.
                   :
                   :
                   :
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Example 9–8 shows the code in device 1. It has a receive address of 01h and
sends a ready-to-receive signal (XF) to device 0. Only its receive interrupt is
enabled, and its receive ISR reads from the TRCV, writes to the block, and then
checks to see if it has reached the end of the block.

Example 9–8. Device 1 Receive Code (TDM Operation)

*Device 1 – receive side

        SPLK #0h, TCSR          ; Setup TCSR to xmt on
                                ; no slots
        SPLK #001h, TRTA        ; Setup receive address

                                ; Set TDM as TCLK, TFRM
                                ; receive
        SPLK #0009h, TSPC       ; Set TXM=MCM=DLB=FO=0,
                                ; FSM=TDM=1.
                                ; And put TDM into reset
                                ; (XRST=RRST=0)
        SPLK #00C9h, TSPC       ; Take TDM out of reset

                                ; Setup interrupts
        SPLK #0ffffh, IFR       ; clear IFR
        SPLK #040h, IMR         ; Mask on TRNT

        CLRC INTM               ; enable interrupts
        LAR  AR7, #4000h        ; Setup where to write
                                ; received data
        CLRC XF                 ; Signal ready to receive

SELF2   B    SELF2              ; Wait for interrupts

_ISR
        LACC TRCV               ; Load received value
        SACL *+                 ; Write to memory block
        LACC AR7                ; Check if past 0x6000
        SUB  #6000h             ; i.e. end of block
        BCND END_TDMP, GEQ      ; Go to tight loop if so
        RETE

END_TDMP   B  END_TDMP          ; Sit in tight loop after
                                ; block is complete.
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9.10 Host Port Interface

The host port interface (HPI) is an 8-bit parallel port used to interface a host
device or host processor to the ’C5x. Information is exchanged between the
’C5x and the host device through on-chip ’C5x memory that is accessible by
both the host and the ’C5x. The HPI is available on the ’LC57 and ’C57S
devices.

The HPI is designed to interface to the host device as a peripheral, with the
host device as master of the interface, therefore greatly facilitating ease of
access by the host. The host device communicates with the HPI through
dedicated address and data registers, to which the ’C5x does not have direct
access, and the HPI control register, using the external data and interface
control signals (see Figure 9–45). Both the host device and the ’C5x have
access to the HPI control register.

Figure 9–45. Host Port Interface Block Diagram
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The HPI provides 16-bit data to the ’C5x while maintaining the economical 8-bit
external interface by automatically combining successive bytes transferred
into 16-bit words. When the host device performs a data transfer with the HPI
registers, the HPI control logic automatically performs an access to a dedi-
cated 2K-word block of internal ’C5x single access RAM to complete the trans-
action. The ’C5x can then access the data within its memory space. The HPI
RAM can also be used as general purpose single access data or program RAM.

The HPI has two modes of operation, shared-access mode (SAM) and host-
only mode (HOM). In shared-access mode, the normal mode of operation,
both the ’C5x and the host can access HPI memory. In this mode, asynchro-
nous host accesses are resynchronized internally and, in the case of a conflict
between a ’C5x and a host cycle, the host has access priority and the ’C5x
waits one cycle. In host-only mode, only the host can access HPI memory
while the ’C5x is in reset or in IDLE2 with all internal and even external clocks
stopped. The host can therefore access the HPI RAM while the ’C5x is in its
minimum power consumption configuration.

The HPI supports high speed, back-to-back host accesses. In shared-access
mode, the HPI can transfer one byte every five CLKOUT1 cycles (that is
64M bps) with the ’C5x running at a 40-MHz CLKOUT1. The HPI is designed
so the host can take advantage of this high bandwidth and run at frequencies
up to (Fd*n)/5, where Fd is the ’C5x CLKOUT1 frequency and n is the number
of host cycles for an external access. Therefore, with a 40-MHz ’C5x and com-
mon values of 4 (or 3) for n, the host can run at speeds of up to 32 (or 24) MHz
without requiring wait states. In the host-only mode, the HPI supports even
higher speed back-to-back host accesses on the order of one byte every 50 ns
(that is, 160M bps), independent of the ’C5x clock rate (refer to the
TMS320C5x data sheet for specific detailed timing information).

9.10.1 Basic Host Port Interface Functional Description

The external HPI interface consists of the 8-bit HPI data bus and control sig-
nals that configure and control the interface. The interface can connect to a
variety of host devices with little or no additional logic necessary. Figure 9–46
shows a simplified diagram of a connection between the HPI and a host
device.
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Figure 9–46. Generic System Block Diagram
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The 8-bit data bus (HD0–HD7) exchanges information with the host. Because
of the 16-bit word structure of the ’C5x, all transfers with a host must consist
of two consecutive bytes. The dedicated HBIL pin indicates whether the first
or second byte is being transferred. An internal control register bit determines
whether the first or second byte is placed into the most significant byte of a
16-bit word. The host must not break the first byte/second byte (HBIL low/high)
sequence of an ongoing HPI access. If this sequence is broken, data can be
lost, and unpredictable operation can result.

The two control inputs (HCNTL0 and HCNTL1) indicate which internal HPI
register is being accessed and the type of access to the register. These inputs,
along with HBIL, are commonly driven by host address bus bits or a function
of these bits. Using the HCNTL0/1 inputs, the host can specify an access to
the HPI control (HPIC) register, the HPI address (HPIA) register (which serves
as the pointer into HPI memory), or HPI data (HPID) register. The HPID regis-
ter can also be accessed with an optional automatic address increment.

The autoincrement feature provides a convenient way of reading or writing to
subsequent word locations. In autoincrement mode, a data read causes a
postincrement of the HPIA, and a data write causes a preincrement of the
HPIA. By writing to the HPIC, the host can interrupt the ’C5x CPU, and the
HINT output can be used by the ’C5x to interrupt the host. The host can also
acknowledge and clear HINT by writing to the HPIC.



Host Port Interface

 9-90

Table 9–24 summarizes the three registers that the HPI utilizes for commu-
nication between the host device and the ’C5x CPU and their functions.

Table 9–24. HPI Registers Description

Name Address Description

HPIA   — HPI address register. Directly accessible only by the host. Contains the address in
the HPI memory at which the current access occurs.

HPIC 0500h HPI control register. Directly accessible by either the host or by the ’C5x. Contains
control and status bits for HPI operations.

HPID   — HPI data register. Directly accessible only by the host. Contains the data that was
read from the HPI memory if the current access is a read, or the data that will be
written to HPI memory if the current access is a write.

The two data strobes (HDS1 and HDS2), the read/write strobe (HR/W), and
the address strobe (HAS) enable the HPI to interface to a variety of industry-
standard host devices with little or no additional logic required. The HPI is easi-
ly interfaced to hosts with multiplexed address/data bus, separate address
and data buses, one data strobe and a read/write strobe, or two separate
strobes for read and write. This is described in detail later in this section.

The HPI ready pin (HRDY) allows insertion of wait states for hosts that support
a ready input to allow deferred completion of access cycles and have faster
cycle times than the HPI can accept due to ’C5x operating clock rates. If HRDY,
when used directly from the ’C5x, does not meet host timing requirements, the
signal can be resynchronized using external logic if necessary. HRDY is useful
when the ’C5x operating frequency is variable, or when the host is capable of
accessing at a faster rate than the maximum shared-access mode access rate
(up to the host-only mode maximum access rate). In both cases, the HRDY
pin provides a convenient way to automatically (no software handshake need-
ed) adjust the host access rate to a faster ’C5x clock rate or switch the HPI
mode.

All of these features combined allow the HPI to provide a flexible and efficient
interface to a wide variety of industry-standard host devices. Also, the simplic-
ity of the HPI interface greatly simplifies data transfers both from the host and
the ’C5x sides of the interface. Once the interface is configured, data transfers
are made with a minimum of overhead at a maximum speed.
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9.10.2 Details of Host Port Interface Operation

This subsection includes a detailed description of each HPI external interface
pin function, as well as descriptions of the register and control bit functions.
Logical interface timings and initialization and read/write sequences are dis-
cussed in subsection 9.10.3, Host Read/Write Access to HPI, on page 9-97.

The external HPI interface signals implement a flexible interface to a variety
of types of host devices. Devices with single or multiple data strobes and with
or without address latch enable (ALE) signals can easily be connected to the
HPI.

Table 9–25 gives a detailed description of the function of each of the HPI exter-
nal interface pins.
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precedes HDS1 and HDS2, but this signal also samples HCNTL0/1,
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Figure 9–47 on page 9-93 shows the equivalent circuit of the HCS,
HDS1 and HDS2 inputs.
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† I: Input
O: Output
Z: High impedance
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Table 9–25. HPI Signal Names and Functions (Continued)
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ÁÁÁÁÁÁ

Host PinÁÁÁÁÁ
ÁÁÁÁÁ

HPI Pin
ÁÁÁÁÁ
ÁÁÁÁÁ
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HD7–HD0
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Data bus
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
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I/O/Z
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Parallel bidirectional 3-state data bus. HD7 (MSB) through HD0
(LSB) are placed in the high-impedance state when not outputting
(HDSx and HCS = 1) or when EMU1/OFF is active (low).
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HDS1,
HDS2
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Read strobe and
write strobe or
data strobe

ÁÁÁÁ
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I ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data strobe inputs. Control transfer of data during host access
cycles. Also, when HAS is not used, used to sample HBIL,
HCNTL0/1, and HR/W when HCS is already low (which is the case
in normal operation). Hosts with separate read and write strobes con-
nect those strobes to either HDS1 or HDS2. Hosts with a single data
strobe connect it to either HDS1 or HDS2, connecting the unused pin
high. Regardless of HDS connections, HR/W is still required to deter-
mine direction of transfer. Because HDS1 and HDS2 are internally
exclusive-NORed, hosts with a high true data strobe can connect this
to one of the HDS inputs with the other HDS input connected low.
Figure 9–47 on page 9-93 shows the equivalent circuit of the HDS1,
HDS2, and HCS inputs.

ÁÁÁÁÁ
ÁÁÁÁÁ
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HINT ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Host interrupt
input

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

O/Z ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
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Host interrupt output. Controlled by the HINT bit in the HPIC. Driven
high when the ’C5x is being reset. Placed in high impedance when
EMU1/OFF is active (low).
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HRDY ÁÁÁÁÁÁ
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Asynchronous
ready
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HPI ready output. When high, indicates that the HPI is ready for a
transfer to be performed. When low, indicates that the HPI is busy
completing the internal portion of the previous transaction. Placed in
high impedance when EMU1/OFF is active (low). HCS enables
HRDY; that is, HRDY is always high when HCS is high.

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

HR/W ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Read/Write strobe,
address line, or
multiplexed ad-
dress/data
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read/write input. Hosts must drive HR/W high to read HPI and low
to write HPI. Hosts without a read/write strobe can use an address
line for this function.
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† I: Input
O: Output
Z: High impedance
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The HCS input serves primarily as the enable input for the HPI, and the HDS1
and HDS2 signals control the HPI data transfer; however, the logic with which
these inputs are implemented allows their functions to be interchanged if de-
sired. If HCS is used in place of HDS1 and HDS2 to control HPI access cycles,
HRDY operation is affected (since HCS enables HRDY and HRDY is always
high when HCS is high). The equivalent circuit for these inputs is shown in
Figure 9–47. The figure shows that the internal strobe signal that samples the
HCNTL0/1, HBIL, and HR/W inputs (when HAS is not used) is derived from all
three of the input signals, as the logic illustrates. Therefore, the latest of HDS1,
HDS2, or HCS is the one which actually controls sampling of the HCNTL0/1,
HBIL, and HR/W inputs. Because HDS1 and HDS2 are exclusive-NORed,
both these inputs being low does not constitute an enabled condition.

Figure 9–47. Select Input Logic

HDS1

HDS2

HCS

Internal Strobe

When using the HAS input to sample HCNTL0/1, HBIL and HR/W, this allows
these signals to be removed earlier in an access cycle, therefore allowing more
time to switch bus states from address to data information, facilitating interface
to multiplexed address and data type buses. In this type of system, an ALE sig-
nal is often provided and would normally be the signal connected to HAS.

The two control pins (HCNTL0 and HCNTL1) indicate which internal HPI regis-
ter is being accessed and the type of access to the register. The states of these
two pins select access to the HPI address (HPIA), HPI data (HPID), or HPI
control (HPIC) registers. The HPIA register serves as the pointer into HPI
memory, the HPIC contains control and status bits for the transfers, and the
HPID contains the actual data transferred. Additionally, the HPID register can
be accessed with an optional automatic address increment. Table 9–26
describes the HCNTL0/1 bit functions.
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Table 9–26. HPI Input Control Signals Function Selection Descriptions

ÁÁÁÁ
ÁÁÁÁ

HCNTL1ÁÁÁÁÁ
ÁÁÁÁÁ

HCNTL0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Description

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Host can read or write the HPI control register, HPIC.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Host can read or write the HPI data latches. HPIA is automatically postincremented each
time a read is performed and preincremented each time a write is performed.

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Host can read or write the address register, HPIA. This register points to the HPI
memory.

ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Host can read or write the HPI data latches. HPIA is not affected.

On the ’C57, HPI memory is a 2K � 16-bit word block of single-access RAM
that can be configured to reside either from 1000h to 17FFh in data memory
space or from 8800h to 8FFFh in program memory space. As with all single-
access RAM blocks, the HPI RAM is affected by the ROM protection feature,
if it is enabled. Also, the HPI memory may be located at different addresses
on other ’C5x devices; consult the specific product documentation.

From the host interface, the 2K-word block of HPI memory can conveniently
be accessed at addresses 0 through 7FFh; however, the memory can also be
accessed by the host starting with any HPIA values with the 11 LSB’s equal
to 0. For example, the first word of the HPI memory block, addressed at 1000h
by the ’C57 in data memory space, can be accessed by the host with any of
the following HPIA values: 0000h, 0800h,1000h,1800h, ... F800h.

The HPI autoincrement feature provides a convenient way of accessing con-
secutive word locations in HPI memory. In the autoincrement mode, a data
read causes a postincrement of the HPIA, and a data write causes a preincre-
ment of the HPIA. Therefore, if a write is to be made to the first word of HPI
memory with the increment option, due to the preincrement nature of the write
operation, the HPIA should first be loaded with any of the following values:
07FFh, 0FFFh, 17FFh, ... FFFFh. The HPIA is a 16-bit register and all 16 bits
can be written to or read from, although with a 2K-word HPI memory imple-
mentation, only the 11 LSB’s of the HPIA are required to address the HPI
memory. The HPIA increment and decrement affect all 16 bits of this register.

HPI Control Register Bits and Function

Four bits control HPI operation. These bits are BOB (which selects first or se-
cond byte as most significant), SMOD (which selects host or shared-access
mode), and DSPINT and HINT (which can be used to generate ’C5x and host
interrupts, respectively) and are located in the HPI control register (HPIC). A
detailed description of the HPIC bit functions is presented in Table 9–27.



Host Port Interface

9-95On-Chip Peripherals

Table 9–27. HPI Control Register (HPIC) Bit Descriptions

ÁÁÁ
ÁÁÁ

Bit ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Host Access ÁÁÁÁÁ
ÁÁÁÁÁ

’C5x AccessÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

BOBÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Read/Write ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

— ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

If BOB = 1, first byte is least significant. If BOB = 0, first byte is most
significant. BOB affects both data and address transfers. Only the
host can modify this bit and it is not visible to the ’C5x. BOB must be
initialized before the first data or address register access.

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

DSPINT
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
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Write
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—
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The host processor-to-’C5x interrupt. This bit can be written only by
the host and is not readable by the host or the ’C5x. When the host
writes a 1 to this bit, an interrupt is generated to the ’C5x. Writing a
0 to this bit has no effect. Always read as 0. When the host writes
to HPIC, both bytes must write the same value. See this subsection
for a detailed description of DSPINT function.
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HINT
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This bit determines the state of the ’C5x HINT output, which can be
used to generate an interrupt to the host. HINT = 0 upon reset, which
causes the external HINT output to be inactive (high). The HINT bit
can be set only by the ’C5x and can be cleared only by the host. The
’C5x writes a 1 to HINT, causing the HINT pin to go low. The HINT
bit is read by the host or the ’C5x as a 0 when the external HINT pin
is inactive (high) and as a 1 when the HINT pin is active (low). For
the host to clear the interrupt, however, it must write a 1 to HINT. Writ-
ing a 0 to the HINT bit by either the host or the ’C5x has no effect.
See this subsection for a detailed description of HINT function.

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

SMODÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
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Read ÁÁÁÁÁ
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If SMOD = 1, shared-access mode (SAM) is enabled: the HPI
memory can be accessed by the ’C5x. If SMOD = 0, host-only mode
(HOM) is enabled: the ’C5x is denied access to the entire HPI RAM
block. SMOD = 0 during reset; SMOD = 1 after reset. SMOD can be
modified only by the ’C5x but can be read by both the ’C5x and the
host.

Because the host interface always performs transfers with 8-bit bytes and the
control register is normally the first register accessed to set configuration bits
and initialize the interface, the HPIC is organized on the host side as a 16-bit
register with the same high and low byte contents (although access to certain
bits is limited, as described previously) and with the upper bits unused on the
’C5x side. The control/status bits are located in the least significant four bits.
The host accesses the HPIC register with the appropriate selection of
HCNTL0/1, as described previously, and two consecutive byte accesses to the
8-bit HPI data bus. When the host writes to HPIC, both the first and second
byte written must be the same value. The ’C57 accesses the HPIC at 500h in
data memory space.
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The layout of the HPIC bits is shown in Figure 9–48 through Figure 9–51. In
the figures for read operations, if 0 is specified, this value is always read; if X
is specified, an unknown value is read. For write operations, if X is specified,
any value can be written. On a host write, both bytes must be identical. Note
that bits 4–7 and 12–15 on the host side and bits 4–15 on the ’C5x side are
reserved for future expansion.

Figure 9–48. HPIC Diagram — Host Reads from HPIC

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

15–12 ÁÁÁ
ÁÁÁ

11 ÁÁÁ
ÁÁÁ

10 ÁÁÁ
ÁÁÁ

9 ÁÁÁ
ÁÁÁ

8ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

7–4 ÁÁÁ
ÁÁÁ

3ÁÁÁ
ÁÁÁ

2 ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

0

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

X ÁÁÁ
ÁÁÁ

HINTÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

SMODÁÁÁ
ÁÁÁ

BOBÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

X ÁÁÁ
ÁÁÁ

HINTÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

SMODÁÁÁ
ÁÁÁ

BOB

Note: X = Unknown value is read.

Figure 9–49. HPIC Diagram — Host Writes to HPIC

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

15–12 ÁÁÁ
ÁÁÁ

11 ÁÁÁ
ÁÁÁ

10ÁÁÁ
ÁÁÁ

9ÁÁÁ
ÁÁÁ

8ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

7–4 ÁÁÁ
ÁÁÁ

3ÁÁÁÁ
ÁÁÁÁ

2 ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

X ÁÁÁ
ÁÁÁ

HINTÁÁÁ
ÁÁÁ

DSPINTÁÁÁ
ÁÁÁ

XÁÁÁ
ÁÁÁ

BOBÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

X ÁÁÁ
ÁÁÁ

HINTÁÁÁÁ
ÁÁÁÁ

DSPINTÁÁ
ÁÁ

XÁÁÁ
ÁÁÁ

BOB

Note: X = Any value can be written.

Figure 9–50. HPIC Diagram — ’C5x Reads From HPIC

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

15–4 ÁÁÁ
ÁÁÁ

3ÁÁÁ
ÁÁÁ

2 ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁX

ÁÁÁ
ÁÁÁHINT
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁSMOD
ÁÁÁ
ÁÁÁ0

Note: X = Unknown value is read.

Figure 9–51. HPIC Diagram — ’C5x Writes to HPIC
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ15–4

ÁÁÁ
ÁÁÁ3
ÁÁÁ
ÁÁÁ2
ÁÁÁ
ÁÁÁ1
ÁÁÁ
ÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

X
ÁÁÁ
ÁÁÁ
ÁÁÁ

HINT
ÁÁÁ
ÁÁÁ
ÁÁÁ

X
ÁÁÁ
ÁÁÁ
ÁÁÁ

SMOD
ÁÁÁ
ÁÁÁ
ÁÁÁ

X

Note: X = Any value can be written.

Because the ’C5x can write to the SMOD and HINT bits, and these bits are
read twice on the host interface side, the first and second byte reads by the
host may yield different data if the ’C5x changes the state of one or both of
these bits in between the two read operations. The characteristics of host and
’C5x HPIC read/write cycles are summarized in Table 9–28.

Table 9–28. HPIC Host/’C5x Read/Write Characteristics
ÁÁÁÁ
ÁÁÁÁ

Device
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Read
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
Write

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Host
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2 bytes
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

2 bytes (Both bytes must be equal)

ÁÁÁÁ
ÁÁÁÁ

’C5x ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

16 bits ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
16 bits
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9.10.3 Host Read/Write Access to HPI

The host begins HPI accesses by performing the external interface portion of
the cycle; that is, initializing first the HPIC register, then the HPIA register, and
then writing data to or reading data from the HPID register. Writing to HPIA or
HPID initiates an internal cycle that transfers the desired data between the
HPID and the dedicated internal HPI memory. Because this process requires
several ’C5x cycles, each time an HPI access is made, data written to the HPID
is not written to the HPI memory until after the host access cycle, and the data
read from the HPID is the data from the previous cycle. Therefore, when read-
ing, the data obtained is the data from the location specified in the previous
access, and the current access serves as the initiation of the next cycle. A simi-
lar sequence occurs for a write operation: the data written to HPID is not written
to HPI memory until after the external cycle is completed. If an HPID read
operation immediately follows an HPID write operation, the same data (the
data written) is read.

The autoincrement feature available for HPIA results in sequential accesses
to HPI memory by the host being extremely efficient. During random (non-
sequential) transfers or sequential accesses with a significant amount of time
between them, it is possible that the ’C5x may have changed the contents of
the location being accessed between a host read and the previous host data
read/write or HPIA write access, because of the prefetch nature of internal HPI
operation. If this occurs, data different from the current memory contents may
be read. Therefore, in cases where this is of concern in a system, two reads
from the same address or an address write prior to the read access can be
made to ensure that the most recent data is read.

When the host performs an external access to the HPI, there are two distinctly
different types of cycles that can occur: those for which wait states are gener-
ated (the HRDY signal is active) and those without wait states. In general,
when in shared-access mode (SAM), the HRDY signal is used; when in host-
only mode (HOM), HRDY is not active and remains high; however, there are
exceptions to this, which will be discussed.

For accesses utilizing the HRDY signal, during the time when the internal por-
tion of the transfer is being performed (either for a read or a write), HRDY is
low, indicating that another transfer cannot yet be initiated. Once the internal
cycle is completed and another external cycle can begin, HRDY is driven high
by the HPI. This occurs after a fixed delay following a cycle initiation (refer to
the ’C5x data sheet for detailed timing information for HPI external interface
timings). Therefore, unless back-to-back cycles are being performed, HRDY
is normally high when the first byte of a cycle is transferred. The external HPI
cycle using HRDY is shown in the timing diagram in Figure 9–52.
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Figure 9–52. HPI Timing Diagram

Byte 2Byte 1

HRDY

write
HD

read
HD

HDS1,
HDS2

(if used)
HAS

HCS

HBIL

HR/W
HCNTL0/1 ValidValid

Á
Á
ÁÁ
ÁÁ

ValidValid

ValidValid

Á
Á

Á
Á

ÁÁ
ÁÁ

ÁÁ
ÁÁ

Á
Á

Á
Á

In a typical external access, as shown in Figure 9–52, the cycle begins with
the host driving HCNTL0/1, HR/W, HBIL and HCS, indicating specifically what
type of transfer is to occur and whether the cycle is to be read or a write. Then
the host asserts the HAS signal (if used) followed by one of the data strobe
signals. If HRDY is not already high, it goes high when the previous internal
cycle is complete, allowing data to be transferred, and the control signals are
deasserted. Following the external HPI cycle, HRDY goes low and stays low
for a period of approximately five CLKOUT1 cycles (refer to ’C5x data sheet
for HPI timing information) while the ’C5x completes the internal HPI memory
access, and then HRDY is driven high again. Note, however, HRDY is always
high when HCS is high.

As mentioned previously, SAM accesses generally utilize the HRDY signal.
The exception to the HRDY-based interface timings when in SAM occurs when
reading HPIC or HPIA or writing to HPIC (except when writing 1 to either
DSPINT or HINT). In these cases, HRDY stays high; for all other SAM
accesses, HRDY is active.
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Host access cycles when in HOM have timings different from the SAM timings
described previously. In HOM, the CPU is not involved (with one exception),
and the access can be completed after a short, fixed delay time. The exception
to this occurs when writing 1s to the DSPINT or HINT bits in HPIC. In this case,
the host access takes several CPU clock cycles, and SAM timings apply. Be-
sides the HRDY timings and a faster cycle time, HOM access cycles are log-
ically the same as SAM access cycles. A summary of the conditions under
which the HRDY signal is active (where SAM timings apply) for host accesses
is shown in Table 9–29. When HRDY is not active (HRDY stays high), HOM
timings apply. Refer to the ’C5x data sheet for detailed HPI timing specifica-
tions.

Table 9–29. Wait-State Generation Conditions

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Wait State Generated

ÁÁÁÁÁ
ÁÁÁÁÁ

Register ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Reads ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Writes

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

HPIA ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

No ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

HOM – No

SAM – Yes

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

HPIC
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

No
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1 to DSPINT/HINT – Yes

All other cycles – No
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

HPID
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

HOM – No

SAM – Yes

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

HOM – No

SAM – Yes

Example Access Sequences

A complete host access cycle always involves two bytes, the first with HBIL
low, and the second with HBIL high. This 2-byte sequence must be followed
regardless of the type of host access (HPIA, HPIC, or data access) and the
host must not break the first byte/second byte (HBIL low/high) sequence of an
ongoing HPI access. If this sequence is broken, data may be lost, and unpre-
dictable operation may result.

Before accessing data, the host must first initialize HPIC, in particular the BOB
bit, and then HPIA (in this order, because BOB affects the HPIA access). After
initializing BOB, the host can then write to HPIA with the correct byte align-
ment. On an HPI memory read operation, after completion of the HPIA write,
the HPI memory is read and the contents at the given address are transferred
to the two 8-bit data latches, the first byte data latch and the second byte data
latch. Table 9–30 illustrates the sequence involved in initializing BOB and
HPIA for an HPI memory read. In this example, BOB is set to 0 and a read is
requested of the first HPI memory location (in this case 1000h), which contains
FFFEh.
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Table 9–30. Initialization of BOB and HPIA

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Event ÁÁÁ
ÁÁÁ

HDÁÁÁÁ
ÁÁÁÁ

HR/W ÁÁÁÁ
ÁÁÁÁ

HCNTL1/0ÁÁÁÁ
ÁÁÁÁ

HBIL ÁÁÁ
ÁÁÁ

HPICÁÁÁÁ
ÁÁÁÁ

HPIA ÁÁÁ
ÁÁÁ

latch1ÁÁÁ
ÁÁÁ

latch2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Host writes HPIC, 1st byte ÁÁÁ
ÁÁÁ

00ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

00 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁ
ÁÁÁ

00xxÁÁÁÁ
ÁÁÁÁ

xxxx ÁÁÁ
ÁÁÁ

xxxxÁÁÁ
ÁÁÁ

xxxx
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁHost writes HPIC, 2nd byte

ÁÁÁ
ÁÁÁ00
ÁÁÁÁ
ÁÁÁÁ0

ÁÁÁÁ
ÁÁÁÁ00

ÁÁÁÁ
ÁÁÁÁ1

ÁÁÁ
ÁÁÁ0000
ÁÁÁÁ
ÁÁÁÁxxxx

ÁÁÁ
ÁÁÁxxxx
ÁÁÁ
ÁÁÁxxxxÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Host writes HPIA, 1st byte
ÁÁÁ
ÁÁÁ
ÁÁÁ

10
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

10
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁ
ÁÁÁ
ÁÁÁ

0000
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

10xx
ÁÁÁ
ÁÁÁ
ÁÁÁ

xxxx
ÁÁÁ
ÁÁÁ
ÁÁÁ

xxxx

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Host writes HPIA, 2nd byte ÁÁÁ
ÁÁÁ

00ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

10 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1000 ÁÁÁ
ÁÁÁ

xxxxÁÁÁ
ÁÁÁ

xxxx

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Internal HPI RAM read completeÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1000 ÁÁÁ
ÁÁÁ

FF ÁÁÁ
ÁÁÁ

FE

In the cycle shown in Table 9–30, BOB and HPIA are initialized, and by loading
HPIA, an internal HPI memory access is initiated. The last line of Table 9–30
shows the condition of the HPI after the internal RAM read is complete; that
is, after some delay following the end of the host write of the second byte to
HPIA, the read is completed and the data has been placed in the upper and
lower byte data latches. For the host to actually retrieve this data, it must per-
form an additional read of HPID. During this HPID read access, the contents
of the first byte data latch appears on the HD pins when HBIL is low and the
content of the second byte data latch appears on the HD pins when HBIL is
high. Then the address is incremented if autoincrement is selected and the
memory is read again into the data latches. Note that the address autoin-
crement occurs between the transfers of the first and second bytes. The
sequence involved in this access is shown in Table 9–31.

Table 9–31. Read Access to HPI with Autoincrement

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Event ÁÁÁ
ÁÁÁ

HDÁÁÁÁ
ÁÁÁÁ

HR/W ÁÁÁÁ
ÁÁÁÁ

HCNTL1/0ÁÁÁÁ
ÁÁÁÁ

HBIL ÁÁÁ
ÁÁÁ

HPICÁÁÁÁ
ÁÁÁÁ

HPIA ÁÁÁ
ÁÁÁ

latch1ÁÁÁ
ÁÁÁ

latch2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Host reads data, 1st byte ÁÁÁ
ÁÁÁ

FFÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

01 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁ
ÁÁÁ

0000ÁÁÁÁ
ÁÁÁÁ

1000 ÁÁÁ
ÁÁÁ

FF ÁÁÁ
ÁÁÁ

FE
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁHost reads data, 2nd byte

ÁÁÁ
ÁÁÁFE
ÁÁÁÁ
ÁÁÁÁ1

ÁÁÁÁ
ÁÁÁÁ01

ÁÁÁÁ
ÁÁÁÁ1

ÁÁÁ
ÁÁÁ0000
ÁÁÁÁ
ÁÁÁÁ1001

ÁÁÁ
ÁÁÁFF
ÁÁÁ
ÁÁÁFEÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Internal HPI RAM read complete
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1001
ÁÁÁ
ÁÁÁ
ÁÁÁ

6A
ÁÁÁ
ÁÁÁ
ÁÁÁ

BC

In the access shown in Table 9–31, the data obtained from reading HPID is the
data from the read initiated in the previous cycle (the one shown in Table 9–30)
and the access performed as shown in Table 9–31 also initiates a further read,
this time at location 1001h (because autoincrement was specified in this
access by setting HCNTL1/0 to 01). Also, when autoincrement is selected, the
increment occurs with each 16-bit word transferred (not with each byte); there-
fore, as shown in Table 9–31, the HPIA is incremented by only 1. The last line
of Table 9–31 indicates that after the second internal RAM read is complete,
the contents of location 1001h (6ABCh) has been read and placed into the
upper and lower byte data latches.
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During a write access to the HPI, the first byte data latch is overwritten by the
data coming from the host while the HBIL pin is low, and the second byte data
latch is overwritten by the data coming from the host while the HBIL pin is high.
At the end of this write access, the data in both data latches is transferred as
a 16-bit word to the HPI memory at the address specified by the HPIA register.
The address is incremented prior to the memory write because autoincrement
is selected.

An HPI write access is illustrated in Table 9–32. In this example, after the inter-
nal portion of the write is completed, location 1002h of HPI RAM contains
1234h. If a read of the same address follows this write, the same data just writ-
ten in the data latches (1234h) is read back.

Table 9–32. Write Access to HPI with Auto-Increment

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Event ÁÁ
ÁÁ

HDÁÁÁÁ
ÁÁÁÁ

HR/WÁÁÁÁÁ
ÁÁÁÁÁ

HCNTL1/0ÁÁÁ
ÁÁÁ

HBILÁÁÁÁ
ÁÁÁÁ

HPIC ÁÁÁ
ÁÁÁ

HPIAÁÁÁ
ÁÁÁ

latch1ÁÁÁÁ
ÁÁÁÁ

latch2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Host writes data, 1st byte ÁÁ
ÁÁ

12ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

01 ÁÁÁ
ÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0000 ÁÁÁ
ÁÁÁ

1001ÁÁÁ
ÁÁÁ

12ÁÁÁÁ
ÁÁÁÁ

FE

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Host writes data, 2nd byte
ÁÁ
ÁÁ

34
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

01
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ

1002
ÁÁÁ
ÁÁÁ

12
ÁÁÁÁ
ÁÁÁÁ

34
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Internal HPI RAM write complete
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

1002
ÁÁÁ
ÁÁÁ
ÁÁÁ

12
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

34

9.10.4 DSPINT and HINT Function Operation

The host and the ’C5x can interrupt each other using bits in the HPIC register.
This subsection presents more information about this process.

Host Device Using DSPINT to Interrupt the ’C5x

A ’C5x interrupt is generated when the host writes a 1 to the DSPINT bit in
HPIC. This interrupt can be used to wake up the ’C5x from IDLE. The host and
the ’C5x always read this bit as 0. A ’C5x write has no effect. Once a 1 is written
to DSPINT by the host, a 0 need not be written before another interrupt can
be generated, and writing a 0 to this bit has no effect. The host should not write
a 1 to the DSPINT bit while writing to BOB or HINT, or an unwanted ’C5x inter-
rupt is generated.

On the ’C5x, the host-to-’C5x interrupt vector address is 18h. This interrupt is
located in bit 11 of the IMR/IFR. Since the ’C5x interrupt vectors can be
remapped into the HPI memory, the host can instruct the ’C5x to execute
preprogrammed functions by simply writing the start address of a function to
address 19h in the HPI memory prior to interrupting the ’C5x with a branch
instruction located at address 18h.
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Host Port Interface (’C5x) Using HINT to Interrupt the Host Device

When the ’C5x writes a 1 to the HINT bit in HPIC, the HINT output is driven low;
the HINT bit is then read as a 1 by the ’C5x or the host. The HINT signal can
be used to interrupt the host device. The host device, after detecting the HINT
interrupt line, can acknowledge and clear the ’C5x interrupt and the HINT bit
by writing a 1 to the HINT bit. The HINT bit is cleared and then read as a 0 by
the ’C5x or the host, and the HINT pin is driven high. If the ’C5x or the host
writes a 0, the HINT bit remains unchanged. While accessing the SMOD bit,
the ’C5x should not write a 1 to the HINT bit unless it also wants to interrupt
the host.

9.10.5 Considerations in Changing HPI Memory Access Mode (SAM/HOM) and
IDLE2 Use

The HPI host-only mode (HOM) allows the host to access HPI RAM while the
’C5x is in IDLE2 (that is, completely halted). Additionally, the external clock
input to the ’C5x can be stopped for the lowest power consumption configura-
tion. Under these conditions, random accesses can still be made without hav-
ing to restart the external clock for each access and wait for its lockup time if
the ’C5x on-chip PLL is used. The external clock need only be restarted before
taking the ’C5x out of IDLE2.

The host cannot access HPI RAM in SAM when the ’C5x is in IDLE2, because
CPU clocks are required for access in this mode of operation. Therefore, if the
host requires access to the HPI RAM while the ’C5x is in IDLE2, the ’C5x must
change HPI mode to HOM before entering IDLE2. When the HPI is in HOM,
the ’C5x can access HPIC to toggle the SMOD bit or send an interrupt to the
host, but cannot access the HPI RAM block; a ’C5x access to the HPI RAM is
disregarded in HOM. In order for the ’C5x to again access the HPI RAM block,
HPI mode must be changed to SAM after exiting IDLE2.

To select HOM, a 0 must be written to the SMOD bit in HPIC. To select SAM,
a 1 must be written to SMOD. When changing between HOM and SAM, two
considerations must be met for proper operation. First, the instruction immedi-
ately following the one that changes from SAM to HOM must not be an IDLE2.
This is because in this case, due to the ’C5x pipeline and delays in the SAM
to HOM mode switch, the IDLE2 takes effect before the mode switch occurs,
causing the HPI to remain in SAM; therefore, no host accesses can occur.

The second consideration is that when changing from HOM to SAM, the
instruction immediately following the one that changes from HOM to SAM can-
not read the HPI RAM block. This requirement is due to the fact that the mode
has not yet changed when the HPI RAM read occurs and the RAM read is
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ignored because the mode switch has not yet occurred. HPI RAM writes are
not included in this restriction because these operations occur much later in
the pipeline, so it is possible to write to HPI RAM in the instruction following the
one which changes from HOM to SAM.

On the host side, there are no specific considerations associated with the
mode changes. For example, it is possible to have a third device wake up the
’C5x from IDLE2 and the ’C5x changing to SAM upon wake-up without a soft-
ware handshake with the host. The host can continue accessing while the HPI
mode changes. However, if the host accesses the HPI RAM while the mode
is being changed, the actual mode change will be delayed until the host access
is completed. In this case, a ’C5x access to the HPI memory is also delayed.

Table 9–33 illustrates the sequence of events involved in entering and exiting
an IDLE2 state on the ’C5x when using the HPI. Throughout the process, the
HPI is accessible to the host.

Table 9–33. Sequence of Entering and Exiting IDLE2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Host or Other Device
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

’C5x
ÁÁÁÁ
ÁÁÁÁ

Mode
ÁÁÁÁÁ
ÁÁÁÁÁ

’C5x clock
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁSwitches mode to HOM

ÁÁÁÁ
ÁÁÁÁHOM

ÁÁÁÁÁ
ÁÁÁÁÁRunningÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Executes a NOP
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HOM
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Running

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Executes IDLE2 instruction ÁÁÁÁ
ÁÁÁÁ

HOM ÁÁÁÁÁ
ÁÁÁÁÁ

Running

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

May stop DSP clock ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

In IDLE2 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HOM ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Stopped

or running
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Turns on DSP clock if it
was stopped†

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

In IDLE2
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HOM
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Running

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Sends an interrupt to
DSP

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

In IDLE2
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HOM
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Running

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

’C5x wakes up from IDLE2
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HOM
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Running

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

’C5x switches mode to SAMÁÁÁÁ
ÁÁÁÁ

SAM ÁÁÁÁÁ
ÁÁÁÁÁ

Running

† Sufficient wake-up time must be ensured when the ’C5x on-chip PLL is used.

9.10.6 Access of HPI Memory During Reset

The ’C5x is not operational during reset, but the host can access the HPI,
allowing program or data downloads to the HPI memory. When this capability
is used, it is often convenient for the host to control the ’C5x reset input. The
sequence of events for resetting the ’C5x and downloading a program to HPI
memory while the ’C5x is in reset is summarized in Table 9–34 and corre-
sponds to the reset of the ’C5x.
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Initially, the host stops accessing the HPI at least six ’C5x periods before driv-
ing the ’C5x reset line low. The host then drives the ’C5x reset line low and can
start accessing the HPI after a minimum of four ’C5x periods. The HPI mode
is automatically set to HOM during reset, allowing high-speed program down-
load. The ’C5x clock can even be stopped at this time; however, the clock must
be running when the reset line falls and rises for proper reset operation of the
’C5x.

Once the host has finished downloading into HPI memory, the host stops
accessing the HPI and drives the ’C5x reset line high. At least 20 ’C5x periods
after the reset line rising edge, the host can again begin accessing the HPI.
This number of periods corresponds to the internal reset delay of the ’C5x. The
HPI mode is automatically set to SAM upon exiting reset.

On the ’C5x, the RAM and OVLY bits must be set to 1 after reset for the HPI
memory to be mapped into ’C5x program and data space, as with other single-
access RAM blocks. The host, however, can access the HPI memory regard-
less of the status of these two bits. Also, if the host writes a 1 to DSPINT while
the ’C5x is in reset, the interrupt is lost when the ’C5x comes out of reset. The
’C5x warm boot can use the HPI memory and start execution from the lowest
HPI address.

Table 9–34. HPI Operation During RESET

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Host ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

’C5x ÁÁÁÁ
ÁÁÁÁ

ModeÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

’C5x clock
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Waits 6 ’C5x clock periods ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Running ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Running
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁBrings RESET low and waits 4 clocks

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁGoes into reset

ÁÁÁÁ
ÁÁÁÁHOM

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁRunningÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Can stop ’C5x clock
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

In reset
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HOM
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Stopped or Running

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Writes program and/or data in HPI memory ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

In reset ÁÁÁÁ
ÁÁÁÁ

HOMÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Stopped or Running

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Turns on DSP clock if it was stopped† ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

In reset
ÁÁÁÁ
ÁÁÁÁ

HOM
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Running
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Brings RESET high
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

In reset
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

HOM
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Running

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Waits 20 ’C5x clock periods ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Comes out of resetÁÁÁÁ
ÁÁÁÁ

SAMÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Running

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Can access HPI ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Running ÁÁÁÁ
ÁÁÁÁ

SAMÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Running

† Sufficient wake-up time must be ensured when the ’C5x on-chip PLL is used.
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Appendix A

Pinouts and Signal Descriptions

The TMS320C5x DSPs are available in a 100-pin quad flat-pack (QFP),
100-pin thin quad flat-pack (TQFP), 128-pin TQFP, 132-pin bumpered quad
flat-pack (BQFP), and 144-pin TQFP packages. All packages conform to
JEDEC specifications for electrical/electronic components. Refer to the
figures and tables in this appendix for the pin/signal assignments of the differ-
ent packages. Also, this appendix presents a table of signal definitions.
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A.1 100-Pin QFP Pinout (’C52) A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A.2 100-Pin TQFP Pinout (’C51, ’C52, ’C53S, and ’LC56) A-4. . . . . . . . . . . . . . 
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A.1 100-Pin QFP Pinout (’C52)

Refer to Figure A–1 and Table A–1 for pin/signal assignments of the ’C52 in
the 100-pin QFP package.

Figure A–1. Pin/Signal Assignments for the ’C52 in 100-Pin QFP
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Note: NC These pins are not connected (reserved).
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Table A–1. Signal/Pin Assignments for the ’C52 in 100-Pin QFP

Signal Pin Signal Pin Signal Pin Signal Pin

A0 30 D6 6 R/W 57 VSSI 69

A1 31 D7 5 STRB 58 VSSI 66

A2 32 D8 1 TCK 16 VSSI 65

A3 33 D9 100 TDI 41 VSSI 92

A4 34 D10 99 TDO 64 VSSI 25

A5 35 D11 98 TMS 13 WE 52

A6 36 D12 97 TOUT 82 X1 62

A7 37 D13 96 TRST 91 X2/CLKIN1 61

A8 38 D14 95 VDDA 28 XF 73

A9 39 D15 94 VDDA 50 † 71

A10 44 DR 24 VDDC 78

A11 45 DS 54 VDDC 77

A12 46 DX 70 VDDC 63

A13 47 EMU0 79 VDDD 2

A14 48 EMU1/OFF 80 VDDD 14

A15 49 FSR 26 VDDD 15

BR 59 FSX 68 VDDI 40

BIO 90 HOLD 89 VDDI 75

CLKIN2 60 HOLDA 72 VDDI 76

CLKMD1 43 INT1 19 VSSA 42

CLKMD2 67 INT2 20 VSSA 29

CLKOUT1 74 INT3 21 VSSC 53

CLKR 27 INT4 22 VSSC 81

CLKX 84 IS 55 VSSD 3

D0 12 MP/MC 93 VSSD 4

D1 11 NMI 23 VSSD 17

D2 10 PS 56 VSSD 18

D3 9 READY 88 VSSI 83

D4 8 RD 51 VSSI 85

D5 7 RS 87 VSSI 86

† This pin is not connected (reserved).
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A.2 100-Pin TQFP Pinout (’C51, ’C52, ’C53S, and ’LC56)

Refer to Figure A–2 and Table A–2 for pin/signal assignments of the ’C51,
’C52, ’C53S, and ’LC56 in the 100-pin TQFP package. Table A–6 on page
A-12 lists device-specific pin/signal assignments for the ’C51, ’C52, ’C53S,
and ’LC56.

Figure A–2. Pin/Signal Assignments for the ’C51, ’C52, ’C53S, and ’LC56 in 100-Pin
TQFP
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Note: *  These pins are reserved for specific devices (see Table A–6 on page A-12).
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Table A–2. Signal/Pin Assignments for the ’C51, ’C52, ’C53S, and ’LC56 in 100-Pin TQFP

Signal Pin Signal Pin Signal Pin Signal Pin

A0 52 D9 23 VDDA 50 * 8

A1 53 D10 22 VDDA 73 * 46

A2 54 D11 21 VDDC 86 * 47

A3 55 D12 20 VDDC 100 * 48

A4 56 D13 19 VDDD 25 * 49

A5 57 D14 18 VDDD 37 * 83

A6 58 D15 17 VDDI 62 * 91

A7 59 DS 77 VDDI 98 * 92

A8 60 EMU0 1 VDDI 99 * 93

A9 61 EMU1/OFF 2 TOUT 4 * 94

A10 67 HOLD 11 VSSA 65

A11 68 HOLDA 95 VSSA 64

A12 69 INT1 41 VSSA 51

A13 70 INT2 42 VSSC 3

A14 71 INT3 43 VSSC 76

A15 72 INT4 44 VSSD 26

BR 82 IS 78 VSSD 27

BIO 12 MP/MC 16 VSSD 39

CLKMD1 66 NMI 45 VSSD 40

CLKMD2 90 PS 79 VSSI 14

CLKOUT1 97 READY 10 VSSI 15

D0 35 RD 74 VSSI 88

D1 34 RS 9 VSSI 89

D2 33 R/W 80 WE 75

D3 32 STRB 81 X1 85

D4 31 TCK 38 X2/CLKIN 84

D5 30 TDI 63 XF 96

D6 29 TDO 87 * 5

D7 28 TMS 36 * 6

D8 24 TRST 13 * 7

Legend: *  These pins are reserved for specific devices (see Table A–6 on page A-12).
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A.3 128-Pin TQFP Pinout (’LC57)

Refer to Figure A–3 and Table A–3 for pin/signal assignments of the ’LC57 in
the 128-pin TQFP package.

Figure A–3. Pin/Signal Assignments for the ’LC57 in 128-Pin TQFP
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Table A–3. Signal/Pin Assignments for the ’LC57 in 128-Pin TQFP

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin

A0 67 CLKX 8 HD1 95 TDO 111 VSSD 50

A1 68 D0 42 HD2 99 TMS 44 VSSI 20

A2 69 D1 41 HD3 105 TOUT 6 VSSI 21

A3 70 D2 40 HD4 114 TRST 19 VSSI 112

A4 71 D3 39 HD5 116 VDDC 9 VSSI 113

A5 72 D4 38 HD6 118 VDDA 91 WE 96

A6 73 D5 37 HD7 120 VDDA 63 X1 109

A7 74 D6 36 HDS1 80 VDDA 62 XF 124

A8 75 D7 35 HDS2 79 VDDC 16

A9 76 D8 30 HINT 1 VDDC 17

A10 85 D9 29 HOLD 14 VDDC 110

A11 86 D10 28 HOLDA 123 VDDC 128

A12 87 D11 27 HRDY 92 VDDD 31

A13 88 D12 26 HR/W 51 VDDD 32

A14 89 D13 25 IAQ 18 VDDD 46

A15 90 D14 24 INT1 52 VDDD 47

BCLKR 11 D15 23 INT2 53 VDDI 77

BCLKX 7 DR 58 INT3 54 VDDI 78

BDR 59 DS 100 INT4 55 VDDI 126

BDX 122 DX 121 IS 101 VDDI 127

BFSR 10 EMU0 2 MP/MC 22 VSSA 66

BFSX 119 EMU1/OFF 3 NMI 57 VSSA 82

BIO 15 FSR 60 PS 102 VSSA 83

BR 106 FSX 117 RD 94 VSSC 4

X2/CLKIN 108 HAS 64 READY 13 VSSC 5

CLKMD1 84 HBIL 56 RS 12 VSSC 97

CLKMD2 115 HCNTL0 43 R/W 103 VSSC 98

CLKMD3 107 HCNTL1 45 STRB 104 VSSD 33

CLKOUT1 125 HCS 65 TCK 48 VSSD 34

CLKR 61 HD0 93 TDI 81 VSSD 49
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A.4 132-Pin BQFP Pinout (’C50, ’C51, and ’C53)

Refer to Figure A–4 and Table A–4 for pin/signal assignments of the ’C50,
’C51, and ’C53 in the 132-pin BQFP package.

Figure A–4. Pin/Signal Assignments for the ’C50, ’C51, and ’C53 in 132-Pin BQFP
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Table A–4. Signal/Pin Assignments for the ’C50, ’C51, and ’C53 in 132-Pin BQFP

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin

A0 55 D6 24 RD 82 VDDI 65 � 51

A1 56 D7 23 RS 127 VDDI 66 � 52

A2 57 D8 13 R/W 92 VSSA 53 � 70

A3 58 D9 12 STRB 93 VSSA 54 � 78

A4 59 D10 11 TCK 34 VSSA 68 � 79

A5 60 D11 10 TCLKR 126 VSSA 69 � 84

A6 61 D12 9 TCLKX 123 VSSC 86 � 85

A7 62 D13 8 TDI 67 VSSC 87 � 88

A8 63 D14 7 TDO 100 VSSC 121 � 111

A9 64 D15 6 TDR 44 VSSC 120 � 115

A10 72 DR 43 TDX 107 VSSD 20 � 116

A11 73 DS 89 TMS 31 VSSD 21 � 117

A12 74 DX 106 TOUT 122 VSSD 35

A13 75 EMU0 118 TRST 2 VSSD 36

A14 76 EMU1/OFF 119 TFSR/TADD 125 VSSI 3

A15 77 FSR 45 TFSX/TFRM 105 VSSI 4

BR 94 FSX 104 VDDC 131 VSSI 101

BIO 130 HOLD 129 VDDC 132 VSSI 102

CLKIN2 95 HOLDA 108 VDDA 47 WE 83

CLKMD1 71 IACK 112 VDDA 48 X1 97

CLKMD2 103 IAQ 1 VDDA 80 X2/CLKIN 96

CLKOUT1 110 INT1 38 VDDA 81 XF 109

CLKR 46 INT2 39 VDDC 98 � 16

CLKX 124 INT3 40 VDDC 99 � 17

D0 30 INT4 41 VDDD 14 � 18

D1 29 IS 90 VDDD 15 � 19

D2 28 MP/MC 5 VDDD 32 � 22

D3 27 NMI 42 VDDD 33 � 37

D4 26 PS 91 VDDI 113 � 49

D5 25 READY 128 VDDI 114 � 50

† These pins are not connected (reserved).
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A.5 144-Pin TQFP Pinout (’C57S)

Refer to Figure A–5 and Table A–5 for pin/signal assignments of the ’C57S in
the 144-pin TQFP package.

Figure A–5. Pin/Signal Assignments for the ’C57S in 144-Pin TQFP
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Note: NC These pins are not connected (reserved).
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Table A–5. Signal/Pin Assignments for the ’C57S in 144-Pin TQFP

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin

A0 75 CLKX 9 HD0 105 TCK 54 VSSD 37

A1 76 D0 48 HD1 107 TDI 91 VSSD 38

A2 77 D1 47 HD2 111 TDO 126 VSSD 55

A3 79 D2 46 HD3 118 TMS 50 VSSD 56

A4 80 D3 44 HD4 129 TOUT 7 VSSI 22

A5 81 D4 43 HD5 131 TRST 21 VSSI 23

A6 82 D5 42 HD6 133 VDDA 69 VSSI 127

A7 84 D6 40 HD7 135 VDDA 70 VSSI 128

A8 85 D7 39 HDS1 90 VDDA 103 WE 108

A9 86 D8 34 HDS2 89 VDDC 10 X1 123

A10 95 D9 32 HINT 1 VDDC 18 X2/CLKIN 122

A11 96 D10 31 HOLD 15 VDDC 19 XF 139

A12 98 D11 30 HOLDA 138 VDDC 124 � 3

A13 99 D12 29 HRDY 104 VDDC 144 � 16

A14 100 D13 27 HR/W 58 VDDD 35 � 28

A15 102 D14 26 IAQ 20 VDDD 36 � 33

BCLKR 12 D15 25 INT1 59 VDDD 52 � 41

BCLKX 8 DR 65 INT2 60 VDDD 53 � 45

BDR 66 DS 112 INT3 61 VDDI 87 � 57

BDX 137 DX 136 INT4 62 VDDI 88 � 72

BFSR 11 EMU0 2 IS 113 VDDI 142 � 78

BFSX 134 EMU1/OFF 4 MP/MC 24 VDDI 143 � 83

BIO 17 FSR 67 NMI 64 VSSA 74 � 97

BR 119 FSX 132 PS 114 VSSA 92 � 101

CLKMD1 94 HAS 71 RD 106 VSSA 93 � 117

CLKMD2 130 HBIL 63 READY 14 VSSC 5 � 120

CLKMD3 121 HCNTL0 49 RS 13 VSSC 6 � 125

CLKOUT1 140 HCNTL1 51 R/W 115 VSSC 109 � 141

CLKR 68 HCS 73 STRB 116 VSSC 110

† These pins are not connected (reserved).
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A.6 100-Pin TQFP Device-Specific Pinouts

Table A–6 lists device-specific pin/signal assignments for the ’C51, ’C52,
’C53S, and ’LC56 in the 100-pin TQFP package. Refer to Figure A–2 on page
A-4 and Table A–2 on page A-5 for common pin/signal assignments of the
’C51, ’C52, ’C53S, and ’LC56.

Table A–6. Device-Specific Pin/Signal Assignments for the ’C51, ’C52, ’C53S, and ’LC56
in 100-Pin TQFP

Pin ’C51 ’C52 ’C53S ’LC56†

5 TCLKX VSSI CLKX2 BCLKX

6� CLKX CLKX CLKX1 CLKX

7 TFSR/TADD VSSI FSR2 BFSR

8 TCLKR VSSI CLKR2 BCLKR

46� DR DR DR1 DR

47 TDR VSSI DR2 BDR

48� FSR FSR FSR1 FSR

49� CLKR CLKR CLKR1 CLKR

83 CLKIN2 CLKIN2 CLKIN2 CLKMD3

91� FSX FSX FSX1 FSX

92 TFSX/TFRM VSSI FSX2 BFSX

93� DX DX DX1 DX

94 TDX NC§ DX2 BDX

† Pin names beginning with B indicate signals on the buffered serial port (BSP).
‡ No change in function.
§ NC = These pins are not connected (reserved).
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A.7 Signal Descriptions

Table A–7 through Table A–18 list each signal, specifies the signal’s operating
state(s), and describes the signal’s function.

Table A–7. Address and Data Bus Signal Descriptions

Signal State Description

A15  (MSB)
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0  (LSB)

I/O/Z Parallel, bidirectional, 3-state address bus A15 (MSB) through A0 (LSB).  Multi-
plexed to address external data/program memory or I/O. Placed in high-impedance
state in hold mode or when OFF � is active (low). These signals are used as inputs
for external DMA access of the on-chip single-access RAM. They become inputs
while HOLDA is active low, if the BR pin is externally driven low.

D15  (MSB)
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0  (LSB)

I/O/Z Parallel, bidirectional, 3-state data bus D15 (MSB) through D0 (LSB).  Multi-
plexed to transfer data between the core CPU and external data/program memory
or I/O devices. Placed in high-impedance state when not outputting, when RS or
HOLD is asserted, or when OFF � is active (low). These signals are also used in
external DMA access of the on-chip single-access RAM.

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor. The BR pin has an internal pullup
for performing DMA to the on-chip RAM.

Legend: I Input
O Output
Z High impedance
� The OFF signal, when active (low), puts all ’C5x output drivers into the high-impedance state.
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Table A–8. Memory Control Signal Descriptions

Signal State Description

DS
PS
IS

O/Z Data, program, and I/O space select signals.  Always high unless low level is
asserted for communicating to a particular external space. Placed into a high-impedance
state in hold mode or when OFF � is active (low).

RD O/Z Read select.  Indicates an active, external read cycle and may connect directly to the
output enable (OE) of external devices. This signal is active on all external program,
data, and I/O reads. It is placed into high-impedance state in hold mode or when
OFF � is active (low).

READY I Data ready input.  Indicates whether an external device is prepared for the bus trans-
action to be completed. If the device is not ready (READY is low), the processor waits
one cycle and checks READY again. READY also indicates a bus grant to an exter-
nal device after a BR (bus request) signal.

R/W I/O/Z Read/write signal.  Indicates transfer direction during communication to an external
device. Normally in read mode (high), unless low level is asserted for performing a
write operation. Placed in high-impedance state in hold mode or when OFF � is active
(low). R/W is also used in external DMA access of the on-chip RAM cell. While
HOLDA and IAQ are active (low), this signal indicates the direction of the data bus
for DMA reads (high) and writes (low).

STRB I/O/Z Strobe signal.  Always high unless asserted low to indicate an external bus cycle.
Placed in high-impedance state in the hold mode or when OFF � is active (low).
STRB is also used in external DMA access of the on-chip single-access RAM. While
HOLDA and IAQ are active (low), this signal is used to select the memory access.

WE O/Z Write enable.  The falling edge of this signal indicates that the device is driving the
external data bus (D15–D0). Data can be latched by an external device on the rising
edge of WE. This signal is active on all external program, data, and I/O writes. It is
placed into high-impedance state in hold mode or when OFF � is active (low).

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor. The BR pin has an internal pullup
for performing DMA to the on-chip RAM.

Legend: I Input
O Output
Z High impedance
� The OFF signal, when active (low), puts all ’C5x output drivers into the high-impedance state.
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Table A–9. Multiprocessing Signal Descriptions

Signal State Description

BIO I Branch control input.  Can be used to control a conditional branch instruction. BIO
is sampled during the fetch of the conditional branch instruction.

BR I/O/Z Bus request signal.  Asserted during access of external global data memory space.
READY is asserted to the device when the global data memory is available for the
bus transaction. BR can be used to extend the data memory address space by up
to 32K words. It goes into high impedance when OFF � is active (low). BR is used in
external DMA access of the on-chip single-access RAM. While HOLDA is active low,
BR is externally driven low to request access to the on-chip single-access RAM.

HOLD I Hold input.  This signal is asserted to request control of the address, data, and
control lines. When HOLDA is acknowledged by the ’C5x, these lines go to the high-
impedance state.

HOLDA O/Z Hold acknowledge signal.  Indicates to the external circuitry that the processor is
in a hold state. At the same time, the address, data, and memory control lines are in
a high-impedance state so that they are available to the external circuitry for access
of local memory. This signal also goes into high impedance when OFF � is active
(low).

IACK O/Z Interrupt acknowledge signal.  Indicates receipt of an interrupt and that the
program counter is fetching the interrupt vector location designated by A15–A0. This
signal goes into high impedance when OFF � is active (low).

IAQ O/Z Instruction acquisition signal.  This signal is asserted (active) when there is an
instruction address on the address bus. This signal goes into high impedance when
OFF � is active (low). IAQ is also used in external DMA access of the on-chip single-
access RAM. While HOLDA is active low, IAQ acknowledges the BR request for
access of the on-chip single-access RAM and stops indicating instruction acquisi-
tion.

XF O/Z External flag output  (latched software-programmable signal). This signal is set high
or low by specific instructions or by loading status register 1 (ST1). XF can be used
for signaling other processors in multiprocessor configurations or as a general-
purpose output pin. This signal also goes into high impedance when OFF � is active
(low). This pin is set high at reset.

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor. The BR pin has an internal pullup
for performing DMA to the on-chip RAM.

Legend: I Input
O Output
Z High impedance
� The OFF signal, when active (low), puts all ’C5x output drivers into the high-impedance state.
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Table A–10. Initialization, Interrupt, and Reset Operations Signal Descriptions

Signal State Description

INT4
INT3
INT2
INT1

I External user interrupt inputs.  Prioritized and maskable by the interrupt mask reg-
ister (IMR) and interrupt mode (INTM) bit in status register 0 (ST0). Can be polled and
reset via the interrupt flag register (IFR).

MP/MC I Microprocessor/microcomputer mode select pin.  If active (low) at reset (micro-
computer mode), the pin causes the internal program ROM to be mapped into
program memory space. In the microprocessor mode, all program memory is
mapped externally. This pin is sampled only during reset, and the mode is set at reset.
The mode can be overridden via the software control bit MP/MC in the PMST register.

NMI I Nonmaskable interrupt.  External interrupt that cannot be masked via the IMR or the
INTM bit in ST0. When NMI is activated, the processor traps to the appropriate vector
location.

RS I Reset input.  Causes the device to terminate execution and forces the program
counter to 0. When RS is brought to a high level, execution begins at location 0h of
program memory. RS affects various registers and status bits.

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor.
Legend: I Input

Table A–11. Supply Signal Descriptions

Signal State Description

VDDA S Power supply for address bus.

VDDC S Power supply for memory control signals.

VDDD S Power supply for data bus.

VDDI S Power supply for inputs and internal logic.

VSSA S Ground for address bus.

VSSC S Ground for memory control signals.

VSSD S Ground for data bus.

VSSI S Ground for inputs and internal logic.

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor.
Legend: S Supply
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Table A–12. Oscillator/Timer Signal Descriptions

Signal State Description

CLKIN2† I External clock input.  Divide-by-1 input clock for driving the internal machine rate.
PLL clock input for ’C50, ’C51, ’C52, ’C53, and ’C53S.

CLKOUT1 O/Z Master clock output signal.  This signal cycles at the machine-cycle rate of the
CPU. The internal machine cycle is bounded by the rising edges of this signal. This
signal goes into high impedance when OFF � is active (low).

TOUT O Timer output.  This pin issues a pulse when the on-chip timer counts down past zero.
The pulse is a CLKOUT1 cycle wide.

X1 O Internal oscillator output.  Output pin from the internal oscillator for the crystal. If
the internal oscillator is not used, this pin should be left unconnected. This signal
does not go into high impedance when OFF � is active (low).

X2/CLKIN I External clock input.  Input pin to internal oscillator from the crystal. If the internal
oscillator is not being used, a clock may be input to the device on this pin. PLL clock
input for ’LC56, ’C57S, and ’LC57.

CLKMD1 I Clock mode input.  Input pin to determine clock mode. Refer to Table A–13 and
Table A–14 for the clock options.

CLKMD2 I Clock mode input.  Input pin to determine clock mode. Refer to Table A–13 and
Table A–14 for the clock options.

CLKMD3§ I Clock mode input.  Input pin to determine clock mode. Refer to Table A–14 for the
clock options.

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor.
Legend: I Input

O Output
Z High impedance
� This pin is not available on the ’LC56, ’C57S, and ’LC57 devices.
� The OFF signal, when active (low), puts all ’C5x output drivers into the high-impedance state.
§ This pin is not available on the ’C50, ’C51, ’C52, ’C53, and ’C53S devices.
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Table A–13. Oscillator/Timer Standard Options (’C50, ’C51, C52, ’C53, and ’C53S Only)

Signal State CLKMD1 CLKMD2 Clock Mode

CLKMD1
CLKMD2

I 0 0 � PLL disabled
� Internal oscillator disabled
� Input clock provided to X2/CLKIN pin
� External clock with divide-by-2 option

0 1 � Reserved for test purposes

1 0 � PLL enabled
� Internal oscillator disabled
� Input clock provided to CLKIN2 pin
� External clock option:

For ’C50, ’C51, ’C53, and ’C53S: multiply-by-1 option
For ’C52: multiply-by-2 option

1 1 � PLL disabled
� Internal oscillator enabled
� Input clock provided to X2/CLKIN pin
� Internal or external divide-by-2 option

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor.
Legend: I Input



Signal Descriptions

A-19Pinouts and Signal Descriptions

Table A–14. Oscillator/Timer Expanded Options (’LC56, ’C57S, and ’LC57 Only)

Signal State CLKMD1 CLKMD2 CLKMD3 Clock Mode

CLKMD1
CLKMD2
CLKMD3

I 0 0 0 � PLL enabled
� Internal oscillator disabled
� External multiply-by-3 option

0 0 1 � Internal oscillator disabled
� External divide-by-2 option

0 1 0 � PLL enabled
� Internal oscillator disabled
� External multiply-by-4 option

0 1 1 � PLL enabled
� Internal oscillator disabled
� External multiply-by-2 option

1 0 0 � PLL enabled
� Internal oscillator disabled
� External multiply-by-5 option

1 0 1 � PLL enabled
� Internal oscillator disabled
� External multiply-by-1 option

1 1 0 � PLL enabled
� Internal oscillator disabled
� External multiply-by-9 option

1 1 1 � Internal oscillator enabled
� External/internal divide-by-2 option

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor.
Legend: I Input
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Table A–15. Serial Port Interface Signal Descriptions

Signal State Description

CLKR
CLKR1
CLKR2
TCLKR

I Receive clock signal.  External clock signal for clocking data into the data receive
shift register (RSR) from the data receive pin(s):
� ’C50, ’C51, or  ’C53: pins DR or TDR.
� ’C53S: pins DR1 or DR2.
� ’C51, ’C52, ’LC56, ’C57S, or ’LC57: pin DR.

The receive clock signal must be present during serial port transfers. If the serial port
is not being used, the pin(s) can be sampled as an input via the IN0 bit in the serial
port control register (SPC and/or TSPC).

CLKX
CLKX1
CLKX2
TCLKX

I/O/Z Transmit clock signal.  Clock signal for clocking data from the data transmit shift reg-
ister (XSR) to the data transmit pin(s):
� ’C50, ’C51, or ’C53: pins DX or TDX.
� ’C53S: pins DX1 or DX2.
� ’C51, ’C52, ’LC56, ’C57S, or ’LC57: pin DX.

The clock signal can be an input if the MCM bit in the SPC (TSPC) is cleared. This
pin may also be driven by the device at 1/4 the CLKOUT1 frequency when the MCM
bit is set. If the serial port is not being used, the pin(s) can be sampled as an input
via the IN1 bit in the SPC (and/or TSPC). The signal(s) go into high impedance when
the OFF � signal is active (low).

DR
DR1
DR2
TDR

I Received serial data.  The RSR receives serial data through this input pin.

DX
DX1
DX2
TDX

 O/Z Transmitted serial data.  The XSR transmits serial data through this pin. This pin is
placed in a high-impedance state when not transmitting and also when the OFF � sig-
nal is active (low).

FSR
FSR1
FSR2
TFSR/
TADD

I/O/Z Receive frame synchronization.  The falling edge of these pulses initiates the data
receive process, beginning the clocking of the RSR. TFSR becomes an input/output
(TADD) pin when the ’C50, ’C51, and the ’C53 are operating in TDM mode (TDM
bit=1). In TDM mode, this pin is used to output/input the address of the port. This sig-
nal goes into high impedance when OFF � is active (low).

FSX
FSX1
FSX2
TFSX/
TFRM

I/O/Z Transmit frame synchronization.  The falling edge of these pulses initiates the data
transmit process, beginning the clocking of the XSR. Following reset, the default op-
erating condition of these pulses is an input. This pin can be selected by software to
be an output when the TXM bit in the SPC (TSPC) is set. This signal goes into high
impedance when the OFF ��signal is active (low). When the ’C50, ’C51, and ’C53
are operating in the TDM mode (TDM bit=1), the TFSX pin becomes TFRM (TDM
frame synch).

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor.
Legend: I Input

O Output
Z High impedance
� The OFF signal, when active (low), puts all ’C5x output drivers into the high-impedance state.
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Table A–16. Buffered Serial Port Interface Signal Descriptions (’LC56 and ’C57 Only)

Signal State Description

BCLKR I Receive clock signal.  External clock signal for clocking data into the data receive
shift register (BRSR) from the data receive (BDR) pin. Data is clocked on the falling
edge of BCLKR, if the CLKP bit in the BSP control extension register (SPCE) is
cleared; data is clocked on the rising edge of BCLKR, if the CLKP bit is set. If the serial
port is not used, this pin can be sampled as an input via the IN0 bit in the SPC.

BCLKX I/O/Z Transmit clock signal.  Clock signal for clocking data from the data transmit shift reg-
ister (BXSR) to the data transmit (BDX) pin. Data is clocked on the rising edge of
CLKX, if the CLKP bit in the SPCE is cleared; data is clocked on the falling edge of
CLKX, if the CLKP bit is set. CLKX can be an input if the MCM bit in the BSP control
register (BSPC) is cleared. When the MCM bit of BSPC is set to 1, CLKX is driven
by an on-chip source having a frequency equal to 1/(CLKDV+1) of CLKOUT. CLKDV
value is defined in SPCE. When CLKDV is odd or equal to 0, the CLKX duty cycle
is 50%. When CLKDV is an even value (CLKDV=2p), the CLKX high and low state
durations depend on CLKP. When CLKP is 0, the high state duration is p+1 cycles
and the low state duration is p cycles; when CLKP is 1, the high state duration is p
cycles and the low state duration is p+1 cycles. Following device reset, the default
operating condition of CLKX is an input. If the serial port is not used, this pin can be
sampled as an input via the IN1 bit in the SPC.

BDR I Received serial data.  The BRSR receives serial data through this input pin.

BDX O/Z Transmitted serial data.  The BXSR transmits serial data through this pin. This pin
is placed in a high-impedance state when not transmitting and also when the OFF �

signal is active (low).

BFSR O Receive frame synchronization.  This signal initiates the data receive process.
Upon reset, BFSR is active high. BFSR can be configured as active low by setting
the FSP bit in the SPCE.

BFSX I/O/Z Transmit frame synchronization.  This signal initiates the data transmit process.
Upon reset, BFSX is an input signal. BFSX can be configured as an output by setting
the TXM bit in the SPC. Upon reset, BFSX is active high. BFSX can be configured
as active low by setting the FSP bit in the SPCE.

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor.
Legend: I Input

O Output
Z High impedance
� The OFF signal, when active (low), puts all ’C5x output drivers into the high-impedance state.
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Table A–17. Host Port Interface Signal Descriptions (’C57 Only) 

Signal State Description

HAS I Address strobe input. Hosts with a multiplexed address and data bus connect HAS
to their ALE pin or equivalent. HBIL, HCNTL0/1, and HR/W are then latched on HAS
falling edge. When used, HAS must precede the later of HCS, HDS1, or HDS2 (see
’C5x data sheet for detailed HPI timing specifications). Hosts with separate address
and data bus can connect HAS to a logic-1 level. In this case, HBIL, HCNTL0/1, and
HR/W are latched by the later of HDS1, HDS2, or HCS falling edge while HAS stays
inactive (high).

HBIL I Byte identification input.  Identifies first or second byte of transfer (but not most sig-
nificant or least significant — this is specified by the BOB bit in the HPIC register, de-
scribed later in this section). HBIL is low for the first byte and high for the second byte.

HCNTL0
HCNTL1

I Control inputs.  Indicates type of host access to the HPI address register (HPIA), the
HPI data latches (with optional address increment), or the HPI control register (HPIC).

HCNTL1 HCNTL0 Description

0 0 Host can read or write the HPIC.

0 1 Host can read or write the HPI data latches.
� HPIA postincremented when data is read
� HPIA preincremented when data is written

1 0 Host can read or write the HPIA.
� HPIA points to the HPI memory.
� DSP does not have access to the HPIA.

1 1 Host can read or write the HPI data latches. HPIA is not
affected.

HCS I Chip select input.  Serves as the enable input for the HPI and must be low during
an access but may stay low between accesses. HCS normally precedes HDS1 and
HDS2, but this signal also samples HCNTL0/1, HR/W, and HBIL if HAS is not used
and HDS1 or HDS2 are already low.

HD7 (MSB)
HD6
HD5
HD4
HD3
HD2
HD1
HD0 (LSB)

I/O/Z Parallel, bidirectional, 3-state data bus. HD7 (MSB) through HD0 (LSB) are
placed in high-impedance state when not outputting (HDSx and HCS = 1) or when
OFF � is active (low).

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor.
Legend: I Input

O Output
Z High impedance
S Supply
� The OFF signal, when active (low), puts all ’C5x output drivers into the high-impedance state.
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Table A–17. Host Port Interface Signal Descriptions (’C57 Only) (Continued)

Signal DescriptionState

HDS1
HDS2

I Data strobe input.  Control transfer of data during host access cycles. Also, when
HAS is not used, used to sample HBIL, HCNTL0/1, and HR/W when HCS is already
low (which is the case in normal operation). Hosts with separate read and write
strobes connect those strobes to either HDS1 or HDS2. Hosts with a single data
strobe connect it to either HDS1 or HDS2, connecting the unused pin high. Regard-
less of HDS connections, HR/W is still required to determine direction of transfer. Be-
cause HDS1 and HDS2 are internally exclusive-NORed, hosts with a high true data
strobe can connect this to one of the HDS inputs with the other HDS input connected
low.

HINT O/Z Host interrupt.  Controlled by the HINT bit in the HPIC. This pin driven high when the
’C5x is being reset. Placed in high impedance when OFF � is active (low).

HRDY O/Z HPI ready output.  When high, indicates that the HPI is ready for a transfer to be per-
formed. When low, indicates that the HPI is busy completing the internal portion of
the previous transaction. Placed in high impedance when OFF � is active (low). HCS
enables HRDY; that is, HRDY is always high when HCS is high.

HR/W I Read/write input.  Hosts must drive HR/W high to read HPI and low to write HPI.
Hosts without a R/W strobe can use an address line.

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor.
Legend: I Input

O Output
Z High impedance
S Supply
� The OFF signal, when active (low), puts all ’C5x output drivers into the high-impedance state.
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Table A–18. Emulation/Testing Signal Descriptions

Signal State Description

TCK I IEEE JTAG Standard 1149.1 test clock.  This is normally a free-running clock signal
with a 50% duty cycle. The changes on test access port (TAP) input signals (TMS
and TDI) are clocked into the TAP controller, instruction register, or selected test data
register on the rising edge of TCK. Changes at the TAP output signal (TDO) occur
on the falling edge of TCK.

TDI I IEEE JTAG Standard 1149.1 test data input.  TDI is clocked into the selected regis-
ter (instruction or data) on a rising edge of TCK.

TDO O/Z IEEE JTAG Standard 1149.1 test data output.  The contents of the selected register
(instruction or data) is shifted out of TDO on the falling edge of TCK. TDO is in the
high-impedance state except when it is scanning data. This signal also goes into high
impedance when OFF � is active low.

TMS I IEEE JTAG Standard 1149.1 test mode select.  This serial control input is clocked
into the TAP controller on the rising edge of TCK.

TRST I IEEE JTAG Standard 1149.1 test reset.  This signal, when active high, gives the
IEEE Standard 1149.1 scan system control of the operations of the device. If this sig-
nal is not connected or driven low, the device operates in its functional mode, and the
signals are ignored.

EMU0 I/O/Z Emulator pin 0.  When TRST is driven low, EMU0 must be high for activation of the
OFF condition. When TRST is driven high, EMU0 is used as an interrupt to or from
the emulator system. This pin is defined as input/output via IEEE Standard 1149.1
scan.

EMU1/OFF I/O/Z Emulator pin 1/disable all outputs.  When TRST is driven high, this pin is used as
an interrupt to or from the emulator system and is defined as input/output via IEEE
Standard 1149.1 scan. When TRST is driven low, this pin is configured as OFF. The
EMU1/ OFF signal, when active (low), puts all output drivers into the high-impedance
state. Note that OFF is used exclusively for testing and emulation purposes (not for
multiprocessing applications). Thus, for the OFF condition, the following conditions
must apply for at least 2 machine cycles:

� TRST= low
� EMU0=high
� EMU1/OFF=low

Note: Input pins that are unused may be connected to VDD or to an external pullup resistor. For emulation, TRST has an
internal pulldown, and TMS, TCK, and TDI have internal pullups. EMU0 and EMU1 require external pullups to support
emulation.

Legend: I Input
O Output
Z High impedance
� The OFF signal, when active (low), puts all ’C5x output drivers into the high-impedance state.
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Appendix A

Instruction Classes and Cycles

Instructions are classified into several categories, or classes, according to
cycles required. This appendix describes the instruction classes. Because a
single instruction can have multiple syntaxes and types of execution, it can
appear in multiple classes.

The tables in this appendix show the number of cycles required for a given ’C5x
instruction to execute in a given memory configuration when executed as a
single instruction.

Topic Page

B.1 Cycle Class-to-Instruction Set Summary B-2. . . . . . . . . . . . . . . . . . . . . . . . 

B.2 Instruction Set-to-Cycle Class Summary B-5. . . . . . . . . . . . . . . . . . . . . . . . 

Appendix B
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B.1 Cycle Class-to-Instruction Set Summary

Table B–1 provides a cycle class-to-instruction set cross reference. See
Table 6–2 on page 6-4 for definitions of symbols and abbreviations used in the
syntax expression.

Table B–1. Cycle Class-to-Instruction Set Summary 

Cycle class Cycle class description Mnemonic †

Class I‡ 1 word, 1 cycle, no memory
operands

ABS, ADCB , ADD #k, ADDB , ADRK #k, ANDB , APAC,
BSAR , CLRC, CMPL, CMPR, CRGT, CRLT, EXAR, IDLE,
IDLE2, LACB , LACL #k, MAR, MPY #k, NEG, NOP,
NORM, ORB, PAC, POP, PUSH, ROL, ROLB , ROR,
RORB, SACB , SATH, SATL , SBB , SBBB , SBRK #k,
SETC, SFL, SFLB , SFR, SFRB, SPAC, SPM, SUB #k, XC,
XORB, ZAP, ZPR

Class IIA‡ 1 word, 1 cycle, memory read
operand

ADD, ADDC, ADDS, ADDT, AND, BIT, BITT, CPL, LACC,
LACL, LACT, LPH, LT, LTA, LTP, LTS, MPY, MPYA, MPYS,
MPYU, OR, PSHD, RPT, SQRA, SQRS, SUB, SUBB,
SUBC, SUBS, SUBT, XOR, ZALR

Class IIB 1 word, 1 cycle, memory-
mapped register read

LAMM

Class III 2 words, 2 cycles, long-
immediate operand, no
memory access, not
repeatable

ADD #lk, AND #lk, LACC #lk, LAR ARn, #lk, MPY #lk,
OR #lk, RPT #lk, RPTB, RPTZ #lk, SUB #lk, XOR #lk

Class IVA 1 word, 1 cycle, memory write
operand

POPD, SACH, SACL, SAR, SPH, SPL, SST

Class IVB 1 word, 1 cycle, memory-
mapped register write

SAMM

Class V 1 word, 1 cycle, memory read
and write

APL , DMOV, LTD, OPL, XPL

Class VI 2 words, 2 cycles, memory
read and write

APL , OPL, XPL

Class VIIa 2 words, 2 cycles, memory
read operand

CPL #lk

Class VIIb 2 words, 2 cycles, memory
write operand, not repeatable

SPLK

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ ADD #k, ADRK #k, LACL #k, MPY #k, RPT, SBRK #k, SPM, SUB #k, and XC are not repeatable instructions.
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Table B–1. Cycle Class-to-Instruction Set Summary (Continued)

Cycle class Mnemonic †Cycle class description

Class VIII 2 words, 4 cycles program
counter discontinuity, no
delayed slots, not repeatable

B, BANZ, BCND, CALL, CC

Class IX 2 words, 2 cycles, program
counter discontinuity,
2 delayed slots, not repeatable

BANZD, BCNDD, BD, CALLD, CCD

Class X 1 word, 4 cycles, program
counter discontinuity, no
delayed slots, not repeatable

BACC, CALA, INTR, NMI, RET, RETC, RETE, RETI, TRAP

Class XI 1 word, 2 cycles, program
counter discontinuity,
2 delayed slots, not repeatable

BACCD, CALAD, RETCD, RETD

Class XII 2 words, 3 cycles, block data
transfer, data to data space

BLDD

Class XIII 1 word, 2 cycles, block data
transfer, data to data space

BLDD

Class XIV 2 words, 3 cycles, block data
transfer, program to data
space

BLPD

Class XV 1 word, 2 cycles, block data
transfer, program to data
space

BLPD

Class XVI 1 word, 2 cycles, block data
transfer, data to program
space

BLDP

Class XVII 1 word, 3 cycles, table read TBLR

Class XVIII 1 word, 3 cycles, table write TBLW

Class XIX 2 words, 3 cycles, multiply
accumulate

MAC

Class XX 1 word, 2 cycles, multiply
accumulate

MADS

Class XXI 2 words, 3 cycles, multiply
accumulate with data move

MACD

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ ADD #k, ADRK #k, LACL #k, MPY #k, RPT, SBRK #k, SPM, SUB #k, and XC are not repeatable instructions.
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Table B–1. Cycle Class-to-Instruction Set Summary (Continued)

Cycle class Mnemonic †Cycle class description

Class XXII 1 word, 2 cycles, multiply
accumulate with data move

MADD

Class XXIII 2 words, 2 cycles, memory-
mapped register load

LMMR

Class XXIV 2 words, 2 cycles, memory-
mapped register store

SMMR

Class XXV 2 words, 3 cycles, output port OUT

Class XXVI 2 words, 2 cycles, input port IN

Class XXVII 1 word, 2 cycles, pipeline-
protected, memory read

LAR, LDP, LST

Class XXVIII 1 word, 2 cycles, pipeline-
protected, memory read, not
repeatable

LAR ARn, #k; LDP #k

Class XXIIX 1 word, 2 cycles, no memory
access, not repeatable, pipe-
line protected

RPT #k

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
‡ ADD #k, ADRK #k, LACL #k, MPY #k, RPT, SBRK #k, SPM, SUB #k, and XC are not repeatable instructions.
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B.2 Instruction Set-to-Cycle Class Summary

Table B–2 provides an instruction set-to-cycle class cross reference. See
Table 6–2 on page 6-4 for definitions of symbols and abbreviations used in the
syntax expression.

Table B–2. Instruction Set-to-Cycle Class Summary 

Mnemonic † Cycle class Cycle class description Page

ABS Class I 1 word, 1 cycle, no memory operands 6-28

ADCB Class I 1 word, 1 cycle, no memory operands 6-30

ADD Class IIA 1 word, 1 cycle, memory read operand 6-31

ADD #k Class I 1 word, 1 cycle, no memory operands, not repeatable 6-31

ADD #lk Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-31

ADDB Class I 1 word, 1 cycle, no memory operands 6-35

ADDC Class IIA 1 word, 1 cycle, memory read operand 6-36

ADDS Class IIA 1 word, 1 cycle, memory read operand 6-38

ADDT Class IIA 1 word, 1 cycle, memory read operand 6-40

ADRK #k Class I 1 word, 1 cycle, no memory operands, not repeatable 6-42

AND Class IIA 1 word, 1 cycle, memory read operand 6-43

AND #lk Class III 2 words, 2 cycles long-immediate operand, no memory
access, not repeatable

6-43

ANDB Class I 1 word, 1 cycle, no memory operands 6-46

APAC Class I 1 word, 1 cycle, no memory operands 6-47

APL Class V 1 word, 1 cycle, memory read and write 6-48

APL Class VI 2 words, 2 cycles, memory read and write 6-48

B Class VIII 2 words, 4 cycles program counter discontinuity, no
delayed slots, not repeatable

6-51

BACC Class X 1 word, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-52

BACCD Class XI 1 word, 2 cycles, program counter discontinuity, 2 delayed
slots, not repeatable

6-53

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table B–2. Instruction Set-to-Cycle Class Summary (Continued)

Mnemonic † PageCycle class descriptionCycle class

BANZ Class VIII 2 words, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-54

BANZD Class IX 2 words, 2 cycles, program counter discontinuity,
2 delayed slots, not repeatable

6-56

BCND Class VIII 2 words, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-58

BCNDD Class IX 2 words, 2 cycles, program counter discontinuity,
2 delayed slots, not repeatable

6-60

BD Class IX 2 words, 2 cycles, program counter discontinuity,
2 delayed slots, not repeatable

6-62

BIT Class IIA 1 word, 1 cycle, memory read operand 6-63

BITT Class IIA 1 word, 1 cycle, memory read operand 6-65

BLDD Class XIII 1 word, 2 cycles, block data transfer, data to data space 6-67

BLDD Class XII 2 words, 3 cycles, block data transfer, data to data space 6-67

BLDP Class XVI 1 word, 2 cycles, block data transfer, data to program
space

6-73

BLPD Class XV 1 word, 2 cycles, block data transfer, program to data
space

6-76

BLPD Class XIV 2 words, 3 cycles, block data transfer, program to data
space

6-76

BSAR Class I 1 word, 1 cycle, no memory operands 6-82

CALA Class X 1 word, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-83

CALAD Class XI 1 word, 2 cycles, program counter discontinuity, 2 delayed
slots, not repeatable

6-84

CALL Class VIII 2 words, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-85

CALLD Class IX 2 words, 2 cycles, program counter discontinuity,
2 delayed slots, not repeatable

6-86

CC Class VIII 2 words, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-88

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table B–2. Instruction Set-to-Cycle Class Summary (Continued)

Mnemonic † PageCycle class descriptionCycle class

CCD Class IX 2 words, 2 cycles, program counter discontinuity,
2 delayed slots, not repeatable

6-90

CLRC Class I 1 word, 1 cycle, no memory operands 6-92

CMPL Class I 1 word, 1 cycle, no memory operands 6-94

CMPR Class I 1 word, 1 cycle, no memory operands 6-95

CPL Class IIA 1 word, 1 cycle, memory read operand 6-97

CPL #lk Class VIIa 2 words, 2 cycles, memory read operand 6-97

CRGT Class I 1 word, 1 cycle, no memory operands 6-100

CRLT Class I 1 word, 1 cycle, no memory operands 6-102

DMOV Class V 1 word, 1 cycle, memory read and write 6-104

EXAR Class I 1 word, 1 cycle, no memory operands 6-106

IDLE Class I 1 word, 1 cycle, no memory operands, not repeatable 6-107

IDLE2 Class I 1 word, 1 cycle, no memory operands, not repeatable 6-108

IN Class XXVI 2 words, 2 cycles, input port 6-109

INTR Class X 1 word, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-111

LACB Class I 1 word, 1 cycle, no memory operands 6-113

LACC Class IIA 1 word, 1 cycle, memory read operand 6-114

LACC #lk Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-114

LACL Class IIA 1 word, 1 cycle, memory read operand 6-117

LACL #k Class I 1 word, 1 cycle, no memory operands, not repeatable 6-117

LACT Class IIA 1 word, 1 cycle, memory read operand 6-120

LAMM Class IIB 1 word, 1 cycle, memory-mapped register read 6-122

LAR Class XXVII 1 word, 2 cycles, pipeline-protected, memory read 6-124

LAR ARn, #k Class XXVIII 1 word, 2 cycles, pipeline-protected, memory read, not
repeatable

6-124

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table B–2. Instruction Set-to-Cycle Class Summary (Continued)

Mnemonic † PageCycle class descriptionCycle class

LAR ARn, #lk Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-124

LDP Class XXVII 1 word, 2 cycles, pipeline-protected, memory read 6-127

LDP #k Class XXVIII 1 word, 2 cycles, pipeline-protected, memory read, not
repeatable

6-127

LMMR Class XXIII 2 words, 2 cycles, memory-mapped register load 6-130

LPH Class IIA 1 word, 1 cycle, memory read operand 6-133

LST Class XXVII 1 word, 2 cycles, pipeline-protected, memory read 6-135

LT Class IIA 1 word, 1 cycle, memory read operand 6-138

LTA Class IIA 1 word, 1 cycle, memory read operand 6-140

LTD Class V 1 word, 1 cycle, memory read and write 6-142

LTP Class IIA 1 word, 1 cycle, memory read operand 6-145

LTS Class IIA 1 word, 1 cycle, memory read operand 6-147

MAC Class XIX 2 words, 3 cycles, multiply accumulate 6-149

MACD Class XXI 2 words, 3 cycles, multiply accumulate with data move 6-153

MADD Class XXII 1 word, 2 cycles, multiply accumulate with data move 6-158

MADS Class XX 1 word, 2 cycles, multiply accumulate 6-162

MAR Class I 1 word, 1 cycle, no memory operands 6-166

MPY Class IIA 1 word, 1 cycle, memory read operand 6-168

MPY #k Class I 1 word, 1 cycle, no memory operands, not repeatable 6-168

MPY #lk Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-168

MPYA Class IIA 1 word, 1 cycle, memory read operand 6-171

MPYS Class IIA 1 word, 1 cycle, memory read operand 6-173

MPYU Class IIA 1 word, 1 cycle, memory read operand 6-175

NEG Class I 1 word, 1 cycle, no memory operands 6-177

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table B–2. Instruction Set-to-Cycle Class Summary (Continued)

Mnemonic † PageCycle class descriptionCycle class

NMI Class X 1 word, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-179

NOP Class I 1 word, 1 cycle, no memory operands 6-180

NORM Class I 1 word, 1 cycle, no memory operands 6-181

OPL Class V 1 word, 1 cycle, memory read and write 6-184

OPL Class VI 2 words, 2 cycles, memory read and write 6-184

OR Class IIA 1 word, 1 cycle, memory read operand 6-187

OR #lk Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-187

ORB Class I 1 word, 1 cycle, no memory operands 6-190

OUT Class XXV 2 words, 3 cycles, output port 6-191

PAC Class I 1 word, 1 cycle, no memory operands 6-193

POP Class I 1 word, 1 cycle, no memory operands 6-194

POPD Class IVA 1 word, 1 cycle, memory write operand 6-196

PSHD Class IIA 1 word, 1 cycle, memory read operand 6-198

PUSH Class I 1 word, 1 cycle, no memory operands 6-200

RET Class X 1 word, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-202

RETC Class X 1 word, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-203

RETCD Class XI 1 word, 2 cycles, program counter discontinuity, 2 delayed
slots, not repeatable

6-205

RETD Class XI 1 word, 2 cycles, program counter discontinuity, 2 delayed
slots, not repeatable

6-207

RETE Class X 1 word, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-208

RETI Class X 1 word, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-209

ROL Class I 1 word, 1 cycle, no memory operands 6-210

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table B–2. Instruction Set-to-Cycle Class Summary (Continued)

Mnemonic † PageCycle class descriptionCycle class

ROLB Class I 1 word, 1 cycle, no memory operands 6-211

ROR Class I 1 word, 1 cycle, no memory operands 6-212

RORB Class I 1 word, 1 cycle, no memory operands 6-213

RPT Class IIA 1 word, 1 cycle, memory read operand, not repeatable 6-214

RPT #k Class XXIX 1 word, 2 cycle, no memory operands, not repeatable 6-214

RPT #lk Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-214

RPTB Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-217

RPTZ #lk Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-219

SACB Class I 1 word, 1 cycle, no memory operands 6-220

SACH Class IVA 1 word, 1 cycle, memory write operand 6-221

SACL Class IVA 1 word, 1 cycle, memory write operand 6-223

SAMM Class IVB 1 word, 1 cycle, memory-mapped register write 6-225

SAR Class IVA 1 word, 1 cycle, memory write operand 6-227

SATH Class I 1 word, 1 cycle, no memory operands 6-229

SATL Class I 1 word, 1 cycle, no memory operands 6-231

SBB Class I 1 word, 1 cycle, no memory operands 6-232

SBBB Class I 1 word, 1 cycle, no memory operands 6-233

SBRK #k Class I 1 word, 1 cycle, no memory operands, not repeatable 6-234

SETC Class I 1 word, 1 cycle, no memory operands 6-235

SFL Class I 1 word, 1 cycle, no memory operands 6-237

SFLB Class I 1 word, 1 cycle, no memory operands 6-238

SFR Class I 1 word, 1 cycle, no memory operands 6-239

SFRB Class I 1 word, 1 cycle, no memory operands 6-241

SMMR Class XXIV 2 words, 2 cycles, memory-mapped register store 6-243

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table B–2. Instruction Set-to-Cycle Class Summary (Continued)

Mnemonic † PageCycle class descriptionCycle class

SPAC Class I 1 word, 1 cycle, no memory operands 6-246

SPH Class IVA 1 word, 1 cycle, memory write operand 6-247

SPL Class IVA 1 word, 1 cycle, memory write operand 6-249

SPLK Class VIIb 2 words, 2 cycles, memory write operand, not repeatable 6-251

SPM Class I 1 word, 1 cycle, no memory operands, not repeatable 6-252

SQRA Class IIA 1 word, 1 cycle, memory read operand 6-253

SQRS Class IIA 1 word, 1 cycle, memory read operand 6-255

SST Class IVA 1 word, 1 cycle, memory write operand 6-257

SUB Class IIA 1 word, 1 cycle, memory read operand 6-259

SUB #k Class I 1 word, 1 cycle, no memory operands, not repeatable 6-259

SUB #lk Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-259

SUBB Class IIA 1 word, 1 cycle, memory read operand 6-263

SUBC Class IIA 1 word, 1 cycle, memory read operand 6-265

SUBS Class IIA 1 word, 1 cycle, memory read operand 6-267

SUBT Class IIA 1 word, 1 cycle, memory read operand 6-269

TBLR Class XVII 1 word, 3 cycles, table read 6-271

TBLW Class XVIII 1 word, 3 cycles, table write 6-274

TRAP Class X 1 word, 4 cycles, program counter discontinuity, no
delayed slots, not repeatable

6-277

XC Class I 1 word, 1 cycle, no memory operands, not repeatable 6-278

XOR Class IIA 1 word, 1 cycle, memory read operand 6-280

XOR #lk Class III 2 words, 2 cycles, long-immediate operand, no memory
access, not repeatable

6-280

XORB Class I 1 word, 1 cycle, no memory operands 6-283

XPL Class V 1 word, 1 cycle, memory read and write 6-284

XPL Class VI 2 words, 2 cycles, memory read and write 6-284

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Table B–2. Instruction Set-to-Cycle Class Summary (Continued)

Mnemonic † PageCycle class descriptionCycle class

ZALR Class IIA 1 word, 1 cycle, memory read operand 6-287

ZAP Class I 1 word, 1 cycle, no memory operands 6-289

ZPR Class I 1 word, 1 cycle, no memory operands 6-290

† Bold  typeface indicates instructions that are new for the ’C5x instruction set.
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Appendix A

System Migration

This appendix contains information that is necessary to upgrade a ’C2x
system into a ’C5x system. The information consists of a detailed list of the
programming differences and hardware and timing differences between the
two generations of TMS320 DSPs. Note that the ’C50, C51, and ’C53 have the
same features with the exception of memory map; so within this appendix, any
reference to ’C5x applies to ’C50, ’C51, and ’C53, unless otherwise stated.
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C.1 Package and Pin Layout

The ’C25 is available in both a 68-pin ceramic pin grid array (CPGA) as shown
in Figure C–1 and a 68-pin plastic leaded chip carrier (PLCC) as shown in
Figure C–2. The ’C5x devices are available in various packages as shown in
Appendix A, Pinouts and Signal Descriptions.

Figure C–1. TMS320C25 in 68-Pin CPGA

Thermal Resistance Characteristics

Parameter Max Unit

RθJA Junction-to-free-air
thermal resistance

36 °C/W

RθJC Junction-to-case
thermal resistance

6 °C/W

17,02
(0.670)
Nom

17,02 (0.670)
Nom

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

Top view

Bottom view

A
B

C

D

E

F

G

H

J

K

L

1110987654321

1,27
(0.050)
Nom

1,524
(0.060)
Nom

4 places

2,54
(0.100)

T.P.

2,54 (0.100) T.P.

4,953 (0.195)
2,032 (0.080)

0,508 (0.020)
0,406 (0.016)

3,302 (0.130)
2,794 (0.110)

28,448 (1.120)
27,432 (1.080) 28,448 (1.120)

27,432 (1.080)

1,575 (0.062)
1,473(0.058)

Dia

1,397 (0.055) Max



Lead Detail

0,64
(0.025)

Min

1,52 (0.060) Min

Seating Plane

0,25 (0.010) R Max
in 3 places

ÎÎ
ÎÎ

24,33 (0.956)
24,13 (0.950)
(see Note A)

1,22 (0.048)
1,07 (0.042)

� 45

24,33 (0.956)
24,13 (0.950)
(see Note A)

25,27 (0.995)
25,02 (0.985)

0,81 (0.032)
0,66 (0.026)

23,62 (0.930)
23,11 (0.910)

(At Seating Plane)

4,50 (0.177)
4,24 (0.167)

2,79 (0.110)
2,41 (0.095)

1,35 (0.053)
1,19 (0.047)

� 45

0,94 (0.037)
0,69 (0.027)

R

1,27 (0.050) T.P.
(See Note B)

25,27 (0.995)
25,02 (0.985)

0,51 (0.020)
0,36 (0.014)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

°

°

Notes: A. Centerline of center pin, each side, is within 0,10 (0.004) of package centerline as determined by this dimension.
B. Location of each pin is within 0,127 (0.005) of true position with respect to center pin on each side.
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Figure C–2. TMS320C25 in 68-Pin PLCC

Thermal Resistance Characteristics

Parameter Max Unit

RθJA Junction-to-free-air
thermal resistance

46 °C/W

RθJC Junction-to-case
thermal resistance

11 °C/W
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When a ’C25 is upgraded to a ’C50, ’C51, or ’C53, there is minimal layout modi-
fication. The ’C5x signals are on the same side (except the CLKR and A0 pins),
and in the same order (except the X1 and X2/CLKIN pins) as those of the ’C25.
Figure C–3 shows the pin-to-pin relationship between the ’C25 and the ’C5x
devices in J-leaded chip carrier packages. The two devices are not drawn to
scale. The power (VDD) and ground (VSS) signals are symmetrically positioned
on the ’C5x so that, in conjunction with the OFF signal, the device is not dam-
aged by inserting it in the wrong orientation. The ’C5x has more power and
ground pins to provide higher performance and more noise immunity than the
’C25.
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Figure C–3. TMS320C25-to-TMS320C5x Pin/Signal Relationship
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Note: Pins without callouts are unassigned (reserved).

Three ’C25 signals (CLKOUT2, MSC and SYNC) are not present on the ’C5x.
Because the ’C5x operates with a divide-by-two clock, it can be synchronized
with reset. Therefore, there is no need for the SYNC signal. With only two
phases, there are no external timings that tie to the CLKOUT2 of the ’C25.

Some of the ’C25-equivalent pins have additional capabilities on the ’C5x. The
’C5x supports external direct memory access of the on-chip single-access
RAM block. For this reason, the following signals are now bidirectional:
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� Address lines, A0–A15
� Memory access strobe, STRB
� Read/write, R/W
� Bus request, BR

The ’C5x serial port transmit clock (CLKX) can now be configured as an output
that operates at one-fourth the machine clock rate. CLKX is configured as an
input by reset. The ’C25 CLKX pin is always an input.

The ’C25 operates with a four-phase clock. The ’C25 machine rate is
one-fourth the CLKIN rate. CLKOUT1 and CLKOUT2 operate at the machine
rate and are 90° out of phase. The ’C5x operates with a two-phase clock. The
’C5x machine rate is one-half the CLKIN rate. In addition, the ’C5x offers a divi-
de-by-one clock input feature so that the ’C5x machine rate equals the CLKIN
rate. CLKOUT1 operates at the machine rate. Figure C–4 shows both the ’C25
and the ’C5x clocking schemes.

Figure C–4. TMS320C25 and TMS320C5x Clocking Schemes

CLKOUT1

CLKIN

CLKOUT2

CLKOUT1

CLKIN

’C25

’C5x

The ’C5x MP/MC pin is sampled only while RS is low. Changes on this pin are
ignored while RS is high. The mode can be changed during execution by
changing the MP/MC bit in the PMST. On the ’C25, any change on the MP/MC
pin affects the operation of the device, regardless of the state of RS.

The ’C5x IACK signal goes low only on the first machine cycle of the fetch of
the first word of the interrupt vector. The ’C25 IACK goes low on each
wait-state cycle, as well as on the first machine cycle, but it is valid only during
CLKOUT1 low (during CLKOUT1 high, it has a specific meaning for emulator/
test operations). Figure C–5 illustrates this difference.



Package and Pin Layout

C-7System Migration

Figure C–5. TMS320C25 IACK Versus TMS320C5x IACK

IACK

IACK

CLKOUT1

’C25

’C5x

The ’C5x device includes some additional functions not included with the ’C25.
These functions and associated pins are as follows:

� TDM serial port: TCLKR, TCLKX, TDR, TDX, TADD, TFRM

� Emulation interface: EMU0, EMU1/OFF, IAQ, TCK, TDI, TDO, TMS,
TRST

� Timer borrow: TOUT

� Divide-by-one clock: CLKIN2, CLKMD1, and CLKMD2

� Fourth external interrupt: INT4

� Nonmaskable interrupt: NMI

� Read enable: RD

� Write enable: WE

The ’C5x package also includes 12 additional power and 13 additional ground
pins. These additional power and ground pins enable the device to operate at
much faster speeds. Twenty pins are reserved for future ’C5x spinoff devices.
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C.2 Timing

The ’C2x and the ’C5x operate with some timing differences. These timing
differences include aspects of the on-chip operation and the external memory
interfacing. These key differences are:

� The ’C5x is capable of operating at two to three times the speed of a ’C2x.

� The ’C2x operates with a three-deep pipeline, while the ’C5x operates with
a four-deep pipeline.

� The ’C5x external memory interface is faster and includes external inter-
face enhancements.

� Some compatible operations execute in a different number of machine
cycles.

C.2.1 Device Clock Speed

The ’C2x operates its machine cycles with a divide-by-four clocking scheme.
The ’C5x uses a divide-by-two clocking scheme. This means that a ’C2x, oper-
ating with a 40-MHz CLKIN, executes its machine cycles within 100 ns, while
the ’C5x, which is operating with the same CLKIN, executes its machine cycles
in 50 ns. This clocking arrangement changes the way that the signals of the
devices are specified. Many of the ’C2x timing values, given in the TMS320
Second-Generation Digital Signal Processor Data Sheet, are specified as
quarter-phase (Q) + N ns. The timing values of the ’C5x are defined in
half-phases (H).

C.2.2 Pipeline

The ’C2x operates with a three-deep pipeline, while the ’C5x operates with a
four-deep pipeline. This means that anytime there is a program counter (PC)
discontinuity (for example, branch, call, return, interrupt, etc.), it takes four
cycles to complete with the ’C5x, whereas it takes three cycles on the ’C2x.
The ’C5x, however, also has delayed instructions that take only two cycles to
complete.

C.2.3 External Memory Interfacing

The ’C5x is designed to execute external memory operations with the same
signals as the ’C2x. As mentioned above, the ’C5x operates at twice the in-
struction rate of the ’C2x when both operate with the same input clock. The
’C5x uses its software wait-state generators to compensate for this interface
difference. The ’C5x device, operating with one software wait state, has similar
memory timing to the ’C2x operating with no wait states. However, external
writes require two cycles on the ’C5x devices. The exact timing of the signals
differ because of the more advanced process used with the ’C5x.
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The ’C5x has two additional memory interface signals to reduce the amount
of external interfacing circuitries. The RD signal can be used to interface direct-
ly to the output enable pin of another device, while the WE signal can be direct-
ly connected to the write enable pin of another device. This alleviates the need
of gating STRB and R/W to generate the equivalent signals.

C.2.4 Execution Cycle Times

Some of the ’C2x instructions require additional cycles or words to execute on
the ’C5x. The function of these instructions is the same, but the format and
pipeline execution are enhanced to operate with the ’C5x architecture.

The IN and OUT instructions are now two-word instructions. They execute on
the ’C5x in the same number of cycles as with the ’C2x, but the assembler gen-
erates a two-word instruction for the ’C5x. Note that the ’C5x IN and OUT
instructions behave differently in RPT mode. See Chapter 6, Assembly Lan-
guage Instructions, for details. Two words are used because the ’C5x can ad-
dress 65 536 I/O ports; the ’C2x only addresses 16. The ’C5x can address six-
teen of its I/O ports in data memory space. This allows any instruction with da-
ta-memory-addressing capability to also read or write directly to an I/O port in-
stead of having to pass it through a temporary on-chip data memory location.
For example, a value can be read directly from an external analog-to-digital
(A/D) converter into the ALU via an I/O port.

The modification of the three mode bits of the serial port are executed in
two-cycle/two-word instructions with the ’C5x. However, any or all of the three
bits can be modified with one instruction without affecting other bits in the reg-
ister. This is done with the PLU instructions.

The NORM instruction modifies the auxiliary register (AR) on the execute
(fourth) phase of the pipeline, while the ARAU operations occur on the decode
(second) phase. The two instructions following a NORM instruction should not
use the same AR for an address. If the two instructions following NORM
change the auxiliary register pointer (ARP), then the NORM update of the AR
is executed on the new ARP, not the old one. See Chapter 6, Assembly Lan-
guage Instructions, for NORM instruction description. The assembler supports
an optional way to test for this condition and automatically compensate by add-
ing NOP instructions to the code. This modification is made to the listing and
object files and does not affect your source code.
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Unlike the ’C2x, the ARs are also accessible in the data address space on the
’C5x. This allows the ARs to be loaded with the CALU instructions for
advanced-addressing modes. However, use caution when using this feature
because the CALU operations write to the ARs on the execute phase of the
pipeline and, therefore, are subject to the same characteristics of the NORM
instruction. The assembler supports the option to flag these conflicts for
resolution.
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C.3 On-Chip Peripheral Interfacing

The ’C5x has more peripherals than the ’C2x; many ’C5x peripherals are en-
hancements of the ’C2x peripherals. The ’C2x has three peripheral circuits: se-
rial port, timer, and 16 I/O ports. In addition to these peripherals, the ’C5x has
software wait states and a divide-by-one clock.

The serial port interface of the ’C5x has been enhanced because the CLKX
pin can be configured as either an input or an output. (CLKX is always an input
on the ’C2x.) CLKX is configured as an input upon a device reset to maintain
compatibility with the ’C2x. The new serial port status bits are now mapped to
a memory-mapped register that is used exclusively for the serial port. The seri-
al port modes are no longer controlled via status register 1 (ST1). Therefore,
serial port modes changed by using the LST1 instruction will no longer work.
The mode bits must be set/reset via the serial port control register (SPC). The
data transmit (DXR) and data receive (DRR) registers have been moved in the
memory map from locations 1 and 0, to 33 and 32, respectively. See Section
9.7, Serial Port Interface, on page 9-23 for more details.

The timer has been enhanced on the ’C5x to include a divide-down factor of
1 to 17 and can be stopped or reset via software. These additional features are
controlled via the timer control register (TCR). Upon reset, the divide-down
factor is set to 1, and the timer is enabled to maintain compatibility with the
’C2x. The timer (TIM) and period (PRD) registers have been moved in the
memory map from locations 2 and 3, to locations 36 and 37, respectively. See
Section 9.3, Timer, on page 9-9 for more details.

The 16 I/O ports of the ’C5x are addressable in the data memory space. Any
instruction that can address data memory can also address the I/O ports. This
allows direct access of the I/O space by the CPU and supports bit operation
in the I/O space via the PLU. The I/O space can be increased from 16 ports
to 65 536 ports. However, no additional decode circuitry is necessary if only
16 ports are used. See Section 8.5, Input/Output (I/O) Space, on page 8-22
and Section 9.6, Parallel I/O Ports, on page 9-22 for more details.

The ’C5x includes software wait-state generators that are mapped on
16K-word page sizes in the program and data memory spaces. There are also
wait-state generators for the I/O ports. The I/O space wait-state generators
can be mapped on 2-word or on 8K-word boundaries. These wait-state gener-
ators allow the system to be programmed for 0, 1, 2, 3, 4, or 7 wait states, elimi-
nating the need of an off-chip interfacing circuitry. External access wait states
can be extended further via the READY signal. See Section 9.4, Software-
Programmable Wait-State Generators, on page 9-13 for more details.
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C.4 ’C2x-to-’C5x Instruction Set
The ’C5x instruction set is a superset of the ’C2x instruction set. The instruction
set of the ’C2x is upward source-code compatible. This means that all of the
instruction features of the ’C2x, implemented and code written for the ’C2x, can
be reassembled to run on the ’C5x. See Chapter 6, Assembly Language
Instructions, for the detailed discussion of the instruction set.

C.4.1 Overview

There are a number of new instructions on the ’C5x devices. These new
instructions provide an advanced addressing scheme and exercise the new
CPU enhancements. To simplify the description of the instruction set, a num-
ber of different instructions are combined into single new instructions with ad-
ditional operand formats, such as the ADD instruction shown in Table C–1.

Table C–1. TMS320C2x Versus TMS320C5x for the ADD Instruction

’C2x Instruction ’C5x Instruction

ADD *+ ADD *+

ADDK 0FFh ADD #0FFh

ADLK 0FFFFh ADD #0FFFFh

ADDH *+ ADD *+ , 16

The IDLE instruction, when executed, stops the CPU from fetching and
executing instructions until an unmasked interrupt occurs. The ’C2x automati-
cally enables the interrupts globally with the execution of the IDLE instruction;
this saves the extra instruction word/cycle required to execute the EINT
(enable interrupts globally) instruction. Upon receipt of the interrupt, the ’C2x
executes the interrupt vector and resumes operations.

The ’C5x does not automatically enable the interrupts globally with its IDLE in-
struction. If the interrupts are not globally enabled (INTM = 1), then the CPU
resumes execution at the instruction following the IDLE instruction, without
taking the interrupt trap. If the interrupts are globally enabled (INTM = 0), the
’C5x operates like the ’C2x. In addition, a second low-power mode is available
with the IDLE2 instruction. This mode operates the same as IDLE, except that
the CPU will resume only after an external interrupt. See Chapter 6, Assembly
Language Instructions, for IDLE and IDLE2 instruction details.

The ’C5x repeat counter is 16 bits wide (the ’C2x repeat counter is 8 bits wide).
This means that, when loading from RAM, the RPT instruction supports repeat
counts up to 65 536. The assembler also allows the RPT to support a16-bit
immediate repeat count. Note that RPT with long immediate addressing is,
however, a two-word instruction.
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C.4.2 Serial Port Control Bit Instructions

The serial port mode control bits have been moved from the status registers
to the serial port control register (SPC). Because they are no longer part of the
CPU registers, they no longer have direct instructions to set or clear them. The
bits of the SPC can be manipulated easily with the PLU instructions (Table 6–6
on page 6-14). Table C–2 shows the ’C5x serial port instructions that replace
the ’C2x instructions (note that the data page pointer must be set to 0 to
execute these new instructions).

Table C–2. TMS320C2x to TMS320C5x Serial Port Instructions

’C2x Instruction ’C5x Instruction

FORT0 APL #0FFFBh, SPC

FORT1 OPL #4, SPC

RFSM APL #0FFF7h, SPC

RTXM APL #0FFDFh, SPC

SFSM OPL #8, SPC

STXM OPL #020h, SPC

Any or all three of the SPC bits can be set in one execution of the OPL instruc-
tion, while any or all three of the bits can be cleared with the APL instruction.
The SPC bits can be toggled with the XPL instruction. See Chapter 6, Assem-
bly Language Instructions, for instruction details.

C.4.3 ’C2x-to-’C5x Instruction Set Mapping

The Texas Instruments ’C5x assembler accepts instruction mnemonics from
either the ’C2x or the ’C5x instruction set. Because the ’C5x instruction set is
a superset of the ’C2x instruction set, there are some ’C5x instructions that do
not appear in the following tables. Table C–3 through Table C–8 alphabetically
list the maps between the ’C2x and ’C5x instruction sets within the following
functional groups:

� Accumulator memory reference instructions (Table C–3)
� Auxiliary registers and data memory page pointer instructions (Table C–4

on page C-15)
� TREG0, PREG, and multiply instructions (Table C–5 on page C-16)
� Branch and call instructions (Table C–6 on page C-17)
� I/O and data memory operation instructions (Table C–7 on page C-18)
� Control instructions (Table C–8 on page C-19)
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Table C–3. TMS320C2x-to-TMS320C5x Accumulator Memory Reference Instructions

’C2x Instruction ’C5x Instruction

ABS ABS

ADD ADD

ADDC ADDC

ADDH ADD

ADDK ADD

ADDS ADDS

ADDT ADDT

ADLK ADD

AND AND

ANDK AND

CMPL CMPL

LAC LACC

LACK LACL

LACT LACT

LALK LACC

NEG NEG

NORM NORM†

OR OR

ORK OR

ROL ROL

ROR ROR

SACH SACH

SACL SACL

SBLK SUBB

SFL SFL

SFR SFR

SUB SUB

SUBB SUBB

† There is a potential pipeline conflict with the NORM instruction.
See the NORM instruction summary (page 6-181) for details.
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Table C–3. TMS320C2x-to-TMS320C5x Accumulator Memory Reference Instructions
(Continued)

’C2x Instruction ’C5x Instruction

SUBC SUBC

SUBH SUB

SUBK SUB

SUBS SUBS

SUBT SUBT

XOR XOR

XORK XOR

ZAC LACL

ZALH LACC

ZALR ZALR

ZALS LACL

Table C–4. TMS320C2x-to-TMS320C5x Auxiliary Registers and Data Memory Page
Pointer Instructions

’C2x Instruction ’C5x Instruction

ADRK ADRK

CMPR CMPR

LAR LAR

LARK LAR

LARP MAR

LDP LDP

LDPK LDP

LRLK LAR

MAR MAR

SAR SAR

SBRK SBRK
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Table C–5. TMS320C2x-to-TMS320C5x TREG0, PREG, and Multiply Instructions

’C2x Instruction ’C5x Instruction

APAC APAC

LPH LPH

LT LT

LTA LTA

LTD LTD

LTP LTP

LTS LTS

MAC MAC

MACD MACD

MPY MPY

MPYA MPYA

MPYK MPY

MPYS MPYS

MPYU MPYU

PAC PAC

SPAC SPAC

SPH SPH

SPL SPL

SPM SPM

SQRA SQRA

SQRS SQRS
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Table C–6. TMS320C2x-to-TMS320C5x Branch and Call Instructions

’C2x Instruction ’C5x Instruction

B B

BACC BACC

BANZ BANZ

BBNZ BCND

BBZ BCND

BC BCND

BGEZ BCND

BGZ BCND

BIOZ BCND

BLEZ BCND

BLZ BCND

BNC BCND

BNV BCND

BNZ BCND

BV BCND

BZ BCND

CALA CALA

CALL CALL

RET RET

TRAP TRAP
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Table C–7. TMS320C2x-to-TMS320C5x I/O and Data Memory Operation Instructions

’C2x Instruction ’C5x Instruction

BLKD BLDD

BLKP BLPD

DMOV DMOV

FORT† OPL
APL

IN IN

OUT OUT

RFSM† APL

RTXM† APL

RXF CLRC

SFSM† OPL   

STXM OPL

SXF SETC

TBLR TBLR

TBLW TBLW

† The suggested mapping requires that the data page
pointer be set to 0.
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Table C–8. TMS320C2x-to-TMS320C5x Control Instructions

’C2x Instruction ’C5x Instruction

BIT BIT

BITT BITT

CNFD CLRC

CNFP SETC

DINT SETC

EINT CLRC

IDLE IDLE

LST LST

LST1 LST

NOP NOP

POP POP

POPD POPD

PSHD PSHD

PUSH PUSH

RC CLRC

RHM CLRC

ROVM CLRC

RPT RPT

RPTK RPT

RSXM CLRC

RTC CLRC

SC SETC

SHM SETC

SOVM SETC

SST SST

SST1 SST

SSXM SETC

STC SETC
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Appendix A

Design Considerations for
Using XDS510 Emulator

The ’C5x DSPs support emulation through a dedicated emulation port. The
emulation port is a superset of the IEEE JTAG standard 1149.1 and can be ac-
cessed by the XDS510 emulator. The information in this appendix supports
XDS510 Cable #2563988-001 Rev B.

The term JTAG, as used in this book, refers to TI scan-based emulation, which
is based on the IEEE standard 1149.1.

For more information concerning the IEEE standard 1149.1, contact IEEE
Customer Service:

Address: IEEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331

Phone: (800) 678–IEEE in the US and Canada
(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667         Telex:       833233
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D.1 Cable Header and Signals

To perform emulation with the XDS510, your target system must have a 14-pin
header (two 7-pin rows) with connections as shown in Figure D–1. Table D–1
describes the emulation signals. Although you can use other headers, recom-
mended parts include:

Straight header, unshrouded DuPont Electronics  part number
67996–114

Right-angle header, unshrouded DuPont Electronics part number
68405–114

Figure D–1. Header Signals and Header Dimensions
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TDI
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Header Dimensions:
Pin-to-pin spacing:  0.100 in. (X,Y)
Pin width: 0.025 in. square post
Pin length: 0.235 in., nominal

Table D–1. XDS510 Header Signal Description

Pin Signal State
Target
State Description

1 TMS O I JTAG test mode select

2 TRST O I JTAG test reset

3 TDI O I JTAG test data input

5 PD I O Presence detect. Indicates that the emulation
cable is connected and that the target is
powered up. PD should be tied to VDD in the
target system.

7 TDO I O JTAG test data output

9 TCK_RET I O JTAG test clock return. Test clock input to the
XDS510 emulator. May be a buffered or
unbuffered version of TCK.

11 TCK O I JTAG test clock. TCK is a 10-MHz clock
source from the emulation cable pod. This
signal can be used to drive the system test
clock.

13 EMU0 I I/O Emulation pin 0

14 EMU1 I I/O Emulation pin 1
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D.2 Bus Protocol

The IEEE standard 1149.1 covers the requirements for JTAG bus slave
devices (’C5x) and provides certain rules, summarized as follows:

� The TMS and TDI inputs are sampled on the rising edge of the TCK signal
of the device.

� The TDO output is clocked from the falling edge of the TCK signal of the
device.

When JTAG devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle setup time before the next device’s TDI signal.
This timing scheme minimizes race conditions that would occur if both TDO
and TDI were timed from the same TCK edge. The penalty for this timing
scheme is a reduced TCK frequency.

The IEEE standard 1149.1 does not provide rules for JTAG bus master
(XDS510) devices. Instead, it states that it expects a bus master to provide bus
slave compatible timings. The XDS510 provides timings that meet the bus
slave rules and also provides an optional timing mode that allows you to run
the emulation at a much higher frequency for improved performance.
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D.3 Emulator Cable Pod

Figure D–2 shows a portion of the XDS510 emulator cable pod. The functional
features of the emulator pod are:

� TDO and TCK_RET can be parallel-terminated inside the pod if required
by the application. By default, these signals are not terminated.

� TCK is driven with a 74AS1034 device. Because of the high-current drive
(48 mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied to
TCK_RET, you can use the parallel terminator in the pod.

� TMS and TDI can be generated from the falling edge of TCK_RET, accord-
ing to the IEEE (JTAG) standard 1149.1 bus slave device timing rules.
They can also be driven from the rising edge of TCK_RET, which allows
a higher TCK_RET frequency. The default is to match the IEEE standard
1149.1 slave device timing rules. This is an emulator software option that
can be selected when the emulator is invoked. In general, single-processor
applications can benefit from the higher clock frequency. However, in mul-
tiprocessing applications, you may wish to use the IEEE standard 1149.1
bus slave timing mode to minimize emulation system timing constraints.

� TMS and TDI are series-terminated to reduce signal reflections.

� A 10-MHz test clock source is provided. You can also provide your own
test clock for greater flexibility.
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Figure D–2. Emulator Cable Pod Interface
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D.4 Emulator Cable Pod Signal Timings

Figure D–3 shows the signal timings for the emulator cable pod. Table D–2
defines the timing parameters illustrated in the figure. These timing parame-
ters are calculated from values specified in the standard data sheets for the
cable pod and are for reference only. Texas Instruments does not test or guar-
antee these timings.

The emulator pod uses TCK_RET as its clock source for internal synchroniza-
tion. TCK is provided as an optional target system test clock source.

Figure D–3. Emulator Cable Pod Timings
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Table D–2. Emulator Cable Pod Timing Parameters

No. Paramter Description Min Max Unit

1
tTCKmin
tTCKmax

TCK_RET period 35 200 ns

2 tTCKhighmin TCK_RET high pulse duration 15 ns

3 tTCKlowmin TCK_RET low pulse duration 15 ns

4
td(XTMXmin)
td(XTMXmax)

TMS/TDI valid from TCK_RET low (default timing) 6 20 ns

5
td(XTMSmin)
td(XTMSmax)

TMS/TDI valid from TCK_RET high (optional timing) 7 24 ns

6 tsu(XTDOmin) TDO setup time to TCK_RET high 3 ns

7 thd(XTDOmin) TDO hold time from TCK_RET high 12 ns
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D.5 Target System Test Clock

Figure D–4 shows an application with the system test clock generated in the
target system. In this application the TCK signal is left unconnected. There are
two benefits to having the target system generate the test clock:

1) You can set the test clock frequency to match your system requirements.
The emulator provides only a single 10-MHz test clock.

2) You may have other devices in your system that require a test clock when
the emulator is not connected.

Figure D–4. Target-System Generated Test Clock
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D.6 Configuring Multiple Processors

Figure D–5 shows a typical daisy-chained multiprocessor configuration that
meets the minimum requirements of the IEEE (JTAG) standard 1149.1. The
emulation signals are buffered to isolate the processors from the emulator and
provide adequate signal drive for the target system. One of the benefits of this
test interface is that you can slow down the test clock to eliminate timing prob-
lems. Several key points to multiprocessor support are as follows:

� The processor TMS, TDI, TDO, and TCK signals should be buffered
through the same physical device package for better control of timing
skew.

� The input buffers for TMS, TDI, and TCK should have pullup resistors con-
nected to 5 volts to hold these signals at a known value when the emulator
is not connected. A pullup resistor value of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide
isolation. These are not critical signals and do not have to be buffered
through the same physical package as TMS, TCK, TDI, and TDO.

Figure D–5. Multiprocessor Connections
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D.7 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the target system. You must supply the correct signal buffering, test clock
inputs, and multiple processor interconnections to ensure proper emulator and
target system operation.

EMU0 and EMU1 are I/O pins on the ’C5x; however, they are only inputs to the
XDS510. In general, these pins are used in multiprocessor systems to provide
global run/stop operations.

D.7.1 Emulation Signals Not Buffered

If the distance between the emulation header and the target device is less than
6 inches, no buffering is necessary. Figure D–6 shows the no-buffering config-
uration.

The EMU0 and EMU1 signals must have pullup resistors connected to 5 volts
to provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested
for most applications.

Figure D–6. Emulator Connections Without Signal Buffering
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D.7.2 Emulation Signals Buffered

If the distance between the emulation header and the JTAG target device is
greater than 6 inches, the emulation signals must be buffered. Figure D–7
shows the buffering configuration. Emulation signals TMS, TDI, TDO, and
TCK_RET are buffered through the same device package.

The EMU0 and EMU1 signals must have pullup resistors connected to 5 volts
to provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested
for most applications.

To have high-quality signals (especially the processor TCK and the emulator
TCK_RET signals), you may have to employ special care when routing the
printed wiring board trace. You also may have to use termination resistors to
match the trace impedance. The emulator pod provides optional internal paral-
lel terminators on the TCK_RET and TDO. TMS and TDI provide fixed series
termination.

Figure D–7. Buffered Signals
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D.8 Emulation Timing Calculations

The following are a few examples of how to calculate the emulation timings in
your system. For actual target timing parameters, see the appropriate device
data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

th(TTMS) Target TMS/TDI hold from TCK high 5 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay maximum 10 ns

td(bufmin) Target buffer delay minimum 1 ns

t(bufskew) Target buffer skew between two devices in the same
package: [td(bufmax) – td(bufmin)] × 0.15

1.35 ns

ttckfactor A 40/60 duty cycle clock 0.4

Given in Table D–2 (page D-6):

td(XTMSmax) XDS510 TMS/TDI delay from TCK_RET low, maximum 20 ns

td(XTMX) min XDS510 TMS/TDI delay from TCK_RET low, minimum 6 ns

td(XTMSmax) XDS510 TMS/TDI delay from TCK_RET high, maximum 24 ns

td(XTMXmin) XDS510 TMS/TDI delay from TCK_RET high, minimum 7 ns

tsu(XTDOmin) TDO setup time to XDS510 TCK_RET high 3 ns

There are two key timing paths to consider in the emulation design:

1) the TCK_RET/TMS/TDI (tprdtck_TMS) path, and

2) the TCK_RET/TDO (tprdtck_TDO) path.

In each case, the worst-case path delay is calculated to determine the maxi-
mum system test clock frequency.



Emulation Timing Calculations

 D-12

Case 1:  Single processor, direct connection, TMS/TDI timed from TCK_RET low
(default timing).

tprdtck_TMS = [t(d(XTMSmax) + tsu(TTMS)] /�ttckfactor
= (20 ns + 10 ns) / 0 .4
= 75 ns (13.3 MHz)

tprdtck_TDO = [t(d(TTDO) + tsu(XTDOmin)] / ttckfactor
= (15 ns + 3 ns) / 0.4

= 45 ns (22.2 MHz)

In Case 1, the TCK/TMS path is the limiting factor.

Case 2: Single processor, direct connection, TMS/TDI timed from TCK_RET high
(optional timing).

tprdtck_TMS = td(XTMSmax) + tsu(TTMS)
= (24 ns + 10 ns)
= 34 ns (29.4 MHz)

tprdtck_TDO = [td(TTDO) + tsu(XTDOmin)] / ttckfactor
= (15 + 3) / 0.4

= 45 ns (22.2 MHz)

In Case 2, the TCK/TDO path is the limiting factor. One other thing to consider
in this case is the TMS/TDI hold time. The minimum hold time for the XDS510
cable pod is 7 ns, which meets the 5-ns hold time of the target device.

Case 3: Single/multiple processor, TMS/TDI buffered input; TCK_RET/TDO buffered
output, TMS/TDI timed from TCK_RET high (optional timing).

tprdtck_TMS = td(XTMSmax) + tsu(TTMS) + 2td(bufmax)
= 24 ns + 10 ns + 2 (10)

= 54 ns (18.5 MHz)

tprdtck_TDO = [td(TTDO) + tsu(XTDOmin) + t(bufskew)] / ttckfactor
= (15 ns + 3 ns + 1.35 ns) / 0.4
= 58.4 ns  (20.7 MHz)

In Case 3, the TCK/TMS path is the limiting factor. The hold time on TMS/TDI
is also reduced by the buffer skew (1.35 ns) but still meets the minimum device
hold time.
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Case 4: Single/multiprocessor, TMS/TDI/TCK buffered input; TDO buffered output,
TMS/TDI timed from TCK_RET low (default timing).

tprdtck_TMS = [td(XTMSmax) + tsu(TTMS) + tbufskew] /�tckfactor
= (24 ns + 10 ns + 1.35 ns) / 0.4

= 88.4 ns (11.3 MHz)

tprdtck_TDO = [td(TTDO) + tsu(XTDOmin) + td(bufmax)] / �tckfactor
= (15 ns + 3 ns + 10 ns) / 0.4

= 70 ns (14.3 MHz)

In Case 4, the TCK/TMS path is the limiting factor.

In a multiprocessor application, it is necessary to ensure that the EMU0 and
EMU1 lines can go from a logic low level to a logic high level in less than 10
µs. This can be calculated as follows (remember that t = 5 RC):

trise = 5(Rpullup × Ndevices × Cload_per_device)
= 5(4.7kΩ × 16 × 15pF)
= 5.64 µs
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Appendix A

Memories, Sockets, and Crystals

This appendix provides product information regarding memories and sockets
that are manufactured by Texas Instruments and are compatible with the ’C5x.
Information is also given regarding crystal frequencies, specifications, and
vendors.
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E.1 Memories

This section provides product information on EPROM memories that can be
interfaced with ’C5x processors. Refer to Digital Signal Processing Applica-
tions with the TMS320 Family for additional information on interfaces using
memories and analog conversion devices.

Data sheets for EPROM memories are located in the MOS Memory Data Book
(literature number SMYD095):

TMS27C64
TMS27C128
TMS27C256
TMS27C512

Another EPROM memory, TMS27C291/292, is described in a data sheet (liter-
ature number SMLS291).

E.2 Sockets

AMP manufactures a 132-pin quad flat pack socket for the ’C5x devices. There
are two pieces — a base (the socket itself) and a lid. The part numbers are:

� Base: AMP part number 821942-1

� Lid: AMP part number 821949-5

For additional information about TI sockets, contact the nearest TI sales office
or:

Texas Instruments Incorporated
Connector Systems Dept, M/S 14–3
Attleboro, MA 02703
(617) 699–5242/5269
Telex: 92–7708

Memories / Sockets
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E.3 Crystals

This section lists the commonly used crystal frequencies (Table E–1), crystal
specification requirements, and the names of suitable vendors.

Table E–1. Commonly Used Crystal Frequencies

Device Frequency

TMS320C25 40.96 MHz

TMS320C5x 20.48 MHz
40.96 MHz

When connected across X1 and X2/CLKIN of the TMS320 processor, a crystal
enables the internal oscillator. Crystal specification requirements are listed
below:

Load capacitance = 20 pF
Series resistance = 30 ohm
Power dissipation = 1 mW

Vendors of crystals suitable for use with TMS320 devices are listed below:

RXD, Inc.
Norfolk, NB
(800) 228–8108

N.E.L. Frequency Controls, Inc.
Burlington, WI
(414) 763–3591

CTS Knight, Inc.
Contact the local distributor.
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Appendix A

Submitting ROM Codes to TI

Texas Instruments offers a mask-programmable ROM to provide a single-chip
solution to its customers. This appendix explains the benefits of the space-
saving ROM and describes the function of the TMS320 development tools.
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F.1 Single-Chip Solution

The size of a printed circuit board is a consideration in many DSP applications.
To make full use of the board space, Texas Instruments offers this ROM code
option that reduces the chip count and provides a single-chip solution. This op-
tion allows you to use a code-customized processor for a specific application
while taking advantage of:

� Greater memory expansion
� Lower system cost
� Less hardware and wiring
� Smaller PCB

If a routine or algorithm is used often, it can be programmed into the on-chip
ROM of a TMS320 DSP. TMS320 programs can also be expanded by using
external memory; this reduces chip count and allows for a more flexible pro-
gram memory. Multiple functions are easily implemented by a single device,
thus enhancing system capabilities.

TMS320 development tools are used to develop, test, refine, and finalize the
algorithms. The microprocessor/microcomputer (MP/MC) mode is available
on all ROM-coded TMS320 DSP devices when accesses to either on-chip or
off-chip memory are required. The microprocessor mode is used to develop,
test, and refine a system application. In this mode of operation, the TMS320
acts as a standard microprocessor by using external program memory. When
the algorithm has been finalized, the code can be submitted to Texas Instru-
ments for masking into the on-chip program ROM. At that time, the TMS320
becomes a microcomputer that executes customized programs from the on-
chip ROM. Should the code need changing or upgrading, the TMS320 can
once again be used in the microprocessor mode. This shortens the field-
upgrade time and avoids the possibility of inventory obsolescence.
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F.2 TMS320 Development Flow

Figure F–1 illustrates the procedural flow for developing and ordering TMS320
masked parts. When ordering, there is a one-time, nonrefundable charge for
mask tooling. A minimum production order per year is required for any
masked-ROM device. ROM codes are deleted from the Texas Instruments
system one year after the final delivery.

Figure F–1. TMS320 ROM Code Submittal Flowchart

Customer TMS320 design

Customer submits:
— TMS320 New Code Release Form
— Print Evaluation and Acceptance Form (PEAF)
— Purchase order for mask prototypes
— TMS320 code

Texas Instruments responds:
— Customer code input into TI system
— Code sent back to customer for verification

Customer
approves
algorithm

TI produces prototypes

Customer
approves

prototypes (minimum
production order

required)

TMS320 production

Yes

Yes

No

No
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F.3 Submitting TMS320 ROM Code

The TMS320 ROM code may be submitted in one of the following forms:

� 3-1/2-inch floppy: COFF format from macro-assembler/linker (preferred)
� 5-1/4-inch floppy: COFF format from macro-assembler/linker
� Modem (BBS): COFF format from macro-assembler/linker
� EPROM (others): TMS27C64
� PROM: TBP28S166, TBP28S86

When code is submitted to TI for masking, the code is reformatted to accom-
modate the TI mask-generation system. System-level verification by the cus-
tomer is therefore necessary to ensure the reformatting remains transparent
and does not affect the execution of the algorithm. The formatting changes in-
volve the removal of address-relocation information (the code address begins
at the base address of the ROM in the TMS320 device and progresses without
gaps to the last address of the ROM) and the addition of data in the reserved
locations of the ROM for device ROM test. Because these changes have been
made, a checksum comparison is not a valid means of verification.

With each masked-device order, the customer must sign a disclaimer that
states:

The units to be shipped against this order were assembled, for expe-
diency purposes, on a prototype (that is, nonproduction qualified)
manufacturing line, the reliability of which is not fully characterized.
Therefore, the anticipated inherent reliability of these prototype units
cannot be expressly defined.

and a release that states:

Any masked ROM device may be resymbolized as TI standard prod-
uct and resold as though it were an unprogrammed version of the
device, at the convenience of Texas Instruments.

The use of the ROM-protect feature does not hold for this release statement.
Additional risk and charges are involved when the ROM-protect feature is
selected. Contact the nearest TI Field Sales Office for more information on pro-
cedures, leadtimes, and cost associated with the ROM-protect feature.
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Appendix A

Development Support and Part Order Information

This appendix provides development support information, device part num-
bers, and support tool ordering information for the ’C5x.

Each ’C5x support product is described in the TMS320 DSP Development
Support Reference Guide. In addition, more than 100 third-party developers
offer products that support the TI TMS320 family. For more information, refer
to the TMS320 Third-Party Support Reference Guide.

For information on pricing and availability, contact the nearest TI Field Sales
Office or authorized distributor. See the list at the back of this book.
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G.1 Development Support

This section describes the development support provided by Texas Instru-
ments.

G.1.1 Software and Hardware Development Tools

TI offers an extensive line of development tools for the ’C5x generation of
DSPs, including tools to evaluate the performance of the processors, generate
code, develop algorithm implementations, and fully integrate and debug soft-
ware and hardware modules. The following products support development of
’C5x-based applications:

� Software Development Tools:

� Assembler/linker

� Simulator

� Optimizing ANSI C compiler

� Application algorithms

� C/Assembly debugger and code profiler

� Hardware Development Tools:

� Emulator XDS510

� ’C5x Evaluation Module (EVM)

� ’C5x DSP Starter Kit (DSK)

G.1.2 Third-Party Support

The TMS320 family is supported by products and services from more than 100
independent third-party vendors and consultants. These support products
take various forms (both as software and hardware), from cross-assemblers,
simulators, and DSP utility packages to logic analyzers and emulators. The
expertise of those involved in support services ranges from speech encoding
and vector quantization to software/hardware design and system analysis.

To ask about third-party services, products, applications, and algorithm devel-
opment packages, contact the third party directly. Refer to the TMS320 Third-
Party Support Reference Guide for addresses and phone numbers.
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G.1.3 Technical Training Organization (TTO) TMS320 Workshops

TMS320C5x DSP Design Workshop. This workshop is tailored for hardware
and software design engineers and decision-makers who will be designing
and utilizing the ’C5x generation of DSP devices. Hands-on exercises
throughout the course give participants a rapid start in developing ’C5x design
skills. Microprocessor/assembly language experience is required. Experience
with digital design techniques and C language programming experience is
desirable.

These topics are covered in the ’C5x workshop:

� DSP fundamentals
� ’C5x architecture/instruction set
� Use of the PC-based software simulator
� Use of the ’C5x assembler/linker
� C programming environment
� System architecture considerations
� Memory and I/O interfacing
� Serial ports and multiple processor features

For registration information, pricing, or to enroll, call (972)644–5580.

G.1.4 Assistance

For assistance to TMS320 questions on device problems, development tools,
documentation, software upgrades, and new products, you can contact TI.
See If You Need Assistance in Preface for information.
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G.2 Part Order Information

This section describes the part numbers of ’C5x devices, development support
hardware, and software tools.

G.2.1 Device and Development Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes
to the part numbers of all TMS320 devices and support tools. Each TMS320
member has one of three prefix designators: TMX, TMP, or TMS. Each support
tool has one of two possible prefix designators: TMDX or TMDS. These pre-
fixes represent evolutionary stages of product development from engineering
prototypes (TMX/TMDX) through fully qualified production devices and tools
(TMS/TMDS). This development flow is defined below.

Device Development Evolutionary Flow:

TMX The part is an experimental device that is not necessarily representa-
tive of the final device’s electrical specifications.

TMP The part is a device from a final silicon die that conforms to the device’s
electrical specifications but has not completed quality and reliability
verification.

TMS The part is a fully qualified production device.

Support Tool Development Evolutionary Flow:

TMDX The development-support product that has not yet completed Texas
Instruments internal qualification testing.

TMDS The development-support product is a fully qualified development
support product.

TMX and TMP devices, and TMDX development-support tools are shipped
with the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

TMS devices and TMDS development-support tools have been fully charac-
terized, and the quality and reliability of the device has been fully demon-
strated. Texas Instruments standard warranty applies to these products.

Note:

It is expected that prototype devices (TMX or TMP) have a greater failure rate
than standard production devices. Texas Instruments recommends that
these devices not be used in any production system, because their expected
end-use failure rate is still undefined. Only qualified production devices
should be used.
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G.2.2 Device Nomenclature

TI device nomenclature includes the device family name and a suffix.
Figure G–1 provides a legend for reading the complete device name for any
TMS320 family member.

Figure G–1. TMS320 Device Nomenclature

Prefix

Temperature range

TMS 320 C 52 PJ (L)

TMX = Experimental device
TMP = Prototype device
TMS = Qualified device
SM = High reliability (non 883C)
SMJ = MIL–STD–883C

Device family
320 = DSP Family

Technology

H = 0 to 50°C
L = 0 to 70°C
A = -40 to 85°C
S = -55 to 100°C
M = -55 to 125°C

Package type

FD = Ceramic leadless CC
FN = Plastic leaded CC
FZ = Ceramic CER-QUAD
GB = Ceramic PGA
J = Ceramic CER-DIP
JD = Ceramic DIP side-brazed
N = Plastic DIP
PJ  = 100-pin plastic EIAJ QFP
PQ = 100/132-pin plastic BQFP
PZ = 100-pin plastic TQFP
PBK = 120/128-pin plastic TQFP
PGE = 144-pin plastic TQFP

C = CMOS
E = CMOS EPROM
LC = Low-Voltage CMOS (3.3V)
VC = Low-Voltage CMOS (3V)

Device

’C1x DSP:
10
14
15
16
17

’C2x DSP:
25
26

’C2xx DSP:
203
204
205
209

’C3x DSP:
30
31
32

Boot loader option

’C4x DSP:
40
44

’C5x DSP:
50
51
52
53
56
57

’C54x DSP:
541
542
543
545
546
548

’C8x DSP:
80
82

(B) –100

MIPS
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G.2.3 Development Support Tools

Figure G–2 provides a legend for reading the part number for any TMS320
hardware or software development tool. Table G–1 lists the development sup-
port tools available for the ’C5x, the platform on which they run, and their part
numbers.

Figure G–2. TMS320 Development Tool Nomenclature

TMDS 32 4 28 1 0 – 0 2

Qualification status Medium †

2 = 5.25-inch floppy disk
8 = 1600 BPI magnetic tape

TMDX = Prototype
TMDS = Qualified

Device family S/W format †
32 = TMS320 family 0 = Object code

1 = Source code

Product type Sequence number ‡

4 = Software
6 = Hardware
8 = Upgrade

Model ‡ Generation ‡

11 = XDS/11
22 = XDS/22
88 = Upgrade kits

1 = ’C1x
2 = ’C2x
3 = ’C3x
4 = ’C4x
5 = ’C5x

Operating system † Format †

02 = ’C1x VAX/VMS
08 = ’C1x IBM MS/PC-DOS
22 = ’C2x VAX/VMS
25 = ’C2x/’C2xx/’C5x SPARC
28 = ’C2x or ’C1x/’C2x/’C2xx/’C5x IBM MS/PC-DOS
32 = ’C3x VAX/VMS
38 = ’C3x IBM MS/PC-DOS
42 = ’C4x VAX/VMS
48 = ’C4x IBM MS/PC-DOS
52 = ’C5x VAX/VMS
55 = ’C5x or ’C2xx/’C5x SPARC
58 = ’C5x or ’C2xx/’C5x IBM MS/PC-DOS

1 = TI-tagged
5 = COFF

† Software only.
‡ Hardware only.
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Table G–1. TMS320C5x Development Support Tools Part Numbers

Development Tool Platform Part Number

Assembler/Linker PC (DOS�, OS/2�) TMDS3242850-02

C Compiler/Assembler/Linker PC (DOS�, OS/2�) TMDS3242855-02

C Compiler/Assembler/Linker HP (HP-UX�) / SPARC� (Sun OS�) TMDS3242555-08

Debugger/Emulation Software PC (DOS�, Windows�, OS/2�) TMDS3240150

Debugger/Emulation Software SPARC� (Sun OS�) TMDS3240650

Digital Filter Design Package PC (DOS�) DFDP

DSP Starter Kit (DSK) PC (DOS�) TMDS3200051

Evaluation Module (EVM) PC (DOS�, Windows�) TMDS3260050

Simulator (C language) PC (DOS�, Windows�) TMDS3245851-02

Simulator (C language) SPARC� (Sun OS�) TMDS3245551-09

XDS510XL Emulator† PC (DOS�, OS/2�) TMDS00510

XDS510WS Emulator‡ SPARC� (Sun OS�) TMDS00510WS

3 V/5 V PC/SPARC JTAG Emulation Cable XDS510� / XDS510WS� TMDS3080002

† Includes XDS510 board and JTAG cable
‡ Includes XDS510WS box and JTAG cable
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G.3 Hewlett-Packard E2442A Preprocessor ’C5x Interface

The Hewlett-Packard E2442A preprocessor ’C5x interface provides a
mechanical and electrical connection between your target system and an HP
logic analyzer. Preprocessor hardware captures processor signals and
passes them to the logic analyzer at the appropriate time, depending on the
type of measurement you are making. With the preprocessor plugged in, both
state and timing analysis is available. Two connectors are loaded onto the pre-
processor to facilitate communications with other debugging tools. A BNC
connector, when used with the sequencer of the logic analyzer halts the pro-
cessor on a condition. Then you can use the ’C5x HLL debugger to examine
the state of the system (for example, microprocessor registers). Likewise, a
14-pin connector is available to receive signals from the XDS510 development
system. These signals can be used when defining a trigger condition for the
analyzer.

The preprocessor includes software which automatically labels address, data,
and status lines. Additionally, a disassembler is included. The disassembler
processes state traces and displays the information on TMS320 mnemonics.

G.3.1 Capabilities

The preprocessor supports three modes of operation: in the first mode, State
per Transfer, the preprocessor clocks the logic analyzer only when a bus trans-
fer is complete. In this mode, wait and halt states are filtered out. In the second
mode, CLKOUT1 clocks the logic analyzer every time the microprocessor is
clocked. This mode captures all bus states. An example application would be
to locate memory locations that do not respond to requests for data. In the third
mode, you can use the preprocessor to make timing measurements.

The JTAG TAP (test access port) controller can be monitored in realtime. TAP
state can be viewed under the predefined label TAP.

G.3.2 Logic Analyzers Supported

The preprocessor ’C5x interface supports the following logic analyzers:

� HP 1650A/B
� HP 16510B
� HP 16511B
� HP 16540/41(A/D)
� HP 16550A
� HP 1660A/61A/62A
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G.3.3 Pods Required

There are eight pod-connectors on the preprocessor. Three are terminated
and best used for state analysis as all signals needed for disassembly are
available. The other five connectors are not terminated and contain all proces-
sor signals, including a second set of the signals needed for disassembly. This
allows you to double probe these signals, making simultaneous state and tim-
ing measurements.

G.3.4 Termination Adapters (TAs)

Of the eight pods, three are terminated. You may need to order up to five ter-
mination adapters, depending on how many pods are connected at the same
time.

G.3.5 Availability

For more information and availability of the Hewlett-Packard E2442A, contact:

Hewlett-Packard Company
2000 South Park Place
Atlanta, GA 30339
(404) 980–7351
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Glossary

A
A0–A15: External address pins for data/program memory or I/O devices.

ABU: See autobuffering unit (ABU).

ACC: See accumulator (ACC).

ACCB: See accumulator buffer (ACCB).

ACCH: See accumulator high byte (ACCH).

ACCL: See accumulator low byte (ACCL).

accumulator (ACC): A 32-bit register that stores the results of an arithmetic
logic unit (ALU) operation and provides an input for subsequent ALU
operations. The ACC is accessible in two halves: accumulator high
(ACCH) and accumulator low (ACCL).

accumulator buffer (ACCB): A 32-bit register that temporarily stores the
32-bit contents of the accumulator (ACC). The ACCB has a direct path
back to the arithmetic logic unit (ALU) and can be arithmetically or logical-
ly acted upon with the ACC.

accumulator high byte (ACCH): The higher 16 bits stored in the accumula-
tor (ACC). See also accumulator.

accumulator low byte (ACCL): The lower 16 bits stored in the accumulator
(ACC). See also accumulator.

address:  The logical location of program code or data stored in memory.

addressing mode: The method by which an instruction calculates the loca-
tion of its required data.

address visibility (AVIS) bit: A 1-bit field that allows the internal program
address to appear at the TMS320C5x pins so that the internal program
address can be traced and the interrupt vector can be decoded in con-
junction with IACK when the interrupt vectors reside in on-chip memory.
At reset, AVIS = 0. This bit is stored in the processor mode status register
(PMST).

Appendix H
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AFB: See auxiliary register file bus (AFB).

ALU: See arithmetic logic unit (ALU).

analog-to-digital (A/D) converter: An 8-bit successive-approximation
converter with internal sample-and-hold circuitry that translates an ana-
log signal to a digital signal.

AR: See auxiliary register (AR).

ARAU: See auxiliary register arithmetic unit ARAU).

ARB: See auxiliary register buffer (ARB) bits.

ARCR: See auxiliary register compare register (ARCR).

arithmetic logic unit (ALU): A 32-bit 2s-complement arithmetic logic unit
that has two 32-bit input ports and one 32-bit output port feeding the ac-
cumulator (ACC). Provides the logic for arithmetic and Boolean
operations.

ARP: See auxiliary register pointer (ARP) bits.

ARR: See BSP address receive register (ARR).

assembler: A software program that creates a machine-language program
from a source file containing assembly language instructions, directives,
and macro directives. The assembler substitutes absolute operation
codes for symbolic operation codes, and absolute or relocatable ad-
dresses for symbolic addresses.

assembly language instructions: The language in which computer opera-
tions are represented by mnemonics.

autobuffering receiver enable (BRE) bit: A 1-bit field that enables/dis-
ables the autobuffering receiver. At reset, BRE = 0. This bit is stored in
the BSP control extension register (SPCE).

autobuffering receiver halt (HALTR) bit: A 1-bit field that enables/disables
the autobuffer receiver. At reset, HALTR = 0. This bit is stored in the BSP
control extension register (SPCE).

autobuffering transmitter enable (BXE) bit: A 1-bit field that enables/dis-
ables the autobuffering transmitter. At reset, BXE = 0. This bit is stored
in the BSP control extension register (SPCE).

autobuffering transmitter halt (HALTX) bit: A 1-bit field that enables/dis-
ables the autobuffer transmitter. At reset, HALTX = 0. This bit is stored
in the BSP control extension extension (SPCE).
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autobuffering unit (ABU): An on-chip module that allows the serial port in-
terface to read or write directly to internal memory independently of the
central processing unit (CPU). Autobuffering capability can be separate-
ly enabled for transmit and receive sections. When autobuffering is dis-
abled, the operation is similar to that of the ’C5x standard serial port.

auxiliary register (AR): Eight 16-bit memory-mapped registers (AR0–AR7)
that are used for indirect data address pointers, temporary storage, or
integer arithmetic processing through the auxiliary register arithmetic
unit (ARAU). Each AR is selected by the auxiliary register pointer (ARP).

auxiliary register arithmetic unit (ARAU): An unsigned 16-bit arithmetic
logic unit that calculates indirect addresses using the auxiliary, index,
and compare registers as inputs.

auxiliary register buffer (ARB) bits: A 3-bit field that holds the previous
value contained in the auxiliary register pointer (ARP). These bits are
stored in status register 1 (ST1).

auxiliary register compare register (ARCR): A 16-bit memory-mapped
register used as a limit to compare indirect adresses.

auxiliary register file bus (AFB): The bus on which the currently selected
auxiliary register (AR) addresses the data memory location.

auxiliary register pointer (ARP) bits: A 3-bit field that selects the auxiliary
register (AR) to use in indirect addressing. When the ARP is loaded, the
previous ARP value is copied to the auxiliary register buffer (ARB). The
ARP can be modified by memory-reference instructions when using indi-
rect addressing, and by the MAR and LST instructions. These bits are
stored in status register 0 (ST0).

AVIS: See address visibility (AVIS) bit.

AXR: See BSP address transmit register (AXR).

B
barrel shifter: A unit that rotates bits in a word. See also POSTSCALER and

PRESCALER.

BIG bit: A 1-bit field that specifies how the input/out (I/O) port wait-state reg-
ister is mapped. This bit is stored in the wait-state control register
(CWSR). At reset, BIG = 0.

bit-reversed addressing : A method of indirect addressing that allows effi-
cient I/O operations by resequencing the data points in a radix-2 FFT pro-
gram. The direction of carry propagation in the ARAU is reversed.
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BKR: See BSP receive buffer size register (BKR).

BKX: See BSP transmit buffer size register (BKX).

block move address register (BMAR): A 16-bit memory-mapped register
that holds an address value for use with block moves or multiply/accumu-
lates.

block repeat active flag (BRAF) bit: A 1-bit field that indicates a block
repeat is currently active. This bit is normally set when the RPTB instruc-
tion is executed and is cleared when the BRCR register decrements
below 0. Writing a 0 to this bit deactivates block repeat. At reset,
BRAF = 0. This bit is stored in the processor mode status register
(PMST).

block repeat counter register (BRCR): A 16-bit memory-mapped register
that limits the number of times a block is repeated.

block repeat program address end register (PAER): A 16-bit memory-
mapped register that contains the end address of the segment of code
being repeated.

block repeat program address start register (PASR): A 16-bit memory-
mapped register that contains the start address of the segment of code
being repeated.

BMAR: See block move address register (BMAR).

BOB: See byte ordering bit (BOB).

boot: The process of loading a program into program memory.

boot loader: A built-in segment of code that transfers code from an external
source to program memory at power-up.

BRAF: See block repeat active flag (BRAF) bit.

BRCR: See block repeat counter register (BRCR).

BRE: See autobuffering receiver enable (BRE) bit.

BSP: See buffered serial port (BSP).

BSP address receive register (ARR): An 11-bit memory-mapped register
that stores the address for writing a word to be transferred from the data
receive register (DRR) to ’C5x internal memory. When autobuffering is
enabled (BRE = 1), the ARR is no longer available for software access
as a memory-mapped register.
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BSP address transmit register (AXR): An 11-bit memory-mapped register
that stores the address for reading a word to be transferred from ’C5x in-
ternal memory to the data transmit register (DXR). When autobuffering
is enabled (BXE = 1), the AXR is no longer available for software access
as a memory-mapped register.

BSP control extension register (SPCE): A 16-bit memory-mapped
register that contains status and control bits for the buffered serial port
(BSP) interface. The 10 LSBs of the SPCE are dedicated to serial port
interface control, whereas the 6 MSBs are used for autobuffering unit
(ABU) control.

BSP receive buffer size register (BKR): An 11-bit memory-mapped regis-
ter that stores the address block size for writing a word to be transferred
from the data receive register (DRR) to ’C5x internal memory. When
autobuffering is enabled (BRE = 1), the BKR is no longer available for
software access as a memory-mapped register.

BSP transmit buffer size register (BKX): An 11-bit memory-mapped regis-
ter that stores the address block size for reading a word to be transferred
from ’C5x internal memory to the data transmit register (DXR). When
autobuffering is enabled (BXE = 1), the BKX is no longer available for
software access as a memory-mapped register.

buffered serial port (BSP): An on-chip module that consists of a full-duplex,
double-buffered serial port interface and an autobuffering unit (ABU).
The double-buffered serial port of the BSP is an enhanced version of that
available in other TMS320C5x devices (’C50, ’C51, ’C52, and ’C53). The
double-buffered serial port allows transfer of a continuous communica-
tion stream (8-,10-,12- or 16-bit data packets). Status and control of the
BSP is specified in the BSP control extension register (SPCE).

burst mode: A synchronous serial port mode in which a single word  is trans-
mitted following a frame synchronization pulse (FSX and FSR).

butterfly: A kernel function that computes an N-point fast Fourier transform
(FFT), where N is a power of 2. The combinational pattern of inputs
resembles butterfly wings.

BXE: See autobuffering transmitter enable (BXE) bit.

byte ordering bit (BOB): A 1-bit field that affects host processor data and
address transfers when using the host port interface. Only the host pro-
cessor can toggle this bit. The BOB must be initialized before the first
data or address register access. This bit is stored in the HPI control regis-
ter (HPIC).
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C
C: See carry (C) bit.

CALU: See central arithmetic logic unit (CALU).

CAR1: See circular buffer 1 auxiliary register (CAR1) bits.

CAR2: See circular buffer 2 auxiliary register (CAR2) bits.

carry (C) bit: A 1-bit field that stores the carry output of the arithmetic logic
unit (ALU). At reset, C = 1. The C bit can be tested by conditional instruc-
tions. This bit is stored in status register 1 (ST1).

CBCR: See circular buffer control register (CBCR).

CBER1: See circular buffer 1 end register (CBER1).

CBER2: See circular buffer 2 end register (CBER2).

CBSR1: See circular buffer 1 start register (CBSR1).

CBSR2: See circular buffer 2 start register (CBSR2).

CENB1: See circular buffer 1 enable (CENB1) bit.

CENB2: See circular buffer 2 enable (CENB2) bit.

central arithmetic logic unit (CALU): A 32-bit arithmetic logic unit that
executes 32-bit operations in a single machine cycle. The CALU consists
of the arithmetic logic unit (ALU), multiplier (MULT), accumulator (ACC),
accumulator buffer (ACCB), and scaling shifters (PRESCALERS,
P-SCALER, and POSTSCALER).

central processing unit (CPU): The module of the TMS320C5x that con-
trols and interprets the machine-language program and its execution.
The CPU consists of the central arithmetic logic unit (CALU), parallel log-
ic unit (PLU), auxiliary register arithmetic unit (ARAU), and registers.

circular buffer 1 auxiliary register (CAR1) bits: A 3-bit field that identifies
which auxiliary register (AR) is assigned to circular buffer 1. These bits
are stored in the circular buffer control register (CBCR).

circular buffer 1 enable (CENB1) bit: A 1-bit field that enables/disables
circular buffer 1. At reset, CENB1 = 0. This bit is stored in the circular
buffer control register (CBCR).

circular buffer 1 end register (CBER1): A 16-bit memory-mapped register
that indicates the circular buffer 1 end address.
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circular buffer 1 start register (CBSR1): A 16-bit memory-mapped regis-
ter that indicates the circular buffer 1 start address.

circular buffer 2 auxiliary register (CAR2) bits: A 3-bit field that identifies
which auxiliary register (AR) is assigned to circular buffer 2. These bits
are stored in the circular buffer control register (CBCR).

circular buffer 2 enable (CENB2) bit: A 1-bit field that enables/disables
circular buffer 2. At reset, CENB2 = 0. This bit is stored in the circular
buffer control register (CBCR).

circular buffer 2 end register (CBER2): A 16-bit memory-mapped register
that indicates the circular buffer 2 end address.

circular buffer 2 start register (CBSR2): A 16-bit memory-mapped regis-
ter that indicates the circular buffer 2 start address.

circular buffer control register (CBCR): An 8-bit memory-mapped regis-
ter that enables/disables the circular buffers (CENB1 and CENB2 bits)
and defines which auxiliary registers (CAR1 and CAR2 bits) are mapped
to the circular buffers.

CLKDV: See internal transmit clock division factor (CLKDV) bits.

CLKP: See clock polarity (CLKP) bit.

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal.

clock mode (MCM) bit: A 1-bit field that specifies the source of the clock for
CLKX. At reset, MCM = 0. This bit is stored in the serial port control regis-
ter (SPC) and TDM serial port control register (TSPC).

clock polarity (CLKP) bit: A 1-bit field that indicates when the data is
sampled by the receiver and sent by the transmitter. At reset, CLKP = 0.
This bit is stored in the BSP control extension register (SPCE).

CNF: See configuration control (CNF) bit.

code: A set of instructions written to perform a task.

cold boot: The process of loading a program into program memory at
power-up.

configuration control (CNF) bit: A 1-bit field that indicates if on-chip dual-
access RAM block 0 (DARAM B0) is mapped to program or data space.
At reset, CNF = 0. This bit is stored in status register 1 (ST1).
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context save/restore : A save/restore of system status (status registers, ac-
cumulator, product register, temporary register, hardware stack, and
auxiliary registers, etc.) when the device enters/exits a subroutine such
as an interrupt service routine.

continuous mode: A synchronous serial port mode in which only one frame
synchronization pulse (FSX and FSR) is necessary to transmit several
packets at maximum frequency.

CPU: See central processing unit (CPU).

current auxiliary register: The auxiliary register pointed to by the auxiliary
register pointer (ARP).

CWSR: See wait-state control register (CWSR).

D
D0–D15: External data bus pins that transfer data between the ’C5x and ex-

ternal data/program memory or I/O devices.

DAB: See direct address bus (DAB).

DARAM: See dual-access RAM.

data bus: A group of connections used to route data.

data memory: A memory region used for storing and manipulating data.

data memory address (dma): The seven LSBs of a direct addressed
instruction that contains the immediate relative address within a
128-word data page. The seven LSBs are concatenated with the data
memory page pointer (DP) to form the direct memory address of 16 bits.
See also data memory page pointer (DP).

data memory page pointer (DP) bits: A 9-bit field that specifies the current
data memory page address. The DP bits are concatenated with the
7 LSBs of the instruction word to form the direct memory address of
16 bits. These bits are stored in status register 0 (ST0).

data memory page 0: The first page in data memory space where the
memory-mapped registers and the scratch-pad RAM block (B2) reside.

data receive register (DRR): A 16-bit memory-mapped register that holds
serial data copied from the receive shift register (RSR). When autobuf-
fering is enabled (BRE = 1), the DRR is no longer available for software
access as a memory-mapped register. See also data receive shift regis-
ter (RSR).
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data receive shift register (RSR): A 16-bit register that holds serial data re-
ceived from the DR pin. See also data receive register (DRR).

data transmit register (DXR): A 16-bit memory-mapped register that holds
serial data to be copied to the data transmit shift register (XSR). When
autobuffering is enabled (BXE = 1), the DXR is no longer available for
software access as a memory-mapped register. See also data transmit
shift register (XSR).

data transmit shift register (XSR): A 16-bit register that holds serial data
to be transmitted from the DX pin (or TDX pin when TDM = 1). See also
data transmit register (DXR) and TDM data transmit register (TDXR).

DBMR: See dynamic bit manipulation register (DBMR).

digital loopback (DLB) mode: A synchronous serial port test mode in
which the DLB bit connects the receive pins to the transmit pins on the
same device to test if the port is operating correctly.

digital loopback mode (DLB) bit: A 1-bit field that puts the serial port in dig-
ital loopback mode. At reset, DLB = 0. This bit is stored in the serial port
control register (SPC) and TDM serial port control register (TSPC).

direct address bus (DAB): A 16-bit bus that provides the data address
used by the central processing unit (CPU).

 direct memory access (DMA): A mode where a device other than the host
processor contends for, and receives, mastership of the memory bus so
that data transfers may take place independent of the host.

DLB: See digital loopback mode (DLB) bit.

dma: See data memory address (dma).

DMA: See direct memory access (DMA).

DP: See data memory page pointer (DP) bits.

DRR: See data receive register (DRR).

DSP interrupt (DSPINT) bit: A 1-bit field that enables/disables an interrupt
from a host processor to the TMS320C57. The DSPINT bit is written from
the host processor; a ’C57 write has no effect on the DSPINT bit. When
DSPINT = 1, a ’C57 interrupt is generated. The host must write a 0 to the
DSPINT bit while writing to the BOB or HINT bits, so that the host does
not provoke an unwanted ’C57 interrupt. This bit is stored in the HPI con-
trol register (HPIC).
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DSPINT: See DSP interrupt (DSPINT) bit.

dual-access RAM (DARAM): Memory space that can be read from and
written to in the same clock cycle.

dynamic bit manipulation register (DBMR): A 16-bit memory-mapped
register that masks the input to the parallel logic unit (PLU) in the
absence of a long immediate value.

DXR: See data transmit register (DXR).

E

enable extra index register (NDX) bit: A 1-bit field that determines if a mod-
ification or write to auxiliary register 0 (AR0) also modifies or writes to the
index register (INDX), and the auxiliary register compare register
(ARCR) to maintain compatibility with the TMS320C2x. This bit is stored
in the processor mode status register (PMST).

enable multiple TREGs (TRM) bit: A 1-bit field that indicates if an
LT(A,D,P,S) instruction loads only TREG0 or loads all three of the tempo-
rary registers (TREG0, TREG1, and TREG2) to maintain compatibility
with the TMS320C2x. The TRM bit allows the TMS320C5x to operate in
either ’C2x-compatible mode (TRM = 0) or ’C5x-enhanced mode
(TRM = 1) in conjunction with the use of TREG0, TREG1, and TREG2.
The TRM bit affects the operation of all ’C2x-compatible instructions that
modify TREG0. This bit is stored in the processor mode status register
(PMST).

external flag (XF) pin status bit: A 1-bit field that drives the level of the ex-
ternal flag (XF) pin. At reset, XF = 1.This bit is stored in status register
1 (ST1).

external interrupt: A hardware interrupt triggered by a pin (INT1–INT4).

F

fast Fourier transform (FFT): An efficient method of computing the discrete
Fourier transform, which transforms functions between the time domain
and frequency domain. The time-to-frequency domain is called the for-
ward transform, and the frequency-to-time domain is called the inverse
transformation. See also butterfly.

FE: See format extension (FE) bit.
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FFT: See fast Fourier transform (FFT).

FIG: See frame ignore (FIG) bit.

FO: See format (FO) bit.

format (FO) bit: A 1-bit field that specifies the word length of the serial port
transmitter and receiver. The data is transferred with the MSB first. At re-
set, FO = 0. This bit is stored in the serial port control register (SPC) and
TDM serial port control register (TSPC).

format extension (FE) bit: A 1-bit field used in conjunction with the format
bit (FO) to specify the word length of the BSP serial port transmitter and
receiver. When FO = FE = 00, the format is 16-bit words; when
FO = FE = 01, the format is 10-bit words; when FO = FE = 10, the format
is 8-bit words; and when FO = FE = 11, the format is 12-bit words. For
8-,10-, and 12-bit words, the received words are right-justified and the
sign bit is extended to form a 16-bit word. The words to transmit must be
right-justified. At reset, FE = 0. This bit is stored in the BSP control  exten-
sion register (SPCE).

frame ignore (FIG) bit: A 1-bit field used only in transmit continuous mode
with external frame and in receive continuous mode. At reset, FIG = 0.
This bit is stored in the BSP control extension register (SPCE).

frame synchronization mode (FSM) bit: A 1-bit field that specifies whether
frame synchronization pulses (FSX and FSR) are required for serial port
operation. At reset, FSM = 0. This bit is stored in the serial port control
register (SPC) and TDM serial port control register (TSPC).

frame synchronization polarity (FSP) bit: A 1-bit field that determines the
status of the frame synchronization pulses. At reset, FSP = 0. This bit is
stored in the BSP control extension register (SPCE).

Free bit: A 1-bit field used in conjunction with the Soft bit to determine the
state of the serial port clock when a breakpoint is encountered in the high-
level language debugger. At reset, Free = 0. This bit is stored in the serial
port control register (SPC) and TDM serial port control register (TSPC).

FSM: See frame synchronization mode (FSM) bit.

FSP: See frame synchronization polarity (FSP) bit.
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G

general-purpose input/output pins: Pins that can be used to supply input
signals from an external device or output signals to an external device.
These pins are not linked to specific uses; rather, they provide input or
output signals for a variety of purposes. These pins include the general-
purpose BIO input pin and XF output pin.

global data memory space : One of four memory spaces. The global data
memory space can either share data with other processors within the
system or serve as additional data memory space.

global memory allocation register (GREG): An 8-bit memory-mapped
register that specifies the size of the global memory space. At reset, the
GREG is cleared.

GREG: See global memory allocation register (GREG).

H

HALTR: See autobuffering receiver halt (HALTR) bit.

HALTX: See autobuffering transmitter halt (HALTX) bit.

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

HINT bit: ’C57-to-Host Processor Interrupt. A 1-bit field that enables/dis-
ables an interrupt from the TMS320C57 to a host processor. At reset,
HINT = 0. This bit is stored in the HPI control register (HPIC).

HM: See hold mode (HM) bit.

HOM: See host-only mode (HOM).

hold mode (HM) bit: A 1-bit field that determines whether the central pro-
cessing unit (CPU) can stop or continue when the HOLD signal initiates
a power-down mode. At reset, HM = 1. This bit is stored in status register
1 (ST1).

host-only mode (HOM): The mode that allows the host to access HPI
memory while the TMS230C57 is in IDLE2 (all internal clocks stopped)
or in reset mode. The external ’C57 clock may even be stopped. The host
can therefore access the HPI RAM while the ’C57 is in its optimum config-
uration in terms of power consumption.
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host port interface (HPI): An on-chip module consisting of an 8-bit parallel
port that interfaces a host processor to the TMS320C57. The HPI has
two modes of operation, shared-access mode (SAM) and host-only
mode (HOM). Status and control of the HPI is specified in the HPI control
register (HPIC). See also shared-access mode (SAM) and host-only
mode (HOM).

HPI: See host port interface (HPI).

HPIA: See HPI address register (HPIA).

HPIAH: See HPI address register high byte (HPIAH).

HPIAL: See HPI address register low byte (HPIAL).

HPIC: See HPI control register (HPIC).

HPICH: See HPI control register high byte (HPICH).

HPICL: See HPI control register low byte (HPICL).

HPI address register (HPIA): A 16-bit register that stores the address of the
host port interface (HPI) memory block. The HPIA can be preincrem-
ented or postincremented.

HPI address register high byte (HPIAH): The higher 16 bits stored in the
HPI address register (HPIA). See also HPI address register (HPIA).

HPI address register low byte (HPIAL): The lower 16 bits stored in the HPI
address register (HPIA). See also HPI address register (HPIA).

HPI control register (HPIC): A 16-bit register that contains status and con-
trol bits for the host port interface (HPI).

HPI control register high byte (HPICH): The higher 16 bits stored in the
HPI control register (HPIC). See also HPI control register (HPIC).

HPI control register low byte (HPICL): The lower 16 bits stored in the HPI
control register (HPIC). See also HPI control register (HPIC).

I

I/O port wait-state register (IOWSR): A 16-bit memory-mapped register
that specifies the number of wait states for the input/out (I/O) port. The
IOWSR can be mapped in one of two ways as specified by the BIG bit
in the wait-state control register (CWSR). At reset, IOWSR = FFFF.

IFR: See interrupt flag register (IFR).
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IMR: See interrupt mask register (IMR).

IN0 bit: Input 0 bit. A 1-bit field that allows the CLKR pin to be used as an
input. IN0 reflects the current level of the CLKR pin of the device. This
bit is stored in the SPC and TDM serial port control register (TSPC).

IN1 bit: Input 1 bit. A 1-bit field that allows the CLKX pin to be used as an
input. IN1 reflects the current level of the CLKX pin of the device. This
bit is stored in the SPC and TDM serial port control register (TSPC).

index register (INDX): A 16-bit memory-mapped register that specifies
increment sizes greater than 1 for indirect addressing updates. In bit-
reversed addressing, the INDX defines the array size.

INDX: See index register (INDX).

instruction: The basic unit of programming that causes the execution of one
operation; it consists of an opcode and operands along with optional
labels and comments.

instruction register (IREG): A 16-bit register that contains the actual
instruction being executed.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

internal transmit clock division factor (CLKDV) bits: A 5-bit field that de-
termines the internal transmit clock duty cycle. At reset, CLKDV = 00011.
These bits are stored in the BSP control extension register (SPCE).

interrupt: An exceptional condition that is caused either by an external
event to the CPU or by a previously executed instruction that forces the
current program to stop. The CPU executes instructions of an interrupt
service routine (ISR) at an address corresponding to the source of the
interrupt. After the CPU services the interrupt, the CPU resumes execu-
tion of the program at the instruction whose execution was interrupted.

interrupt flag register (IFR): A 16-bit memory-mapped register that flags
pending interrupts. The IFR may be read to identify pending interrupts
and written to clear selected interrupts. A 1 read from any IFR bit position
indicates a pending interrupt. A 1 written to any IFR bit position clears the
corresponding interrupt. A 0 written to any IFR bit position has no effect.
At reset, the IFR is cleared.

interrupt mask register (IMR): A 16-bit memory-mapped register that
masks external and internal interrupts. The IMR may be read and written
to. A 1 written to any IMR bit position enables the corresponding interrupt
(when INTM = 0).
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interrupt mode (INTM) bit: A 1-bit field that globally masks or enables all
interrupts. When INTM = 0, all unmasked interrupts are enabled. When
INTM = 1, all maskable interrupts are disabled. INTM has no effect on
the nonmaskable RS and NMI interrupts. At reset, INTM = 1.This bit is
stored in status register 0 (ST0).

interrupt service routine (ISR): A module of code that is executed in
response to a hardware or software interrupt.

interrupt vector pointer (IPTR) bits: A 5-bit field that identifies the 2K page
where the interrupt vectors currently reside in the system. The IPTR lets
you remap the interrupt vectors to RAM for boot-loaded operations. At
reset, IPTR = 0. These bits are stored in the processor mode status reg-
ister (PMST).

INTM: See interrupt mode (INTM) bit.

IOWSR: See I/O Port Wait-State Register (IOWSR).

IPTR: See interrupt vector pointer (IPTR) bits.

IREG: See instruction register (IREG).

ISR: See interrupt service routine (ISR).

L

latency: The delay between when a condition occurs and when the device
reacts to the condition. Also, in a pipeline, the delay between the execu-
tion of two instructions that is necessary to ensure that the values used
by the second instruction are correct.

LSB: least significant bit. The lowest-order bit in a word.

M

maskable interrupts : A hardware interrupt that can be enabled or disabled
through software.

MCM: See clock mode (MCM) bit.

MCS: See microcall stack (MCS).

memory map: A map of the addressable memory space accessed by the
TMS320C5x processor partitioned according to functionality (memory,
registers, etc.).
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memory-mapped registers: The TMS320C5x processor has 96 registers
mapped into page 0 of the data memory space. There are 28 core CPU
registers, 17 peripheral registers, 16 input/output (I/O) port registers,
and 35 reserved registers.

microcall stack (MCS): A single-word stack that temporarily stores the
contents of the prefetch counter (PFC) while the PFC addresses data
memory with the block move (BLDD/BLPD), multiply-accumulate (MAC/
MACD), and table read/write (TBLR/TBLW) instructions.

microprocessor/microcomputer (MP/MC ) bit: A 1-bit field that indicates
if on-chip ROM is mapped into program address space. When MP/
MC = 0, the on-chip ROM is enabled. When MP/MC = 1, the on-chip
ROM is not addressable. At reset, the MP/MC bit is set to the value corre-
sponding to the logic level on the MP/MC pin. The level on the MP/MC
pin is sampled at reset only and has no effect until the next reset. This
bit is stored in the processor mode status register (PMST).

mnemonic: An alphanumeric symbol designed to aid human memory; it
commonly represents the operation code of an assembly language
instruction name that the assembler translates into machine code.

MP/MC: See microprocessor/microcomputer (MP/MC) bit.

MSB: most significant bit. The highest-order bit in a word.

MULT: See multiplier (MULT).

multiplier (MULT): A 16-by-16-bit multiplier that generates a 32-bit product.
The multiplier executes multiple operations in a single machine cycle and
operates using either signed or unsigned 2s-complement arithmetic. The
operand for the multiplier is specified by the value in temporary register
0 (TREG0). The result of the multiplier is stored in the product register
(PREG).

N
nested interrupt: A higher-priority interrupt that must be serviced before

completion of the current interrupt service routine (ISR). An executing
ISR can set the interrupt mask register (IMR) bits to prevent being sus-
pended by another interrupt.

NDX: See enable extra index register (NDX) bit.

nonmaskable interrupt: An interrupt that can be neither masked by the in-
terrupt mask register (IMR) nor disabled by the INTM bit of status register
ST0.
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O

off-chip: A device external to the TMS320C5x device.

on-chip: An element or module of the TMS320C5x device.

opcode: operation code. In most cases, the first byte of the machine code
that describes the type of operation and combination of operands to the
central processing unit (CPU).

operand: The part of an instruction that designates where the central pro-
cessing unit (CPU) will fetch or store data. The operand consists of the
arguments, or parameters, of an assembly language instruction, assem-
bler directive, or macro directive.

OV: See overflow (OV) bit.

overflow: A condition in which the result of an arithmetic operation exceeds
the capacity of the register used to hold that result.

overflow (OV) bit: A 1-bit flag that indicates an arithmetic operation over-
flow in the arithmetic logic unit (ALU). At reset, OV = 0.This bit is stored
in status register 0 (ST0).

overflow mode (OVM) bit: A 1-bit field that determines if an overflow in the
arithmetic logic unit (ALU) will wrap around or saturate. This bit is stored
in status register 0 (ST0).

OVLY: See RAM overlay (OVLY) bit.

OVM: See overflow mode (OVM) bit.

P

PAER: See block repeat program address end register (PAER).

parallel logic unit (PLU): A 16-bit logic unit that executes logic operations
from either long immediate operands or the contents of the dynamic bit
manipulation register (DBMR) directly upon data locations without affect-
ing the contents of the accumulator (ACC) or product register (PREG).

PASR: See block repeat program address start register (PASR).

PC: See program counter (PC).

PCM: See pulse coded modulation mode (PCM) bit.



Glossary

 H-18

PDWSR: See program/data wait-state register (PDWSR).

PFC: See prefetch counter (PFC).

pipelining: A design technique for reducing the effective propagation delay
per instruction operation by partitioning the operation into a series of four
independent stages, each of which performs a portion of the operation.

PLU: See parallel logic unit (PLU).

PM: See product shift mode (PM) bits.

PMST: See processor mode status register (PMST).

pop: Action of removing a word from a stack.

POSTSCALER: postscaling shifter. A 0- to 7-bit left barrel shifter used to
postscale data coming out of the accumulator (ACC).

PRD: See timer period register (PRD).

prefetch counter (PFC): A 16-bit register that prefetches program instruc-
tions. The PFC contains the address of the instruction currently being
prefetched and is updated when a new prefetch is initiated.

PREG: See product register (PREG).

PRESCALER: prescaling shifter. A 0- to 16-bit left barrel shifter used to
prescale data coming into the arithmetic logic unit (ALU). This shifter is
also used as a 0- to 16-bit right barrel shifter of the accumulator (ACC).
The shift count is specified by a constant in the instruction or by the value
in temporary register 1 (TREG1).

processor mode status register (PMST): A 16-bit memory-mapped regis-
ter that contains status and control bits.

product register (PREG): A 32-bit register that holds the output from the
multiplier. The high and low words of the PREG can be accessed individ-
ually. See also multiplier (MULT).

product shift mode (PM) bits: A 2-bit field that defines the product shifter
(P-SCALER) mode. These two bits determine the shift value (0-, 1-, 4-bit
left shifter, 6-bit right shifter) for the output of the product register
(PREG).These bits are stored in status register 1 (ST1).
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program/data wait-state register (PDWSR): (For the TMS320C50, ’C51,
and ’C53) a 16-bit memory-mapped register that specifies the number
of wait states for the program and data space. The higher byte of PDWSR
specifies the data space wait states and the lower byte specifies the pro-
gram space wait states. At reset, PDWSR = FFFF.

(For the TMS320C52, ’C56, and ’C57) a 16-bit memory-mapped register
that specifies the number of wait states for the program, data, and input/
output (I/O) space. Bits 0–2 of PDWSR specify the program space wait
states, bits 3–5 specify the data space wait states, bits 6–8 specify the
I/O space wait states, and bits 9–15 are reserved. At reset,
PDWSR = FFFF.

program controller: Logic circuitry that decodes instructions, manages the
pipeline, stores the central processing unit (CPU) status, and decodes
conditional operations.

program counter (PC): A 16-bit register that identifies the current state-
ment in the program. The PC addresses program memory sequentially
and always contains the address of the next instruction to be fetched.
The PC contents are updated following each instruction decode opera-
tion.

P-SCALER: Product Shifter. A 0-, 1-, or 4-bit left shifter that removes extra
signed bits (gained in the multiply operation) when fixed-point arithmetic
is used; or a 6-bit right shifter that scales the products down to avoid over-
flow in the accumulation process. The shift mode is specified by the prod-
uct shift mode (PM) bits.

PSC: See timer prescaler counter (PSC) bits.

pulse coded modulation mode (PCM) bit: A 1-bit field that enables/dis-
ables the BSP transmitter. This bit is stored in the BSP control extension
register (SPCE).

push: Action of placing a word onto a stack.

R
RAM overlay (OVLY) bit: A 1-bit field that determines if on-chip single-ac-

cess RAM is addressable in data memory space. At reset, OVLY = 0.
This bit is stored in the processor mode status register (PMST).

receive buffer half received (RH) bit: A 1-bit flag that indicates which half
of the receive buffer has been received. At reset, RH = 0. This bit is
stored in the BSP control extension register (SPCE).
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receive ready (RRDY) bit: A 1-bit flag that transitions from 0 to 1 to indicate
the data receive shift register (RSR) contents have been copied to the
data receive register (DRR) and that data can be read. A receive interrupt
(RINT) is generated upon the transition. The RRDY bit can be polled in
software in lieu of using serial port interrupts. This bit is stored in the serial
port control register (SPC) and TDM serial port control register (TSPC).

receiver reset (RRST ) bit: A 1-bit flag that resets the serial port receiver.
At reset, RRST = 0. This bit is stored in the serial port control register
(SPC) and TDM serial port control register (TSPC).

receive shift register full (RSRFULL) bit: A 1-bit flag that indicates if the
serial port receiver has experienced overrun. This bit is stored in the seri-
al port control register (SPC).

register: A group of bits used for temporarily holding data or for controlling
or specifying the status of a device.

repeat counter register (RPTC): A 16-bit memory-mapped register that
controls the repeated execution of a single instruction.

reset: A means to bring the central processing unit (CPU) to a known state
by setting the registers and control bits to predetermined values and
signaling execution to start at a specified address.

RH: See receive buffer half received (RH) bit.

RINT: See serial port receive interrupt (RINT) bit.

RPTC: See repeat counter register (RPTC).

RRDY: See receive ready (RRDY) bit.

RRST: See receiver reset (RRST) bit.

RSR: See data receive shift register (RSR).

RSRFULL: See receive shift register full (RSRFULL) bit.

S

SAM: See shared-access mode (SAM).

SARAM: See single-access RAM (SARAM).

scratch-pad RAM: Block 2 (B2) on data memory page 0 in local data space
(32 words) of DARAM. Scratch-pad RAM supports dual-access opera-
tions and can be addressed via any data memory addressing mode.
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serial port control register (SPC): A 16-bit memory-mapped register that
contains status and control bits for the serial port interface. The SPC is
identical to the time-division multiplexed serial port control register
(TSPC), except that bit 0 is reserved for the TDM bit.

serial port interface:  An on-chip full-duplex serial port interface that pro-
vides direct serial communication to serial devices with a minimum of ex-
ternal hardware, such as codecs and serial analog-to-digital (A/D) con-
verters. Status and control of the serial port is specified in the serial port
control register (SPC).

serial port receive interrupt (RINT) bit: A 1-bit flag that indicates the data
receive shift register (RSR) contents have been copied to the data re-
ceive register (DRR). This bit is stored in the interrupt flag register (IFR).

serial port transmit interrupt (XINT) bit: A 1-bit flag that indicates the the
data transmit register (DXR) contents has been copied to the data trans-
mit shift register (XSR). This bit is stored in the interrupt flag register
(IFR).

shared-access mode (SAM): The mode that allows both the TMS320C57
and the host to access HPI memory. In this mode, asynchronous host
accesses are synchronized internally and, in case of conflict, the host
has access priority and the ’C57 waits one cycle.

shared-access mode (SMOD) bit: A 1-bit field that enables/disables the
shared access mode (SAM). This bit is stored in the HPI control register
(HPIC). See also shared-access mode (SAM) and host-only mode
(HOM).

shifter: A unit that shifts bits in a word to the left or to the right. See also
P-SCALER.

sign-extension: The process of filling the high-order bits of a number with
the sign bit, when loading a 16-bit number into a 32-bit field.

sign-extension mode (SXM) bit: A 1-bit field that enables/disables sign ex-
tension of an arithmetic operation. This bit is stored in status register 1
(ST1).

single-access RAM (SARAM): Memory space that only can be read from
or written to in a single clock cycle.

SMOD: See shared-access mode (SMOD) bit.

Soft bit: A 1-bit field used in conjunction with the Free bit to determine the
state of the serial port clock when a breakpoint is encountered in the high-
level language debugger. At reset, Soft = 0. This bit is stored in the serial
port control register (SPC) and TDM serial port control register (TSPC).
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software interrupt:  An interrupt caused by the execution of an INTR, NMI,
or TRAP instruction.

SPC: See serial port control register (SPC).

SPCE: See BSP control extension register (SPCE).

stack: An 8-level-deep by 16-bit hardware stack used as a last-in, first-out
memory for temporary variable storage; used during interrupt service
routines (ISR) and calls to store the current program status. The area
occupied by the stack is determined by the stack pointer and the
application program.

status register: A 16-bit register that contains status and control bits.

SXM: See sign-extension mode (SXM) bit.

T

TADD: See TDM address (TADD).

TC: See test/control (TC) bit.

TCLK: See TDM clock (TCLK).

TCR: See timer control register (TCR).

TCSR: See TDM channel select register (TCSR).

TDAT: See TDM data (TDAT).

TDDR: See timer divide-down register (TDDR) bits.

TDM: See time-division multiplexed (TDM) bit.

TDM address (TADD): A single, bi-directional address line that identifies
which devices on the four-wire serial bus should read in the data on the
TDM data (TDAT) line.

TDM channel select register (TCSR): A 16-bit memory-mapped register
that specifies in which of the eight time slots (channels) a device on the
four-wire serial bus is to transmit. A 1 in any one or more of bits 0–7 of
the TCSR sets the device transmitter active during the corresponding
time slot. Bits 8–15 are reserved.

TDM clock (TCLK): A single, bi-directional clock line for TDM operation.
The TDM receive clock (TCLKR) and TDM transmit clock (TCLKX) pins
are externally connected to form the TCLK line.
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TDM data (TDAT): A single, bi-directional line from which all TDM data is
carried. The TDM serial data receive (TDR) and TDM serial data transmit
(TDX) pins are externally connected to form the TDAT line.

TDM data receive register (TRCV): A 16-bit memory-mapped register that
holds serial data copied from the TDM receive shift register (TRSR).
When multiprocessing is enabled (TDM = 1), the TRCV is no longer
available for software access as a memory-mapped register. See also
TDM data receive shift register (TRSR).

TDM data receive shift register (TRSR): A 16-bit register that holds serial
data received from the TDM data (TDAT) line. See also TDM data receive
register (TRCV).

TDM data transmit register (TDXR): A 16-bit memory-mapped register
that holds serial data to be copied to the data transmit shift register
(XSR). When multiprocessing is enabled (TDM = 1), the TDXR is no
longer available for software access as a memory-mapped register. See
also data transmit shift register (XSR).

TDM receive address register (TRAD): A 16-bit memory-mapped register
that contains various information regarding the status of the TDM ad-
dress (TADD) line and verifies the relationship between instruction
cycles and TDM port timing.

TDM receive interrupt (TRNT) bit: A 1-bit flag that indicates the TDM data
receive shift register (TRSR) contents have been copied to the TDM data
receive register (TRCV). This bit is stored in the interrupt flag register
(IFR).

TDM receive/transmit address register (TRTA): A 16-bit memory-
mapped register that specifies to which device(s) on the four-wire serial
bus a given device can transmit. The lower byte of the TRTA specifies
the receive address (RA) of the device and the higher byte specifies the
transmit address (TA). The address is sent over the TDM address
(TADD) line.

TDM serial port control register (TSPC): A 16-bit memory-mapped
register that contains status and control bits for the TDM serial port inter-
face. The TSPC is identical to the serial port interface control register
(SPC), except for the TDM bit 0.

TDM transmit interrupt (TXNT) bit: A 1-bit flag that indicates the TDM data
transmit register (TDXR) contents have been copied to the data transmit
shift register (XSR). This bit is stored in the interrupt flag register (IFR).

TDXR: See TDM data transmit register (TDXR).
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temporary register:  A 16-bit register that holds a temporary data value.
See alsoTREG0, TREG1, and TREG2.

test/control (TC) bit: A 1-bit flag that stores the results of the arithmetic logic
unit (ALU) or parallel logic unit (PLU) test bit operations. The TC bit is af-
fected by the APL, BIT, BITT, CMPR, CPL, LST #1, NORM, OPL, and
XPL instructions. The status of the TC bit influences the execution of the
conditional branch, call, and return instructions. This bit is stored in sta-
tus register 1 (ST1).

TIM: See timer counter register (TIM).

time-division multiplexed (TDM) bit: A 1-bit field that enables/disables the
TDM serial port. This bit is stored in the TDM serial port control register
(TSPC).

time-division multiplexing (TDM): The process by which a single serial
bus is shared by up to eight TMS320C5x devices with each device taking
turns to communicate on the bus. There are a total of eight time slots
(channels) available. During a time slot, a given device may talk to any
combination of devices on the bus.

timer control register (TCR): A 16-bit memory-mapped register that con-
tains status and control bits for the on-chip timer.

timer counter register (TIM): A 16-bit memory-mapped register that speci-
fies the current count for the on-chip timer. The TIM is decremented once
after each timer prescaler counter (PSC) decrement past 0. When the
TIM is decremented past 0 or the timer is reset, the TIM is loaded with
the contents of the timer period register (PRD) and an internal timer inter-
rupt (TINT) is generated.

timer divide-down register (TDDR) bits: A 4-bit field that specifies the tim-
er divide-down ratio (period) for the on-chip timer. When the timer pres-
caler counter (PSC) is decremented past 0, the PSC is loaded with the
contents of the TDDR. At reset, TDDR = 0000. These bits are stored in
the timer control register (TCR).

timer interrupt (TINT) bit: A 1-bit flag that indicates the timer counter regis-
ter (TIM) has decremented past 0. This bit is stored in the interrupt flag
register (IFR).

timer period register (PRD): A 16-bit memory-mapped register that speci-
fies the period for the on-chip timer. When the timer counter register
(TIM) is decremented past 0, the TIM is loaded with the contents of the
PRD.
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timer prescaler counter (PSC) bits: A 4-bit field that specifies the count for
the on-chip timer. When the PSC is decremented past 0 or the timer is
reset, the PSC is loaded with the contents of the timer divide-down regis-
ter (TDDR) and the timer counter register (TIM) is decremented. These
bits are stored in the timer control register (TCR).

timer reload (TRB) bit: A 1-bit flag that resets the on-chip timer. When
TRB = 1, the timer counter register (TIM) is loaded with the value in the
timer period register (PRD) and the timer prescaler counter (PSC) is
loaded with the value of the timer divide-down register (TDDR) bits. This
bit is stored in the timer control register (TCR).

timer stop status (TSS) bit: A 1-bit flag that stops and restarts the on-chip
timer. At reset, TSS = 0 and the timer immediately starts timing. This bit
is stored in the timer control register (TCR).

TINT: See timer interrupt (TINT) bit.

TRAD: See TDM receive address register (TRAD).

transmit buffer half transmitted (XH) bit: A 1-bit flag that indicates which
half of transmit buffer transmitted. The XH bit can be read when an XINT
interrupt occurs (interrupt program or IFR polling). At reset, XH = 0. This
bit is stored in the BSP control extension register (SPCE).

transmit mode bit (TXM) bit: A 1-bit field that specifies the source of the
frame synchronization transmit (FSX) pulse. At reset, TXM = 0. This bit
is stored in the serial port control register (SPC) and TDM serial port con-
trol register (TSPC).

transmit ready (XRDY) bit: A 1-bit flag that transitions from 0 to 1 to indicate
the data transmit register (DXR) contents have been copied to the data
transmit shift register (XSR) and that data is ready to be loaded with a
new data word. A transmit interrupt (XINT) is generated upon the transi-
tion. The XRDY bit can be polled in software in lieu of using serial port
interrupts. This bit is stored in the serial port control register (SPC) and
TDM serial port control register (TSPC).

transmit shift register empty (XSREMPTY ) bit: A 1-bit flag that indicates
if the serial port transmitter has experienced underflow. This bit is stored
in the serial port control register (SPC).

transmitter reset (XRST ) bit: A 1-bit flag that resets the serial port transmit-
ter. At reset, XRST = 0. This bit is stored in the serial port control register
(SPC) and TDM serial port control register (TSPC).

TRB: See timer reload (TRB) bit.
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TRCV: See TDM data receive register (TRCV).

TREG0: temporary register 0. A 16-bit memory-mapped register that
holds an operand for the multiplier. See also multiplier (MULT).

TREG1: temporary register 1. A 5-bit memory-mapped register that holds
a dynamic prescaling shift count for data inputs to the arithmetic logic unit
(ALU). See also PRESCALER.

TREG2: temporary register 2. A 4-bit memory-mapped register that holds
a dynamic bit pointer for the BITT instruction.

TRM: See enable multiple TREGs (TRM) bit.

TRNT: See TDM receive interrupt (TRNT) bit.

TRSR: See TDM data receive shift register (TRSR).

TRTA: See TDM receive/transmit address register (TRTA).

TSPC: See TDM serial port control register (TSPC).

TSS: See timer stop status (TSS) bit.

TXM: See transmit mode (TXM) bit.

TXNT: See TDM transmit interrupt (TXNT) bit.

W
wait state : A period of time that the CPU must wait for external program,

data, or I/O memory to respond when reading from or writing to that ex-
ternal memory. The CPU waits one extra cycle (one CLKOUT1 cycle) for
every wait state.

wait-state control register (CWSR): A 5-bit memory-mapped register that
controls the mapping of the program/data wait-state register (PDWSR),
the input/output port wait-state register (IOWSR), and the number of wait
states. At reset, CWSR = 011112.

wait-state generator : A program that can be modified to generate a limited
number of wait states for a given off-chip memory space (lower program,
upper program, data, or I/O). Wait states are set in the wait-state control
register (CWSR).

warm boot: The process by which the processor transfers control to the
entry address of a previously-loaded program.

word:  A word, as defined in this document, consists of a sequence of 16 ad-
jacent bits (two bytes).
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X

XF: See external flag (XF) pin status bit.

XH: See transmit buffer half transmitted (XH) bit.

XINT: See serial port transmit interrupt (XINT) bit.

XRDY: See transmit ready (XRDY) bit.

XRST: See transmitter reset (XRST) bit.

XSR: See data transmit shift register (XSR).

XSREMPTY: See transmit shift register empty (XSREMPTY) bit.

Z

zero fill: A method of filling the low- or high-order bits with zeros when a shift
occurs.
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Appendix A

Summary of Updates in This Document

This appendix provides a summary of the updates in this version of the docu-
ment. Updates within paragraphs appear in a bold typeface .

Page: Change or Add:

3–3 In the bottom half of Figure 3–1, the auxiliary register file MUX output now connects with the
trailing wire bus found on the data bus.

Figure 3–1. Block Diagram of ’C5x DSP – Central Processing Unit (CPU)
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Page: Change or Add:

4–11 In Table 4–5, changed the reset values for the ARP bit and the OVM bit so both have a reset
value of “X.” In other words, there is no reset value for the ARP bit and the OVM bit.

Table 4–5. Status Register 0 (ST0) Bit Summary 

Bit Name
Reset
value Function

15–13 ARP X Auxiliary register pointer. These bits select the auxiliary register (AR) to be used in
indirect addressing. When the ARP is loaded, the previous ARP value is copied to
the auxiliary register buffer (ARB) in ST1. The ARP can be modified by memory-refer-
ence instructions when you use indirect addressing, and by the MAR or LST #0
instruction. When an LST #1 instruction is executed, the ARP is loaded with the same
value as the ARB.

11 OVM X Overflow mode bit. This bit enables/disables the accumulator overflow saturation
mode in the arithmetic logic unit (ALU). The OVM bit can be modified by the LST #0
instruction.

OVM = 0 Disabled. An overflowed result is loaded into the accumulator without
modification. The OVM bit can be cleared by the CLRC OVM instruc-
tion.

OVM = 1 Overflow saturation mode. An overflowed result is loaded into the ac-
cumulator with either the most positive (00 7FFF FFFFh) or the most
negative value (FF 8000 0000h). The OVM bit can be set by the
SETC OVM instruction.

4–12 In Table 4–5, changed the reset value for the DP bit so it has a reset value of “X.” In other
words, there is no reset value for the DP bit.

Table 4–5. Status Register 0 (ST0) Bit Summary (Continued) 

Bit Name
Reset
value Function

8–0 DP X Data memory page pointer bits. These bits specify the address of the current data
memory page. The DP bits are concatenated with the 7 LSBs of an instruction word
to form a direct memory address of 16 bits. The DP bits can be modified by the
LST #0 or LDP instruction.

Summary of Updates in This Document
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Page: Change or Add:

4–13 In Table 4–6, changed the reset value for the ARB bit and the TC bit so they have no reset
value.

Table 4–6. Status Register 1 (ST1) Bit Summary 

Bit Name
Reset
value Function

15–13 ARB X Auxiliary register buffer. This 3-bit field holds the previous value contained in the
auxiliary register pointer (ARP) in ST0. Whenever the ARP is loaded, the previous
ARP value is copied to the ARB, except when using the LST #0 instruction. When
the ARB is loaded using the LST #1 instruction, the same value is also copied to
the ARP. This is useful when restoring context (when not using the automatic con-
text save) in a subroutine that modifies the current ARP.

11 TC X Test/control flag bit. This 1-bit flag stores the results of the arithmetic logic unit (ALU)
or parallel logic unit (PLU) test bit operations. The TC bit is affected by the APL, BIT,
BITT, CMPR, CPL, NORM, OPL, and XPL instructions. The status of the TC bit de-
termines if the conditional branch, call, and return instructions execute. The TC bit
can be modified by the LST #1 instruction.

Summary of Updates in This Document
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Page: Change or Add:

5–2 In Figure 5–1, changed the page 0 length to “128-WORD PAGE.”

Figure 5–1. Direct Addressing
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Page: Change or Add:

5–22 In Example 5–13, added two new lines at the beginning of the example.

Example 5–13. Circular Addressing

mar *,ar6
ldp #,0

splk #200h,CBSR1 ; Circular buffer start register
splk #203h,CBER1 ; Circular buffer end register
splk #0Eh,CBCR ; Enable AR6 pointing to buffer 1

lar ar6,#200h ; Case 1
lacc * ; AR6 = 200h

lar ar6,#203h ; Case 2
lacc * ; AR6 = 203h

lar ar6,#200h ; Case 3
lacc *+ ; AR6 = 201h

lar ar6,#203h ; Case 4
lacc *+ ; AR6 = 200h

lar ar6,#200h ; Case 5
lacc *– ; AR6 = 1FFh

lar ar6,#203h ; Case 6
lacc *– ; AR6 = 200h

lar ar6,#202h ; Case 7
adrk 2 ; AR6 = 204h

lar ar6,#203h ; Case 8
adrk 2 ; AR6 = 200h

Summary of Updates in This Document
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Page: Change or Add:

6–32 Changed the second operand for the ADD instruction.

Operands 0 ≤ shift ≤16 (defaults to 0)

6–44 Changed the fourth operand for the AND instruction.

Operands 0 ≤ shift ≤ 16

6–83 Changed the operand for the BSAR instruction.

Operands 1 ≤ shift ≤ 16

6–85 Changed the description for the CALAD instruction.

Description The current program counter (PC) is incremented by 3 and pushed onto
the top of the stack (TOS).

Then, the one 2-word instruction or two 1-word instructions following
the CALAD instruction are fetched from program memory and executed
before the call is executed.

Then, the contents of the accumulator low byte (ACCL) are loaded into
the PC. Execution continues at this address.

The CALAD instruction is used to perform computed subroutine calls.
CALAD is a branch and call instruction (see Table 6–8).

6–87 Changed the description for the CALLD instruction.

Description The current program counter (PC) is incremented by 4 and pushed onto
the top of the stack (TOS).

Then, the one 2-word instruction or two 1-word instructions following
the CALLD instruction are fetched from program memory and executed
before the call is executed.

Then, the program memory address (pma) is loaded into the PC. Execu-
tion continues at this address. The current auxiliary register (AR) and
auxiliary register pointer (ARP) are modified as specified. The pma can
be either a symbolic or numeric address.

CALLD is a branch and call instruction (see Table 6–8).

Summary of Updates in This Document
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Page: Change or Add:

6–91 Changed the description for the CCD instruction.

Description If the specified conditions are met, the current program counter (PC) is
incremented by 4 and pushed onto the top of the stack (TOS ).

Then, the one 2-word instruction or two 1-word instructions following
the CCD instruction are fetched from program memory and executed be-
fore the call is executed.

Then, the program memory address (pma) is loaded into the PC. Execu-
tion continues at this address. The pma can be either a symbolic or nu-
meric address. Not all combinations of the conditions are meaningful. In
addition, the NTC, TC, and BIO conditions are mutually exclusive.

If the specified conditions are not met, control is passed to the next
instruction.

The CCD functions in the same manner as the CALLD instruction (page
6–87) if all conditions are true. CCD is a branch and call instruction (see
Table 6–8) .

6–103 Changed the opcode for the CRLT instruction to reflect the new values for bits 2, 1, and 0.

Opcode 0123456789101112131415
0011100001111101

6–115 Changed the third operand for the LACC instruction.

Operands 0 ≤ shift ≤ 16 (defaults to 0)

6–127 Changed the table Cycles for a Single Instruction (short immediate addressing).

Cycles for a Single Instruction (short immediate addressing)

Operand ROM DARAM SARAM External Memory

2 2 2 2+pcode

6–129 Changed the table Cycles for a Single Instruction (short immediate addressing).

Cycles for a Single Instruction (short immediate addressing)

Operand ROM DARAM SARAM External Memory

2 2 2 2+pcode

6–188 Changed the fourth operand for the OR instruction.

Operands 0 ≤ shift ≤ 16
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6–261 Changed the second operand for the SUB instruction.

Operands 0 ≤ shift ≤ 16 (defaults to 0)

6–278 Changed the data memory address in Example 1 from 1905h to 1005h.

6–282 Changed the fourth operand for the XOR instruction.

Operands 0 ≤ shift ≤ 16

8–6 In Figure 8–6, changed the word Off-chip to Reserved on the Program memory map for the
range from 0040h to 8000h.

8–11 In Table 8–6, changed the values in the Off-Chip column for the first and fifth rows.

Table 8–6. ’C57S Program Memory Configuration

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Bit values ÁÁÁÁÁÁ
ÁÁÁÁÁÁROM

ÁÁÁÁÁ
ÁÁÁÁÁSARAM

ÁÁÁÁÁÁ
ÁÁÁÁÁÁDARAM B0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
CNFÁÁÁÁÁ
ÁÁÁÁÁ

RAM ÁÁÁÁ
ÁÁÁÁ

MP/MC ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ROM
(2K-words) ÁÁÁÁÁ

ÁÁÁÁÁ

SARAM
(6K-words) ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

DARAM B0
(512-words) ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Off-Chip

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–07FF ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Off-chip ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8000–FFFF
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000–07FF
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Off-chip
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

FE00–FFFF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

8000–FDFF

8–32 Changed the last sentence in the fourth bullet.

� 32K words of global data memory are enabled initially in data spaces
8000h to FFFFh. After the code transfer is complete, the global memory
is disabled before control is transferred to the destination address in pro-
gram  memory .

9–10 In Table 9–4, changed the sentences after Soft=0 and Soft=1. Also, add a sentence to the
TSS register.

Table 9–4. Timer Control Register (TCR) Bit Summary

Bit Name
Reset
value Function

11 Soft 0 This bit is used in conjunction with the Free bit to determine the state of the timer
when a halt is encountered. When the Free bit is cleared, the Soft bit selects the
emulation mode.

Soft = 0 The timer stops immediately.

Soft = 1 The timer stops after decrementing to zero .

4 TSS 0 Timer stop status bit. This bit stops or starts the on-chip timer. At reset, the TSS
bit is cleared and the timer immediately starts timing. Note that due to timer logic
implementation, two successive writes of one to the TSS bit are required to
properly stop the timer.
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9–11 Deleted the last sentence in the Notes section and replace it with the sentence indicated.

The current value in the timer can be read by reading the TIM; the PSC can be read by reading the TCR.
Because it takes two instructions to read both registers, there may be a change between the two reads
as the counter decrements. Therefore, when making precise timing measurements, it may be more ac-
curate to stop the timer to read these two values. Due to timer logic implementation, two instruc-
tions are also required to properly stop the timer; therefore, two successive writes of one to the
TSS bit should be made when the timer must be stopped.

9–62 Changed the XINT and RINT labels found in the lower right portion of Figure 9–35.

Figure 9–35. ABU Block Diagram
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9–63 Changed the last sentence in the first paragraph.

The internal ’C5X memory used for autobuffering consists of a 2K-word block
of single-access memory that can be configured as data, program, or both (as
with other single-access memory blocks). This memory can also be used by
the CPU as general purpose storage, however, this is the only memory block
in which autobuffering can occur. Since the BSP is implemented on several dif-
ferent TMS320 devices, the actual base address of the ABU memory may not
be the same in all cases. The 2K-word block of BSP memory is located at
800h–FFFh in data memory or at 8000h–87FFh in program memory as
specified by the RAM and OVLY control bits .
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A–4 In Figure A–2, changed the signal name on pin 80 to R/W.

Figure A-2. Pin/Signal Assignments for the ’C51, ’C52, ’C53S, and ’LC56 in 100-Pin
TQFP
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A–6 In Figure A–3, changed the signal name on pin 108 to X2/CLKIN.

Figure A–3. Pin/Signal Assignments for the ’LC57 in 128-Pin TQFP
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A–7 In Table A–3, changed the signal name on pin 108 to X2/CLKIN and reorder the signal names.

Table A–3. Signal/Pin Assignments for the ’LC57 in 128-Pin TQFP

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin

A0 67 CLKMD3 107 FSX 117 IS 101 VDDD 47

A1 68 CLKOUT1 125 HAS 64 MP/MC 22 VDDI 77

A2 69 CLKR 61 HBIL 56 NMI 57 VDDI 78

A3 70 CLKX 8 HCNTL0 43 PS 102 VDDI 126

A4 71 D0 42 HCNTL1 45 RD 94 VDDI 127

A5 72 D1 41 HCS 65 READY 13 VSSA 66

A6 73 D2 40 HD0 93 RS 12 VSSA 82

A7 74 D3 39 HD1 95 R/W 103 VSSA 83

A8 75 D4 38 HD2 99 STRB 104 VSSC 4

A9 76 D5 37 HD3 105 TCK 48 VSSC 5

A10 85 D6 36 HD4 114 TDI 81 VSSC 97

A11 86 D7 35 HD5 116 TDO 111 VSSC 98

A12 87 D8 30 HD6 118 TMS 44 VSSD 33

A13 88 D9 29 HD7 120 TOUT 6 VSSD 34

A14 89 D10 28 HDS1 80 TRST 19 VSSD 49

A15 90 D11 27 HDS2 79 VDDC 9 VSSD 50

BCLKR 11 D12 26 HINT 1 VDDA 91 VSSI 20

BCLKX 7 D13 25 HOLD 14 VDDA 63 VSSI 21

BDR 59 D14 24 HOLDA 123 VDDA 62 VSSI 112

BDX 122 D15 23 HRDY 92 VDDC 16 VSSI 113

BFSR 10 DR 58 HR/W 51 VDDC 17 WE 96

BFSX 119 DS 100 IAQ 18 VDDC 110 X1 109

BIO 15 DX 121 INT1 52 VDDC 128 X2/CLKIN 108

BR 106 EMU0 2 INT2 53 VDDD 31 XF 124

CLKMD1 84 EMU1/OFF 3 INT3 54 VDDD 32

CLKMD2 115 FSR 60 INT4 55 VDDD 46
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A–10 In Figure A–5, corrected the signal names for pins 1–16, 28–45, 57–71, and 78–141;
changed the signal name on pin 122 to X2/CLKIN.

Figure A–5. Pin/Signal Assignments for the ’C57S in 144-Pin TQFP
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A–11 In Table A–5, corrected the signal names for pins 1–16, 28–45, 57–71, and 78–141; changed
the signal name on pin 122 to X2/CLKIN; reordered the signal names.

Table A–5. Signal/Pin Assignments for the ’C57S in 144-Pin TQFP

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin

A0 75 CLKX 9 HD0 105 TCK 54 VSSD 37

A1 76 D0 48 HD1 107 TDI 91 VSSD 38

A2 77 D1 47 HD2 111 TDO 126 VSSD 55

A3 79 D2 46 HD3 118 TMS 50 VSSD 56

A4 80 D3 44 HD4 129 TOUT 7 VSSI 22

A5 81 D4 43 HD5 131 TRST 21 VSSI 23

A6 82 D5 42 HD6 133 VDDA 69 VSSI 127

A7 84 D6 40 HD7 135 VDDA 70 VSSI 128

A8 85 D7 39 HDS1 90 VDDA 103 WE 108

A9 86 D8 34 HDS2 89 VDDC 10 X1 123

A10 95 D9 32 HINT 1 VDDC 18 X2/CLKIN 122

A11 96 D10 31 HOLD 15 VDDC 19 XF 139

A12 98 D11 30 HOLDA 138 VDDC 124 � 3

A13 99 D12 29 HRDY 104 VDDC 144 � 16

A14 100 D13 27 HR/W 58 VDDD 35 � 28

A15 102 D14 26 IAQ 20 VDDD 36 � 33

BCLKR 12 D15 25 INT1 59 VDDD 52 � 41

BCLKX 8 DR 65 INT2 60 VDDD 53 � 45

BDR 66 DS 112 INT3 61 VDDI 87 � 57

BDX 137 DX 136 INT4 62 VDDI 88 � 72

BFSR 11 EMU0 2 IS 113 VDDI 142 � 78

BFSX 134 EMU1/OFF 4 MP/MC 24 VDDI 143 � 83

BIO 17 FSR 67 NMI 64 VSSA 74 � 97

BR 119 FSX 132 PS 114 VSSA 92 � 101

CLKMD1 94 HAS 71 RD 106 VSSA 93 � 117

CLKMD2 130 HBIL 63 READY 14 VSSC 5 � 120

CLKMD3 121 HCNTL0 49 RS 13 VSSC 6 � 125

CLKOUT1 140 HCNTL1 51 R/W 115 VSSC 109 � 141

CLKR 68 HCS 73 STRB 116 VSSC 110

† These pins are not connected (reserved).
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D–2 In Figure D–1, changed the PD pin 5 from +5V to VDD.

Figure D–1. Header Signals and Header Dimensions
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In Table D–1, changed the voltage for pin 5 (the PD pin) from +5V to VDD.

Table D–1. XDS510 Header Signal Description

Pin Signal State
Target
State Description

5 PD I O Presence detect. Indicates that the emulation
cable is connected and that the target is
powered up. PD should be tied to VDD in the
target system.
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D–5 In Figure D–2, changed the voltages from +5V to VDD.

Figure D–2. Emulator Cable Pod Interface
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D–7 In Figure D–4, changed the voltages from +5V to VDD.

Figure D–4. Target-System Generated Test Clock
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D–8 In Figure D–5, changed the voltages from +5V to VDD.

Figure D–5. Multiprocessor Connections
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D–9 In Figure D–6, changed the voltages from +5V to VDD.

Figure D–6. Emulator Connections Without Signal Buffering
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Index

’C2x instruction compatibility C-11
’C2x to ’C5x software compatibility 5-6
’C5x

applications 1-4
characteristics 1-6
functional block diagram 2-2
IEEE Std. 1149.1 interface configurations 2-12
key features 1-7
overview 1-5

’C5x block diagram, CPU 3-3

A
A/D converter H-2
A0–A15 pin A-13, H-1
ABS instruction

description 6-29
summary 6-9

ABU H-1
See also autobuffering unit (ABU)

ACC H-1
See also accumulator (ACC)

ACCB H-1
See also accumulator buffer (ACCB)

ACCH H-1
See also accumulator high byte (ACCH)

ACCL H-1
See also accumulator low byte (ACCL)

accumulator (ACC) 3-11 to 3-14, H-1
accumulator buffer (ACCB) 3-11, H-1
accumulator high byte (ACCH) H-1

See also accumulator (ACC)
accumulator low byte (ACCL) H-1

See also accumulator (ACC)
ADCB instruction

description 6-31
summary 6-9

ADD instruction
description 6-32
summary 6-9

ADDB instruction
description 6-36
summary 6-9

ADDC instruction
description 6-37
summary 6-9

address bus pins A-13, H-1

address generation 4-2

address map, data page 0 8-17

address visibility (AVIS) bit H-1
See also AVIS bit

addressing modes 5-1, H-1
circular 5-21 to 5-22
dedicated-register 5-17 to 5-18
direct 5-2 to 5-3
immediate 5-14 to 5-16
indirect 5-4 to 5-5
long immediate 5-15
memory-mapped register 5-19 to 5-22
short immediate 5-14

addressing program memory 4-5

ADDS instruction
description 6-39
summary 6-9

ADDT instruction
description 6-41
summary 6-9

ADRK instruction
description 6-43
summary 6-13

AFB H-2
See also auxiliary register file bus (AFB)

ALU H-2
See also arithmetic logic unit (ALU)
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AND instruction
description 6-44
summary 6-9

ANDB instruction
description 6-47
summary 6-9

APAC instruction, description 6-48

APL instruction
description 6-49
summary 6-14

applications 1-4

AR H-2
See also auxiliary register (AR)

ARAU H-2
See also auxiliary register arithmetic unit (ARAU)

ARB bits 4-13, H-2

architecture 1-5, 2-1
bus structure 2-3
central processing unit (CPU) 2-4, H-6
on-chip memory 2-6
on-chip peripherals 2-8
test/emulation 2-11

ARCR H-2
See also auxiliary register compare register

(ARCR)

arithmetic logic unit (ALU) 3-11 to 3-14, H-2

ARP bits 4-11, H-2

ARR H-2
See also BSP address receive register (ARR)

assembler H-2

assembly language instructions 6-1, H-2
descriptions 6-23
instruction set summary 6-8
instructions not meaningful to repeat 4-27
nonrepeatable instructions 4-29
notations, instruction set descriptions 6-6
repeatable instructions 4-23 to 4-36
symbols and abbreviations

instruction set descriptions 6-4
instruction set opcodes 6-2

symbols and notations 6-2

assistance G-3

autobuffering receiver enable (BRE) bit H-2
See also BRE bit

autobuffering receiver halt (HALTR) bit H-2
See also HALTR bit

autobuffering transmitter enable (BXE) bit H-2
See also BXE bit

autobuffering transmitter halt (HALTX) bit H-2
See also HALTX bit

autobuffering unit (ABU) 9-60, H-3
block diagram 9-62
control register 9-63
process 9-65

auxiliary register (AR) 3-21, H-3
auxiliary register arithmetic unit (ARAU) 2-5,

3-17 to 3-20, H-3
See also auxiliary register (AR)

auxiliary register buffer (ARB) bits H-3
See also ARB bits

auxiliary register compare register (ARCR) 3-19,
3-21, H-3

auxiliary register file bus (AFB) H-3
auxiliary register pointer (ARP) bits H-3

See also ARP bits
auxiliary registers 5-4

circular buffer 1 4-7, 5-21
circular buffer 2 4-7, 5-21

AVIS bit 4-8, 4-38, 8-13, 8-14, H-3
AXR H-3

See also BSP address transmit register (AXR)

B
B instruction

description 6-52
summary 6-17

BACC instruction
description 6-53
summary 6-17

BACCD instruction
description 6-54
summary 6-17

BANZ instruction
description 6-55
summary 6-17

BANZD instruction
description 6-57
summary 6-17

BCLKR pin A-21
BCLKX pin A-21
BCND instruction

description 6-59
example 4-19, 4-20
summary 6-17
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BCNDD instruction
description 6-61
example 4-20
summary 6-17

BD instruction
description 6-63
summary 6-17

BDR pin A-21

BDX pin A-21

BFSR pin A-21

BFSX pin A-21

BIG bit 3-24, 8-22, 9-17, H-3

BIO pin 9-20, A-15, H-12

BIT instruction
description 6-64
summary 6-21

bit manipulation 3-11, 3-15

bit-reversed addressing 5-6, 5-12
auxiliary register modifications 5-13
step/bit pattern relationship 5-13

bit-reversed addressing H-3

BITT instruction
description 6-66
summary 6-21

BKR H-4
See also BSP receive buffer size register (BKR)

BKX H-4
See also BSP transmit buffer size register (BKX)

BLDD instruction
description 6-68
example 8-27
summary 6-20

BLDP instruction
description 6-74
example 8-28
summary 6-20

block move address register (BMAR) 3-21, H-4

block moves 8-26

block repeat 3-22

block repeat active flag (BRAF) bit H-4
See also BRAF bit

block repeat counter register (BRCR) 3-21, H-4

block repeat function 4-31

block repeat program address end register
(PAER) 3-21, 4-31, H-4

block repeat program address start register
(PASR) 3-21, 4-31, H-4

BLPD instruction
description 6-77
example 8-29, 8-30
summary 6-20

BMAR H-4
See also block move address register (BMAR)

BOB H-4
See also byte ordering bit (BOB)

boot loader 8-32
boot routine selection 8-32
HPI boot mode 8-33

boot mode
parallel EPROM boot 8-36
parallel I/O boot 8-37
serial boot 8-34
warm boot 8-38

boot ROM 8-3
boot routine selection 8-32, 8-33

parallel EPROM boot mode 8-36
parallel I/O boot mode 8-37
serial boot mode 8-34
warm boot mode 8-38

BR pin 8-20, 8-23, A-15
BRAF bit 4-9, H-4
branch execution 4-17
BRCR H-4

See also block repeat counter register (BRCR)
BRE bit 9-64, H-4
BSAR instruction

description 6-83
summary 6-9

BSP H-4
See also buffered serial port (BSP)

BSP address receive register (ARR) 3-22, H-4
BSP address transmit register (AXR) 3-22, H-5
BSP control extension register (SPCE) 3-22, H-5

bit summary 9-58, 9-64
BRE bit 9-64, H-2
BXE bit 9-65, H-2
CLKDV bits 9-59, H-14
CLKP bit 9-58, H-7
diagram 9-57, 9-63
FE bit 9-58, H-11
FIG bit 9-58, H-11
FSP bit 9-59, H-11
HALTR bit 9-64, H-2
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BSP control extension register (SPCE) (continued)
HALTX bit 9-64, H-2
PCM bit 9-58, H-19
reset status 4-48
RH bit 9-64, H-19
XH bit 9-65, H-25

BSP control register (BSPC), reset status 4-47
BSP operation system considerations 9-69
BSP receive buffer size register (BKR) 3-22, H-5

BSP transmit buffer size register (BKX) 3-22, H-5
buffered serial port (BSP) 2-10, 3-22, 9-53, H-5

autobuffering control register 9-63
autobuffering process 9-65
autobuffering unit (ABU) 9-60
power-down mode 9-73
registers 3-22
signal descriptions A-21
system considerations 9-69

buffered signals, JTAG D-10
bumpered quad flat-pack (BQFP) package A-1

burst mode (serial port) 9-37, H-5
bus protocol D-3
bus structure 2-3
BXE bit 9-65, H-5

byte ordering bit (BOB) H-5

C
C bit 4-14, H-6

example 3-13
’C25 packages C-2

’C25 to ’C5x clocking C-5
’C25 to ’C5x execution times C-8
’C25 to ’C5x pins/signals C-4

’C25 to ’C5x software compatibility 4-42
’C2x to ’C5x migration C-1
cable, target system to emulator D-1 to D-13
CALA instruction

description 6-84
summary 6-17

CALAD instruction
description 6-85
summary 6-18

CALL instruction
description 6-86
summary 6-18

CALLD instruction
description 6-87
summary 6-18

CALU H-6
See also central arithmetic logic unit (CALU)

CAR1 bits 4-7, H-6
CAR2 bits 4-7, H-6
carry (C) bit H-6

See also C bit
CBCR H-6

See also circular buffer control register (CBCR)
CBER1 H-6

See also circular buffer 1 end register (CBER1)
CBER2 H-6

See also circular buffer 2 end register (CBER2)
CBSR1 H-6

See also circular buffer 1 start register (CBSR1)
CBSR2 H-6

See also circular buffer 2 start register (CBSR2)
CC instruction

description 6-89
summary 6-18

CCD instruction
description 6-91
summary 6-18

CENB1 bit 4-7, H-6
CENB2 bit 4-7, H-6
central arithmetic logic unit (CALU) 2-4,

3-7 to 3-14, H-6
central processing unit (CPU) 2-4, 3-1, H-6

auxiliary register arithmetic unit (ARAU) 2-5,
3-17, H-3

central arithmetic logic unit (CALU) 2-4, 3-7,
H-6

functional overview 3-2
memory-mapped registers 2-5, H-16
parallel logic unit (PLU) 2-4, 3-15, H-17
program controller 2-5, H-19
registers 3-21

circular addressing mode 5-21 to 5-22
circular buffer 3-20, 3-22, 5-21
circular buffer 1 auxiliary register (CAR1) bits H-6

See also CAR1 bits
circular buffer 1 enable (CENB1) bit H-6

See also CENB1 bit
circular buffer 1 end register (CBER1) 3-22, H-6
circular buffer 1 start register (CBSR1) 3-22, H-7
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circular buffer 2 auxiliary register (CAR2) bits H-7
See also CAR2 bits

circular buffer 2 enable (CENB2) bit H-7
See also CENB2 bit

circular buffer 2 end register (CBER2) 3-22, H-7
circular buffer 2 start register (CBSR2) 3-22, H-7
circular buffer control register (CBCR) 3-15, 3-22,

4-6, H-7
bit summary 4-7
CAR1 bits 4-7, H-6
CAR2 bits 4-7, H-7
CENB1 bit 4-7, H-6
CENB2 bit 4-7, H-7
diagram 4-7
reset status 4-46

circular buffer registers 3-22, 5-21
clear control bit 6-93
CLKDV bits 9-59, H-7

CLKIN2 pin A-17
CLKMD1 pin A-17, A-18, A-19
CLKMD2 pin A-17, A-18, A-19
CLKMD3 pin A-17, A-19
CLKOUT1 pin A-17
CLKP bit 9-58, H-7
CLKR pin A-20
CLKR1 pin A-20

CLKR2 pin A-20
CLKX pin A-20
CLKX1 pin A-20
CLKX2 pin A-20
clock generator 2-8, 9-7

PLL options 9-8
standard options 9-7

clock mode (MCM) bit H-7
See also MCM bit

clock modes 9-7, 9-8, H-7
clock polarity (CLKP) bit H-7

See also CLKP bit
CLRC instruction

description 6-93
summary 6-21

CMPL instruction
description 6-95
summary 6-10

CMPR instruction
description 6-96

summary 6-13
CNF bit 4-13, 8-8, 8-15, 8-32, H-7
conditional branch 4-17
conditional operations 4-17
configuration control (CNF) bit H-7

See also CNF bit
contacting Texas Instruments xvi
context save/restore H-8
continuous mode (serial port) 9-44, H-8
CPGA package C-2
CPL instruction

description 6-98
summary 6-14

CPU H-8
See also central processing unit (CPU)

CRGT instruction
description 6-101
summary 6-10

CRLT instruction
description 6-103
summary 6-10

crystals E-3
current auxiliary register (ARc), changed by auxiliary

register arithmetic unit (ARAU) 5-5
CWSR H-8

See also wait-state control register (CWSR)

D
D bit 9-18
D0–D15 pin A-13, H-8
DAB H-8

See also direct address bus (DAB)
DARAM H-8

See also dual-access RAM (DARAM)
data bus 2-3, H-8
data bus pins A-13, H-8
data memory 3-15, H-8
data memory address (dma) H-8
data memory page pointer (DP) bits H-8

See also DP bits
data moves. See block moves
data receive register (DRR) 3-24, 9-24, H-8

reset status 4-47
data receive shift register (RSR) 3-24, 9-24, H-9
data transmit register (DXR) 3-24, 9-24, H-9

reset status 4-47
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data transmit shift register (XSR) 3-24, 9-24, H-9

DBMR H-9
See also dynamic bit manipulation register

(DBMR)

dedicated-register addressing mode 5-17 to 5-18
using BMAR 5-17
using DBMR 5-18

delayed branches 4-19

development tool nomenclature G-6

development tools G-2

device nomenclature G-5

digital loopback mode (DLB) bit H-9
See also DLB bit

direct address bus (DAB) H-9

direct addressing mode 5-2 to 5-3

direct memory access (DMA) 8-23, H-9
address ranges 8-24
master/slave configuration 8-23

division 6-267

DLB bit 9-31, 9-32, H-9

DMA H-9
See also direct memory access (DMA)

dma H-9
See also data memory address (dma)

DMOV instruction 8-27
description 6-105
summary 6-20

DP bits 4-12, H-9

DP register 5-2 to 5-4

DR pin A-20

DR1 pin A-20

DR2 pin A-20

DRB 5-2

DRR H-9
See also data receive register (DRR)

DS pin A-14

DSP interrupt (DSPINT) bit H-9
See also DSPINT bit

DSPINT bit H-10

dual-access RAM (DARAM) 2-6, 8-2, 8-18, H-10

DX pin A-20

DX1 pin A-20

DX2 pin A-20

DXR H-10
See also data transmit register (DXR)

dynamic bit manipulation register (DBMR) 3-15,
3-22, H-10

E
EMU0 pin A-24
EMU1/OFF pin A-24
emulator D-1

buffered signals D-10
bus protocol D-3
cable header D-2
cable pod D-4
designing the JTAG cable D-1
header signals D-2
signal buffering D-9 to D-10
signal timings D-6
timing D-11
timings D-6
unbuffered signals D-9

emulator cable pod, interface D-5
enable extra index register (NDX) bit H-10

See also NDX bit
enable multiple TREGs (TRM) bit H-10

See also TRM bit
EXAMPLE instruction, description 6-24
EXAR instruction

description 6-107
summary 6-10

extended-precision arithmetic 3-12
external DMA. See direct memory access (DMA)
external flag (XF) pin status bit H-10

See also XF bit
external memory interface timings 8-39

F
fast Fourier transform (FFT) H-10
FE bit 9-58, H-10
FFT H-11

See also fast Fourier transform (FFT)
FIG bit 9-58, H-11
FO bit 9-31, 9-32, H-11
format (FO) bit H-11

See also FO bit
format extension (FE) bit H-11

See also FE bit
frame ignore (FIG) bit H-11

See also FIG bit
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frame synchronization mode (FSM) bit H-11
See also FSM bit

frame synchronization polarity (FSP) bit H-11
See also FSP bit

Free bit 9-10, 9-28, 9-37, H-11
FSM bit 9-30, 9-33, H-11
FSP bit 9-59, H-11
FSR pin 8-34, A-20
FSR1 pin A-20
FSR2 pin A-20
FSX pin A-20
FSX1 pin A-20
FSX2 pin A-20
functional overview 3-2

G
general-purpose I/O pins 9-20

BIO pin 9-20
XF pin 9-21

global data memory 8-20, H-12
addressing 8-20
configuration 8-20
global memory allocation register (GREG) 8-20
map 8-21

global memory allocation register (GREG) 3-23,
8-20, H-12
reset status 4-46

GREG H-12
See also global memory allocation register

(GREG)

H
HALTR bit 9-64, H-12
HALTX bit 9-64, H-12
hardware development tools G-2, G-7
hardware stack 4-4, 4-42, H-22
hardware timer 2-8
Harvard architecture 1-5
HAS pin A-22
HBIL pin A-22
HCNTL0 pin A-22
HCNTL1 pin A-22
HCS pin A-22

HD0–HD7 pin A-22
HDS1 pin A-23
HDS2 pin A-23
Hewlett-Packard interface G-8
HINT bit H-12
HINT pin A-23
HM bit 4-15, 4-38, 8-14, 8-24, H-12
hold mode (HM) bit H-12

See also HM bit
HOLD pin 4-49, 8-23, A-15
HOLDA pin 4-45, 8-23, A-15
HOM H-12

See also host-only mode (HOM)
host port interface (HPI) 2-9, 9-87, H-13

boot mode 8-33
registers 3-23
signal descriptions A-22

host processor interrupt (HINT) bit H-12
See also HINT bit

host-only mode (HOM) H-12
HPI H-13

See also host port interface (HPI)
HPI address register (HPIA) 3-23, H-13
HPI address register high byte (HPIAH) H-13

See also HPI address register (HPIA)
HPI address register low byte (HPIAL) H-13

See also HPI address register (HPIA)
HPI boot mode 8-33
HPI control register (HPIC) 3-23, H-13

BOB H-5
diagram 9-96
DSPINT bit H-9
HINT bit H-12
SMOD bit H-21

HPI control register high byte (HPICH) H-13
See also HPI control register (HPIC)

HPI control register low byte (HPICL) H-13
See also HPI control register (HPIC)

HPI modes
host only (HOM) H-12
shared access (SAM) H-21

HPIA H-13
See also HPI address register (HPIA)

HPIAH H-13
See also HPI address register high byte (HPIAH)

HPIAL H-13
See also HPI address register low byte (HPIAL)
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HPIC H-13
See also HPI control register (HPIC)

HPICH H-13
See also HPI control register high byte (HPICH)

HPICL H-13
See also HPI control register low byte (HPICL)

HR/W pin A-23

HRDY pin A-23

I
I/O

addressing 8-22
buffered serial ports 2-10
general-purpose pins 9-20
host port 2-9
parallel ports 2-9, 9-22
serial ports 2-10
space 3-23, 8-22
TDM serial ports 2-10

I/O High bit 9-17

I/O Low bit 9-18

I/O port wait-state register (IOWSR) 3-24, 9-16,
H-13
diagram 9-16
reset status 4-47

I/O space 3-23, 8-22
addressing 8-22

IACK pin 8-14, A-15

IAQ pin 8-14, 8-23, A-15

IDLE instruction
description 6-108
summary 6-21

IDLE2 instruction 4-50
description 6-109
summary 6-21

IEEE 1149.1 D-3

IFR H-13
See also interrupt flag register (IFR)

immediate addressing mode 5-14 to 5-16
long immediate 5-15
short immediate 5-14

IMR H-14
See also interrupt mask register (IMR)

IN instruction
description 6-110

summary 6-20
IN0 bit 9-29, 9-35, H-14
IN1 bit 9-29, 9-35, H-14
index register (INDX) 3-19, 3-23, H-14
indirect addressing mode 3-17, 5-4 to 5-5

bit-reversed addressing 5-12
examples 5-10 to 5-13
format for instructions 5-7
opcode format 5-7
opcode format diagram 5-7
opcode format summary 5-7
operands 5-5
options 5-5

INDX H-14
See also index register (INDX)

initialization
CPU 4-45
peripherals 9-6

instruction. See assembly language instructions
instruction classes B-1
instruction conditions

branch 4-17
call 4-17
return 4-17

instruction cycles 6-25, B-1
instruction operands 8-13
instruction operation

conditional branch 4-17
conditional call 4-18
conditional execution 4-20
conditional return 4-18
delayed conditional branches 4-19
delayed conditional calls 4-19
delayed conditional returns 4-19
multiconditional instructions 4-18

instruction register (IREG) 3-18, 3-23, 4-2, H-14
instruction set

descriptions 6-23
latencies 7-24
summary 6-8

instruction set opcodes, summary 6-8
instruction set symbols and notations 6-2
instructions not meaningful to repeat 4-27
INT1 pin A-16
INT2 pin A-16
INT3 pin A-16
INT4 pin A-16
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internal hardware summary 3-2 to 3-6
CPU 3-4 to 3-6

internal transmit clock division factor (CLKDV)
bits H-14
See also CLKDV bits

interrupt flag register (IFR) 3-23, 4-39, H-14
diagram 4-39
reset status 4-46
RINT bit H-21
TINT bit H-24
TRNT bit H-23
TXNT bit H-23
XINT bit H-21

interrupt mask register (IMR) 3-23, 4-40, H-14
diagram 4-40

interrupt mode (INTM) bit H-15
See also INTM bit

interrupt service routine (ISR) H-15

interrupt trap 4-42

interrupt vector pointer (IPTR) bits H-15
See also IPTR bits

interrupts 4-36 to 4-44, H-14
address location 4-37
context save 4-42
hardware H-12
latency 4-43, H-15
nested H-16
nonmaskable 4-41, H-16
operation 4-38
priorities 4-36, 4-37
registers 3-23

IFR. See interrupt flag register (IFR)
IMR. See interrupt mask register (IMR)

software initiated 4-41
user-maskable (external) 2-10, H-10
vector addresses 8-11, 8-12
vector locations 4-36
vectors 4-38, 8-11, 8-12

INTM bit 3-23, 4-12, 4-40, 8-32, H-15

INTR instruction
description 6-112
summary 6-18

introduction 1-1
TMS320 family overview 1-2
TMS320C5x key features 1-7
TMS320C5x overview 1-5

IOWSR H-15
See also I/O port wait-state register (IOWSR)

IPTR bits 4-8, 4-37, 8-11, 8-12, H-15
IREG H-15

See also instruction register (IREG)
IS pin A-14
ISR H-15

See also interrupt service routine (ISR)

J
JTAG D-1

scanning logic 2-11 to 2-12
signals D-3

JTAG emulator
buffered signals D-10
connection to target system D-1 to D-13
no signal buffering D-9

K
key features 1-7

L
LACB instruction

description 6-114
summary 6-10

LACC instruction
description 6-115
summary 6-10

LACL instruction
description 6-118
summary 6-10

LACT instruction
description 6-121
summary 6-10

LAMM instruction
description 6-123
summary 6-10

LAR instruction
description 6-125
summary 6-13

latency
instruction set 7-24
interrupts 4-43
pipeline 7-24

LDP instruction
description 6-128
summary 6-13
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LMMR instruction
description 6-131
example 8-31
summary 6-20

local data memory 8-15
address map 8-17
addressing 8-19
configuration 8-15 to 8-17

long immediate addressing 5-15
low-power mode 4-50
LPH instruction

description 6-134
summary 6-14

LST instruction
description 6-136
summary 6-21

LT instruction
description 6-139
summary 6-14

LTA instruction
description 6-141
summary 6-15

LTD instruction
description 6-143
summary 6-15

LTP instruction
description 6-146
summary 6-15

LTS instruction
description 6-148
summary 6-15

M
MAC instruction 3-9

description 6-150
summary 6-15

MACD instruction
description 6-154
summary 6-15

MADD instruction
description 6-159
summary 6-15

MADS instruction
description 6-163
summary 6-15

MAR instruction
description 6-167

summary 6-13
masked parts F-3
MCM bit 9-30, 9-33, H-15
MCS H-15

See also microcall stack (MCS)
memories E-2
memory 2-6, 8-1

addressing modes 5-1
boot loader 8-32
direct memory access (DMA) 8-23
dual-access RAM (DARAM) 2-6
external 8-2
external memory interface timings 8-39
global data 8-20
I/O space 8-22
local data 8-15
management 8-26
maps 8-4 to 8-6
overview 8-2
program 2-6, 8-7
protection 2-7
single-access RAM (SARAM) 2-7
software wait-state generation 8-42

memory addressing modes 5-1
memory block moves 8-27
memory configuration

local data memory 8-15 to 8-17
program memory 8-7 to 8-11

memory management 8-26
memory block moves 8-27
memory-to-memory moves 8-26

memory map H-15
memory protection feature 2-7, 8-14
memory-mapped register addressing

mode 5-19 to 5-22
memory-mapped registers 2-5

CPU 8-18
defined H-16
I/O ports 8-19, 9-2 to 9-4
peripherals 8-19, 9-2 to 9-4
serial ports 8-19, 9-2 to 9-4

memory-to-memory moves 8-26
microcall stack (MCS) 5-15, H-16
microcomputer mode 4-9, 8-3 to 8-5
microprocessor mode 4-9, 8-3 to 8-5
microprocessor/microcomputer (MP/MC) bit H-16

See also MP/MC bit
mnemonic H-16

See also assembly language instructions
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MP/MC bit 4-9, 8-7, H-16

MP/MC pin 8-3, 8-7, A-16

MPY instruction
description 6-169
summary 6-16

MPYA instruction
description 6-172
summary 6-16

MPYS instruction
description 6-174
summary 6-16

MPYU instruction 3-10
description 6-176
summary 6-16

MULT H-16
See also multiplier (MULT)

multiplier (MULT) 3-7, H-16

multiply accumulate 3-9

multiprocessing 8-20, 8-23

multiprocessor configuration 8-20, 8-23, D-8

N
NDX bit 4-9, 5-6, H-16

NEG instruction
description 6-178
summary 6-10

nested interrupt H-16

nested loops 4-32

next instruction repeat function 4-22

NMI instruction
description 6-180
summary 6-18

NMI pin A-16

nomenclature G-4, G-5

nonrepeatable instructions 4-29

NOP instruction
description 6-181
summary 6-21

NORM instruction
description 6-182
summary 6-10

O
off-chip, defined H-17

on-chip, defined H-17

on-chip memory 2-6

on-chip peripherals 2-8, 9-1
buffered serial port (BSP) 2-10, 9-53
clock generator 2-8, 9-7
general-purpose I/O pins 9-20 to 9-21
host port interface (HPI) 2-9, 9-87
parallel I/O ports 2-9, 9-22
peripheral control 9-2
serial port interface 2-10, 9-23
software-programmable wait-state genera-

tors 2-8, 9-13
TDM serial port 2-10, 9-74
timer 2-8, 9-9

on-chip ROM 2-6, 8-2, 8-3, F-2

opcode
See also assembler
defined H-17
summary 6-8

operand H-17

OPL instruction
description 6-185
summary 6-14

OR instruction
description 6-188
summary 6-10

ORB instruction
description 6-191
summary 6-11

oscillator/timer
expanded options A-19
standard options A-18

OUT instruction
description 6-192
summary 6-20

OV bit 4-11, H-17

overflow (OV) bit H-17
See also OV bit

overflow mode (OVM) bit H-17
See also OVM bit

OVLY bit 4-8, 8-15, 8-32, H-17

OVM bit 3-12, 4-11, H-17
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P
P bit 9-18
PAC instruction

description 6-194
summary 6-16

packages C-2
PAER H-17

See also block repeat program address end reg-
ister (PAER)

parallel EPROM boot mode 8-36
parallel I/O boot mode 8-37
parallel I/O ports 2-9, 9-22
parallel logic unit (PLU) 2-4, 3-15 to 3-16, H-17

block diagram 3-15
parallelism 2-3, 2-5, 2-7, 6-27
part numbers, tools G-7
part-order information G-4
PASR H-17

See also block repeat program address start reg-
ister (PASR)

PC H-17
See also program counter (PC)

PCM bit 9-58, H-17
PDWSR H-18

See also program/data wait-state register
(PDWSR)

peripheral control 9-2
peripheral reset 9-6
PFC H-18

See also prefetch counter (PFC)
pinouts A-1

’C50 A-8
’C51 A-4, A-8
’C52 A-2, A-4
’C53 A-8
’C53S A-4
’C57S A-10
’LC56 A-4
’LC57 A-6
100-pin QFP A-2, A-3
100-pin TQFP A-4, A-5
128-pin TQFP A-6, A-7
132-pin BQFP A-8, A-9
144-pin TQFP A-10, A-11

pipeline
defined H-18
latency H-15

pipeline operation 7-1, 7-3
1-word instruction 7-3
2-word instruction 7-5
branch not taken 7-9
branch taken 7-6
external memory conflict 7-21
four phases 7-2
latency 7-24
memory-mapped registers 7-14
normal 7-3
structure 7-2
subroutine call and return 7-11

PLCC package C-3
PLU H-18

See also parallel logic unit (PLU)
PM bits 3-7, 4-15, 6-254, H-18
PMST H-18

See also processor mode status register (PMST)
POP instruction

description 6-195
summary 6-21

POPD instruction
description 6-197
summary 6-21

postscaling shifter H-18
power-down mode 4-50

IDLE instruction 4-50
IDLE2 instruction 4-50

PRD H-18
See also timer period register (PRD)

prefetch counter (PFC) 5-15, H-18
PREG H-18

See also product register (PREG)
preprocessor interface G-8
prescaling shifter H-18
priorities, interrupt 4-37
processor mode status register (PMST) 3-24, 4-7,

H-18
AVIS bit 4-8, 8-13, 8-14, H-1
bit summary 4-8
BRAF bit 4-9, H-4
diagram 4-8
IPTR bits 4-8, 8-11, 8-12, H-15
MP/MC bit 4-9, 8-7, H-16
NDX bit 4-9, H-10
OVLY bit 4-8, 8-15, 8-32, H-19
RAM bit 4-8, 8-8, 8-32
reset status 4-46
TRM bit 4-9, H-10
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product register (PREG) 3-7, 3-24, H-18

product shift mode (PM) bits H-18
See also PM bits

program address bus (PAB) 4-2

program bus 2-3

program control 4-1
block repeat function 4-31
functional block diagram 4-2
interrupts 4-36
next instruction repeat function 4-22
power-down mode 4-50
reset 4-45
status and control registers 4-6

program controller 2-5, H-19

program counter (PC) 4-2, 8-11, 8-13, H-19

program execution 4-2, 8-27

program memory 2-6, 4-5, 8-7
address map 8-11
addressing 8-13
configuration 8-7 to 8-11
protection feature 8-14

program/data wait-state register (PDWSR) 3-24,
9-13, H-19
diagram 9-13, 9-14
reset status 4-47

PS pin A-14

PSC bits 9-10, H-19

p-scaler 3-7, H-19
set shift 6-254

PSHD instruction
description 6-199
summary 6-21

pulse coded modulation mode (PCM) bit H-19
See also PCM bit

PUSH instruction
description 6-201
summary 6-21

Q
quad flat-pack (QFP) package A-1

R
R/W pin 8-39, A-14

RAM bit 4-8, 8-8, 8-32

RAM overlay (OVLY) bit H-19
See also OVLY bit

RD pin A-14

read/write timings 8-39

READY pin A-14

receive buffer half received (RH) bit H-19
See also RH bit

receive ready (RRDY) bit H-20
See also RRDY bit

receive shift register full (RSRFULL) bit H-20
See also RSRFULL bit

receiver reset (RRST) bit H-20
See also RRST bit

regional technology centers G-3

register 3-21
autobuffering control 9-63
auxiliary (AR) 3-21, H-3
auxiliary register compare (ARCR) 3-19, 3-21,

H-3
block move address (BMAR) 3-21, H-4
block repeat 3-21
block repeat counter (BRCR) H-4
block repeat program address end (PAER) H-4
block repeat program address start (PASR) H-4
BSP address receive (ARR) H-4
BSP address transmit (AXR) H-5
BSP control extension (SPCE) H-5
BSP receive buffer size (BKR) H-5
BSP transmit buffer size (BKX) H-5
buffered serial port (BSP) 3-22
circular buffer 3-22
circular buffer control (CBCR) 4-6, H-7
circular buffer end register (CBERx) H-6, H-7
circular buffer start (CBSRx) H-7
data receive (DRR) H-8
data receive shift (RSR) H-9
data transmit (DXR) H-9
data transmit shift (XSR) H-9
dynamic bit manipulation (DBMR) 3-22, H-10
global memory allocation (GREG) 3-23, 8-20,

H-12
host port interface (HPI) 3-23
host port interface address (HPIA) H-13
host port interface control (HPIC) H-13
I/O port wait-state (IOWSR) H-13
index (INDX) 3-19, 3-23, H-14
instruction (IREG) 3-23, H-14
interrupt 3-23, 4-39, 4-40
interrupt flag (IFR) H-14



Index-14  

register (continued)
interrupt mask (IMR) H-14
memory-mapped 2-5, 8-17
prefetch (PFC) H-18
processor mode status (PMST) 3-24, 4-7, H-18
product (PREG) 3-24, H-18
program/data wait state (PDWSR) H-19
program/data wait-state (PDWSR) 9-13, 9-14
repeat counter (RPTC) 4-22, H-20
reset status 4-46 to 4-48
serial port 9-24
serial port control (SPC) H-21
serial port interface 3-24
software wait-state control (CWSR) H-26
software-programmable wait states 3-24
status 3-25, 4-10
TDM channel select (TCSR) H-22
TDM data receive (TRCV) H-23
TDM data receive shift (TRSR) H-23
TDM data transmit (TDXR) H-23
TDM receive address (TRAD) H-23
TDM receive/transmit address (TRTA) H-23
TDM serial port 3-25, 9-74
TDM serial port control (TSPC) H-23
temporary 3-25, H-24, H-26
timer 3-25
timer control (TCR) 9-10, H-24
timer counter (TIM) H-24
timer period (PRD) H-24

repeat counter register (RPTC) 3-21, 4-22, H-20
reset status 4-46

repeat function
block 4-31
next instruction 4-22

repeatable instructions 4-23 to 4-36

reset
CPU 4-45
defined H-20
peripherals 9-6

RET instruction
description 6-203
summary 6-18

RETC instruction
description 6-204
example 4-18
summary 6-18

RETCD instruction
description 6-206
summary 6-18

RETD instruction
description 6-208
summary 6-18

RETE instruction
description 6-209
summary 6-18

RETI instruction
description 6-210
summary 6-18

RH bit 9-64, H-20

right shift 3-14

RINT bit H-20

ROL instruction
description 6-211
summary 6-11

ROLB instruction
description 6-212
summary 6-11

ROM codes 2-6, F-1
development flow F-3
submitting ROM code F-4

ROR instruction
description 6-213
summary 6-11

RORB instruction
description 6-214
summary 6-11

RPT instruction
description 6-215
summary 6-22

RPTB instruction
description 6-218
example 4-31, 4-32
summary 6-22

RPTC H-20
See also repeat counter register (RPTC)

RPTZ instruction
description 6-220
summary 6-22

RRDY bit 9-29, 9-35, H-20

RRST bit 9-29, 9-34, H-20

RS pin 4-45, A-16

RSR H-20
See also data receive shift register (RSR)

RSRFULL bit 9-28, 9-36, H-20

RTCs G-3



Index-15

S
SACB instruction

description 6-221
summary 6-11

SACH instruction
description 6-222
summary 6-11

SACL instruction
description 6-224
summary 6-11

SAM H-20
See also shared-access mode (SAM)

SAMM instruction
description 6-226
summary 6-11

SAR instruction
description 6-228
summary 6-13

SARAM H-20
See also single-access RAM (SARAM)

SATH instruction
description 6-230
summary 6-11

SATL instruction
description 6-232
summary 6-11

SBB instruction
description 6-233
summary 6-11

SBBB instruction
description 6-234
summary 6-11

SBRK instruction
description 6-235
summary 6-13

scaling shifters 3-14

scratch-pad RAM 8-18, H-20

seminars G-3

serial boot mode 8-34

serial port control register (SPC) 3-24, 8-34, 9-24,
H-21
bit summary 9-28
diagram 9-28
DLB bit 9-31, 9-32, H-9
FO bit 9-31, 9-32, H-11
Free bit 9-28, 9-37, H-11

FSM bit 9-30, 9-33, H-11
IN0 bit 9-29, 9-35, H-14
IN1 bit 9-29, 9-35, H-14
MCM bit 9-30, 9-33, H-7
reset status 4-47
RRDY bit 9-29, 9-35, H-20
RRST bit 9-29, 9-34, H-20
RSRFULL bit 9-28, 9-36, H-20
Soft bit 9-28, 9-37, H-21
TXM bit 9-30, 9-33, H-25
XRDY bit 9-29, 9-35, H-25
XRST bit 9-30, 9-34, H-25
XSREMPTY bit 9-29, 9-35, H-25

serial port interface 2-10, 3-24, 9-23, H-21
configuring 9-27
error conditions 9-46
operation 9-25
operation examples 9-50
receive operation

burst mode 9-37
continuous mode 9-44

registers 3-24, 9-24
signal descriptions A-20
transmit operation

burst mode 9-37
continuous mode 9-44

serial port receive interrupt (RINT) bit H-21
See also RINT bit

serial port transmit interrupt (XINT) bit H-21
See also XINT bit

serial ports
buffered serial port (BSP) 9-53
serial port interface 9-23
time-division multiplexed (TDM) 9-74

set control bit 6-236

set p-scaler shift 6-254

SETC instruction
description 6-236
summary 6-22

SFL instruction
description 6-238
summary 6-11

SFLB instruction
description 6-239
summary 6-11

SFR instruction
description 6-240
summary 6-11
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SFRB instruction
description 6-242
summary 6-11

shadow registers 2-10, 4-42, 6-210

shared-access mode (SAM) H-21

shared-access mode (SMOD) bit H-21
See also SMOD bit

shifters H-3, H-21
postscaler H-18
prescaler H-18
product H-19

short immediate addressing 5-14

signal descriptions A-13
address and data bus A-13
buffered serial port (BSP) A-21
emulation/testing A-24
host port interface (HPI) A-22
initialization A-16
interrupt A-16
memory control A-14
multiprocessing A-15
oscillator/timer A-17
reset operation A-16
serial port interface A-20
supply A-16

signals
buffered D-10
buffering for emulator connections D-9 to D-10

sign-extension H-21

sign-extension mode (SXM) bit H-21
See also SXM bit

single-access RAM (SARAM) 2-7, 6-27, 8-2, 8-25,
H-21

SMMR instruction
description 6-244
example 8-31
summary 6-20

SMOD bit H-21

sockets E-2

Soft bit 9-10, 9-28, 9-37, H-21

software development tools G-2, G-7

software wait states C-7

software wait-state generation 8-42

software-programmable wait-state generators 2-8,
9-13
block diagram 9-19
I/O port wait-state register (IOWSR) 9-16

logic for external program space 9-19
program/data wait-state register (PDWSR) 9-13
wait-state control register (CWSR) 9-17

software-programmable wait-state registers 3-24
SPAC instruction

description 6-247
summary 6-16

SPC H-22
See also serial port control register (SPC)

SPCE H-22
See also BSP control extension register (SPCE)

SPH instruction
description 6-248
summary 6-16

SPL instruction
description 6-250
summary 6-16

SPLK instruction
description 6-252
summary 6-14

SPM instruction
description 6-254
summary 6-16

SQRA instruction
description 6-255
summary 6-16

SQRS instruction
description 6-257
summary 6-17

SST instruction
description 6-259
summary 6-22

stack
hardware 4-4, 4-42, H-22
microcall (MCS) 5-15, H-16

status and control registers 4-6, H-22
status register 0 (ST0) 3-25, 4-10, H-22

ARP bits 4-11, H-3
bit summary 4-11
diagram 4-11
DP bits 4-12, H-8
INTM bit 3-23, 4-12, 4-40, 8-32, H-15
OV bit 4-11, H-17
OVM bit 4-11, H-17
reset status 4-46

status register 1 (ST1) 3-25, 4-10, H-22
ARB bits 4-13, H-3
bit summary 4-13
C bit 4-14, H-6
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status register 1 (ST1) (continued)
CNF bit 4-13, 8-8, 8-15, 8-32, H-7
diagram 4-13
HM bit 4-15, 8-14, 8-24, H-12
PM bits 4-15, H-18
reset status 4-46
SXM bit 4-14, H-21
TC bit 3-21, 4-13, H-24
XF bit 4-15, H-10

STRB pin A-14
strobe signal (STRB) 8-24
SUB instruction

description 6-261
summary 6-12

SUBB instruction
description 6-265
summary 6-12

SUBC instruction
description 6-267
summary 6-12

submitting ROM code F-4
SUBS instruction

description 6-269
summary 6-12

SUBT instruction
description 6-271
summary 6-12

support tools
development G-6
device G-6
nomenclature G-4

SXM bit 3-14, 4-14, H-22
system migration C-1

instruction set C-11
on-chip peripheral interfacing C-10
packages and pin layout C-2
timing C-7

T
TADD H-22

See also TDM address (TADD)
target system, connection to emulator D-1 to D-13
target system clock D-7
TBLR instruction 8-26

description 6-273
example 8-29, 8-30
summary 6-20

TBLW instruction 8-26
description 6-276
example 8-28, 8-29
summary 6-20

TC bit 3-21, 4-13, H-22
TCK pin A-24
TCLK H-22

See also TDM clock (TCLK)
TCLKR pin A-20
TCLKX pin A-20
TCR H-22

See also timer control register (TCR)
TCSR H-22

See also TDM channel select register (TCSR)
TDAT H-22

See also TDM data (TDAT)
TDDR bits 9-10, H-22
TDI pin A-24
TDM address (TADD) 9-77, H-22
TDM bit H-22
TDM channel select register (TCSR) 3-25, 9-75,

H-22
TDM clock (TCLK) H-22
TDM data (TDAT) H-23
TDM data receive register (TRCV) 3-25, 9-75,

H-23
TDM data receive shift register (TRSR) 3-25, 9-76,

H-23
TDM data transmit register (TDXR) 3-25, 9-75,

H-23
TDM receive address register (TRAD) 3-25, 9-75,

H-23
TDM receive interrupt (TRNT) bit H-23

See also TRNT bit
TDM receive/transmit address register

(TRTA) 3-25, 9-75, H-23
TDM registers, diagram 9-78
TDM serial port control register (TSPC) 3-25, 9-75,

H-23
DLB bit H-9
FO bit H-11
Free bit 9-28, 9-37, H-11
FSM bit H-11
IN0 bit 9-29, 9-35, H-14
IN1 bit 9-29, 9-35, H-14
MCM bit 9-30, 9-33, H-7
reset status 4-47
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TDM serial port control register (TSPC) (continued)
RRDY bit 9-29, 9-35, H-20
RRST bit 9-29, 9-34, H-20
Soft bit 9-28, 9-37, H-21
TDM bit H-24
TXM bit 9-30, 9-33, H-25
XRDY bit 9-29, 9-35, H-25
XRST bit 9-30, 9-34, H-25

TDM serial port interface 2-10, 9-74
exception conditions 9-82
operation 9-76
operation examples 9-82
receive operation 9-80
registers 3-25, 9-74
transmit operation 9-80

TDM transmit interrupt (TXNT) bit H-23
See also TXNT bit

TDO pin A-24

TDR pin A-20

TDX pin A-20

TDXR H-23
See also TDM data transmit register (TDXR)

temporary register 0 (TREG0) 3-7, 3-25, 6-139,
6-141, 6-143, 6-146, 6-148, 6-169, 6-172, 6-174,
6-176, H-26

temporary register 1 (TREG1) 3-12, 3-14, 3-25,
6-41, 6-230, 6-232, 6-271, H-26

temporary register 2 (TREG2) 3-25, 6-66, H-26

test/control (TC) bit H-24
See also TC bit

test/emulation 2-11

TFSR/TADD pin A-20

TFSX/TFRM pin A-20

thin quad flat-pack (TQFP) package A-1

third-party support G-2

TIM H-24
See also timer counter register (TIM)

time-division multiplexed (TDM) bit H-24
See also TDM bit

time-division multiplexing (TDM)
basic operation 9-74
defined H-24

timer 2-8, 9-9
block diagram 9-9
operation 9-11
registers 3-25, 9-9

timer control register (TCR) 3-25, 9-10, H-24
bit summary 9-10
diagram 9-10
Free bit 9-10
PSC bits 9-10, H-25
reset status 4-48
Soft bit 9-10
TDDR bits 9-10, H-24
TRB bit 9-10, H-25
TSS bit 9-10, H-25

timer counter register (TIM) 3-25, H-24
reset status 4-48

timer divide-down register (TDDR) bits H-24
See also TDDR bits

timer interrupt (TINT) 9-9
rate 9-11

timer interrupt (TINT) bit H-24
See also TINT bit

timer period register (PRD) 3-25, H-24
reset status 4-48

timer prescaler counter (PSC) bits H-25
See also PSC bits

timer reload (TRB) bit H-25
See also TRB bit

timer stop status (TSS) bit H-25
See also TSS bit

timing
BIO signal 9-20
emulator D-11
external memory interface 8-39
XF signal 9-21

TINT bit H-25

TMS pin A-24

TMS320
advantages 1-2
development 1-2
evolution 1-3
family overview 1-2
history 1-2
roadmap 1-3
typical applications 1-4

TMS320 ROM code submittal, figure F-3

TMS320C5x
applications 1-4
characteristics 1-6
functional block diagram 2-2
IEEE Std. 1149.1 interface configurations 2-12
key features 1-7
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TMS320C5x (continued)
compatibility 1-7
CPU 1-8
instruction set 1-8
memory 1-7
on-chip peripherals 1-9
packages 1-9
power 1-7
program control 1-8
speed 1-7
test/emulation 1-9

number of parallel ports available 2-9
number of serial ports available 2-9
overview 1-5

tools, part numbers G-7

TOUT pin A-17

TRAD H-25
See also TDM receive address register (TRAD)

transmit buffer half transmitted (XH) bit H-25
See also XH bit

transmit mode (TXM) bit H-25
See also TXM bit

transmit ready (XRDY) bit H-25
See also XRDY bit

transmit reset (XRST) bit H-25
See also XRST bit

transmit shift register empty (XSREMPTY) bit H-25
See also XSREMPTY bit

TRAP instruction
description 6-279
summary 6-19

TRB bit 9-10, H-25

TRCV H-26
See also TDM data receive register (TRCV)

TREG0 H-26
See also temporary register 0 (TREG0)

TREG1 H-26
See also temporary register 1 (TREG1)

TREG2 H-26
See also temporary register 2 (TREG2)

TRM bit 4-9, H-26

TRNT bit H-26

TRSR H-26
See also TDM data receive shift register (TRSR)

TRST pin A-24
TRTA H-26

See also TDM receive/transmit address register
(TRTA)

TSPC H-26
See also TDM serial port control register (TSPC)

TSS bit 9-10, H-26
TXM bit 9-30, 9-33, H-26
TXNT bit H-26

U
user-maskable interrupts 2-10

V
vectors

interrupt 8-12
reset 4-38

W
wait-state control register (CWSR) 3-24, 9-17,

H-26
BIG bit 3-24, 8-22, 9-17, H-3
bit summary 9-17
D bit 9-18
diagram 9-17
I/O High bit 9-17
I/O Low bit 9-18
P bit 9-18
reset status 4-47

warm boot mode 8-38
WE pin A-14
word moves 8-26
workshops G-3

X
X1 pin A-17
X2/CLKIN pin A-17
XC instruction

description 6-280
example 4-20, 4-21
summary 6-19

XF bit 4-15, H-27
XF pin 8-34, 9-21, A-15, H-12
XH bit 9-65, H-27
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XINT bit H-27
XOR instruction

description 6-282
summary 6-12

XORB instruction
description 6-285
summary 6-12

XPL instruction
description 6-286
summary 6-14

XRDY bit 9-29, 9-35, H-27
XRST bit 9-30, 9-34, H-27
XSR H-27

See also data transmit shift register (XSR)

XSREMPTY bit 9-29, 9-35, H-27

Z
ZALR instruction

description 6-289
summary 6-12

ZAP instruction
description 6-291
summary 6-12

ZPR instruction
description 6-292
summary 6-17
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