&

PRINTED WITH

SOYINK|_

TMS320C5x
User’s Guide

Literature Number: SPRU056D
June 1998

b TEXAS

INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 0 1998, Texas Instruments Incorporated

About This Manual

This user’s guide describes the architecture, hardware, assembly language
instructions, and general operation of the TMS320C5x digital signal proces-
sors (DSPs). This manual can also be used as a reference guide for develop-

Preface

Read This First

ing hardware and/or software applications.

How to Use This Manual

The following table summarizes the 'C5x information contained in this user’s

guide:

If you are looking for
information about:

Turn to:

Addressing modes

Assembly language instructions
Boot loader

Clock generator

Control bits

CPU

Custom ROM from TI

Development support information

Features

Host port interface
Input/output ports
Interrupts

Memory configuration
Memory interface
On-chip peripherals
Opcodes

Part order information

Chapter 5, Addressing Modes

Chapter 6, Assembly Language Instructions
Chapter 8, Memory

Chapter 9, On-Chip Peripherals

Chapter 4, Program Control

Chapter 3, Central Processing Unit (CPU)
Appendix F, Submitting ROM Codes to T

Appendix G, Development Support and Part
Order Information

Chapter 1, Introduction
Chapter 2, Architectural Overview

Chapter 9, On-Chip Peripherals

Chapter 8, Memory

Chapter 4, Program Control

Chapter 8, Memory

Chapter 8, Memory

Chapter 9, On-Chip Peripherals

Chapter 6, Assembly Language Instructions

Appendix G, Development Support and Part
Order Information

How to Use This Manual / Notational Conventions

If you are looking for

information about: Turn to:

Pinouts Appendix A, Pinouts and Signal Descriptions

Pipeline operation Chapter 7, Pipeline

Program control Chapter 4, Program Control

Serial ports Chapter 9, On-Chip Peripherals

Status registers Chapter 4, Program Control

Timer Chapter 9, On-Chip Peripherals

Upgrading from a 'C25 Appendix C, System Migration

Wait-state generators Chapter 9, On-Chip Peripherals

XDS510 Emulator Appendix D, Design Considerations for Using
XDS510 Emulator

Notational Conventions

This document uses the following conventions.

[0 Program listings, program examples, and interactive displays are shown

in a special typeface similar to a typewriter's. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 field 1,2

0012 0005 0003 field 3,4

0013 0005 0006 field 6,3

0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr —a /user/ti/simuboard/utilities

In syntax descriptions, the instruction, command, or directive is in a bold
typeface fontand parameters arein an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in jtalics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect " section name’, address

.asectis the directive. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be

Notational Conventions

an actual section name, enclosed in double quotes; the second parameter
must be an address.

Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here's an example of an instruction
that has an optional parameter:

LALK 16-bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

Braces ({and})indicate alist. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

)
This provides three choices: *, *+, or *— .

Unless the listis enclosed in square brackets, you must choose one item
from the list.

Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:

.byte valueg [, ..., value,]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Read This First Y,

Information About Cautions and Warnings / Related Documentaiton From Texas Instruments

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution and warning carefully.

Related Documentation From Texas Instruments

vi

The following books describe the 'C5x and related support tools. To obtain a
copy of any of these Tl documents, call the Texas Instruments Literature Re-
sponse Center at (800) 477—8924. When ordering, please identify the book by
its title and literature number.

TMS320C5x General-Purpose Applications User’s Guide (literature num-
ber SPRU164) serves as a reference book for developing hardware and/
or software applications for the 'C5x generation of devices.

TMS320C5x, TMS320LC5x Digital Signal Processors (literature number
SPRS030) data sheet contains the electrical and timing specifications for
these devices, as well as signal descriptions and pinouts for all of the
available packages.

TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started
Guide (literature number SPRU121) describes how to install the
TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly
language tools and the C compiler for the 'C1x, 'C2x, 'C2xx, and 'C5x de-
vices. The installation for MS-DOS[, OS/2[0, SunOS[, and Solaris[]
systems is covered.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-
erature number SPRU018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the 'C1x, 'C2x, 'C2xx, and 'C5x gen-
erations of devices.

Related Documentation From Texas Instruments

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature
number SPRUO024) describes the 'C2x/C2xx/C5x C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the 'C2x, 'C2xx, and 'C5x genera-
tions of devices.

TMS320C5x C Source Debugger User’s Guide (literature number
SPRUO055) tells you how to invoke the 'C5x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C5x Evaluation Module Technical Reference (literature number
SPRUO087) describes the 'C5x evaluation module, its features, design
details and external interfaces.

TMS320C5x Evaluation Module Getting Started Guide (literature number
SPRU126) tells you how to install the MS-DOSO, PC-DOSO, and
WindowsO versions of the 'C5x evaluation module.

TMS320C54x Simulator Getting Started Guide (literature number
SPRU137) describes how to install the TMS320C54x simulator and the
C source debugger for the 'C54x. The installation for Windows 3.1,
SunOS[], and HP-UX[systems is covered.

XDS51x Emulator Installation Guide (literature number SPNUOQ70)
describes the installation of the XDS51000, XDS510PPO, and
XDS510WSO emulator controllers. The installation of the XDS5110
emulator is also described.

JTAG/MPSD Emulation Technical Reference (literature number SPDUQ079)
provides the design requirements of the XDS5100 emulator controller,
discusses JTAG designs (based on the IEEE 1149.1 standard), and
modular port scan device (MPSD) designs.

TMS320 Third-Party Support Reference Guide (literature number
SPRUO052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

Read This First vii

Related Documentation From Texas Instruments / Technical Articles

Technical Articles

viii

TMS320 DSP Development Support Reference Guide (literature number
SPRUO011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

If you are an assembly language programmer and would like more information
about C or C expressions, you may find this book useful:

The C Programming Language (second edition, 1988), by Brian W. Kernig-
han and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs,
New Jersey.

A wide variety of related documentation is available on digital signal processing.
These references fall into one of the following application categories:

General-Purpose DSP
Graphics/Imagery
Speech/Voice

Control

Multimedia

Military
Telecommunications
Automotive
Consumer

Medical

Development Support

oo ooo

In the following list, references appear in alphabetical order according to
author. The documents contain beneficial information regarding designs,
operations, and applications for signal-processing systems; all of the docu-
ments provide additional references. Texas Instruments strongly suggests
that you refer to these publications.

General-Purpose DSP :

1) Antoniou, A., Digital Filters: Analysis and Design, New York, NY: McGraw-
Hill Company, Inc., 1979.

2) Brigham, E.O., The Fast Fourier Transform, Englewood Cliffs, NJ: Pren-
tice-Hall, Inc., 1974.

Technical Articles

3) Burrus, C.S., and T.W. Parks, DFT/FFT and Convolution Algorithms, New
York, NY: John Wiley and Sons, Inc., 1984.

4) Chassaing, R., Horning, D.W., “Digital Signal Processing with Fixed and
Floating-Point Processors.” CoED, USA, Volume 1, Number 1, pages 1-4,
March 1991.

5) Defatta, David J., Joseph G. Lucas, and William S. Hodgkiss, Digital Sig-
nal Processing: A System Design Approach, New York: John Wiley, 1988.

6) Erskine, C., and S. Magar, “Architecture and Applications of a Second-
Generation Digital Signal Processor.” Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, USA, 1985.

7) Essig, D., C. Erskine, E. Caudel, and S. Magar, “A Second-Generation
Digital Signal Processor.” IEEE Journal of Solid-State Circuits, USA, Vol-
ume SC-21, Number 1, pages 86-91, February 1986.

8) Frantz, G., K. Lin, J. Reimer, and J. Bradley, “The Texas Instruments
TMS320C25 Digital Signal Microcomputer.” IEEE Microelectronics, USA,
Volume 6, Number 6, pages 10-28, December 1986.

9) Gass, W., R. Tarrant, T. Richard, B. Pawate, M. Gammel, P. Rajasekaran,
R. Wiggins, and C. Covington, “Multiple Digital Signal Processor Environ-
ment for Intelligent Signal Processing.” Proceedings of the IEEE, USA,
Volume 75, Number 9, pages 1246-1259, September 1987.

10) Gold, Bernard, and C.M. Rader, Digital Processing of Signals, New York,
NY: McGraw-Hill Company, Inc., 1969.

11) Hamming, R.W., Digital Filters, Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

12) IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Proces-
sing, New York, NY: IEEE Press, 1979.

13) Jackson, Leland B., Digital Filters and Signal Processing, Hingham, MA:
Kluwer Academic Publishers, 1986.

14) Jones, D.L., and T.W. Parks, A Digital Signal Processing Laboratory Using
the TMS32010, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

15) Lim, Jae, and Alan V. Oppenheim, Advanced Topics in Signal Processing,
Englewood Cliffs, NJ: Prentice- Hall, Inc., 1988.

16) Lin, K., G. Frantz, and R. Simar, Jr., “The TMS320 Family of Digital Signal
Processors.” Proceedings of the IEEE, USA, Volume 75, Number 9, pages
1143-1159, September 1987.

Read This First ix

Technical Articles

17) Lovrich, A., Reimer, J., “An Advanced Audio Signal Processor.” Digest of
Technical Papers for 1991 International Conference on Consumer Elec-
tronics, June 1991.

18) Magar, S., D. Essig, E. Caudel, S. Marshall and R. Peters, “An NMOS Digi-
tal Signal Processor with Multiprocessing Capability.” Digest of IEEE In-
ternational Solid-State Circuits Conference, USA, February 1985.

19) Morris, Robert L., Digital Signal Processing Software, Ottawa, Canada:
Carleton University, 1983.

20) Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

21) Oppenheim, Alan V., and R.W. Schafer, Digital Signal Processing, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1975 and 1988.

22) Oppenheim, A.V., A.N. Willsky, and I.T. Young, Signals and Systems,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

23) Papamichalis, P.E., and C.S. Burrus, “Conversion of Digit-Reversed to Bit-
Reversed Order in FFT Algorithms.” Proceedings of ICASSP 89, USA,
pages 984-987, May 1989.

24) Papamichalis, P., and R. Simar, Jr., “The TMS320C30 Floating-Point Digi-
tal Signal Processor.” IEEE Micro Magazine, USA, pages 13-29, Decem-
ber 1988.

25) Parks, T.W., and C.S. Burrus, Digital Filter Design, New York, NY: John
Wiley and Sons, Inc., 1987.

26) Peterson, C., Zervakis, M., Shehadeh, N., “Adaptive Filter Design and Im-
plementation Using the TMS320C25 Microprocessor.” Computers in
Education Journal, USA, Volume 3, Number 3, pages 12-16, July—
September 1993.

27) Prado, J., and R. Alcantara, “A Fast Square-Rooting Algorithm Using a
Digital Signal Processor.” Proceedings of IEEE, USA, Volume 75, Number
2, pages 262-264, February 1987.

28) Rabiner, L.R. and B. Gold, Theory and Applications of Digital Signal Pro-
cessing, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

29) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to
Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,
Volume D, page 1678, April 1988.

30) Simar, Jr., R., T. Leigh, P. Koeppen, J. Leach, J. Potts, and D. Blalock, “A
40 MFLOPS Digital Signal Processor: the First Supercomputer on a Chip.”
Proceedings of ICASSP 87, USA, Catalog Number 87CH2396-0, Volume
1, pages 535-538, April 1987.

Technical Articles

31) Simar, Jr., R., and J. Reimer, “The TMS320C25: a 100 ns CMOS VLSI Dig-

ital Signal Processor.” 1986 Workshop on Applications of Signal Proces-
sing to Audio and Acoustics, September 1986.

32) Texas Instruments, Digital Signal Processing Applications with the

TMS320 Family, 1986; Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

33) Treichler, J.R., C.R. Johnson, Jr., and M.G. Larimore, A Practical Guide

to Adaptive Filter Design, New York, NY: John Wiley and Sons, Inc., 1987.

Graphics/Imagery :

1)

2)

3)

4)

5)

Andrews, H.C., and B.R. Hunt, Digital Image Restoration, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C., and Paul Wintz, Digital Image Processing, Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Papamichalis, P.E., “FFT Implementation on the TMS320C30.” Proceed-
ings of ICASSP 88, USA, Volume D, page 1399, April 1988.

Pratt, William K., Digital Image Processing, New York, NY: John Wiley and
Sons, 1978.

Reimer, J., and A. Lovrich, “Graphics with the TMS32020.” WESCON/85
Conference Record, USA, 1985.

Speech/Voice :

1)

2)

3)

4)

5)

6)

7)

DellaMorte, J., and P. Papamichalis, “Full-Duplex Real-Time Implementa-
tion of the FED-STD-1015 LPC-10e Standard V.52 on the TMS320C25.”
Proceedings of SPEECH TECH 89, pages 218-221, May 1989.

Frantz, G.A., and K.S. Lin, “A Low-Cost Speech System Using the
TMS320C17.” Proceedings of SPEECH TECH '87, pages 25-29, April
1987.

Gray, A.H., and J.D. Markel, Linear Prediction of Speech, New York, NY:
Springer-Verlag, 1976.

Jayant, N.S., and Peter Noll, Digital Coding of Waveforms, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Papamichalis, P., and D. Lively, “Implementation of the DOD Standard
LPC-10/52E on the TMS320C25.” Proceedings of SPEECH TECH '87,
pages 201-204, April 1987.

Pawate, B.l., and G.R. Doddington, “Implementation of a Hidden Markov
Model-Based Layered Grammar Recognizer.” Proceedings of ICASSP
89, USA, pages 801-804, May 1989.

Read This First Xi

Technical Articles

Xii

8)

9)

Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech Signals,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Reimer, J.B. and K.S. Lin, “TMS320 Digital Signal Processors in Speech
Applications.” Proceedings of SPEECH TECH ‘88, April 1988.

10) Reimer, J.B., M.L. McMahan, and W.W. Anderson, “Speech Recognition

for a Low-Cost System Using a DSP.” Digest of Technical Papers for 1987
International Conference on Consumer Electronics, June 1987.

Control :

1

2)

3)

4)

5)

6)

7)

8)

9)

Ahmed, I., “16-Bit DSP Microcontroller Fits Motion Control System Ap-
plication.” PCIM, October 1988.

Ahmed, I., “Implementation of Self Tuning Regulators with TMS320 Fami-
ly of Digital Signal Processors.” MOTORCON ’88, pages 248-262, Sep-
tember 1988.

Ahmed, I., and S. Lindquist, “Digital Signal Processors: Simplifying High-
Performance Control.” Machine Design, September 1987.

Ahmed, I., and S. Meshkat, “Using DSPs in Control.” Control Engineering,
February 1988.

Allen, C. and P. Pillay, “TMS320 Design for Vector and Current Control of
AC Motor Drives.” Electronics Letters, UK, Volume 28, Number 23, pages
2188-2190, November 1992.

Bose, B.K., and P.M. Szczesny, “A Microcomputer-Based Control and
Simulation of an Advanced IPM Synchronous Machine Drive System for
Electric Vehicle Propulsion.” Proceedings of IECON 87, Volume 1, pages
454-463, November 1987.

Hanselman, H., “LQG-Control of a Highly Resonant Disc Drive Head Posi-
tioning Actuator.” IEEE Transactions on Industrial Electronics, USA, Vol-
ume 35, Number 1, pages 100-104, February 1988.

Jacquot, R., Modern Digital Control Systems, New York, NY: Marcel Dek-
ker, Inc., 1981.

Katz, P., Digital Control Using Microprocessors, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

10) Kuo, B.C., Digital Control Systems, New York, NY: Holt, Reinholt, and

Winston, Inc., 1980.

11) Lovrich, A., G. Troullinos, and R. Chirayil, “An All-Digital Automatic Gain

Control.” Proceedings of ICASSP 88, USA, Volume D, page 1734, April
1988.

Technical Articles

12) Matsui, N. and M. Shigyo, “Brushless DC Motor Control Without Position
and Speed Sensors.” IEEE Transactions on Industry Applications, USA,
Volume 28, Number 1, Part 1, pages 120-127, January—February 1992.

13) Meshkat, S., and I. Ahmed, “Using DSPs in AC Induction Motor Drives.”
Control Engineering, February 1988.

14) Panabhi, I. and R. Restle, “DSPs Redefine Motion Control.” Motion Control
Magazine, December 1993.

15) Phillips, C., and H. Nagle, Digital Control System Analysis and Design,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Multimedia :

1) Reimer,J.,“DSP-Based Multimedia Solutions Lead Way Enhancing Audio
Compression Performance.” Dr. Dobbs Journal, December 1993.

2) Reimer, J., G. Benbassat, and W. Bonneau Jr., “Application Processors:
Making PC Multimedia Happen.” Silicon Valley PC Design Conference,
July 1991.

Military :

1) Papamichalis, P., and J. Reimer, “Implementation of the Data Encryption
Standard Using the TMS32010.” Digital Signal Processing Applications,
1986.

Telecommunications :

1) Ahmed, |, and A. Lovrich, “Adaptive Line Enhancer Using the
TMS320C25.” Conference Records of Northcon/86, USA, 14/3/1-10,
September/October 1986.

2) Casale, S., R. Russo, and G. Bellina, “Optimal Architectural Solution Us-
ing DSP Processors for the Implementation of an ADPCM Transcoder.”
Proceedings of GLOBECOM 89, pages 1267-1273, November 1989.

3) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice
Echo Canceller on a SINGLE TMS32020.” Proceedings of ICASSP 86,
USA, Catalog Number 86CH2243-4, Volume 1, pages 429-432, April
1986.

4) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice
Echo Canceller on a Single TMS32020.” Proceedings of IEEE Internation-
al Conference on Acoustics, Speech and Signal Processing, USA, 1986.

5) Lovrich, A., and J. Reimer, “A Multi-Rate Transcoder.” Transactions on
Consumer Electronics, USA, November 1989.

Read This First Xili

Technical Articles

Xiv

6)

7

8)

9)

Lovrich, A. and J. Reimer, “A Multi-Rate Transcoder.” Digest of Technical
Papers for 1989 International Conference on Consumer Electronics, June
7-9, 1989.

Lu, H., D. Hedberg, and B. Fraenkel, “Implementation of High-Speed Voi-
ceband Data Modems Using the TMS320C25.” Proceedings of ICASSP
87, USA, Catalog Number 87CH2396-0, Volume 4, pages 1915-1918,
April 1987.

Mock, P., “Add DTMF Generation and Decoding to DSP— pP Designs.”
Electronic Design, USA, Volume 30, Number 6, pages 205-213, March
1985.

Reimer, J., M. McMahan, and M. Arjmand, “ADPCM on a TMS320 DSP
Chip.” Proceedings of SPEECH TECH 85, pages 246—249, April 1985.

10) Troullinos, G., and J. Bradley, “Split-Band Modem Implementation Using

the TMS32010 Digital Signal Processor.” Conference Records of Elec-
tro/86 and Mini/Micro Northeast, USA, 14/1/1-21, May 1986.

Automotive :

1

Lin, K., “Trends of Digital Signal Processing in Automotive.” International
Congress on Transportation Electronic (CONVERGENCE '88), October
1988.

Consumer :

1

2)

3)

Frantz, G.A., J.B. Reimer, and R.A. Wotiz, “Julie, The Application of DSP
to a Product.” Speech Tech Magazine, USA, September 1988.

Reimer, J.B., and G.A. Frantz, “Customization of a DSP Integrated Circuit
for a Customer Product.” Transactions on Consumer Electronics, USA,
August 1988.

Reimer, J.B., P.E. Nixon, E.B. Boles, and G.A. Frantz, “Audio Customiza-
tion of a DSP IC.” Digest of Technical Papers for 1988 International Con-
ference on Consumer Electronics, June 8—10 1988.

Medical :

1

2)

Knapp and Townshend, “A Real-Time Digital Signal Processing System
for an Auditory Prosthesis.” Proceedings of ICASSP 88, USA, Volume A,
page 2493, April 1988.

Morris, L.R., and P.B. Barszczewski, “Design and Evolution of a Pocket-
Sized DSP Speech Processing System for a Cochlear Implant and Other
Hearing Prosthesis Applications.” Proceedings of ICASSP 88, USA, Vol-
ume A, page 2516, April 1988.

Trademarks

Technical Articles / Trademarks

Development Support :

1) Mersereau, R., R. Schafer, T. Barnwell, and D. Smith, “A Digital Filter De-
sign Package for PCs and TMS320.” MIDCON/84 Electronic Show and
Convention, USA, 1984.

2) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to
Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,
Volume 3, pages 1678-1681, April 1988.

DuPont Electronics is a registered trademark of E.I. DuPont Corporation.
HP-UX is a trademark of Hewlett-Packard Company.

IBM, OS/2, and PC-DOS are trademarks of International Business Machines
Corporation.

MS and Windows are registered trademarks of Microsoft Corporation.
Solaris and SunOS are trademarks of Sun Microsystems, Inc.

SPARC is a trademark of SPARC International, Inc., but licensed exclusively
to Sun Microsystems, Inc.

320 Hotline On-line, TI, XDS510, and XDS510WS are trademarks of Texas
Instruments Incorporated.

VAX and VMS are trademarks of Digital Equipment Corp.

Read This First XV

If You Need Assistance

If You Need Assistance . . .

1 World-Wide Web Sites

Tl Online http://www.ti.com

Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm

DSP Solutions http://www.ti.com/dsps

320 Hotline On-line ™ http://www.ti.com/sc/docs/dsps/support.htm
1 North America, South America, Central America

Product Information Center (PIC) (972) 644-5580

Tl Literature Response Center U.S.A. (800) 477-8924

Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742

U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285

U.S. Technical Training Organization (972) 644-5580

DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com

DSP Modem BBS (281) 274-2323

DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

(1 Europe, Middle East, Africa

European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33130701169 Fax: +331307010 32
Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33130701165
Francais +33130701164
Italiano +33130701167
EPIC Modem BBS +33130 701199
European Factory Repair +334 9322 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
0 Asia-Pacific
Literature Response Center +852 2956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 25512804 Fax: +82 2551 2828
Korea DSP Modem BBS +82 2551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/Tl/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

(1 Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

XVi

1

2

Contents

INFOAUCHION . .o\ttt e e e et e e e et e e e f-1

Summarizes the features of the TMS320 family of products and presents typical applications.
Describes the TMS320C5x DSP and lists its key features.

1.1 TMS320 Family OVEIVIEWttt et %]
1.1.1 History, Development, and Advantages of TMS320DSPs fi-2
1.1.2 TMS320 Typical APPlCALIONS . . . o .o v e et -4
1.2 TMS320C5X OVEIVIEW .. .\ttt ettt et e e e ettt e fi-3
1.3 TMS320C5X KEY FEAUIES\ttt ettt et e e -7
Architectural OVeIVIEW e e e e 2 E

Summarizes the TMS320C5x architecture. Provides general information about the bus struc-
ture, CPU, internal memory organization, on-chip peripherals, and scanning logic.

2.1 BUS SHUCIUIE ...ttt e e e e E
2.2 Central Processing Unit (CPU) i e e e e E
2.2.1 Central Arithmetic Logic Unit (CALU)t i E
2.2.2 Parallel Logic Unit (PLU)oureee e b4
2.2.3 Auxiliary Register Arithmetic Unit (ARAU)ovirieieaa e, b-§
2.2.4 Memory-Mapped RegiSters b-g
2.2.5 Program CONtrollere.er i bg
2.3 ON-ChIP MEMOIY ...ttt et e e e e e e e e e e p-4
2.3.1 Program ROM p-4
2.3.2 Data/Program Dual-AcceSs RAM i @
2.3.3 Data/Program Single-AcCesS RAMt e e E
2.3.4 On-Chip Memory Protectiono E
2.4 ON-Chip Peripheralso.ieie e b-g
241 ClOCK GENEIALON . . . o v e e e e e e e e e b-g
2.4.2 Hardware TIMETttt et e e e e e b-g
2.4.3 Software-Programmable Wait-State Generators b-q
244 Parallel IO POMSt e p-9
2.4.5 Host PortInterface (HPI) e @
2.4.6 Serial POrt ... 2-19g
2.4.7 Buffered Serial POrt (BSP)ttt b-1d
2.4.8 TDM SEral POt ...\ttt p-1d
2.4.9 User-Maskable INEITUPLS v ettt e e e p-1d
2.5 TeSUEMUIALION ...\ttt et e e e e e e e

XVii

Contents

3 Central Processing Unit (CPU) ... i e et 3 E
Describes the TMS320C5x CPU operations. Includes information about the central arithmetic
logic unit, the parallel logic unit, and the auxiliary register arithmetic unit. Also provides a sum-
mary of registers.

3.1 Functional OVeIVIEWt e
3.2 Central Arithmetic Logic Unit (CALU) e

3.2.1
3.2.2
3.2.3

Multiplier, Product Register (PREG), and Temporary Register 0 (TREGO) ...

Arithmetic Logic Unit (ALU) and Accumulators ‘
Scaling Shifters and Temporary Register 1 (TREG1)

3.3 Parallel Logic Unit (PLU)ot e e e e e
3.4 Auxiliary Register Arithmetic Unit (ARAU) e
3.5 Summary Of ReQISterst

3.5.1
3.5.2
3.5.3
3.54
3.55
3.5.6
3.5.7
3.5.8
3.5.9
3.5.10
351
3.5.12
3.5.13
3.5.14
3.5.15
3.5.16
3.5.17
3.5.18
3.5.19
3.5.20
3.5.21

Auxiliary Registers (ARO—AR7) e

Auxiliary Register Compare Register (ARCR) ‘
Block Move Address Register (BMAR) i ‘

Block Repeat Registers (RPTC, BRCR, PASR, PAER)
Buffered Serial Port Registers (ARR, AXR, BKR, BKX, SPCE)
Circular Buffer Registers (CBSR1, CBER1, CBSR2, CBER2, CBCR)
Dynamic Bit Manipulation Register (DBMR),
Global Memory Allocation Register (GREG) ...,
Host Port Interface Registers (HPIC, HPIA)o i,

Index Register (INDX)t e B-23
/O Space (PAO—PALL)

Instruction Register (IREG) . ..ot e
Interrupt Registers (IMR, IFR) e
Processor Mode Status Register (PMST)ciiiiii e
Product Register (PREG) ..ot et e
Serial Port Interface Registers (SPC, DRR, DXR, XSR,RSR)
Software-Programmable Wait-State Registers (PDWSR, IOWSR, CWSR) .
Status Registers (STO, STL) ..ottt e
Temporary Registers (TREGO, TREG1, TREG2)
Timer Registers (TIM, PRD, TCR) it e

TDM Serial Port Registers (TRCV, TDXR, TSPC, TCSR, TRTA,
TRAD, TRSR) . ..ttt

4 Program CONtrol o
Describes the TMS320C5x program control mechanisms. Includes information about the pro-
gram counter, the hardware stack, address generation, status and control registers, interrupts,
reset, and power-down modes.

4.1 Program Counter (PC) ...ttt
4.2 Hardware Stackt
4.3 Program-Memory Address Generationuiiiiiiiiiii i
4.4 Status and Control RegISterst e

XViii

4.4.1

Circular Buffer Control Register (CBCR) ...ttt

Contents

4.4.2 Processor Mode Status Register (PMST)ooviririraieennn... B-7
443 Status Registers (STOANd STL) .. .vvrriee e l-1d
4.5 Conditional OPerationSeueueree e -1
451 Conditional BranCho.eiui i 4-17
452 Conditional Calloeune 1-18
453 Conditional REtUINttt et b-14
4.5.4 Multiconditional INSErUCHIONSo.it it b-19
455 Delayed Conditional Branches, Calls,and Returns 4-19
456 Conditional EXECULIONou' ettt e l-2d
4.6 Single Instruction Repeat FUNCONot k-27
4.7 Block Repeat FUNCHONttt e e
4.7.1 Context Save and Restore Used With Block Repeat 4-32
4.7.2 Interrupt Operation in a BIOCK REPEAtovvririiieinanenn... B-34
S (1= 7 101 o] - B-38
4.8.1 Interrupt Vector LOCationsiiiiiii i 4-36
4.8.2 INErrUPt OPErationc.'eireitee e k-39
4.8.3 Interrupt Flag Register (IFR) e B-39
4.8.4 Interrupt Mask Register (IMR) 4-40
4.85 Interrupt Mode (INTM) Bitornrret et l-4d
4.8.6 Nonmaskable INterruptSoueirri e
4.8.7 Software-Initiated INtEITUPLS ottt k-4
4.8.8 INterrUPt CONEXt SAVE\ttt ettt b-43
4.8.9 INEITUPLLAENCY . .. vttt e e e e e e e B-23
4.0 RSB .ottt e e 4-45
410 POWEr-DOWN MOGE ...\ttt et e e e k-5d
4.10.1 IDLE INSHUCHON ...\ttt ettt et et l-50
4.10.2 IDLE2 INSIIUCHON & ..o\ttt et e et et e e e e e e l-5q
4.10.3 Power DOWN USING HOLDounei e l-51
AdAressing MOOES 5-1
Describes the basic addressing modes of the TMS320C5x
5.1 DIreCt ADAreSSING . . .o v ottt ettt et e e e e 5-3
5.2 INAirect AdreSSINGottt e 54
5.2.1 Indirect Addressing OptioNSttt 5§
5.2.2 Indirect Addressing Opcode Formatco i, 57
5.2.3 Bit-Reversed AddreSSiNgeeee e 5-13
5.3 Immediate AdAreSSiNgiuiniri 5-14
5.3.1 Short Immediate ADAreSSing 5-14
5.3.2 Long Immediate ADdressingo 5-15
5.4 Dedicated-Register ADdreSSingot 5-17
5.4.1 Using the Contents of the BMARiviuiriiieiiiaaann. B-17
5.4.2 Using the Contents of the DBMR i 5-18
5.5 Memory-Mapped Register Addressingoeeren e B-19
5.6 Circular AddreSSiNgovnenr et e e B-21
Contents XiX

Contents

6 Assembly Language INStruCtioNS it 6 [
Lists and defines the symbols and abbreviations used in the instruction set summary and in the
individual instruction descriptions. Provides a summary of the instruction set divided into seven
basic types of operation. Also provides an example description of an instruction and describes

the TMS320C5x assembly language instructions individually.

XX

6.1 Instruction Set Symbols and Notationscooiiiiii... 6-2
6.1.1 Symbols and Abbreviations Used in the Instruction Set Opcodes 6-2
6.1.2 Symbols and Abbreviations Used in the Instruction Set Descriptions @
6.1.3 Notations Used in the Instruction Set Descriptions 6-6
6.2 INSEUCHION St SUMMATY\ttt ettt ettt e e e 6-8
6.3 Instruction Set DeSCriptioNS oot e 5-22
PIPEIINE . e IE

Describes the TMS320C5x pipeline operation and lists the pipeline latency cycles for these
types of latencies

7.1 PIPEliNe SHUCIUIEottt e e e e 7-2
7.2 PIpeline Operationt
7.2.1 Normal Pipeline Operationiuiiiii i,
7.2.2 Pipeline Operation on Branch and SubroutineCall E
7.2.3 Pipeline Operation on ARAU Memory-Mapped Registers /-14
7.2.4 Pipeline Operation on External Memory Conflict E
7.3 PIPeliNe LAtBNCYttt e e e e e e 7-24
M BMOIY .. E

Describes the TMS320C5x memory configuration and operation. Includes memory maps and
descriptions of program memory, data memory, and I/O space. Also includes descriptions of
direct memory access (DMA), memory management, and available bootloader options.

8.1
8.2

8.3

8.4

8.5

8.6

MEMOTY SPACE OVEIVIEWttt e e e e e e B-2
Program MEMOIYt e e e e e e B-7
8.2.1 Program Memory Configurability i i B-7
8.2.2 Program Memory AddresS Mapviuiiiiii i 8-11

8.2.3 Program Memory AddresSinguuiiiii i B-13
8.2.4 Program Memory Protection Featureciiiiiiennen.n. B-14
Local Data MEMOIYttt e e e e e B-15
8.3.1 Local Data Memory Configurability i E
8.3.2 Local Data Memory AddresSsS Map ..o B-17
8.3.3 Local Data Memory AddreSsinge.eeeeanaaann.. B-19
Global Data MemOrYt e e e B-20
8.4.1 Global Data Memory Configurability B-20
8.4.2 Global Data Memory Addressingcouiiiiieneninenns B-20
INPUt/OULPUL (I/O) SPACE . . .\ttt e e B-22,
8.5.1 Addressing /O POrtSttt B-22
Direct Memory ACCESS (DMA) ..o e E
8.6.1 DMA in a Master-Slave Configuration iiiiiiii.. B-23

Contents

8.6.2 EXternal DMAttt
8.7 Memory Managementu.u ittt 8-26
8.7.1 Memory-to-Memory MOVESt 8-29
8.7.2 Memory BIOCK MOVESttt 8-27
8.8 BOOLLOAUET ...\ttt B-33
8.8.1 HPIBoot Mode ((C57 0nly) ...t 8-33
8.8.2 Seral BOOtMOGE\ttt e e e B-34
8.8.3 Parallel EPROM BOOtMOGEvovieei e B-39
8.8.4 Parallel /O BOOt MOGEtit ettt e B-37
8.8.5 Warm BoOt MOdE o E
8.9 External Parallel Interface Operation 8-39
8.10 Software Wait-State GENErationeueiueieae e, B-23
ON-ChIp PEHPNEIAIS . ..ottt e o[-1

Describes the TMS320C5x on-chip peripherals and how to control them. Includes information
about the clock generator, timer, wait-state generators, general-purpose I/O pins, parallel I/O
ports, standard serial port interface, buffered serial port interface, time-division multiplexed se-
rial port interface, and host port interface.

9.1

9.2

9.3

9.4

9.5

9.6
9.7

Peripheral Controlo b-3
9.1.1 Memory-Mapped Peripheral Registersand /O Ports @
9.1.2 EXternal INterrUPLSttt et e e e e e b4
9.1.3 Peripheral RESEtttt b-4
CIOCK GENEIALOTo\ttt e e e et e e e e e e e e b-7
9.2.1 Standard Clock Options ('C50, 'C51, 'C52, 'C53, and 'C53Sonly) @
9.2.2 PLL Clock Options ('LC56, 'C57S, and 'LC57only) b-g
LI b-d
9.3.1 TiMer ReQISIEIS . ot -9
9.3.2 TIMEr OPEration'ete e e e b-11
Software-Programmable Wait-State Generatorsc........
9.4.1 Program/Data Wait-State Register (PDWSR)c.oeerneen....
9.4.2 1/O Wait-State Register IOWSR) i p-14
9.4.3 Wait-State Control Register (CWSR)ouiniieirananaanan.. b-17
9.4.4 Logic for External Program Spacecuiiiiiiinennennannaan. 9-19
General-Purpose /O PiNs 0-20
9.5.1 Branch Control INPUt (BIO)\ ove et b-2d
9.5.2 External Flag OutpUt (XF) vttt e b-21
Parallel /O POITSttt e e e e e e e e e e e
Serial Port Interfaceo
9.7.1 Serial Port Interface Registers b-2

9.7.2 Serial Port Interface Operationo i b-23
9.7.3 Setting the Serial Port Configuration coiiiiiiiaa.. p-27
9.7.4 Burst Mode Transmit and Receive Operationscoio.n. 9-31
9.7.5 Continuous Mode Transmit and Receive Operations b-44
9.7.6 Serial Port Interface Exception Conditions b-44

Contents XXi

Contents

XXii

9.7.7 Example of Serial Port Interface Operationc..ououon..
9.8 Buffered Serial Port (BSP) INtErfaCeouree it
9.8.1 BSP Operationin Standard Mode i P-55
9.8.2 Autobuffering Unit (ABU) OPerationc..oueeernenananan..s b-60
9.8.3 System Considerations of BSP Operationccovvinienn... E
9.8.4 BSP Operation in Power-Down Mode D-73
9.9 Time-Division Multiplexed (TDM) Serial Port Interface p-74
9.9.1 Basic Time-Division Multiplexed Operation, E
9.9.2 TDM Serial Port Interface Registers b-74
9.9.3 TDM Serial Port Interface Operation p-76
9.9.4 TDM Mode Transmit and Receive Operationscooun... b-80
9.9.5 TDM Serial Port Interface Exception Conditions b-8
9.9.6 Examples of TDM Serial Port Interface Operation pb-87
9.10 HOSE POIt INEITACE\t e ettt et et b-87
9.10.1 Basic Host Port Interface Functional Description b-8g
9.10.2 Details of Host Port Interface Operationc.cciiiiien... b-91]
9.10.3 Host Read/Write AcCesS to HPlot
9.10.4 DSPINT and HINT Function Operationc.coeeeiueonn.. 0-101
9.10.5 Considerations in Changing HPI Memory Access Mode
(SAM/HOM) and IDLE2 USE\t
9.10.6 Access of HPI Memory DUriNg RESEto,
Pinouts and Signal DesCriptions it A IE
Provides pinouts and signal descriptions for the TMS320C5x devices
Al 100-Pin QFP PINOUL ((C52) . ..ottt e e e e e A2
A.2 100-Pin TQFP Pinout ('C51, 'C52,’C53S,and 'LC56)cciiiiiieennnnn. A4
A3 128-Pin TQFP PINOUL (LC57) ...ttt et e h-6
A.4 132-Pin BQFP Pinout ('C50,'C51,and 'C53)coiiii e @
A5 144-Pin TQFP PIiNOUt (C57S) ...\ttt e A-10
A.6 100-Pin TQFP Device-Specific PINOULSot A-12)
A7 SIgNal DESCIPLONS ...\ttt ettt et e e e e e
Instruction Classes and CyCles i B[-1
Describes the classes and lists the cycles of the instruction set
B.1 Cycle Class-to-Instruction Set Summaryc.co i, B-2
B.2 Instruction Set-to-Cycle Class SUMMaAryt E
System Migration @

Provides information that is necessary to upgrade a TMS320C2x system into a TMS320C5x
system. Consists of a detailed list of the programming differences and hardware and timing dif-

ferences between the two generations of TMS320 DSPs.

C.1 Package and Pin Layoutot e
C.2 TIMING oot e
C.2.1 Device Clock Speed

Contents

C.2.2 PIpeline €4
C.2.3 External Memory Interfacingco i c-g
C.2.4 EXecution CyCle TIMES ...ttt e et et -9
C.3 On-Chip Peripheral Interfacingcouii e C-11
C.4 "C2X-t0-"C5X INSIUCHON SOt ...\ttt e e e 14
CA L OVEIVIEBW ottt e e e e e e e e e c-12
C.4.2 Serial Port Control Bit INStrUCHONSo ettt 13
C.4.3 'C2x-t0-"C5X INStruction Set Mappingo vvvenee e, £-13
Design Considerations for Using XDS510 Emulator — D.[-]

Describes the JTAG emulator cable and how to construct a 14-pin connector on your target sys-
tem and how to connect the target system to the emulator

D.1 Cable Header and SignalSoueuineoe e D7
D.2 BUS PIOtOCOlttt e e b3
D.3 Emulator Cable Pod b4
D.4 Emulator Cable Pod Signal Timingsouiiie i E
D.5 Target System TeSt CIOCKo vot ettt D1
D.6 Configuring MUltiple ProCeSSOrSttt et et e e D-g
D.7 Connections Between the Emulator and the Target System E

D.7.1 Emulation Signals Not Buffered i, -9

D.7.2 Emulation Signals Bufferedceiuiieiiii i, D-1d
D.8 Emulation Timing Calculationsiuineit e
Memories, Sockets, and CrystalSuirente et E[-1

Provides product information regarding memories and sockets that are manufactured by Texas
Instruments and are compatible with the TMS320C5x

Bl MEMOMES . vttt e e e e e E-Z
B2 SOCKELS ...ttt et et E-Z
E.3 CIYStaAlS ottt ittt et et e E-3
Submitting ROM Codes t0 Tl ..ttt e e et F[-1
Provides information for submitting ROM codes to Texas Instruments

F1 Single-Chip SOIULION e F2
F.2 ~ TMS320 Development FIOW e F-3
F.3 Submitting TMS320 ROM COUE\ttt F-4
Development Support and Part Order Information —coueeereienen.... G.[-1

Provides device part numbers and support tool ordering information for the TMS320C5x and
development support information available from TI and third-party vendors

G.1 DevVelopmeNnt SUPPOITttt et e e e e e e e e e e e e G2
G.1.1 Software and Hardware Development TooIS, G2
G.1.2 Third-Party SUPPOIto e e @
G.1.3 Technical Training Organization (TTO) TMS320 Workshops E
G.1.4 ASSISEANCE . ..o\ttt et et e G3

Contents xXiii

Contents

XXV

G.2 PartOrder Information i
G.2.1 Device and Development Support Tool Nomenclature
G.2.2 Device Nomenclature i
G.2.3 Development SUPPOrt TOOISot
G.3 Hewlett-Packard E2442A Preprocessor 'Chx Interface
G.3.1 Capabilities ... e
G.3.2 Logic Analyzers SUpPpOrtedottt
G.3.3 POdS ReqUIrEd . ..
G.3.4 Termination Adapters (TAS) .. .ot
G.3.5 Availability
GlOSSaIY ..ttt e

Defines terms and abbreviations used throughout this book

Summary of Updates in This Document i i
Provides a summary of the updates in this version of the document

4-10

5-10
5-11
7-1
8-1
8-2
8-3
84
8-5

Figures

Evolution of the TMS320 Familyooiuiniiti e -3
Typical Applications for the TMS320 Family i, -4
'Chx Functional Block Diagram i p-2
Block Diagram of 'C5x DSP — Central Processing Unit (CPU) E
Central Arithmetic Logic UNIt oot B-8
Examples of Carry Bit Operationsuuiietei it e -13
Parallel Logic Unit Block Diagramo e 3-15
Indirect Auxiliary Register Addressing Example i, 3-17
Auxiliary Register Afthmetic UNitooe e 3-18
Program Control Functional Block Diagram ...t @
Circular Buffer Control Register (CBCR) Diagram @
Processor Mode Status Register (PMST) Diagramo, h-g
Status Register 0 (STO) DIagramvuene e e e
Status Register 1 (ST1) Diagramt e 4-13
Interrupt Vector Address GENEerationoeeeeoenaeeieeaeaenann. la-38
Interrupt Flag Register (IFR) DIagramouenrneaaaaieaeeeen. -39
Interrupt Mask Register (IMR) Diagram ...ttt ittt #-44
Minimum INterrupt LALENCYttt ettt et e B-24
RS and HOLD INtEracCtionc.uuut ettt e e e e A-49
DIreCt AdOreSSING\ttt et et et 5-3
Direct Addressing MOOEtr e e 5-3
INAIreCt AdArESSINGottt et et e e e 54
Indirect Addressing Opcode Format Diagram ..., @
Short Immediate Addressing Mode 5-14
Long Immediate Addressing Mode — No Data Memory ACCESSvvunn. 5-15
Long Immediate Addressing Mode — Two Operandscoviiniaen.nn. -14
Dedicated-Register Addressing Usingthe BMAR 5-19
Dedicated-Register Addressing Usingthe DBMRccviiuerienann.... 5-14
Memory-Mapped Register AdAreSSiNgourrnenee e 5-19
Memory-Mapped Addressing in the Direct AddressingMode B-2d
Four Level Pipeline Operationt -4
"C50 MEMOTY MAP .« v e et et e e e e e e e e e e B-4
‘CEL MEMOIY Map .. E
'C52 MEMOIY MAD .. v e e e e e e e e e e e e e e e B3
'C53 and 'C53S MEMOIY MADot e e ettt e B-3
'LC56 and 'LC57 MeMOTY MAPo .o ettt B-4

Contents XXV

Figures

86 'CS57SMEMONY MADttt et e et e B-6
8-7 Direct Memory Access Using a Master-Slave Configuration B-23
8-8 Boot Routing Selection WOrdcouuiureiria e, B-33
8-9 16-Bit Word TranSferiuiti it e B-34
8—10 8-Bit Word Transfer o B-35
8-11 16-Bit Source Address for Parallel EPROM BootModeonn... B-35
8-12 Handshake Protocol B-37
8-13 16-Bit Entry Address for Warm Boot Mode ...t B-38
8-14 External Interface Operation for Read-Read-Write (Zero Wait States) B-40
8-15 External Interface Operation for Write-Write-Read (Zero Wait States) B-41]
8-16 External Interface Operation for Read-Write (One Wait State) B-41
9-1 External Interrupt LOQIC Diagramottt e b-5
9-2 Timer BIOCK DIagrameuneee e B-9
9-3 Timer Control Register (TCR) DIagramounree e b-10
9-4 Program/Data Wait-State Register (PDWSR) Diagram

('C50, 'C51, and 'C52 ONlY) . .. vttt D-13
9-5 Program/Data Wait-State Register (PDWSR) Diagram

('C53S, 'LC56, and 'C57 ONlY) ...ttt p-14
9-6 I/O Port Wait-State Register (IOWSR) Diagram ...t b-16
9-7 Wait-State Control Register (CWSR) Diagramt p-1
9-8 Software-Programmable Wait-State Generator Block Diagram b-1
9-9 BIO TimMiNg Diagramottt e e e e e e e D-2
9-10 XF TiMING DIAGIraMottt e et e e e e e e e e p-21]
9-11 1/O PortInterface CirCUITYottt e et b-22
9-12 One-Way Serial Port Transfer p-26
9-13 Serial Port Interface Block Diagramt b-27
9-14 Serial Port Control Register (SPC) Diagramoueuineneieanananan... b-28
9-15 Receiver Signal MUXESt e E
9-16 Burst Mode Serial Port Transmit Operationiiiiiiiiniannnn... b-38
9-17 Serial Port Transmit With Long FSX Pulse o it D-39
9-18 Burst Mode Serial Port Transmit Operation With Delayed Frame Sync

in External Frame Sync Mode (SP)ot D-40
9-19 Burst Mode Serial Port Transmit Operation With Delayed Frame Sync ‘

in External Frame Sync Mode (BSP)t D-4
9-20 Burst Mode Serial Port Receive OpPerationeeueeeiaeeeeenn... b-41]
9-21 Burst Mode Serial Port Receive OVEITUNt p-41]
9-22 Serial Port Receive With Long FSR pulse, B-42
9-23 Burst Mode Serial Port Transmit at Maximum Packet Frequency B-4
9-24 Burst Mode Serial Port Receive at Maximum Packet-Frequency b-4
9-25 Continuous Mode Serial Port Transmit e D-4
9-26 Continuous Mode Serial POrt Receive b-44
9-27 SP Receiver Functional Operation (BurstMode) i, b-47
9-28 BSP Receiver Functional Operation (BurstMode) ..., p-47
9-29 SP/BSP Transmitter Functional Operation (BurstMode) b-48
9-30 SP/BSP Receiver Functional Operation (Continuous Mode) b-49

XXVi

9-31
9-32
9-33
9-34

9-35
9-36
9-37
9-38
9-39
9-40
9-41
9-42
9-43
9-44
9-45
9-46
9-47
9-48
9-49
9-50
9-51
9-52

A-5

11
A wWwN P

TPPPRRRROQ000
P No o~ wNE O

GI)G)
N

u}
S
<
)
%7}

SP/BSP Transmitter Functional Operation (Continuous Mode)
BSP BIOCK DIAQramM . ..o oottt ettt et e e e et e 9-54
BSP Control Extension Register (SPCE) Diagram — Serial Port Control Bits
Transmit Continuous Mode with External Frame and FIG =1

(FOrmatis 16 DItS)ttt e 0-60
ABU BIOCK DIAQIAMottt e e e e e e e e
BSP Control Extension Register (SPCE) Diagram — ABU Control Bits [9-63
Circular Addressing REJISIEISttt P-67
Transmit Buffer and Receive Buffer Mapping Example @
Standard Mode BSP Initialization TiMingouirieieiriieeeeennn. b-7d
Autobuffering Mode Initialization Timingo i p-71
Time-Division MUIIPIEXINGo\ttt et e b-74
TDM 4-WIr@ BUSttt e e e e e e e e e e e e b-74
TDM Serial Port Registers Diagramo.ereenarneeeaeaaenanns, b-7d
Serial Port TIMINg (TDM MOGE)ot e e e e Pb-8d
Host Port Interface Block Diagram e b-87
Generic System BIOCK DIAgramenee et e
SEIECE INPULLOGIC . .. oottt e et ettt e e e e e e e e e e
HPIC Diagram — Host Reads from HPICc.c.iiiiriiiiiiiann.,
HPIC Diagram — HOSt Writes to HPICottt e e e
HPIC Diagram — 'C5x Reads From HPICottt
HPIC Diagram — 'C5X WriteS to HPICttt e e
HPITIMIng Diagramttt e e et 9-98
Pin/Signal Assignments for the 'C52in 100-Pin QFP i, A2
Pin/Signal Assignments for the 'C51, 'C52, 'C53S, and 'LC56 in 100-Pin TQFP A4
Pin/Signal Assignments for the 'LC57 in 128-Pin TQFP oo, E
Pin/Signal Assignments for the 'C50, 'C51, and 'C53 in 132-Pin BQFP hA-g
Pin/Signal Assignments for the 'C57S in 144-PiN TQFPouiiiiiinn... p-1d
TMS320C25in 68-Pin CPGA -2
TMS320C25 10N 68-Pin PLCC ... it e -3
TMS320C25-t0-TMS320C5x Pin/Signal Relationship, -5
TMS320C25 and TMS320C5x Clocking Schemes oo i .. 6
TMS320C25 IACK Versus TMS320C5X IACKt C-7
Header Signals and Header DIMENSIONSttt D-2
Emulator Cable Pod Interface D-jg
Emulator Cable Pod TIMINGS v ettt e e e e e e e D-4
Target-System Generated Test Clock i e E
MUltiprocessor CONNECHIONSttt et ettt Db-g
Emulator Connections Without Signal Buffering i i, D-9
Buffered Signals D-10
TMS320 ROM Code Submittal FIOWCHArtttt e E3
TMS320 Device NOomenclature e G4
TMS320 Development Tool Nomenclature e G4

Contents XXVi

Tables

(IAJ(AJII\)I\.)I—‘

N

TR E T

T T
IS(D@\IG)U‘I-&OOI\)HI\JHI\)I—‘H

[
N

O’CDCDO?O’CDCD?’O’LHU‘IU‘IU‘ILH
W N - O

|
©O© 00N O Ol

XXViii

Characteristics of the 'CoX DSPSot
Number of Serial/Parallel Ports Available in Different 'C5x Package Types
IEEE Std.1149.1 (JTAG)/Boundary-Scan Interface Configurations for the 'C5x
'C5x CPU Internal Hardware SUmMmaryc..iiiiiii e,
Auxiliary Register Arithmetic Unit Functions i iiin.n.
Address Loading Into the Program Counterccoi it
Circular Buffer Control Register (CBCR) Bit Summary
Processor Mode Status Register (PMST) Bit Summary oo,
On-Chip RAM Configuration Using OVLY and RAMBItS,
Status Register 0 (STO) Bit SUMMAIYt e e
Status Register 1 (ST1) Bit Summary ...
Product Shifter Mode as Determined by PM Bits it
Conditions for Branch, Call, and Return Instructions,
Groups for Multiconditional Instructions i

Multi-cycle Instructions Transformed Into Single-Cycle Instructions by the
Repeat FUNCHON e e e

Repeatable INStruCtioNS
Instructions Not Meaningful to Repeat
Nonrepeatable INStruCtions i e
Interrupt Vector Locations and Priorities
CPU Registers’ Bit Status at Reset e
Peripheral Registers’ Bit Status at Reset ...,
Indirect Addressing Opcode Format Summary
Indirect Addressing Arithmetic Operationsccoi i,
Instruction Field Bit Values for Indirect Addressing,
Bit-Reversed AdAreSSeS e
Instructions That Support Immediate ADdressing enn.
Instruction Set Opcode Symbols and Abbreviations
Instruction Set Descriptions Symbols and Abbreviations
Instruction Set Descriptions Notations
Accumulator Memory Reference INStructions
Auxiliary Registers and Data Memory Page Pointer Instructions
Parallel Logic Unit (PLU) INStructionst
TREGO, PREG, and Multiply Instructions i,
Branch and Call InStructions e
I/0 and Data Memory Operation INStructions ...,

8-10
8-11
8-12
8-13
8-14
8-15
8-16

9-2
9-3
9-4
9-5

9-6

Control INStrUCHIONS ... o
Address Blocks for On-Chip Single-Access RAM
Pipeline Operation of 1-Word Instruction
Pipeline Operation of 2-Word Instruction
Pipeline Operation with Branch Taken i ..
Pipeline Operation with Branch Not Taken
Pipeline Operation with Subroutine Calland Return
Pipeline Operation with ARX Load e
Pipeline Operation with ARx Load and NOP Instruction
Pipeline Operation with ARx Load and NOP Instructions
Pipeline Operation with External Bus Conflicts
Latencies ReqUIrEdot e e
'C50 Program Memory Configuration
'C51 Program Memory Configuration i
'C52 Program Memory Configuration i
'C53 and 'C53S Program Memory Configuration oo,
'LC56 and 'LC57 Program Memory Configurationc.covuu...
'C57S Program Memory Configuration i
"'ChX Interrupt Vector AddreSSeS . ..ot
'C50 Local Data Memory Configuration,
'C51 Local Data Memory Configurationc.co i,
'C52 Local Data Memory Configuration
'C53 and 'C53S Local Data Memory Configuration
'LC56, 'LC57, and 'C57S Local Data Memory Configuration
Data Page 0 Address Map — CPU Registers ...,
Global Data Memory Configurations
Address Ranges for On-Chip Single-Access RAM During External DMA
Number of CLKOUT1 Cycles Per Access for Various Numbers of Wait States
Data Page 0 Address Map — Peripheral Registersand /O Ports
Standard Clock Options ('C50, 'C51, 'C52, 'C53, and 'C53Soonly)
PLL Clock Options (LC56, 'C57S, and 'LC570nly) i,
Timer Control Register (TCR) Bit Summary,

Program/Data Wait-State Register (PDWSR) Address Ranges

(C50,’C5h1, and 'C52 0NlY) . ..ot

Program/Data Wait-State Register (PDWSR) Address Ranges

('CB3S,’LCHB, and 'CE7 0NlY) .. .ot
Number of CLKOUT1 Cycles per Access for Various Numbers of Wait States
1/0 Port Wait-State Register IOWSR) Address Ranges
Wait-State Control Register (CWSR) Bit Summary ...,

Wait-State Field Values and Number of Wait States as a Function of

CWSR BitS 0—3 ..t
Serial Port Registers
Serial POrt PiNS
Serial Port Control Register (SPC) Bit Summary

Contents

Tables

EEErmmR]

P
=
N

®
=
o

P
=
[@))

P|fL
(=
[e>1]le))

®
2

©
=
0

il

3

XXIX

Tables

[T e e e e e
NNNNRRRE R R
WNRFPOWOWOWNOU N

P P P L eY
&.Loowoooowmml\)mmw
A WONPFPOOONO O

Serial Port Clock CONfiQUIationoeenti et e
Buffered Serial POrt REQISIEIS't ettt e e
Differences Between SP and BSP Operation in Standard Mode D-56
BSP Control Extension Register (SPCE) Bit Summary — Serial Port Control Bits E
Buffered Serial Port Word Length Configuration D-59
Autobuffering Unit REGISIEISttt e e b-60
BSP Control Extension Register (SPCE) Bit Summary — ABU Control Bits E
TDM Serial POrt REGISIEIS oottt ettt e e b-75
Interprocessor Communications SCENANOuuiuiii i, b-8
TDM Register CONtENTSttt e e e e p-8
HPI Registers DesCripliono e P-90
HPI Signal Names and FUNCLIONS b-91]
HPI Input Control Signals Function Selection Descriptions p-94
HPI Control Register (HPIC) Bit DeSCHptionSttt E
HPIC Host/’C5x Read/Write CharacteristiCsc.ciiiiiiiiiiinnnaaan.. P-9¢
Wait-State Generation Conditionsot b-99
Initialization of BOB and HPIA e e e 0-100
Read Access to HPI with AUOINCIEMENtouteeee e B-100
Write Access to HPI with Auto-Increment oo il p-101
Sequence of Entering and EXiting IDLE2ooitiririiiiieananan... b-103
HPI Operation DUMNG RESETttt e b-104
Signal/Pin Assignments for the 'C52in 100-Pin QFP E
Signal/Pin Assignments for the 'C51, 'C52, 'C53S, and 'LC56 in 100-Pin TQFP E
Signal/Pin Assignments for the 'LC57 in 128-Pin TQFP n... A7
Signal/Pin Assignments for the 'C50, 'C51, and 'C53 in 132-PinBQFP A9
Signal/Pin Assignments for the 'C57S in 144-Pin TQFPoouiuiinian.. 11l
Device-Specific Pin/Signal Assignments for the 'C51, 'C52, 'C53S, and 'LC56

iN 200-Pin TQR P ... A-12
Address and Data Bus Signal Descriptionsccoeiiirirananiienn... A-13
Memory Control Signal DesCriptionst A-1
Multiprocessing Signal DeSCriptioNSttt A-15
Initialization, Interrupt, and Reset Operations Signal Descriptions A-16
Supply Signal DeSCHPLIONSot A-1
Oscillator/Timer Signal DESCHPHONSttt et A-17]
Oscillator/Timer Standard Options ('C50, 'C51, C52,'C53, and 'C53S Only) @
Oscillator/Timer Expanded Options ('LC56, 'C57S, and 'LC570Only) A-19
Serial Port Interface Signal Descriptions i A-20
Buffered Serial Port Interface Signal Descriptions ('(LC56 and 'C57 Only) A-21]
Host Port Interface Signal Descriptions (C57 0nly) it A-22
Emulation/Testing Signal Descriptionst A-24
Cycle Class-to-Instruction Set SUMMaAryttt B-2
Instruction Set-to-Cycle Class SUMMAIYirire e, B-5
TMS320C2x Versus TMS320C5x for the ADD Instruction c-12
TMS320C2x to TMS320C5x Serial Port INStructionsc.c.oeveiuanon.. C-13

w

N

OMOTOOO00 OO0
P NP O~NO O

=

Tables

TMS320C2x-t0-TMS320C5x Accumulator Memory Reference Instructions
TMS320C2x-to-TMS320C5x Auxiliary Registers and Data Memory Page

POINEEN INSIIUCHONS .« . . .o o e ettt et e e e e e e e e e e e e e e
TMS320C2x-to-TMS320C5x TREGO, PREG, and Multiply Instructions C-16
TMS320C2x-to-TMS320C5x Branch and Call Instructions
TMS320C2x-t0-TMS320C5x I/0O and Data Memory Operation Instructions c-184
TMS320C2x-t0-TMS320C5x Control INSLrUCHONSo vovee oo c-1d
XDS510 Header Signal DesCriptionot e Z
Emulator Cable Pod Timing Parameters, D-6
Commonly Used Crystal FreqUENCIESottt -3
TMS320C5x Development Support Tools Part Numbers E

Contents XXXI

Examples

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13

[L e e P |
A OWN PR

=Y

N

w

L R N A P B |
-wal—‘Hl—‘HISLOQ)\ICDU‘I

OO\I\I\I\I\I\I\I\I\IUI(IHUI(.HUI(ﬂm(ﬂmU'ImUlm

= ©O© 00 N O O

XXXl

Use of Conditional Returns (RETC INStruction) 41-18
Use of Conditional Branch (BCND Instruction)cciiiiiiieinennn.. 4-19
Use of Delayed Conditional Branch (BCNDD Instruction) 3-20
Conditional Branch Operation e h-20
Use of Conditional Execution (XC Instruction) h-20
XC Execution with Unstable Condition i -21
XC Execution with Stable CONditionouieee e
Use of Block Repeat (RPTB Instruction)coiuiiiii i B-3

Context Save and Restore Used With Block Repeat a-3

Block Repeat with Small Loop of Code e #-33
Interrupt Operation With a Single-Word Instruction at the End ofan RPTB @
Interrupt Operation With a Single-Word Instruction Before the End of RPTB B-35
Modifying Register Values During Interrupt Context Savec..oouuenn..
Indirect Addressing With No Change to AR e b-10
Indirect Addressing With Autodecrement i b-10
Indirect Addressing With Autoincrement i F-10
Indirect Addressing With Autoincrementand Change AR @
Indirect Addressing With INDX Subtracted from ARot B-11]
Indirect Addressing With INDX Added t0 AR . ..ottt
Indirect Addressing With INDX Subtracted from AR With Reverse Carry b-11
Indirect Addressing With INDX Added to AR With Reverse Carry b-12)
Indirect Addressing ROULINE i b-12
Sequence of Auxiliary Register Modifications in Bit-Reversed Addressing F-13

Memory-Mapped Register Addressing in the Indirect Addressing Mode 5-20
Memory-Mapped Register Addressing in the Direct AddressingMode 5-20
Circular AddresSiNg . ..o ot b-22)
Pipeline Operation of 1-Word Instruction e 7-3
Pipeline Operation of 2-Word Instruction i, IE
Pipeline Operation with Branch Taken i IE
Pipeline Operation with Branch Not Taken i, 79
Pipeline Operation with Subroutine Calland Returno ...

Pipeline Operation with ARX Load e 7-14
Pipeline Operation with ARx Load and NOP Instruction E
Pipeline Operation with ARx Load and NOP Instructions -18
Pipeline Operation with External Bus Conflicts r-21
Moving External Data to Internal Data Memory With the BLDD Instruction B-27

m
8
3
<3
D
»

Moving External Data to Internal Program Memory With the BLDP Instruction
Moving External Data to Internal Program Memory With the TBLW Instruction 8-29
Moving External Program to Internal Data Memory With the BLPD Instruction
Moving External Program to Internal Data Memory With the TBLR Instruction -30
Moving Data From Internal Data Memory to 1/0 Space With the LMMR Instruction /E
Moving Data from 1/O Space to Internal Data Memory With the SMMR Instruction B-31
Code Initialization for Generating a 50-kHz Clock Signal P-13
Interrupt Service Routine for a 50-kHz Sample Ratecccovuuenon.... b-13
Device 0 Transmit Code (Serial Port Interface Operation) [-51
Device 1 Receive Code (Serial Port Interface Operation) P-53
Transmit Initialization in Burst Mode with External Frame Sync and External Clock

(Formatis L0 DItS)ottt B-72
Receive Initialization in Continuous Mode (Formatis 16 bits) P-73
Device 0 Transmit Code (TDM Operation)cuuiuiinein it b-85
Device 1 Receive Code (TDM Operation)cuueuitnenein i, 0-86

Contents XXXiii

Chapter 1

Introduction

This user’s guide discusses the TMS320C5x generation of fixed-point digital
signal processors (DSPs) in the TMS320 family. The 'C5x DSP provides im-
proved performance over earlier 'C1x and 'C2x generations while maintaining
upward compatibility of source code between the devices. The 'C5x central
processing unit (CPU) is based on the 'C25 CPU and incorporates additional
architectural enhancements that allow the device to run twice as fast as 'C2x
devices. Future expansion and enhancements are expected to heighten the
performance and range of applications of the 'C5x DSPs.

The 'C5x generation of static CMOS DSPs consists of the following devices:

Device On-Chip RAM On-Chip ROM
TMS320C50/LC50 10K words 2K words
TMS320C51/LC51 2K words 8K words
TMS320C52/LC52 1K words 4K words
TMS320C53/LC53 4K words 16K words
TMS320C53S/LC53S 4K words 16K words
TMS320LC56 7K words 32K words
TMS320LC57 7K words 32K words
TMS320C57S/LC57S 7K words 2K words

Topic Page
1.1 TMS320 Family OVEIVIEWot
1.2 TMS320C5X OVEIVIEW ...\ttt e et e e e e e e e e e
1.3 TMS320C5x Key FEatUresc.eouuiiueeieaiaaeane.n.

1-1

TMS320 Family Overview

1.1 TMS320 Family Overview

The TMS320 family consists of two types of single-chip DSPs: 16-bit fixed-
point and 32-bit floating-point. These DSPs possess the operational flexibility
of high-speed controllers and the numerical capability of array processors.
Combining these two qualities, the TMS320 processors are inexpensive alter-
natives to custom-fabricated VLSI and multichip bit-slice processors. Refer to
subsection 1.1.2, TMS320 Typical Applications, for a detailed list of applica-
tions of the TMS320 family. The following characteristics make this family the
ideal choice for a wide range of processing applications:

Very flexible instruction set

Inherent operational flexibility
High-speed performance

Innovative, parallel architectural design
Cost-effectiveness

Uoooo

1.1.1 History, Development, and Advantages of TMS320 DSPs

1-2

In 1982, Texas Instruments introduced the TMS32010 — the first fixed-point
DSP in the TMS320 family. Before the end of the year, the Electronic Products
magazine awarded the TMS32010 the title “Product of the Year”. The
TMS32010 became the model for future TMS320 generations.

Today, the TMS320 family consists of eight generations: the 'C1x, 'C2x, 'C2xx,
'C5x, and 'C54x are fixed-point, the 'C3x and 'C4x are floating-point, and the
'C8x is a multiprocessor. Figure 1-1 illustrates the performance gains that the
TMS320 family has made over time with successive generations. Source code
is upward compatible from one fixed-point generation to the next fixed-point
generation (except for the 'C54x), and from one floating-point generation to the
next floating-point generation. Upward compatibility preserves the software
generation of your investment, thereby providing a convenient and cost-effi-
cient means to a higher-performance, more versatile DSP system.

Each generation of TMS320 devices has a CPU and a variety of on-chip
memory and peripheral configurations for developing spin-off devices. These
spin-off devices satisfy a wide range of needs in the worldwide electronics
market. When memory and peripherals are integrated into one processor, the
overall system cost is greatly reduced, and circuit board space is saved.

TMS320 Family Overview

Figure 1-1. Evolution of the TMS320 Family

T T
D
on
=~
><

VEIYETTTRTT

[[b cax H'caxx| § 'CoX

| | PERFORMANCE | >

Introduction 1-3

TMS320 Family Overview

1.1.2 TMS320 Typical Applications

The TMS320 family of DSPs offers better, more adaptable approaches to tradi-
tional signal-processing problems, such as vocoding, filtering, and error cod-
ing. Furthermore, the TMS320 family supports complex applications that often
require multiple operations to be performed simultaneously. Figure 1-2 shows

many of the typical applications of the TMS320 family.

Figure 1-2. Typical Applications for the TMS320 Family

Automotive

Consumer

Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation

Vibration analysis
Voice commands

Digital radios/TVs

Educational toys

Music synthesizers

Power tools

Radar detectors

Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose

Graphics/Imaging

Industrial

Adaptive filtering
Convolution

Correlation

Digital filtering

Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D rotation

Animation/digital map
Homomorphic processing
Pattern recognition

Image enhancement

Image compression/transmission
Robot vision

Workstations

Numeric control
Power-line monitoring
Robotics

Security access

Instrumentation

Medical

Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids

Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation

Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications

Voice/Speech

1200- to 19200-bps modems
Adaptive equalizers

ADPCM transcoders

Cellular telephones

Channel multiplexing

Data encryption

Digital PBXs

Digital speech interpolation (DSI)
Personal digital assistants (PDA)

DTMF encoding/decoding

Echo cancellation

Fax

Line repeaters

Speaker phones

Spread spectrum communications
Video conferencing

X.25 Packet Switching

Personal communications systems (PCS)

Speech enhancement
Speech recognition
Speech synthesis
Speaker verification
Speech vocoding
Voice malil
Text-to-speech

1-4

TMS320C5x Overview

1.2 TMS320C5x Overview

The ’C5x generation consists of the 'C50, 'C51, 'C52, 'C53, 'C53S, 'C56, 'C57,
and’'C57S DSPs, which are fabricated by CMOS integrated-circuit technology.
Their architectural design is based on the 'C25. The operational flexibility and
speed of the 'C5x are the result of combining an advanced Harvard architec-
ture (which has separate buses for program memory and data memory), a
CPU with application-specific hardware logic, on-chip peripherals, on-chip
memory, and a highly specialized instruction set. The 'C5x is designed to ex-
ecute up to 50 million instructions per second (MIPS). Spin-off devices that
combine the 'C5x CPU with customized on-chip memory and peripheral con-
figurations may be developed for special applications in the worldwide elec-
tronics market.

The 'C5x devices offer these advantages:

[0 Enhanced TMS320 architectural design for increased performance and
versatility

(1 Modular architectural design for fast development of spin-off devices

[Advanced integrated-circuit processing technology for increased per-
formance and low power consumption

[0 Source code compatibility with 'C1x, 'C2x, and 'C2xx DSPs for fast and
easy performance upgrades

1 Enhanced instruction set for faster algorithms and for optimized high-level
language operation

1 Reduced power consumption and increased radiation hardness because
of new static design techniques

Table 1-1 lists the major characteristics of the 'C5x DSPs. The table shows the
capacity of on-chip RAM and ROM, number of serial and parallel input/output
(I/O) ports, power supply requirements, execution time of one machine cycle,
and package types available with total pin count. Use Table 1-1 for guidance
in choosing the best 'C5x DSP for your application.

Introduction 1-5

TMS320C5x Overview

Table 1-1. Characteristics of the 'C5x DSPs

On-Chip Memory

TMS320 (16-bit words) I/0 Ports SPSF‘;‘F’SI\; c_:r?’f‘:: Packege
Device' ID DARAMT SARAM* ROM Serial Parallel ¢ (v) (ns) Type
'C50 PQ 1056 9K 2K8 21 64K 5 50/35/25 132 pin BQFP°
'LC50 PQ 1056 9K 2K8 21 64K 3.3 50/40/25 132 pin BQFP°
'C51 PQ 1056 1K 8KS 21 64K 5 50/35/25/20 132 pin BQFP®
'C51 PZ 1056 1K 8KS 21 64K 5 50/35/25/20 100 pin TQFP*
'LC51 PQ 1056 1K 8KS 21 64K 3.3 50/40/25 132 pin BQFP°
'LC51 PZ 1056 1K 8KS8 21 64K 3.3 50/40/25 100 pin TQFP*
'C52 PJ 1056 — 4K8 1 64K 5 50/35/25/20 100 pin QFPP
'C52 PZ 1056 — 4K8 1 64K 5 50/35/25/20 100 pin TQFP*
'LC52 PJ 1056 — 4K8 1 64K 3.3 50/40/25 100 pin QFP"
'LC52 PZ 1056 — 4K8 1 64K 3.3 50/40/25 100 pin TQFP*
'C53 PQ 1056 3K 16K8 21 64K 5 50/35/25 132 pin BQFP°
'C53S PZ 1056 3K 16K8 2 64K 5 50/35/25 100 pin TQFP*
'LC53 PQ 1056 3K 16KS8 21 64K 3.3 50/40/25 132 pin BQFP°
'LC53S PZ 1056 3K 16KS8 2 64K 3.3 50/40/25 100 pin TQFP*
'LC56 PZ 1056 6K 32K o# 64K 3.3 50/35/25 100 pin TQFP*
'C57S PGE 1056 6K 2K8 o# 64Kl 5 50/35/25 144 pin TQFPA
'LC57 PBK 1056 6K 32K o# 64Kl 3.3 50/35/25 128 pinTQFP*
'LC57S PGE 1056 6K 2K8 o# 64Kl 3.3 50/35 144 pin TQFPA

T Dual-access RAM (DARAM)
¥ Single-access RAM (SARAM)
8 ROM bootloader available

T includes time-division multiplexed (TDM) serial port

#Includes buffered serial port (BSP)
Il ncludes host port interface (HPI)
© 20 x 20 x 3.8 mm bumpered quad flat-pack (BQFP) package

%14 x 14 x 1.4 mm thin quad flat-pack (TQFP) package

Y14 x 20 x 2.7 mm quad flat-pack (QFP) package

A 20 x 20 x 1.4 mm thin quad flat-pack (TQFP) package

0 Sixteen of the 64K parallel /O ports are memory mapped.

1-6

TMS320C5x Key Features

1.3 TMS320C5x Key Features

Key features of the 'C5x DSPs are listed below. Where a feature is exclusive
to a particular device, the device’s name is enclosed within parentheses and
noted after that feature.

[Compatibility: Source-code compatible with 'C1x, 'C2x, and 'C2xx devices

[0 Speed: 20-/25-/35-/50-ns single-cycle fixed-point instruction execution
time (50/40/28.6/20 MIPS)

1 Power

3.3-V and 5-V static CMOS technology with two power-down modes

Power consumption control with IDLE1 and IDLEZ2 instructions for
power-down modes

1 Memory

224K-word x 16-bit maximum addressable external memory space
(64K-word program, 64K-word data, 64K-word 1/0, and 32K-word
global memory)

1056-word x 16-bit dual-access on-chip data RAM

9K-word x 16-bit single-access on-chip program/data RAM ('C50)
2K-word x 16-bit single-access on-chip boot ROM ('C50, 'C57S)
1K-word x 16-bit single-access on-chip program/data RAM ('C51)
8K-word x 16-bit single-access on-chip program ROM ('C51)
4K-word x 16-bit single-access on-chip program ROM ('C52)

3K-word x 16-bit single-access on-chip program/data RAM ('C53,
'C53S)

16K-word x 16-bit single-access on-chip program ROM ('C53, 'C53S)

6K-word x 16-bit single-access on-chip program/data RAM ('LC56,
'C57S, 'LC57)

32K-word x 16-bit single-access on-chip program ROM ('LC56,
'LC57)

Introduction 1-7

TMS320C5x Key Features

[0 Central processing unit (CPU)

Central arithmetic logic unit (CALU) consisting of the following:

m 32-bit arithmetic logic unit (ALU), 32-bit accumulator (ACC), and
32-bit accumulator buffer (ACCB)

m 16-bit x 16-bit parallel multiplier with a 32-bit product capability

m 0O- to 16-bit left and right data barrel-shifters and a 64-bit incre-
mental data shifter

16-bit parallel logic unit (PLU)

Dedicated auxiliary register arithmetic unit (ARAU) for indirect
addressing

Eight auxiliary registers

(1 Program control

8-level hardware stack

4-deep pipelined operation for delayed branch, call, and return
instructions

Eleven shadow registers for storing strategic CPU-controlled regis-
ters during an interrupt service routine (ISR)

Extended hold operation for concurrent external direct memory
access (DMA) of external memory or on-chip RAM

Two indirectly addressed circular buffers for circular addressing

[Instruction set

Single-cycle multiply/accumulate instructions
Single-instruction repeat and block repeat operations

Block memory move instructions for better program and data man-
agement

Memory-mapped register load and store instructions
Conditional branch and call instructions

Delayed execution of branch and call instructions
Fast return from interrupt instructions
Index-addressing mode

Bit-reversed index-addressing mode for radix-2 fast-Fourier trans-
forms (FFTs)

TMS320C5x Key Features

1 On-chip peripherals

Q

64K parallel I/0O ports (16 I/O ports are memory-mapped)

Sixteen software-programmable wait-state generators for program,
data, and I/O memory spaces

Interval timer with period, control, and counter registers for software
stop, start, and reset

Phase-locked loop (PLL) clock generator with internal oscillator or
external clock source

Multiple PLL clocking option (x1, x2, x3, x4, X5, X9, depending on the
device)

Full-duplex synchronous serial port interface for direct communica-
tion between the 'C5x and another serial device

Time-division multiplexed (TDM) serial port ('C50, 'C51, 'C53)
Buffered serial port (BSP) ('LC56, 'C57S, 'LC57)
8-bit parallel host port interface (HPI) (C57, 'C57S)

Test/Emulation

On-chip scan-based emulation logic

IEEE JTAG Standard 1149.1 boundary scan logic ('C50, 'C51, 'C53,
'C57S)

Packages

100-pin quad flat-pack (QFP) package ('C52)

100-pin thin quad flat-pack (TQFP) package ('C51, 'C52, 'C53S,
'LC56)

128-pin TQFP package ('LC57)
132-pin bumpered quad flat-pack (BQFP) package ('C50, 'C51, 'C53)
144-pin TQFP package ('C57S)

Introduction 1-9

Chapter 2

Architectural Overview

This chapter provides an overview of the architectural structure of the 'C5x,
which consists of the buses, on-chip memory, central processing unit (CPU),
and on-chip peripherals.

The 'C5x uses an advanced, modified Harvard-type architecture based on the
'C25 architecture and maximizes processing power with separate buses for
program memory and data memory. The instruction set supports data trans-
fers between the two memory spaces. Figure 2—1 shows a functional block
diagram of the 'C5x.

All 'C5x DSPs have the same CPU structure; however, they have different
on-chip memory configurations and on-chip peripherals.

Topic Page
Zod, [BUB SIUGHUTE 000 2
2.2 Central Processing Unit (CPU) Z-E
2.3 ON-Chip MEMOIY ... e e e e
2.4 ON-Chip Perpheralseuouie] 28 |
2.5 TeSUEMUIAtION\ttt 2-11 |

2-1

'C5x Functional Block Diagram

Figure 2-1. 'C5x Functional Block Diagram

Peripherals

A
\ 4

Serial port 1

A
\ 4

Serial port 2

A
\

TDM
serial port

A
\ 4

Buffered
serial port

Data bus
A A
A 4 A\ 4
Memory
Program Data/Program
ROM SARAM
'C50 2K 'C50 9K
'C51 8K 'C51 1K
'C52 4K 'C52 — Data DARAM
'C53 16K 'C53 3K Data/Program
'LC56 32K 'LC56 6K DARAM B2 (32 X 16)
'C57S 2K 'C57S 6K —_—
'LC57 32K 'LC57 6K BO (512 X 16) B1 (512 X 16)
A
Program bus Y
[
a
\ 4
Program
controller
Program Memory-
_ Memory control cougnter mapped Y M
- : . " registers CALU >
:Multlprocessmg > Status/control Parallel
Interrupts registers . logic
< » e Multiplier unit
_Initialization - Hardware stack N e Accumulator (PLU)
‘o ator > Auxiliary | | e ACC Buffer
_ Oscillator/timer) register e Shifters
<t > Addres?o%?geratlon arithmetic o Arithmetic
unit logic unit (ALU) R
Instruction register (ARAU)
CPU

Data bus

A
\ 4

Timer

A
\ 4

Host port
interface

A
Y

Test/emulation

2-2

A

A

A

A

A

2.1 Bus Structure

Bus Structure

Separate program and data buses allow simultaneous access to program
instructions and data, providing a high degree of parallelism. For example,
while data is multiplied, a previous product can be loaded into, added to, or
subtracted from the accumulator and, at the same time, a new address can be
generated. Such parallelism supports a powerful set of arithmetic, logic, and
bit-manipulation operations that can all be performed in a single machine
cycle. In addition, the 'C5x includes the control mechanisms to manage inter-
rupts, repeated operations, and function calling.

The 'C5x architecture is built around four major buses:

g Program bus (PB)

[J Program address bus (PAB)
[J Dataread bus (DB)

(] Dataread address bus (DAB)

The PAB provides addresses to program memory space for both reads and
writes. The PB also carries the instruction code and immediate operands from
program memory space to the CPU. The DB interconnects various elements
of the CPU to data memory space. The program and data buses can work
together to transfer data from on-chip data memory and internal or external
program memory to the multiplier for single-cycle multiply/accumulate opera-
tions.

Architectural Overview 2-3

Central Processing Unit (CPU)

2.2 Central Processing Unit (CPU)

The 'C5x CPU consists of these elements:

Central arithmetic logic unit (CALU)
Parallel logic unit (PLU)

Auxiliary register arithmetic unit (ARAU)
Memory-mapped registers

Program controller

Uoooo

The 'C5x CPU maintains source-code compatibility with the 'C1x and 'C2x
generations while achieving high performance and greater versatility. Im-
provements include a 32-bit accumulator buffer, additional scaling capabili-
ties, and a host of new instructions. The instruction set exploits the additional
hardware features and is flexible in a wide range of applications. Data man-
agement has been improved through the use of new block move instructions
and memory-mapped register instructions. See Chapter 3, Central Processing
Unit (CPU).

2.2.1 Central Arithmetic Logic Unit (CALU)

The CPU uses the CALU to perform 2s-complement arithmetic. The CALU
consists of these elements:

16-bit x 16-bit multiplier

32-bit arithmetic logic unit (ALU)

32-bit accumulator (ACC)

32-bit accumulator buffer (ACCB)

Additional shifters at the outputs of both the accumulator and the product
register (PREG)

(I I

For information on the CALU, see Section 3.2, Central Arithmetic Logic Unit
(CALU), on page 3-7.

2.2.2 Parallel Logic Unit (PLU)

2-4

The CPU includes an independent PLU, which operates separately from, but
in parallel with, the ALU. The PLU performs Boolean operations or the bit ma-
nipulations required of high-speed controllers. The PLU can set, clear, test, or
toggle bits in a status register, control register, or any data memory location.
The PLU provides a direct logic operation path to data memory values without
affecting the contents of the ACC or PREG. Results of a PLU function are writ-
ten back to the original data memory location. For information on the PLU, see
Section 3.3, Parallel Logic Unit (PLU), on page 3-15.

Central Processing Unit (CPU)

2.2.3 Auxiliary Register Arithmetic Unit (ARAU)

The CPU includes an unsigned 16-bit arithmetic logic unit that calculates
indirect addresses by using inputs from the auxiliary registers (ARs), index
register (INDX), and auxiliary register compare register (ARCR). The ARAU
can autoindex the current AR while the data memory location is being
addressed and can index either by £1 or by the contents of the INDX. As a
result, accessing data does not require the CALU for address manipulation;
therefore, the CALU is free for other operations in parallel. For information on
the ARAU, see Section 3.4, Auxiliary Register Arithmetic Unit (ARAU), on
page 3-17.

2.2.4 Memory-Mapped Registers

The 'C5x has 96 registers mapped into page 0 of the data memory space. All
'C5x DSPs have 28 CPU registers and 16 input/output (I/O) port registers but
have different numbers of peripheral and reserved registers (see Chapter 4,
Memory). Since the memory-mapped registers are a component of the data
memory space, they can be written to and read from in the same way as any
other data memory location. The memory-mapped registers are used for indi-
rect data address pointers, temporary storage, CPU status and control, or inte-
ger arithmetic processing through the ARAU. For information on registers, see
Section 3.5, Summary of Registers, on page 3-21.

2.2.5 Program Controller

The program controller contains logic circuitry that decodes the operational
instructions, manages the CPU pipeline, stores the status of CPU operations,
and decodes the conditional operations. Parallelism of architecture lets the
'C5x perform three concurrent memory operations in any given machine cycle:
fetch an instruction, read an operand, and write an operand. See Chapter 4,
Program Control, and Chapter 7, Pipeline. The program controller consists of
these elements:

Program counter

Status and control registers
Hardware stack

Address generation logic
Instruction register

oo

Architectural Overview 2-5

On-Chip Memory

2.3 On-Chip Memory

2.3.1 Program ROM

2.3.2 Data/Program

2-6

The 'C5x architecture contains a considerable amount of on-chip memory to
aid in system performance and integration:

(1 Program read-only memory (ROM)
(1 Data/program dual-access RAM (DARAM)
(1 Data/program single-access RAM (SARAM)

The 'C5x has a total address range of 224K words x 16 bits. The memory
space is divided into four individually selectable memory segments: 64K-word
program memory space, 64K-word local data memory space, 64K-word input/
output ports, and 32K-word global data memory space. For information on the
memory organization, see Chapter 8, Memory.

All 'C5x DSPs carry a 16-bit on-chip maskable programmable ROM (see
Table 1-1 for sizes). The 'C50 and 'C57S DSPs have boot loader code resi-
dent in the on-chip ROM, all other 'C5x DSPs offer the boot loader code as an
option. This memory is used for booting program code from slower external
ROM or EPROM to fast on-chip or external RAM. Once the custom program
has been booted into RAM, the boot ROM space can be removed from pro-
gram memory space by setting the MP/MC bit in the processor mode status
register (PMST). The on-chip ROM is selected at reset by driving the MP/MC
pin low. If the on-chip ROM is not selected, the 'C5x devices start execution
from off-chip memory. For information on the program ROM, see Section 8.2,
Program Memory, on page 8-7.

The on-chip ROM may be configured with or without boot loader code. Howev-
er, the on-chip ROM is intended for your specific program. Once the program
is in its final form, you can submit the ROM code to Texas Instruments for
implementation into your device. For details on how to submit code to Texas
Instruments to program your ROM, see Appendix F, Submitting ROM Codes
to Tl.

Dual-Access RAM

All’'C5x DSPs carry a 1056-word X 16-bit on-chip dual-access RAM (DARAM).
The DARAM is divided into three individually selectable memory blocks:
512-word data or program DARAM block B0, 512-word data DARAM block B1,
and 32-word data DARAM block B2. The DARAM is primarily intended to store
data values but, when needed, can be used to store programs as well. DARAM
blocks B1 and B2 are always configured as data memory; however, DARAM

2.3.3 Data/Program

On-Chip Memory

block BO can be configured by software as data or program memory. The
DARAM can be configured in one of two ways:

[Al 1056 words x 16 bits configured as data memory

[544 words X 16 bits configured as data memory and 512 words x 16 bits
configured as program memory

DARAM improves the operational speed of the 'C5x CPU. The CPU operates
with a 4-deep pipeline. In this pipeline, the CPU reads data on the third stage
and writes data on the fourth stage. Hence, for a given instruction sequence,
the second instruction could be reading data at the same time the first instruc-
tion is writing data. The dual data buses (DB and DAB) allow the CPU to read
from and write to DARAM in the same machine cycle. For information on
DARAM, see Section 8.3, Local Data Memory, on page 8-15.

Single-Access RAM

All 'C5x DSPs except the 'C52 carry a 16-bit on-chip single-access RAM
(SARAM) of various sizes (see Table 1-1). Code can be booted from an off-
chip ROM and then executed at full speed, once it is loaded into the on-chip
SARAM. The SARAM can be configured by software in one of three ways:

1 All SARAM configured as data memory
1 All SARAM configured as program memory
1 SARAM configured as both data memory and program memory

The SARAM is divided into 1K- and/or 2K-word blocks contiguous in address
memory space. All 'C5x CPUs support parallel accesses to these SARAM
blocks. However, one SARAM block can be accessed only once per machine
cycle. In other words, the CPU can read from or write to one SARAM block
while accessing another SARAM block. When the CPU requests multiple
accesses, the SARAM schedules the accesses by providing a not-ready
condition to the CPU and executing the multiple accesses one cycle at atime.

SARAM supports more flexible address mapping than DARAM because
SARAM can be mapped to both program and data memory space simulta-
neously. However, because of simultaneous program and data mapping, an
instruction fetch and data fetch that could be performed in one machine cycle
with DARAM may take two machine cycles with SARAM. For information on
SARAM, see Section 8.3, Local Data Memory, on page 8-15.

2.3.4 On-Chip Memory Protection

The 'C5x DSPs have a maskable option that protects the contents of on-chip
memories. When the related bit is set, no externally originating instruction can
access the on-chip memory spaces. For information on the protection feature,
see subsection 8.2.4, Program Memory Protection Feature, on page 8-14.

Architectural Overview 2-7

On-Chip Peripherals

2.4 On-Chip Peripherals

All’C5x DSPs have the same CPU structure; however, they have different on-
chip peripherals connected to their CPUs. The 'C5x DSP on-chip peripherals
available are:

Clock generator

Hardware timer

Software-programmable wait-state generators
Parallel 1/O ports

Host port interface (HPI)

Serial port

Buffered serial port (BSP)

Time-division multiplexed (TDM) serial port
User-maskable interrupts

U oouoo

2.4.1 Clock Generator

The clock generator consists of an internal oscillator and a phase-locked loop
(PLL) circuit. The clock generator can be driven internally by a crystal resona-
tor circuit or driven externally by a clock source. The PLL circuit can generate
an internal CPU clock by multiplying the clock source by a specific factor, so
you can use a clock source with a lower frequency than that of the CPU. For
information, see Section 9.2, Clock Generator, on page 9-7.

2.4.2 Hardware Timer

A 16-bit hardware timer with a 4-bit prescaler is available. This programmable
timer clocks at a rate that is between 1/2 and 1/32 of the machine cycle rate
(CLKOUT1), depending upon the timer’s divide-down ratio. The timer can be
stopped, restarted, reset, or disabled by specific status bits. For information,
see Section 9.3, Timer, on page 9-9.

2.4.3 Software-Programmable Wait-State Generators

Software-programmable wait-state logic is incorporated in 'C5x DSPs allow-
ing wait-state generation without any external hardware for interfacing with
slower off-chip memory and I/O devices. This feature consists of multiple wait-
state generating circuits. Each circuit is user-programmable to operate in
different wait states for off-chip memory accesses. For information, see Sec-
tion 9.4, Software-Programmable Wait-State Generators, on page 9-13.

On-Chip Peripherals

2.4.4 Parallel I/O Ports

A total of 64K I/O ports are available, sixteen of these ports are
memory-mapped in data memory space. Each of the I/O ports can be ad-
dressed by the IN or the OUT instruction. The memory-mapped I/O ports can
be accessed with any instruction that reads from or writes to data memory. The
1S signal indicates a read or write operation through an 1/O port. The 'C5x can
easily interface with external I/0O devices through the 1/O ports while requiring
minimal off-chip address decoding circuits. For information, see Section 9.6,
Parallel I/O Ports, on page 9-22.

Table 2-1 lists the number and type of parallel ports available in 'C5x DSPs
with various package types.

2.4.5 Host Port Interface (HPI)

The HPI available on the 'C57S and 'LC57 is an 8-bit parallel I/O port that pro-
vides an interface to a host processor. Information is exchanged between the
DSP and the host processor through on-chip memory thatis accessible to both
the host processor and the 'C57. For information, see Section 9.10, Host Port
Interface, on page 9-87.

Table 2-1. Number of Serial/Parallel Ports Available in Different 'C5x Package Types

TMS320 Package High-Speed TDM Buffered Host Port
Device IDT Serial Port Serial Port Serial Port (Parallel)
'C50/'LC50 PQ 1 1 - -
'C51/LC51 PQ/PZ 1 1 - -
'C52/'LC52 PJ/IPZ 1 - - -
'C53/'LC53 PQ 1 1 - -
'C53S/LC53S PZ 2 - - -
'LC56 Pz 1 - 1 -
'C57S/'LC57S PGE 1 - 1 1
'LC57 PBK 1 - 1 1

T PGE is a 20 x 20 x 1.4 mm thin quad flat-pack (TQFP) package
PJis a 14 x 20 x 2.7 mm quad flat-pack (QFP) package
PQ is a 20 x 20 x 3.8 mm bumpered quad flat-pack (BQFP) package
PZ and PBK are a 14 x 14 x 1.4 mm thin quad flat-pack (TQFP) package

Architectural Overview 2-9

On-Chip Peripherals

2.4.6 Serial Port

Three different kinds of serial ports are available: a general-purpose serial
port, a time-division multiplexed (TDM) serial port, and a buffered serial port
(BSP). Each 'C5x contains at least one general-purpose, high-speed synchro-
nous, full-duplexed serial port interface that provides direct communication
with serial devices such as codecs, serial analog-to-digital (A/D) converters,
and other serial systems. The serial port is capable of operating at up to one-
fourth the machine cycle rate (CLKOUT1). The serial port transmitter and re-
ceiver are double-buffered and individually controlled by maskable external in-
terrupt signals. Data is framed either as bytes or as words.

Table 2-1 lists the number and type of serial ports available in 'C5x DSPs with
various package types. For information on serial ports, see Section 9.7, Serial
Port Interface, on page 9-23.

2.4.7 Buffered Serial Port (BSP)

The BSP available on the 'C56 and 'C57 devices is a full-duplexed, double-
buffered serial port and an autobuffering unit (ABU). The BSP provides flexibil-
ity on the data stream length. The ABU supports high-speed data transfer and
reduces interrupt latencies.

Table 2-1 lists the number and type of serial ports available in 'C5x DSPs with
various package types. For information, see Section 9.8, Buffered Serial Port
(BSP) Interface, on page 9-53.

2.4.8 TDM Serial Port

The TDM serial port available on the 'C50, 'C51, and 'C53 devices is a full-
duplexed serial port that can be configured by software either for synchronous
operations or for time-division multiplexed operations. The TDM serial port is
commonly used in multiprocessor applications.

Table 2-1 lists the number and type of serial ports available in’'C5x DSPs with
various package types. For information, see Section 9.9, Time-Division Multi-
plexed (TDM) Serial Port Interface, on page 9-74.

2.4.9 User-Maskable Interrupts

2-10

Four external interrupt lines (INT1-INT4) and five internal interrupts, a timer
interrupt and four serial port interrupts, are user maskable. When an interrupt
service routine (ISR) is executed, the contents of the program counter are
saved on an 8-level hardware stack, and the contents of eleven specific CPU
registers are automatically saved (shadowed) on a 1-level-deep stack. When
a return from interrupt instruction is executed, the CPU registers’ contents are
restored. For information, see Section 4.8, Interrupts, on page 4-36.

Test/Emulation

2.5 Test/Emulation

On the 'C50, 'LC50, 'C51, 'LC51, 'C53, 'LC53, 'C57S and 'LC57S, an IEEE
standard 1149.1 (JTAG) interface with boundary scan capability is used for
emulation and test. Thislogic provides the boundary scan to and from the inter-
facing devices. It can be used to test pin-to-pin continuity and to perform opera-
tional tests on devices that are peripheral to the "C5x.

On the 'C52, 'LC52, 'C53S, 'LC53S, 'LC56, and 'LC57, an IEEE standard
1149.1 (JTAG) interface without boundary scan capability is used for emula-
tion purposes only and is interfaced to other internal scanning logic circuitry
that has access to all of the on-chip resources. Thus, the 'C5x can perform
on-board emulation by means of the IEEE standard 1149.1 serial scan pins
and the emulation-dedicated pins.

The on-chip analysis block in conjunction with the 'C5x debugger software
provides the capability to perform debugging and performance evaluation
functions in a target system. The full analysis block provides the following
capabilities:

(1 Flexible breakpoint setup. Breakpoints can be triggered based on the fol-
lowing events:

Program fetches/reads/writes

EMUO/1 pin activity

Data reads/writes

CPU events (calls, returns, interrupts/traps, branches, pipeline clock)
Event counter overflow

1 Counting of the following events for performance analysis:

CPU clocks

Pipeline advances

Instruction fetches

Calls, returns, interrupts/traps, branches
Program fetches/reads/writes

Data reads/writes

[Program counter discontinuity trace buffer to monitor program counter
flow.

The reduced analysis block on the 'C53S and 'LC53S provides the capability
for breakpoint triggering based on program fetches/reads/writes and EMUO/1
pin activity.

Table 2-2 lists the IEEE standard 1149.1 (JTAG) interface, boundary scan
capability, and on-chip analysis block functions supported by the 'C5x. See
IEEE Std. 1149.1 for more details.

Architectural Overview 2-11

Test/Emulation

Refer to the TMS320 DSP Development Support Reference Guide for addi-
tional information on available TMS320 development tools.

Table 2-2. |IEEE Std.1149.1 (JTAG)/Boundary-Scan Interface Configurations for the 'C5x

TMS320 IEEE Std.1149.1 Boundary Scan On-Chip Analysis
Device Interface Capability Block
"C50/'LC50 Yes Yes Full
'C51/LC51 Yes Yes Full
'C52/'LC52 Yes No Full
'C53/'LC53 Yes Yes Full
"C53S/'LC53S Yes No Reduced
'LC56 Yes No Full
'C57S/'LC57S Yes Yes Full

'LC57 Yes No Full

2-12

Chapter 3

Central Processing Unit (CPU)

The TMS320C5x DSP central processing unit (CPU) can perform high-speed
arithmetic within a short instruction cycle by means of its highly parallel archi-
tecture, which consists of the following elements:

Program controller

Central arithmetic logic unit (CALU)
Parallel logic unit (PLU)

Auxiliary register arithmetic unit (ARAU)
Memory-mapped registers

oo

This chapter does not discuss the memory and peripheral segments, except
in relation to the CPU.

Topic Page
3.1 Functional OVEIVIEW ...ttt et 3
3.2 Central Arithmetic Logic Unit (CALU) 3.-7|:|
3.3 Parallel Logic Unit (PLU)o 3
3.4 Auxiliary Register Arithmetic Unit (ARAU) 3-1E|
3.5 Summary of REQISIErSoriti i 3

3-1

Functional Overview

3.1 Functional Overview

The block diagram shown in Figure 3—1 outlines the principal blocks and data
paths within the 'C5x. The succeeding sections provide further details of the
functional blocks of the CPU.

The internal hardware of the 'C5x executes functions that other processors
typically implement in software or microcode. For example, the 'C5x contains
hardware for single-cycle 16 x 16-bit multiplication, data shifting, and ad-
dress manipulation. This hardware-intensive approach provides computing
power previously unavailable on a single chip.

Table 3—1 presents a summary of the 'C5x’s internal hardware. This summary
table is alphabetized. The table includes the internal processing elements,
registers, and buses. All of the symbols used in the table correspond to the the
functional blocks illustrated in Figure 3—1, the succeeding block diagrams in
this chapter, and the text throughout this document.

Figure 3—1.

Block Diagram of 'C5x DSP — Central Processing Unit (CPU)

Functional Overview

Serial Port 1

Serial Port 2

Time-Division
Multiplexed
Serial Port

Buffered
Serial
Port

Timer

Host Port
Interface

Emulation

Software
CLKMD1—>— PROGRAM BUS wait-states|
CLKMD2—> L PDWSR
CLKMD3—>—
S+ IOWSR
pse—] & 16
pse—] ©° CWSR(5)
o] £ |ex =]
STRE +—>] ‘; > cLKouT1
ReaDY —{ & < X2/CLKIN
BRe>] 2 | ckinz IREG
XFe4—) & COMPARE BMAR
X+ [Commrre] I
FOLDA +—
TAQ +— MCS | Pc ST1
BIO —» > RrD PMST
RS—> > WE RPTC
TACK +— < NI 14 v
MP/W—‘ Address Stack FR
INT(l—A)—r‘JA (8x16) GREG
BRCR
ROM TREG1(5)
= > TREG2(4)
A15-A0 g
3
Instruction —
RBIT
c)/c ¢ PROGRAM BUS
z
D15-DO c \
x
< N
DATA BUS
7LSB
% from IREG
a 3 ARO
g ARL
< STO [ARP] STO [DP]
AR2 MUX
AR3
3 3 AR4 0
AR5 ,
ARG TREGO MUX
AR7
CBCRG®) MULTIPLIER}—
I PRESCALER I
CBSR1 SFL(0-16) “—»] PREG(32)
CBSR2 2
CBER1 e
CoER? P-SCALER PLy
MUX (-6,0,1,4)
INDX 32
1/0 Ports ARCR PRESCALER
SFR(0-16)
—4—> PAO y
: MUX
32
. Larau_] mux f
> PA15
32 ALU(32)
32
Data/Program
MUX MUX ST1[C] 32
4 4 2
SARAM Data/Program Data _I*’l_ o
DARAY oA ACCH ACCL 'ACCB(32)] %
BO B2 ‘ 32 g
B1 £
POSTSCALER
[T\ wox e
.
=
y L
Notes: All registers and data lines are 16-bits wide unless otherwise specified. DATA BUS

T Notavailable on all devices.

Central Processing Unit (CPU)

Functional Overview

Table 3-1. 'C5x CPU Internal Hardware Summary

3-4

Symbol Name

A15-A0 Address bus

ACC(32) Accumulator

ACCB(32) Accumulator buffer

ACCH Accumulator high byte

ACCL Accumulator low byte

ALU(32) Arithmetic logic unit

ARO-AR7 Auxiliary registers

ARAU Auxiliary register arithmetic unit
ARB(3) Auxiliary register buffer bits
ARCR Auxiliary register compare register
ARP(3) Auxiliary register pointer bits
BMAR Block move address register
BRAF(1) Block repeat active flag bit
BRCR Block repeat counter register

C Carry bit

CALU Central arithmetic logic unit
CBCR(8) Circular buffer control register

CBER1, CBER2
CBSR1, CBSR2
CNF
COMPARE
D15-DO0

DATA BUS
DBMR

dma(7)

DP(9)

Circular buffer end registers

Circular buffer start registers

Configuration control bit

Compare of program address

Data bus

Data bus

Dynamic bit manipulation register

Data memory address (immediate register)

Data memory page pointer bits

Functional Overview

Table 3-1. 'C5x CPU Internal Hardware Summary (Continued)

Symbol

Name

DRB
GREG
HM(1)

IFR

IMR

INDX
INTM(1)
IPTR(5)
IREG

MCS
MP/MC
MULTIPLIER
MUX
NDX(1)
oV(1)
OVLY(1)
OVM(1)
P-SCALER (-6, 0, 1, 4)
PAER

PASR

PC

PFC

PLU

PM(2)
PMST

POSTSCALER(0-7)

Direct data memory address bus
Global memory allocation register
Hold mode bit

Interrupt flag register

Interrupt mask register

Index register

Interrupt mode bit

Interrupt vector pointer bits
Instruction register

Microcall stack
Microprocessor/microcomputer bit
Multiplier

Multiplexer

Enable extra index register bit
Overflow bit

RAM overlay bit

Overflow mode bit

Product shifter

Block repeat program address end register
Block repeat program address start register
Program counter

Prefetch counter

Parallel logic unit

Product shifter mode bits
Processor mode status register

Accumulator postscaling shifter

Central Processing Unit (CPU) 3-5

Functional Overview

Table 3-1. 'C5x CPU Internal Hardware Summary (Continued)

Symbol Name

PREG(32) Product register

PRESCALER, SFL(0-16), Prescaling shifters

SFR(0-16)

PROGRAM BUS Program bus

RAM(1) Program RAM enable bit

RPTC Repeat counter register

STO, ST1 Status registers

STACK Stack

SXM(1) Sign-extension mode bit

TC(1) Test/control bit

TREGO Temporary register (multiplicand)
TREG1(5) Temporary register (dynamic shift count)
TREG2(4) Temporary register (bit pointer in dynamic bit test)
TRM(1) Enable multiple temporary registers bit
XF(1) External flag pin status bit

3-6

Central Arithmetic Logic Unit (CALU)

3.2 Central Arithmetic Logic Unit (CALU)
The CALU components, shown in Figure 3-2, consists of the following:

16-bit x 16-bit parallel multiplier

32-bit 2s-complement arithmetic logic unit (ALU)
32-bit accumulator (ACC)

32-bit accumulator buffer (ACCB)

0-, 1-, or 4-bit left or 6-bit right shifter

0- to 16-bit left barrel shifter

0- to 16-bit right barrel shifter

0- to 7-bit left barrel shifter

Uooooodd

3.2.1 Multiplier, Product Register (PREG), and Temporary Register 0 (TREGO)

The 16-bit X 16-bit hardware multiplier can compute a signed or an unsigned
32-bit product in a single machine cycle. All multiply instructions except the
multiply unsigned (MPYU) instruction perform a signed multiply operation in
the multiplier. That is, two numbers being multiplied are treated as 2s-comple-
ment numbers, and the result is a 32-bit 2s-complement number.

One input to the multiplier is from memory-mapped temporary register 0
(TREGO), and the other input is from the data bus or the program bus. The
32-bit result from the multiplier is stored in the PREG and is available to the
ALU. The ALU uses the 16-bit words taken from data memory or derived from
an immediate instruction, or the ALU uses the 32-bit result stored in the PREG
to perform arithmetic operations. The ALU can also perform Boolean opera-
tions. The 32-bit result from the ALU is stored in the ACC; the ACC also sup-
pliesthe second inputto the ALU. Instructions are provided for storing the high-
and low-order accumulator words in memory. The shifters (p-scaler, prescaler,
and postscaler) make it possible for the CALU to perform numerical scaling,
bit extraction, extended-precision arithmetic, and overflow prevention. These
shifters are connected to the output of the PREG and the ACC.

The four product shift modes (PM) at the PREG output are useful for perform-
ing multiply/accumulate operations and fractional arithmetic and for justifying
fractional products. The PM field of status register ST1 specifies the PM shift
mode of the p-scaler;

[IfPM=00,,the PREG 32-bit outputis not shifted when transferred into the
ALU or stored.

[IfPM =015, the PREG output is left-shifted 1 bit when transferred into the
ALU or stored, and the LSB is zero filled. This shift mode compensates for
the extra sign bit gained when multiplying two 16-bit 2s-complement num-
bers.

Central Processing Unit (CPU) 3-7

Central Arithmetic Logic Unit (CALU)

Figure 3-2. Central Arithmetic Logic Unit

Data Bus

TREGO

v Multiplier
PRESCALER
SFL(0-16) “—>1 PREG(32)

%32

MUX P—SCALER
(-6,0,1,4)

32 32

32

PRESCALER
SFR(0-16)

b

4

Ccw] 122

A

\ 4 4]
>
| AccH | AccL Je»{AccB(32) 2
32 s
[2}
\4 o
POSTSCALER o
(0-7)

Data Bus

l

Notes: All registers and data lines are 16-bits wide unless otherwise specified.

(1 [fPM=10,,the PREG outputis left-shifted 4 bits when transferred into the
ALU or stored, and the 4 LSBs are zero filled. This shift mode is used in
conjunction with the MPY instruction with a shortimmediate value (13 bits
or less) to eliminate the four extra sign bits gained when multiplying a16-bit
number times a 13-bit number.

O If PM = 11,, the PREG output is right-shifted 6 bits, sign extended, when
transferred into the ALU or stored, and the 6 LSBs are lost. This shift mode
enables the execution of up to 128 consecutive multiply/accumulates with-
out the possibility of overflow. Note that the product is always sign extended,
regardless of the value of the sign extension mode (SXM) bit in ST1.

3-8

Central Arithmetic Logic Unit (CALU)

The PM shifts also occur when the PREG contents are stored to data memory.
The PREG contents remain unchanged during the shifts.

The LT (load TREGO) instruction loads TREGO, from the data bus, with the first
operand; the MPY instruction provides the second operand for multiplication
operations. To perfrom a multiplication with a short or long immediate operand,
use the MPY instruction with an immediate operand. A product can be ob-
tained every two cycles except when a long immediate operand is used.

Four multiply/accumulate instructions (MAC, MACD, MADD, and MADS) fully
utilize the computational bandwidth of the multiplier, which allows both oper-
ands to be processed simultaneously. The data for these operations can be
transferred to the multiplier each cycle via the program and data buses. When
any of the four multiply/accumulate instructions are used with the RPT or
RPTZ instruction, the instruction becomes a single-cycle multiply/accumulate
function. In these repeated instructions, the coefficient addresses are gener-
ated by the PC while the data addresses are generated by the ARAU. This al-
lows the RPT instruction to sequentially access the values from the coefficient
table and step through the data in any of the indirect addressing modes. The
RPTZ instruction also clears the ACC and the PREG to initialize the multiply/
accumulate operation.

For example, consider multiplying the row of one matrix times the column of
a second matrix: there are 10 X 10 matrices, MTRX1 points to the beginning
of the first matrix, INDX = 10, and the current AR points to the beginning of the
second matrix:

RPTZ #9 ;Fori=0,i<10, i++

MAC MTRX1,*0+ ;PREG=DATA(MTRX1+i) x DATA[MTRX2 +
;(i X INDX)]
;ACC += PREG.

APAC ;ACC += PREG.

The MAC and MACD instructions obtain their coefficient pointer from a long
immediate address and are, therefore, 2-word instructions. The MADS and
MADD instructions obtain their coefficient pointer from the BMAR and are,
therefore, 1-word instructions. When you use the BMAR as a source to the co-
efficient table, one block of code can support multiple applications, and you
can change the long immediate address without modifying executable code.
The MACD and MADD instructions include a data move (DMOV) operation
that, in conjunction with the fetch of the data multiplicand, writes the data value
to the next higher data address.

Central Processing Unit (CPU) 3-9

Central Arithmetic Logic Unit (CALU)

3-10

The MACD and MADD instructions, when repeated, support filter constructs
(weighted running averages) so that as the sum-of-products operation is ex-
ecuted, the sample data is shifted in memory to make room for the next sample
and to throw away the oldest sample. Circular addressing with MAC and
MADS instructions can also be used to support filter implementation.

In the next example, the current AR points to the oldest of the samples; BMAR
points to the coefficient table. In addition to initiating the repeat operation, the
RPTZ instruction also clears the ACC and the PREG. In this example, the PC
is stored in a temporary register while the repeated operation is executed.
Next, the PCis loaded with the value stored in BMAR. The program bus is used
to address the coefficients and, as the MADD instruction is repeatedly ex-
ecuted, the PC increments to step through the coefficient table. The ARAU
generates the address of the sample data.

Indirect addressing with decrement steps through the sample data, starting
with the oldest data. As the data is fetched, it is also written to the next higher
location in data memory. This operation aligns the data for the next execution
of the filter by moving the oldest sample out past the end of the sample’s array
and making room for the new sample at the beginning of the sample array. The
previous product of the PREG is added to the ACC, while the two fetched val-
ues are multiplied and the new product value is loaded into the PREG. Note
that the DMOV portion of the MACD and MADD instructions does not function
with external data memory addresses.

RPTZ #9 :ACC = PREG = 0. For | =9 TO 0 Do
MADD *- SUMA XX |.X 141 =X 1.
APAC :FINAL SUM.

The MPYU instruction performs an unsigned multiplication that facilitates ex-
tended-precision arithmetic operations. The unsigned contents of TREGO are
multiplied by the unsigned contents of the addressed data memory location;
the result is placed in PREG. This allows operands larger than 16 bits to be
broken down into 16-bit words and processed separately to generate products
larger than 32 bits. The square/add (SQRA) and square/subtract (SQRS) in-
structions pass the same value to both inputs of the multiplier for squaring a
data memory value.

After the multiplication of two 16-bit numbers, this 32-bit product is loaded into
PREG. The product from the PREG can be transferred to the ALU or to data
memory via the store product high (SPH) and store product low (SPL) instruc-
tions.

Central Arithmetic Logic Unit (CALU)

3.2.2 Arithmetic Logic Unit (ALU) and Accumulators

The 32-bit general-purpose ALU and ACC implement a wide range of arithme-
tic and logical functions, the majority of which execute in a single clock cycle.
Once an operation is performed in the ALU, the result is transferred to the
ACC, where additional operations, such as shifting, can occur. Data that is in-
put to the ALU can be scaled by the prescaler.

The following steps occur in the implementation of a typical ALU instruction:
1) Data is fetched from memory on the data bus,

2) Datais passed through the prescaler and the ALU, where the arithmetic
is performed, and

3) The resultis moved into the ACC.

The ALU operates on 16-bit words taken from data memory or derived from
immediate instructions. In addition to the usual arithmetic instructions, the ALU
can perform Boolean operations, thereby facilitating the bit manipulation abil-
ity required of a high-speed controller. One input to the ALU is always supplied
by the ACC. The other input can be transferred from the PREG of the multiplier,
the ACCB, orthe output of the prescaler (that has been read from data memory
or from the ACC). After the ALU has performed the arithmetic or logical opera-
tion, the result is stored in the ACC. For the following example, assume that
ACC =0, PREG = 0022 2200h, PM = 005, and ACCB = 0033 3300h:

LACC #01111h,8 ;ACC =00111100h. Load ACC from prescaling

:shifter

APAC ;ACC = 00333300h. Add to ACC the
;product register.

ADDB ;ACC = 00666600h. Add to ACC the

;accumulator buffer.

The 32-bit ACC can be split into two 16-bit segments (ACCH and ACCL) for
storage in data memory (see Figure 3-2). A postscaler at the output of the
ACC provides a left shift of 0 to 7 places. This shift is performed while the data
is being transferred to the data bus for storage. The contents of the ACC re-
main unchanged. When the postscaler is used on the high word of the ACC
(bits 16 —31), the MSBs are lost and the LSBs are filled with bits shifted in from
the low word (bits 0 — 15). When the postscaler is used on the low word, the
LSBs are zero filled. For the following example, assume that
ACC = FF23 4567h:

SACL TEMP1,7 ;TEMP1 =B380h ACC = FF234567h.
SACH TEMP2,7 ;TEMP2 = 91A2h ACC = FF234567h.

Central Processing Unit (CPU) 3-11

Central Arithmetic Logic Unit (CALU)

3-12

The 'C5x supports floating-point operations for applications requiring a large
dynamic range. By performing left shifts, the NORM (normalization) instruction
normalizes fixed-point numbers contained in the ACC. The four bits of the
TREG1 define a variable shift through the prescaler for the add to/load to/sub-
tract from accumulator with shift specified by TREG1 (ADDT/LACT/SUBT)
instructions. These instructions denormalize a number (convert it from float-
ing-point to fixed-point) and also execute an automatic gain control (AGC)
going into a filter.

The single-cycle 1-bitto 16-bit right shift of the ACC can efficiently align its con-
tents. This shift, coupled with the 32-bit temporary buffer on the ACC, en-
hances the effectiveness of the CALU in extended-precision arithmetic. The
ACCB provides a temporary storage place for a fast save of the ACC. The
ACCB can also be used as an input to the ALU. The minimum or maximum
value in a string of numbers can be found by comparing the contents of the
ACCB with the contents of the ACC. The minimum or maximum value is placed
in both registers, and, if the condition is met, the carry bit (C) is set. The mini-
mum and maximum functions are executed by the CRLT and CRGT instruc-
tions, respectively. These operations are signed arithmetic operations. In the
next example, assume that ACC = 1234 5678h and ACCB = 7654 3210h:

CRLT ;ACC =ACCB =12345678h.C = 1.
CRGT ;ACC =ACCB =76543210h. C = 0.

The ACC overflow saturation mode can be enabled by setting and disabled by
clearing the overflow mode (OVM) bit of STO. When the ACC is in the overflow
saturation mode and an overflow occurs, the overflow flag is set and the ACC
is loaded with either the most positive or the most negative value represent-
able in the ACC, depending upon the direction of the overflow. The value of
the ACC upon saturation is 7FFF FFFFh (positive) or 8000 0000h (negative).
If the OVM bit is cleared and an overflow occurs, the overflowed results are
loaded into the ACC without modification. Note that logical operations cannot
result in overflow.

The 'C5x can execute a variety of branch instructions that depend on the status
of the ALU and the ACC. For example, execution of the instruction BCND can
depend on a variety of conditions in the ALU and the ACC. The BACC instruc-
tion allows branching to an address stored in the ACC. The bit test instructions
(BITT and BIT) facilitate branching on the condition of a specified bit in data
memory.

Central Arithmetic Logic Unit (CALU)

The ACC has an associated carry bit that is set or cleared, depending on vari-
ous operations within the 'C5x. The carry bit allows more efficient computation
of extended-precision products and additions or subtractions; it is also useful
in overflow management. The carry bit is affected by most arithmetic instruc-
tions as well as the single-bit shift and rotate instructions. The carry bit is not
affected by loading the ACC, logical operations, or other nonarithmetic or con-
trol instructions. Examples of carry bit operations are shown in Figure 3-3.

Figure 3-3. Examples of Carry Bit Operations

C MSB LSB C MSB LSB
X FFFFFFFFACC X 00000000ACC

+ 1 _ 1
1 00000000 0 FFFFFFFF

C MSB LSB C MSB LSB
X TFFFFFFFACC X 80000001ACC
+ 1(OVM = 0) - 2 (GVM = 0)

0 80000000 1 7FFFFFFF

C MSB LSB C MSB LSB
1 0O0000000ACC O FFFFFFFFACC
+ 0(ADDC) = 1(SUBB)

0 00000001 1 FFFFFFFD

The value added to or subtracted from the ACC can come from the prescaler,
ACCB, or PREG. The carry bitis set if the result of an addition or accumulation
process generates a carry; itis cleared if the result of a subtraction generates
a borrow. Otherwise, it is cleared after an addition or set after a subtraction.

The add to ACC with carry (ADDC) and add ACCB to ACC with carry (ADCB)
instructions use the previous value of carry in their addition operation. The
subtract from ACC with borrow (SUBB) and subtract ACCB from ACC with bor-
row (SBBB) instructions use the logical inversion of the previous value of carry.

The one exception to the operation of the carry bit is in the use of ADD with
a shift count of 16 (add to ACCH) and SUB with a shift count of 16 (subtract
from ACCH). These instructions can generate a carry or a borrow, but they will
not clear a carry or borrow, as is normally the case if a carry or borrow is not
generated. This feature is useful for extended-precision arithmetic.

Two conditional operands, C and NC, are provided for branching, calling, re-
turning, and conditionally executing according to the status of the carry bit. The
CLRC, LST #1, and SETC instructions can be used to load the carry bit. The
carry bit is set on a reset.

The 1-bit shift to the left (SFL) or right (SFR) and the rotate to the left (ROL)
or right (ROR) instructions shift or rotate the contents of the ACC through the

Central Processing Unit (CPU) 3-13

Central Arithmetic Logic Unit (CALU)

carry bit. The SXM bit affects the definition of the shift accumulator right (SFR)
instruction. When SXM =1, SFR performs an arithmetic right shift, maintaining
the sign of the ACC data. When SXM =0, SFR performs a logical shift, shifting
out the LSBs and shifting in a 0 for the MSB. The shift accumulator left (SFL)
instruction is not affected by the SXM bit and behaves the same in both cases,
shifting out the MSB and shifting in a 0. The RPT and RPTZ instructions can
be used with the shift and rotate instructions for multiple-bit shifts.

The SFLB, SFRB, RORB, and ROLB instructions can shift or rotate the 65-bit
combination of the ACC, ACCB, and carry bit as described above.

The ACC can also be shifted 0—31 bits right in two instruction cycles or 1-16
bits right in one cycle. The bits shifted out are lost, and the bits shifted in are
either Os or copies of the original sign bit, depending on the value of the SXM
bit. A shift count of 1 to 16 is embedded in the instruction word of the BSAR
instruction. For example, let ACC = 1234 5678h:

BSAR 7 ;ACC = 0246 8ACENh.

The right shift can also be controlled via TREG1. The SATL instruction shifts
the ACC by 0-15 bits, as defined by bits 0—3 of TREG1. The SATH instruction
shifts the ACC 16 bits to the right if bit 4 of TREG1 is a 1. The following code
sequence executes a 0- to 31-bit right shift of the ACC, depending on the shift
count stored at SHIFT. For example, consider the value stored at
SHIFT = 01Bh and ACC = 1234 5678h:

LMMR TREG1,SHIFT ;TREGL1 = shift count 0 — 31. TREG1 = 1B

SATH :If shift count > 15, then ACC >> 16
;ACC = 00001234
SATL ;ACC >> shift count. ACC = 00000002

3.2.3 Scaling Shifters and Temporary Register 1 (TREG1)

3-14

The prescaler has a 16-bit input connected to the data bus and a 32-bit output
connected to the ALU (see Figure 3-2). The prescaler produces a left shift of
0 to 16 bits on the input data. The shift count is specified by a constant em-
bedded in the instruction word or by the value in TREGL1. The LSBs of the out-
put are filled with Os; the MSBs can be filled with Os or sign-extended, depend-
ing upon the value of the SXM bit of ST1.

The p-scaler and postscaler make it possible for the CALU to perform numeri-
cal scaling, bit extraction, extended-precision arithmetic, and overflow preven-
tion. These shifters are connected to the output of the PREG and the ACC (see
Figure 3-2 on page 3-8).

Parallel Logic Unit (PLU)

3.3 Parallel Logic Unit (PLU)

The parallel logic unit (PLU) can directly set, clear, test, or toggle multiple bits
in a control/status register or any data memory location. The PLU provides a
direct logic operation path to data memory values without affecting the con-
tents of the ACC or the PREG (see Figure 3-4).

The PLU executes a read-modify-write operation on data stored in data space.
First, one operand is fetched from data memory space, and the second is
fetched from along immediate on the program bus or from the dynamic bit ma-
nipulation register (DBMR). Then, the PLU executes a logical operation on the
two operands as defined by the instruction. The result is written to the same
data memory location from which the first operand was fetched.

Figure 3—4. Parallel Logic Unit Block Diagram

Data Bus

Program Bus

Note: All registers and data lines are 16-bits wide unless otherwise specified.

The PLU makes it possible to directly manipulate bits in any location in data
memory space by ANDing, ORing, exclusive-ORing, or loading a 16-bit long
immediate value to a data location. For example, to use AR1 for circular buffer
1 and ARZ2 for circular buffer 2 but not enable the circular buffers, initialize the
circular buffer control register (CBCR) by executing the following code:

SPLK #021h,CBCR ;Store peripheral long immediate
;(DP = 0).

Next, enable circular buffers 1 and 2 by executing the code:

OPL #088h,CBCR ;Set bit 7 and bit 3 in CBCR.

Central Processing Unit (CPU) 3-15

Parallel Logic Unit (PLU)

3-16

To test for individual bits in a specific register or data word, use the BIT instruc-
tion; however, to test for a pattern of bits, use the compare parallel long imme-
diate (CPL) instruction. If the data value is equal to the long immediate value,
then the test/control (TC) bit in ST1 is set. The TC bit is set if the result of any
PLU instruction is O.

The set, clear, and toggle functions can be executed with a 16-bit dynamic reg-
ister value instead of the long immediate value. This is done with the following
three instructions: AND DBMR register to data (APL), OR DBMR register to
data (OPL), and exclusive-OR DBMR register to data (XPL).

The TC bitis also set by the APL, OPL, and XPL instructions if the result of the
PLU operation (value written back into data memory) is 0. This allows bits to
be tested and cleared simultaneously. For example,

APL #0FFOOh,TEMP ;Clear low byte and check for
;bits set in high byte.

BCND HIGH_BITS_SET,NTC ;If bits active in high byte,
;then branch.

or
XPL #1, TEMP ;Toggle bit 0.
BCND BIT_SET,TC ;If bit was set, branch. If not,

:bit set now.

In the first example, the low byte of a flag word is cleared while the high byte
is checked for any active flags (bits = 1). If none of the flags in the high byte
is set, then the resulting APL operation yields a 0 to TEMP and the TC bit is
set. If any of the flags in the high byte are set, then the resulting APL operation
yields a nonzero value to TEMP and the TC bitis cleared. Therefore, the condi-
tional branch (BCND) following the APL instruction branches if any of the bits
in the high byte are nonzero. The second example tests the flag. If the flag is
low, the flag is set high; if the flag is high, the flag is cleared and the branch is
taken. The PLU instructions can operate anywhere in data address space, so
they can operate with flags stored in RAM locations as well as in control regis-
ters for both on- and off-chip peripherals. The PLU instructions are listed in
Table 66 on page 6-14.

Auxiliary Register Arithmetic Unit (ARAU)

3.4 Auxiliary Register Arithmetic Unit (ARAU)

The auxiliary register file contains eight memory-mapped auxiliary registers
(ARO-AR7), which can be used for indirect addressing of the data memory or
for temporary data storage. Indirect auxiliary register addressing (see
Figure 3-5) allows placement of the data memory address of an instruction
operand into one of the AR. The ARs are pointed to by a 3-bit auxiliary register
pointer (ARP) that is loaded with a value from 0—7, designating ARO-AR7, re-
spectively. The ARs and the ARP can be loaded from data memory, the ACC
or the PREG or by an immediate operand defined in the instruction. The con-
tents of the ARs can be stored in data memory or used as inputs to the CALU.
The memory-mapped ARs reside in data page 0, as described in subsection
8.3.2, Local Data Memory Address Map, on page 8-17.

The auxiliary register file (AR0O—AR7) is connected to the auxiliary register
arithmetic unit (ARAU), shown in Figure 3—-6. The ARAU can autoindex the
current AR while the data memory location is being addressed; it indexes
either by +1 or by the contents of the index register (INDX). As a result, the
CALU is not needed for address manipulation when tables of information are
accessed,; itis free for other operations in parallel. For more advanced address
manipulation, such as multidimensional array addressing, the CALU can
directly read from or write to the ARs.

Figure 3-5. Indirect Auxiliary Register Addressing Example

Auxiliary Register File Data Memory Map
ARO | 0537 hl Location

0000h
ARl | 515 0 h

Auxiliary Register
Pointer
(in STO)

ARP [0]1]1]—»AR3 [0 F F 3 A h|—» OFF3Ah| 3121h

AR2 [0 E 9 F C hl

AR4 | 103 B h| OFFFFh
AR5 | 26 B 1 hi
AR6 [0 0 0 8 h]
AR7 | 8 4 3 D hl

Central Processing Unit (CPU) 3-17

Auxiliary Register Arithmetic Unit (ARAU)

Figure 3—-6. Auxiliary Register Arithmetic Unit

3-18

To
Program
Control

! }

AR1
AR2
AR3
STO | ARP(3) > ARA
AR5
ARG
ST1 |ARB(3) AR7
CBCR(8)
3 CBSR1
CBSR2
CBER1

CBER2
\MUX

INDX DRB
ARCR

A15-A0

® /xnn\

A\mux/

} \ 4
\MUX/ \MUX/
v

- SARAM | | DARAM BO | DARAM B2 -
B1

-
(o]
Program Bus

Data Bus
>
0
>

A
<4

Notes: All registers and data lines are 16-bits wide unless otherwise specified.

The ARAU updates the ARs during the decode phase (second stage)
of the pipeline, while the CALU writes during the execution phase
(fourth stage). Therefore, the two instructions thatimmediately follow
the CALU write to an AR should not use the same AR for address
generation. See Chapter 7, Pipeline , for more details.

As shown in Figure 3-6, the INDX, auxiliary register compare register
(ARCR), or eight LSBs of the instruction register (IREG) can be used as one
of the inputs to the ARAU. The other input is provided by the contents of the
current AR pointed to by ARP. Table 3-2 defines the functions of the ARAU.

Auxiliary Register Arithmetic Unit (ARAU)

Table 3-2. Auxiliary Register Arithmetic Unit Functions

Function

Description

Current AR + INDX - Current AR

Current AR — INDX - Current AR

Current AR + 1 - Current AR
Current AR -1 - Current AR
Current AR - Current AR

Current AR + IR(7-0) - Current AR

Current AR — IR(7-0) — Current AR

Current AR + rc(INDX) — Current AR

Current AR — rc(INDX) — Current AR

If (Current AR) = (ARCR), then TC =1
If (Current AR) < (ARCR), then TC =1
If (Current AR) > (ARCR), then TC =1
If (Current AR) # (ARCR), then TC =1

If (Current AR) = (CBER), then Current AR = CBSR

Index the current AR by adding an unsigned 16-bit
integer contained in INDX. Example: ADD *0+

Index the current AR by subtracting an unsigned
16-bit integer contained in INDX. Example: ADD *0—

Increment the current AR by 1. Example: ADD *+
Decrement the current AR by 1. Example: ADD *—
Do not modify the current AR. Example: ADD *

Add an 8-bit immediate value to current AR. Exam-
ple: ADRK #55h

Subtract an 8-bit immediate value from the current
AR. Example: SBRK #55h

Bit-reversed indexing; add INDX with reversed-carry
(rc) propagation. Example: ADD *BRO+

Bit-reversed indexing; subtract INDX with reversed-
carry (rc) propagation. Example: ADD *BR0O—

Compare the current AR to ARCR and, if the condi-
tion is true, then set the TC bit of the status register
ST1. If false, then clear the TC bit. Example: CMPR 3

If the current AR is at the end of circular buffer, reload
the start address. The test for this condition is per-
formed before the execution of the AR modification.
Example: ADD *+

The INDX can be added to or subtracted from the current AR on any AR update
cycle. The INDX can be used to increment or decrement the address in steps
larger than 1; this is useful for operations such as addressing down a matrix
column. The ARCR limits blocks of data and supports logical comparisons be-
tween the current AR and ARCR in conjunction with the CMPR instruction.
Note that the 'C2x uses ARO for this implementation. After reset, you can use
the load auxiliary register (LAR) instruction to load ARO; if the enable extra in-
dex register (NDX) bit in the PMST is set, LAR also loads INDX and ARCR to
maintain compatibility with the 'C2x.

Central Processing Unit (CPU) 3-19

Auxiliary Register Arithmetic Unit (ARAU)

3-20

Because the ARs are memory-mapped, the CALU can act directly upon them
and use more advanced indirect addressing techniques. For example, the
multiplier can calculate the addresses of 3-dimensional matrices. After a
CALU load of the AR, there is, however, a 2-instruction-cycle delay before the
ARs can be used for address generation. The INDX and ARCR are accessible
viathe CALU, regardless of the condition of the NDX bit (that is, SAMM ARCR
writes only to the ARCR).

The ARAU can serve as an additional general-purpose arithmetic unit be-
cause the auxiliary register file can directly communicate with data memory.
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple-
ments 32-bit 2s-complement arithmetic. The BANZ and BANZD instructions
permit the ARs to be used as loop counters.

The 3-bit auxiliary register pointer buffer (ARB), shown in Figure 3—6, stores
the ARP on subroutine calls when the automatic context switch feature of the
'C5x is not used.

Two circular buffers can operate at a given time and are controlled via the cir-
cular buffer control register (CBCR). Upon reset (rising edge of RS), both circu-
lar buffers are disabled. To define a circular buffer, load CBSR1 or CBSR2 with
the start address of the buffer and CBER1 or CBER2 with the end address;
then load the AR to be used with the circular buffer with an address between
the start and end addresses. Finally, load CBCR with the appropriate AR num-
ber and set the enable (CENB1 or CENB?2) bit.

Do not use the same AR to access both circular buffers or unexpected
results will occur.

As the address is stepping through the circular buffer, the AR value is com-
pared against the value contained in CBER prior to the update to the AR value.
Ifthe current AR value and the CBER are equal and an AR modification occurs,
the value contained in CBSR is automatically loaded into the AR. If the values
in the CBER and the AR are not equal, the AR is modified as specified.

Circular buffers can be used with either increment- or decrement-type up-
dates. If increment is used, then the value in CBER must be larger than the
value in CBSR. If decrement is used, the value in CBER must be smaller than
the value in CBSR. The other indirect addressing modes can be used; howev-
er, the ARAU tests only for the condition current AR = CBER. The ARAU does
not detect an AR update that steps over the value contained in CBER. See
Section 5.6, Circular Addressing, on page 5-21 for more details.

Summary of Registers

3.5 Summary of Registers

CPU registers (except STO and ST1), peripheral registers, and I/O ports
occupy data memory space.

3.5.1 Auxiliary Registers (ARO-AR?7)

The eight 16-bit auxiliary registers (ARO—AR7) can be accessed by the CALU
and modified by the ARAU or the PLU. The primary function of the ARs is to
provide a 16-bit address for indirect addressing to data space. However, the
ARs can also be used as general-purpose registers or counters. Section 5.2,
Indirect Addressing, on page 5-4 describes how the ARs are used in indirect
addressing. Use of ARs is described in Section 3.4 on page 3-17.

3.5.2 Auxiliary Register Compare Register (ARCR)

The 16-bit ARCR is used for address boundary comparison. The CMPR
instruction compares the ARCR to the selected AR and places the result of the
compare in the TC bit of ST1. Section 5.2, Indirect Addressing, on page 5-4
describes how the ARCR can be used in memory management. See also Sec-
tion 3.4 on page 3-17.

3.5.3 Block Move Address Register (BMAR)

The 16-bit BMAR holds an address value to be used with block moves and
multiply/accumulate operations. This register provides the 16-bit address for
an indirect-addressed second operand. See Section 5.4, Dedicated-Register
Addressing, on page 5-17.

3.5.4 Block Repeat Registers (RPTC, BRCR, PASR, PAER)

The 16-bit repeat counter register (RPTC) holds the repeat count in a repeat
single-instruction operation and is loaded by the RPT and RPTZ instructions.
See Section 4.6, Single Instruction Repeat Function, on page 4-22.

Although the RPTC is a memory-mapped register, you should avoid
writing to this register. Writing to this register can cause undesired
results.

Central Processing Unit (CPU) 3-21

Summary of Registers

The 16-bit block repeat counter register (BRCR) holds the count value for the
block repeat feature. This value is loaded before a block repeat operation is
initiated. The value can be changed while a block repeat is in progress; howev-
er, take care to avoid infinite loops. The block repeat program address start
register (PASR) indicates the 16-bit address where the repeated block of code
starts. The block repeat program address end register (PAER) indicates the
16-bit address where the repeated block of code ends. The PASR and PAER
are loaded by the RPTB instruction. Block repeats are described in Section
4.7, Block Repeat Function, on page 4-31.

3.5.5 Buffered Serial Port Registers (ARR, AXR, BKR, BKX, SPCE)

The buffered serial port (BSP) is available on 'C56 and 'C57 devices. The BSP
comprises a full-duplex, double-buffered serial port interface and an autobuf-
fering unit (ABU). The BSP has a 2K-word buffer, which resides in the 'C5x
internal memory. Five registers control and operate the BSP. The 16-bit BSP
control extension register (SPCE) contains the mode control and status bits
of the BSP. The 11-bit BSP address receive register (ARR) and 11-bit BSP
receive buffer size register (BKR) support address generation for writing to the
data receive register (DRR) in the 'C5x internal memory. The 11-bit BSP
address transmit register (AXR) and 11-bit BSP transmit buffer size register
(BKX) support address generation for reading a word from the 'C5x internal
memory to the data transmit register (DXR). The BSP is described in Section
9.8, Buffered Serial port (BSP) Interface, on page 9-53.

3.5.6 Circular Buffer Registers (CBSR1, CBER1, CBSR2, CBER2, CBCR)

The 'C5x devices support two concurrent circular buffers operating in conjunc-
tion with user-specified auxiliary registers. Two 16-bit circular buffer start reg-
isters (CBSR1 and CBSR2) indicate the address where the circular buffer
starts. Two 16-bit circular buffer end registers (CBER1 and CBER?2) indicate
the address where the circular buffer ends. The 16-bit circular buffer control
register (CBCR) controls the operation of these circular buffers and identifies
the auxiliary registers to be used. Section 5.6, Circular Addressing, on page
5-21 describes how circular buffers can be used in memory management.
Section 3.4 on page 3-17 describes how circular buffer registers are used in
addressing. See also subsection 4.4.1, Circular Buffer Control Register
(CBCR), on page 4-6.

3.5.7 Dynamic Bit Manipulation Register (DBMR)

3-22

The 16-bit DBMR is used in conjunction with the PLU as a dynamic (execution-
time programmable) mask register. The DBMR is described in Section 3.3 on
page 3-15.

Summary of Registers

3.5.8 Global Memory Allocation Register (GREG)

The 16-bit GREG allocates parts of the local data space as global memory and
defines what amount of the local data space will be overlayed by global data
space. See Section 8.4, Global Data Memory, on page 8-20.

3.5.9 Host Port Interface Registers (HPIC, HPIA)

The 8-bit wide parallel host portinterface (HPI) is available on the 'C57 device.
The HPl interfaces a host processor to the 'C57 device. The HPI control regis-
ter (HPIC) holds the control word. The host processor addresses HPI memory
via the HPI address register (HPIA). See Section 9.10, Host Port Interface
('C57S and 'LC57 only), on page 9-87.

3.5.10 Index Register (INDX)

The 16-bit INDX is used by the ARAU as a step value (addition or subtraction
by more than 1) to modify the address in the ARs during indirect addressing.
For example, when the ARAU steps across a row of a matrix, the indirect
address is incremented by 1. However, when the ARAU steps down a column,
the address is incremented by the dimension of the matrix. The ARAU can add
or subtract the value stored in the INDX from the current AR as part of the indi-
rectaddress operation. INDX can also map the dimension of the address block
used for bit-reversal addressing. Section 5.2, Indirect Addressing, on page 5-4
describes how the INDX can be used in memory management. See also Sec-
tion 3.4 on page 3-17.

3.5.11 1/O Space (PAO-PA15)

The I/O space makes it possible to address 16 locations (50h—5Fh) of I/O
space viathe addressing modes of the local data space. This means that these
locations can be read directly into the CALU or written from the ACC. It also
means that these locations can be acted upon by the PLU or addressed via
the memory-mapped addressing mode. The locations can also be addressed
with the IN and OUT instructions.

3.5.12 Instruction Register (IREG)

The 16-bit IREG holds the opcode of the instruction being executed. The IREG
is used during program control.

3.5.13 Interrupt Registers (IMR, IFR)

The 16-bit interrupt mask register (IMR) individually masks specific interrupts
at required times. The 16-bit interrupt flag register (IFR) indicates the current
status of the interrupts. The status of the interrupts is updated regardless of
the IMR and INTM bitin the STO. Interrupts are described in Section 4.8, Inter-
rupts, on page 4-36.

Central Processing Unit (CPU) 3-23

Summary of Registers

3.5.14 Processor Mode Status Register (PMST)

The 16-bit PMST contains status and control information for the 'C5x device.
Subsection 8.2.1, Program Memory Configurability, on page 8-7 and subsec-
tion 8.3.1, Local Data Memory Configurability, on page 8-15 describe how the
PMST configures memory. See also subsection 4.4.2, Processor Mode Status
Register (PMST), on page 4-7.

3.5.15 Product Register (PREG)

The 32-bit PREG holds the result of a multiply operation. The high and low
words of PREG can be accessed individually. See subsection 3.2.1 on page 3-7.

3.5.16 Serial Port Interface Registers (SPC, DRR, DXR, XSR, RSR)

Five registers control and operate the serial port interface. The 16-bit serial
port control register (SPC) contains the mode control and status bits of the seri-
al port. The 16-bit data receive register (DRR) holds the incoming serial data,
and the 16-bit data transmit register (DXR) holds the outgoing serial data. The
16-bit data transmit shift register (XSR) controls the shifting of the data from
the DXR to the output pin. The 16-bit data receive shift register (RSR) controls
the storing of the data from the input pin to the DRR. The serial port is de-
scribed in Section 9.7, Serial Port Interface, on page 9-23.

3.5.17 Software-Programmable Wait-State Registers (PDWSR, IOWSR, CWSR)

The software wait states are determined by three registers. These registers
serve different purposes on different devices. On most 'C5x devices the 16-bit
program/data wait-state register (PDWSR) contains the wait-state count for
the eight 16K-word blocks of program and data memory. The PDWSR is di-
vided into eight 2-bit wait-state fields assigned to each 16K-word block. The
I/0O space is mapped into the 16-hit I/O wait-state register IOWSR) under con-
trol of the 5-bit wait-state control register (CWSR). The CWSR determines the
range of wait states selected. The BIG bit in the CWSR determines how the
I/O spaceis partitioned. Ifthe BIG bitis cleared, the IOWSR is divided into eight
pairs of 1/0 ports with the 2-bit wait-state fields assigned to each pair of port
addresses. If the BIG bit is set, the 1/0 space is divided into eight 8K-word
blocks with each having its own 2-bit wait-state field, similar to PDWSR. For
the 'C52, 'LC56, 'C57S, and 'LC57 devices, the program, data, and 1/0 space
wait states are each specified by a single (3-bit) wait-state value. Each
memory space can be independently set to 0—7 wait states by a 3-bit wait-state
field in PDWSR. See Section 9.4, Software-Programmable Wait-State Gener-
ators, on page 9-13.

3-24

Summary of Registers

3.5.18 Status Registers (STO, ST1)

The two 16-bit status registers contain status and control bits for the CPU and
are described in subsection 4.4.3, Status Registers (STO and ST1), on page
4-10.

3.5.19 Temporary Registers (TREGO, TREG1, TREG?2)

The 16-bit TREGO holds one of the multiplicands of the multiplier. TREGO can
also be loaded via the CALU with the following instructions: LT, LTA, LTD, LTP,
LTS, SORA, SQRS, MAC, MACD, MADS, and MADD. The 5-bit TREG1 holds
a dynamic (execution-time programmable) shift count for the prescaling shift-
er. The 4-bit TREG2 holds a dynamic bit address for the BITT instruction. The
TREGO is described in subsection 3.2.1 on page 3-7.

Software compatibility can be maintained with the 'C2x by clearing the enable
multiple TREGs (TRM) bit in the PMST. This causes any 'C2x instruction that
loads TREGO to write to all three TREGs, maintaining 'C5x object-code com-
patibility with the 'C2x.

3.5.20 Timer Registers (TIM, PRD, TCR)

Three registers control and operate the timer. The timer counter register (TIM)
gives the current count of the timer. The timer period register (PRD) defines
the period for the timer. The 16-bit timer control register (TCR) controls the op-
erations of the timer. See Section 9.3, Timer, on page 9-9.

3.5.21 TDM Serial Port Registers (TRCV, TDXR, TSPC, TCSR, TRTA, TRAD, TRSR)

The time-division-multiplexed (TDM) serial port interface is a feature superset
ofthe serial portinterface and supports applications that require serial commu-
nication in a multiprocessing environment. Six registers control and operate
the TDM serial port interface. The 16-bit TDM serial port control register
(TSPC) contains the mode control and status bits of the TDM serial port inter-
face. The 16-bit TDM data receive register (TRCV) holds the incoming TDM
serial data, and the 16-bit TDM data transmit register (TDXR) holds the outgo-
ing TDM serial data. The 16-bit TDM data receive shift register (TRSR) con-
trols the storing of the data, from the input pin, to the TRCV. The 16-bit TDM
channel selectregister (TCSR) specifies in which time slot(s) each 'C5x device
is to transmit. The 16-bit TDM receive/transmit address register (TRTA) speci-
fies in the eight LSBs (RA0—RA7) the receive address of the 'C5x device and
in the eight MSBs (TAO-TA7) the transmit address of the 'C5x device. The
16-bit TDM receive address register (TRAD) contains various information re-
garding the status of the TDM address line (TADD). See Section 9.9, Time-Di-
vision Multiplexed (TDM) Serial Port Interface, on page 9-74.

Central Processing Unit (CPU) 3-25

Chapter 4

Program Control

Program control on the TMS320C5x is provided by the program counter, hard-
ware stack, repeat counters, status registers, program counter-related hard-
ware, and several software mechanisms. Software mechanisms used for pro-
gram control include branches, calls, conditional instructions, repeat instruc-
tions, reset, and interrupts.

Topic Page
4.1 Program Counter (PC)t ;
4.2 Hardware Stackeii 4-4 |
4.3 Program-Memory Address Generation — 4
4.4 Status and Control Registers ... i 4-
4.5 Conditional OpPerationseueuie e 4417 |
4.6 Single Instruction Repeat Function — 4:42 |
4.7 Block Repeat FUNCHIONttt 4
4.8 INEITUPES v et e e e e e e e e e 4-36 |
4.9 RSBl . 1-45
4.10 Power-Down MOOec.ouuiuii 4-50 |

Program Counter (PC)

4.1 Program Counter (PC)

Figure 4-1.

The 'C5x has a 16-bit program counter (PC) which contains the address of in-
ternal or external program memory used to fetch instructions.

The PC addresses program memory, either on-chip or off-chip, via the pro-
gram address bus (PAB). Through the PAB, an instruction is loaded into the
instruction register (IREG). Then the PC is ready to start the next instruction
fetch cycle. Refer to Figure 4—1 for a functional block diagram of the program
control elements.

The PC is loaded in a number of ways. Table 4-1 shows what address is
loaded into the PC, depending on the code operation performed.

Program Control Functional Block Diagram

CLKMD1—>
CLKMD2—>—
CLKMD3—>—
1S+
DS<+—
PS+—

RW €4+
STRB+>
READY—>
BR€>
XF+—
HOLD—
HOLDA+—
1AQ 4
BIO—>—
RS—>
IACK+—

Controller

MP/W—*T
INT(1-4)—;

Al5-A0 —>

Program Address Bus _
— X1
[— CLKOUT1
[~ X2/CLKIN
< CLKIN2 IREG_ <
BMAR 4>~
< STO fe—
MCS STl >
> RD PMST |<>—
pal i P S D
Add —1_St kI) L
rogram (8x16) GREG
Instruction BRCR F<»—
TREG2(4) 4>
< @)
<
<
J—¢— ToARAU

RBIT

D15-D0 —>—

L

/Xnn\

Data Bus

DP(9) | sTO

Notes: All registers and data lines are 16 bits wide unless otherwise specified.

4-2

Program Counter (PC)

Table 4-1. Address Loading Into the Program Counter

Code Operation

Address Loaded to the PC

Sequential code

Branch (B instruction)

Subroutine call

Software (INTR, TRAP,
or NMlI instruction) or
interrupt trap

Computed GOTO

BLDD, BLDP, BLPD,
MAC, or MACD
instruction

BACC, BACCD, CALA,
TBLR, or TBLW
instruction

BLDD, BLDP, BLPD,
MADD, or MADS
instruction

End of a block repeat
loop

Return instruction

The PC is loaded with PC + 1.

The PC is loaded with the long immediate value direct-
ly following the branch instruction.

The PC + 2 is pushed onto the stack and then the PC

is loaded with the long immediate value directly follow-
ing the call instruction. The return instruction pops the
stack back into the PC to return to the calling or inter-

rupting sequence of code.

The PC is loaded with the address of the appropriate
interrupt vector.

The content of the accumulator low byte (ACCL) is
loaded into the PC. The BACC (branch to location
specified by the accumulator) or CALA (call subroutine
at location specified by the accumulator) instructions
can be used to perform GOTO operations.

The PC is loaded with the a long immediate address.

The PC is loaded with the contents of the accumulator
low byte (ACCL).

The PC is loaded with the content of the block move
address register (BMAR).

The PC is loaded with the content of the block repeat
program address start register (PASR).

The PC is loaded with the top of the stack.

The PC can also be loaded with coefficients residing in program memory for
some instructions used with the repeat operation (see Section 4.6, Single
Instruction Repeat Function, on page 4-22). In a repeat operation, once the
instruction is repeated, it is no longer prefetched, and the PC can be used to
address program memory sequentially. The multiply/accumulate instructions
(MAC, MACD, MADD, and MADS), memory move from data-to-data instruc-
tion (BLDD), memory move from program-to-data instructions (BLPD and
TBLR), and memory move from data-to-program instructions (BLDP and
TBLW), use this capability.

Program Control 4-3

Hardware Stack

4.2 Hardware Stack

The stack which is 16 bits wide and 8 levels deep, is accessible via the PUSH
and POP instructions. Whenever the contents of the PC are pushed onto the
top of the stack (TOS), the previous contents of each level are pushed down,
and the bottom (eighth) location of the stack is lost. Therefore, data is lost if
more than eight successive pushes occur before a pop. The reverse happens
on pop operations. Any pop after seven sequential pops yields the value at the
bottom stack level, and then all of the stack levels contain the same value. Two
additional instructions — PSHD (push a data memory value onto TOS) and
POPD (pop a value from TOS to data memory) — are also available. These
instructions allow a stack to be built in data memory for the nesting of subrou-
tines and interrupts beyond eight levels.

The software can use the stack to save and restore context or for other pur-
poses through the following software instructions:

[POP, which pops a value from the stack to the accumulator low byte
(1 POPD, which pops a value from the stack to a data memory address
(1 PSHD, which pushes a data-memory value into the stack
U

PUSH, which pushes the contents of the accumulator low byte into the
stack

The stack is used during interrupts and subroutines to save and restore the PC
contents. When a subroutine is called (CALA, CALAD, CALL, CALLD, CC, or
CCD instruction) or an interrupt occurs (hardware interrupt, NMI, INTR, or
TRAP instruction), the return address is automatically saved in the stack (a
PUSH operation). When a subroutine returns (RET, RETC, RETCD, RETD,
RETE, or RETI instruction), the return address is retrieved from the stack (a
POP operation) and loaded into the PC.

Program-Memory Address Generation

4.3 Program-Memory Address Generation

The program memory space contains the code for applications and holds table
information and immediate operands. The program memory is accessed only
by the program address bus (PB). The address for this bus is generated by the
program counter (PC) when instructions and long immediate operands are ac-
cessed. The PB can also be loaded with a long immediate operand and the
lower 16-bit word of the accumulator for block transfers, multiply/accumulates,
table reads and writes, branching, and subroutine calls.

The 'C5x fetches instructions by putting the PC on the PAB and reading the
appropriate location in memory. While the read is executing, the PC is increm-
ented for the next fetch. If a program address discontinuity (for example, a
branch, a call, areturn, an interrupt, or a block repeat) occurs, the appropriate
address is loaded into the PC. The PC is also loaded when operands are
fetched from program memory. Operands are fetched from program memory
when the 'C5x reads from (TBLR) or writes to (TBLW) a table or when it trans-
fers data to (BLPD) or from (BLDP) data space. Some instructions (MAC,
MACD, MADD, and MADS) use the program bus to fetch a second multipli-
cand.

The PC can address data stored in either program or data space. This makes
it possible, within repeated instructions, to fetch a second operand in parallel
with the data bus for 2-operand operations. For repeated instructions, the
array is sequentially accessed by the PAB by incrementing the PC. The block
transfer instructions (BLDD, BLDP, and BLPD) use both buses so that the
pipeline structure can read the next operand while writing to the current one.
The BLPD instruction loads the PC with either the long immediate address or
with the BMAR contents and then uses the PB to fetch the source data from
program space for the block move operation. The BLDP executes in the same
way, except that the PAB is used for the destination operation. The BLDD
instruction uses the PAB to address data space.

The TBLR and TBLW instructions operate like the BLPD and BLDP instruc-
tions, respectively, except that the PC is loaded with the accumulator low byte
instead of the long immediate address or the BMAR contents. This allows look-
up table operations. The multiply/accumulate operations (MAC, MACD,
MADD, and MADS) use the PAB to address their coefficient table. The MAC
and MACD instructions load the PC with the long immediate address following
the instruction. The MADD and MADS instructions load the PC with BMAR
contents.

For a more detailed explanation of how the program address is loaded into the
PC, see Section 4.1, Program Counter, on page 4-2. See also Section 4.6,
Single Instruction Repeat Function, on page 4-22, and Chapter 6, Assembly
Language Instructions, for more information.

Program Control 4-5

Status and Control Registers

4.4 Status and Control Registers

The 'C5x has four status and control registers:

(O Circular buffer control register (CBCR) and processor mode status regis-
ter (PMST) contain status and control information. Since these registers
are memory-mapped, they can be stored into and loaded from data
memory; therefore, the status of the CPU can be saved and restored for
subroutines and interrupt service routines (ISRs).

[Statusregisters STO and ST1 contain the status of various conditions and
modes compatible with the 'C2x.

4.4.1 Circular Buffer Control Register (CBCR)

The CBCR resides in the memory-mapped register space of data memory
page 0 and can be saved in the same way as any other data memaory location.
The CBCR can be acted upon directly by the CALU and the PLU. The CALU
and the PLU operations change the status register bits during the execution
phase of the pipeline. The next two instructions after a status register update
must not be affected by the reconfiguration caused by the status update.
Table 7-10 on page 7-24 shows the required latencies between instructions
and register accesses.

The CBCR bits are shown in Figure 4-2 and defined in Table 4-2.

Do not use the same AR to access both circular buffers or unexpected
results will occur.

Status and Control Registers

Figure 4-2. Circular Buffer Control Register (CBCR) Diagram

15-8 7 6-4 3 2-0

Reserved CENB2 CAR2 CENB1 CAR1

Table 4-2. Circular Buffer Control Register (CBCR) Bit Summary

Reset '
Bit Name value Function
15-8 Reserved — These bits are reserved.
7 CENB2 0 Circular buffer 2 enable bit. This bit enables/disables circular buffer 2.
CENB2 =0 Circular buffer 2 is disabled.
CENB2 =1 Circular buffer 2 is enabled.
6-4 CAR2 — Circular buffer 2 auxiliary register bits. These bits select which auxiliary register
(ARO-ARY) is assigned to circular buffer 2.
3 CENB1 0 Circular buffer 1 enable bit. This bit enables/disables circular buffer 1.
CENB1=0 Circular buffer 1 is disabled.
CENB1=1 Circular buffer 1 is enabled.
2-0 CAR1 — Circular buffer 1 auxiliary register bits. These bits select which auxiliary register

(ARO-ARY7) is assigned to circular buffer 1.

4.4.2 Processor Mode Status Register (PMST)

The PMST resides in the memory-mapped register space of data memory
page 0 and can be saved in the same way as any other data memory location.
The PMST can be acted upon directly by the CALU and the PLU. The CALU
and the PLU operations change the status register bits during the execution
phase of the pipeline. The next two instructions after a status register update
must not be affected by the reconfiguration caused by the status update.

The PMST has an associated 1-level deep shadow register stack for automat-
ic context-saving when an interrupt trap is taken. The PMST is automatically
restored upon a return from interrupt (RETI) or return from interrupt with inter-
rupt enable (RETE) instruction. Table 7-10 on page 7-24 shows the required
latencies between instructions and register accesses.

The PMST bits are shown in Figure 4-3 and defined in Table 4-3.

Program Control 4-7

Status and Control Registers

Figure 4-3. Processor Mode Status Register (PMST) Diagram

15-11

10 9

8

7

6

5

4

IPTR

0 0

0

AVIS

0

OvLY

RAM

MP/MC

NDX

TRM

BRAF

Table 4-3. Processor Mode Status Register (PMST) Bit Summary

Bit Name

Reset
value

Function

15-11 IPTR

10-8

7 AVIS

5 OVLY

4 RAM

00000

000

Interrupt vector pointer bits. These bits select any of 32 2K-word pages where the
interrupt vectors reside. The interrupt vectors can be remapped to RAM for boot-
loaded operations by loading the IPTR bits. At reset, the IPTR bits are cleared;
therefore, the reset vector always resides at address Oh in program memory space.

These bits are read as 0.

Address visibility bit. This bit enables/disables the internal program address to
be visible at the address pins.

AVIS =0 The internal program address is driven to the pins so that the ad-
dress can be traced and the interrupt vector can be decoded in
conjunction with IACK when the interrupt vectors reside in on-chip

memory.

AVIS=1 The address lines do not change with the internal program
address. The control and data lines are not affected and the ad-

dress bus is driven with the last address on the bus.
This bit is read as 0.

RAM overlay bit. This bit enables/disables the on-chip single-access RAM
(SARAM) to be addressable in data memory space. The OVLY bit is used in con-
junction with the RAM bit to configure the on-chip SARAM. See Table 4-4 on page
4-10 for specific mappings of the on-chip SARAM.

OVLY =0 The on-chip SARAM is not addressable in data memory space.

OVLY =1 The on-chip SARAM is mapped into data memory space.

Program RAM enable bit. This bit enables/disables the on-chip single-access RAM
(SARAM) to be addressable in program memory space. The RAM bitis used in con-
junction with the OVLY bit to configure the on-chip SARAM. See Table 4—4 on page
4-10 for specific mappings of the on-chip SARAM.

RAM =0 The on-chip SARAM is not addressable in program memory
space.
RAM =1 The on-chip SARAM is mapped into program memory space.

T MP/MC is the logic level of MP/MC pin reset value.

4-8

Status and Control Registers

Table 4-3. Processor Mode Status Register (PMST) Bit Summary (Continued)

Reset
Bit Name value Function

3 MP/MC T Microprocessor/microcomputer bit. This bit enables/disables the on-chip ROM to
be addressable in program memory space. At reset, the MP/MC bit is set to the val-
ue corresponding to the logic level on the MP/MC pin. The level on the MP/MC pin
is sampled at reset only and can have no effect until the next reset.

MP/MC =0 The on-chip ROM is mapped into program memory space.
MP/MC =1 The on-chip ROM is not addressable in program memory space.

2 NDX 0 Enable extra index register bit. This bit determines whether a 'C2x-compatible
instruction that modifies or writes to auxiliary register 0 (ARO) also modifies or writes
to the index register (INDX) and the auxiliary register compare register (ARCR) to
maintain 'C5x object-code compatibility with the TMS320C2x.

NDX =0 'C2x-compatible mode. Any 'C2x-compatible instruction that modi-
fies or writes ARO also modifies or writes the INDX and ARCR be-
cause the 'C2x uses ARO for indexing and AR compare operations.

NDX =1 'C5x-enhanced mode. Any 'C2x-compatible instruction does not
affect the INDX and ARCR. The 'C2x-compatible instructions af-
fect only ARO of the 'C5x.

1 TRM 0 Enable multiple TREGs bit. This bit determines whether a ’C2x-compatible instruc-
tion that loads TREGO also loads TREG1 and TREG2 to maintain 'C5x object-code
compatibility with the TMS320C2x.

TRM =0 'C2x-compatible mode. Any ’'C2x-compatible instruction that
loads TREGO also loads TREG1 and TREG2 because the 'C2x
uses TREG as a shift count for the prescaling shifter and as a it
address in the BITT instruction.

TRM=1 'C5x-enhanced mode. Any 'C2x-compatible instruction does not
load TREG1 and TREG2. The 'C2x-compatible instructions affect
only TREGO of the 'C5x.

0 BRAF 0 Block repeat active flag bit. This bit indicates that a block repeat is currently
active.
BRAF =0 The block repeat is deactivated. The BRAF bit is cleared when the

block repeat counter register (BRCR) decrements below 0.

BRAF =1 The block repeat is active. The BRAF bit is automatically set when
an RPTB instruction is executed.

T MP/MC is the logic level of MP/MC pin reset value.

Program Control 4-9

Status and Control Registers

Table 4-4. On-Chip RAM Configuration Using OVLY and RAM Bits

Bit values .
_— On-Chip SHRMNI
OVLY RAM Configuration
0 0 Disabled. The on-chip SARAM is not addressable.
0 1 The on-chip SARAM is mapped into program space.
1 0 The on-chip SARAM is mapped into data space.
1 1 The on-chip SARAM is mapped into both program and data spaces.

4.4.3 Status Registers (STO and ST1)

4-10

The status registers can be stored into data memory and loaded from data
memory, thereby allowing the 'C5x status to be saved and restored for sub-
routines. The LST instruction writes to STO and ST1, and the SST instruction
reads from them, except that the ARP bits and INTM bit are not affected by the
LST #0 instruction. Unlike the PMST and CBCR, the STO and ST1 do not
reside in the memory map and, therefore, cannot be handled by using the PLU
instructions.

The STOand ST1 each have an associated 1-level deep shadow register stack
for automatic context-saving when an interrupt trap is taken. The registers are
automatically restored upon a return from interrupt (RETI) or return from inter-
rupt with interrupt enable (RETE) instruction. Note that the INTM bitin STO and
the XF bit in ST1 are not saved on the stack or restored from the stack on an
automatic context save. This feature allows the XF pin to be toggled in an inter-
rupt service routine and also allows automatic context saves.

The INTM and OVM bits in STO and the C, CNF, HM, SXM, TC, and XF bits
in ST1 can be individually setusing the SETC instruction or individually cleared
using the CLRC instruction. For example, the sign-extension mode (SXM) bit
is set with SETC SXM or cleared with CLRC SXM. The DP bits in STO can be
loaded using the LDP instruction. The PM bits in ST1 can be loaded using the
SPM instruction.

The STO bits are shown in Figure 4—4 and defined in Table 4-5.

Status and Control Registers

Figure 4—-4. Status Register 0 (STO) Diagram

15-13

12

11 10 9 8-0

ARP

ov

OoVvM 1 INTM DP

Table 4-5. Status Register 0 (STO0) Bit Summary

Bit

Name

Reset
value

Function

15-13

12

11

10

ARP

ov

OVM

X

Auxiliary register pointer. These bits select the auxiliary register (AR) to be used in
indirect addressing. When the ARP is loaded, the previous ARP value is copied to
the auxiliary register buffer (ARB) in ST1. The ARP can be modified by memory-refer-
ence instructions when you use indirect addressing, and by the MAR or LST #0
instruction. When an LST #1 instruction is executed, the ARP is loaded with the same
value as the ARB.

Overflow flag bit. This bit indicates that an arithmetic operation overflow in the arith-
metic logic unit (ALU). The OV bit can be modified by the LST #0 instruction.

ov=0 Overflow did not occur in the ALU. The OV bhit is cleared by a reset
or a conditional branch (BCND/BCNDD on OV/NOV).

ov=1 Overflow does occur in the ALU. As a latched overflow signal, the OV
bit remains set.

Overflow mode bit. This bit enables/disables the accumulator overflow saturation
mode in the arithmetic logic unit (ALU). The OVM bit can be modified by the LST #0
instruction.

OVM =0 Disabled. An overflowed result is loaded into the accumulator without
modification. The OVM bit can be cleared by the CLRC OVM instruc-
tion.

OoVM =1 Overflow saturation mode. An overflowed result is loaded into the ac-
cumulator with either the most positive (00 7FFF FFFFh) or the most
negative value (FF 8000 0000h). The OVM bit can be set by the
SETC OVM instruction.

This bit is read as 1.

Program Control 4-11

Status and Control Registers

Table 4-5. Status Register 0 (STO0) Bit Summary (Continued)

Bit

Name

Reset
value

Function

9

8-0

INTM

DP

1

Interrupt mode bit. This bit globally masks or enables all interrupts. The INTM bit has
no effect on the nonmaskable RS and NMI interrupts. Note that the INTM bit is unaf-
fected by the TRAP and LST #0 instructions. The INTM bit is not saved on the stack
or restored from the stack on an automatic context save during interrupt service rou-
tines.

INTM =0 All unmaskable interrupts are enabled. The INTM bit can be cleared
by the CLRC INTM or RETE instruction.

INTM =1 All maskable interrupts are disabled. The INTM bit can be set by the
SETC INTM or INTR instruction, a RS and IACK signal, or when a
maskable interrupt trap is taken.

Data memory page pointer bits. These bits specify the address of the current data
memory page. The DP bits are concatenated with the 7 LSBs of an instruction word
to form a direct memory address of 16 bits. The DP bits can be modified by the
LST #0 or LDP instruction.

4-12

Status and Control Registers

The ST1 bits are shown in Figure 4-5 and defined in Table 4-6.

Figure 4-5. Status Register 1 (ST1) Diagram

15-13

12

11 10 9 8 7 6 5 4 3 2 1 0

ARB

CNF

TC | SXM C 1 1 HM 1 XF 1 1 PM

Table 4-6. Status Register 1 (ST1) Bit Summary

Bit

Name

Reset
value

Function

15-13 ARB

12

11

CNF

TC

XXX

Auxiliary register buffer. This 3-bit field holds the previous value contained in the
auxiliary register pointer (ARP) in STO. Whenever the ARP is loaded, the previous
ARP value is copied to the ARB, except when using the LST #0 instruction. When
the ARB is loaded using the LST #1 instruction, the same value is also copied to
the ARP. This is useful when restoring context (when not using the automatic con-
text save) in a subroutine that modifies the current ARP.

On-chip RAM configuration control bit. This 1-bit field enables the on-chip dual-ac-
cess RAM block 0 (DARAM BO) to be addressable in data memory space or pro-
gram memory space. The CNF bit can be modified by the LST #1 instruction.

CNF=0 The on-chip DARAM block 0 is mapped into data memory space.
The CNF bit can be cleared by a reset or the CLRC CNF instruc-
tion.

CNF=1 The on-chip DARAM block 0 is mapped into program memory
space. The CNF bit can be set by the SETC CNF instruction.

Test/control flag bit. This 1-bit flag stores the results of the arithmetic logic unit (ALU)
or parallel logic unit (PLU) test bit operations. The TC bit is affected by the APL, BIT,
BITT, CMPR, CPL, NORM, OPL, and XPL instructions. The status of the TC bit de-
termines if the conditional branch, call, and return instructions execute. The TC bit
can be modified by the LST #1 instruction.

TC=0 The TC bit can be cleared by the CLRC TC instruction or any one
of the following events:

(1 Theresultofthe logical operation is 1 when tested by the APL,
OPL, or XPL instructions.

(1 A bit tested by the BIT or BITT instruction is equal to 0.

[A compare condition is false when tested by the CMPR or
CPL instruction.

1 The result of the exclusive-OR operation is false when tested
by the NORM instruction.

Program Control 4-13

Status and Control Registers

Table 4—6. Status Register 1 (ST1) Bit Summary (Continued)

Reset
Bit Name value Function
TC=1 The TC bit can be set by the SETC TC instruction or any one of

the following events:

(O Theresultofthe logical operationis 0 whentested by the APL,
OPL, or XPL instructions.

(1 A Dbit tested by the BIT or BITT instruction is equal to 1.

[Acompare conditionis true when tested by the CMPR or CPL
instruction.

[The result of the exclusive-OR operation is true when tested
by the NORM instruction.

10 SXM 1 Sign-extension mode bit. This 1-bit field enables/disables sign extension of an arith-
metic operation. The SXM hit does not affect the operations of certain arithmetic or
logical instructions; the ADDC, ADDS, SUBB, or SUBS instruction suppresses sign
extension, regardless of SXM. The SXM bit can be modified by the LST #1 instruc-
tion.

SXM =0 Sign extension is suppressed. The SXM bit can be cleared by the
CLRC SXM instruction.

SXM=1 Sign extension is produced on data as the data is passed into the
accumulator through the scaling shifter. The SXM bit can be set
by a reset or the SETC SXM instruction.

9 C 1 Carry bit. This 1-bit field indicates an arithmetic operation carry or borrow in the

arithmetic logic unit (ALU). The single-bit shift and rotate instructions affect the C
bit. The C bit can be modified by the LST #1 instruction.

C=0

The result of a subtraction generates a borrow or the result of an
addition (except ADD with a 16-bit shift instruction) did not gener-
ate a carry. The ADD with a 16-bit shift instruction can only set the
bit (by a carry operation); otherwise, the bhit is unaffected. The C
bit can be cleared by the CLRC C instruction.

The result of an addition generates a carry or the result of a sub-
traction (except SUB with a 16-bit shift instruction) did not gener-
ate a borrow. The SUB with a 16-bit shift instruction can only clear
the bit (by a borrow operation); otherwise, the bit is unaffected.
The C bit can be set by a reset or the SETC C instruction.

4-14

Status and Control Registers

Table 4-6. Status Register 1 (ST1) Bit Summary (Continued)

Bit

Name

Reset
value

Function

8-7
6

3-2

HM

XF

PM

11

1

11

00

These bits are read as 1.

Hold mode bit. This 1-bit field determines whether the central processing unit (CPU)
stops or continues execution when acknowledging an active HOLD signal. The HM
bit can be modified by the LST #1 instruction.

HM =0 The CPU continues execution from on-chip program memory but
puts its external interface in the high-impedance state. The HM bit
can be cleared by the CLRC HM instruction.

HM =1 The CPU halts internal execution. The HM bit can be set by areset
or the SETC HM instruction.

This bit is read as 1.

XF pin status bit. This 1-bit field determines the level of the external flag (XF) output
pin. The XF bit can be modified by the LST #1 instruction. The XF bit is not saved
or restored from the stack on an automatic context save during interrupt service rou-
tines.

XF=0 The XF output pin is set to a logic low. The XF bit can be cleared
by the CLRC XF instruction.

XF=1 The XF output pin is set to a logic high. The XF bit can be set by
a reset or the SETC XF instruction.

These bits are read as 1.

Product shift mode bits. This 2-bit field determines the product shifter (P-SCALER)
mode and shift value for the product register (PREG) output into the arithmetic logic
unit (ALU). The PM bits can be set by the SPM or LST #1 instruction. See Table 4-7
for the product shifter modes.

The PM shifts also occur when the PREG contents are stored to data memory. The
PREG contents remain unchanged during the shifts. See Section 3.2, Central Arith-
metic Logic Unit (CALU), on page 3-7 for details.

Program Control 4-15

Status and Control Registers

Table 4—7. Product Shifter Mode as Determined by PM Bits

P-SCALER mode for PREG output

PM bit
values
Bitl BitO
0 0
0 1
1 0
1 1

No shift.
Left-shifted 1 bit; LSB zero-filled.
Left-shifted 4 bits; 4 LSBs zero-filled.

Right-shifted 6 bits; sign extended; 6 LSBs lost. The product is al-
ways sign extended, regardless of the value of the SXM bit.

4-16

Conditional Operations

4.5 Conditional Operations

In addition to unconditional branches, calls, and returns, the 'C5x has a full
complement of conditional branches, calls, and returns. The execution of
these instructions is based on the conditions listed in Table 4-8.

Table 4-8. Conditions for Branch, Call, and Return Instructions

Mnemonic Condition Description

EQ ACC=0 Accumulator equal to 0

NEQ ACC#0 Accumulator not equal to O

LT ACC<0 Accumulator less than 0

LEQ ACC<0 Accumulator less than or equal to 0
GT ACC>0 Accumulator greater than 0

GEQ ACC=0 Accumulator greater than or equal to 0
NC C=0 Carry bit cleared

C c=1 Carry bit set

NOV ov=0 No accumulator overflow detected
oV ov=1 Accumulator overflow detected

BIO BIO is low BIO signal is low

NTC TC=0 Test/control flag cleared

TC TC=1 Test/control flag set

UNC none Unconditional operation

45.1 Conditional Branch

The BCND (conditional branch) is a 2-word instruction. The conditions for the
branch are not stable until the fourth cycle of the branch instruction pipeline
execution, because the previous instruction must have completely executed
for the accumulator’s status bits to be accurate. Therefore, following the
branch, the pipeline controller stops the decode of instructions until the condi-
tions are valid. If the conditions defined in the operands of the instruction are
met, the PC is loaded with the second word and the CPU starts filling the pipe-
line with instructions at the branch address. Because the pipeline has been
flushed, the branch instruction has an effective execution time of four cycles
if the branch is taken. If, however, any of the conditions are not met, the pipe-
line controller allows the next instruction (already fetched) to be decoded. This
means that if the branch is not taken, the effective execution time of the branch
is two cycles.

Program Control 4-17

Conditional Operations

4.5.2 Conditional Call

The CC (conditional call) is a 2-word instruction. The CC instruction operates
like the BCND except that the PC pointing to the instruction following the CC
is pushed onto the stack. Thus, the return (RET) operation can pop the stack
to return to the calling sequence. A subroutine or function can have multiple
return paths depending on the data being processed.

4.5.3 Conditional Return

The 'C5x supports conditional returns (RETC) to avoid conditionally branching
around the return. Example 4-1 shows an overflow-handling subroutine
called if the main algorithm causes an overflow condition. During the subrou-
tine, the ACC is checked and, if it is positive, the subroutine returns to the call-
ing sequence. Ifitis not positive, additional processing is necessary before the
return. Note that RETC, like RET, is a 1-word instruction. However, because
of the potential PC discontinuity, RETC operates with the same effective
execution time as BCND and CC.

Example 4-1. Use of Conditional Returns (RETC Instruction)

CC OVER_FLOW,0V ;If overflow,then execute the
;overflow-handling routine.

OVER_FLOW ;Overflow-handling routine.
.RETC GEQ If ACC >= 0, then return.
i?ET ;Return.

4.5.4 Multiconditional Instructions

4-18

Multiple conditions can be defined in the operands of the conditional instruc-
tions. All defined conditions must be met.

The 'C5xincludes instructions that test multiple conditions before passing con-
trol to another section of the program. These instructions are: BCND, BCNDD,
CC, CCD, RETC, RETCD, and XC. These instructions can test the conditions
listed in Table 4-8 individually or in combination with other conditions.

Conditional Operations

You can combine conditions from the following four groups (Table 4-9). You
can select up to four conditions; however, each of these conditions must be
from different groups. You cannot have two conditions from the same group.
For example, you can test EQ and TC at the same time but not NEQ and GEQ.
For example:

BCND BRANCH,LT,NOV, TC ;If ACC <0, no overflow
; and TC bit set.

In this example, LT (ACC < 0), NOV (OV =0), and TC (TC = 1) conditions must
be met for the branch to be taken.

For a description of the condition codes, see Section 4.5, Conditional Opera-
tions, on page 4-17.

Table 4-9. Groups for Multiconditional Instructions

455

Groupl Group2 Group3 Group4

EQ oV C TC

NEQ NOV NC NTC
GT BIO
LT

GEQ

LEQ

Delayed Conditional Branches, Calls, and Returns

To avoid flushing the pipeline and causing extra cycles, the 'C5x has a full set
of delayed conditional branches, calls, and returns. The one 2-word instruction
or two 1-word instructions following a delayed instruction are executed while
the instructions at and following the branch address are being fetched, thereby
giving an effective 2-cycle branchinstead of flushing the pipeline. If the instruc-
tion following the delayed instruction is 2 words, only that 2-word instruction
is executed before the branch is taken.

Conditions tested in the branch are not affected by the instructions following
the delayed branch, as shown in Example 4-2 and Example 4-3.

Example 4-2. Use of Conditional Branch (BCND Instruction)

OPL #030h,PMST
BCND NEW_ADRS,EQ

Program Control 4-19

Conditional Operations

Example 4-3. Use of Delayed Conditional Branch (BCNDD Instruction)

BCNDD NEW_ADRS,EQ
OPL #030h,PMST

The code in Example 4-2 executes in six cycles (two for the OPL and four for
the BCND). The code in Example 4-3 executes in four cycles because the two
dead cycles following the BCNDD are filled with the OPL instruction. The
condition tested on the branch is not affected by the OPL instruction, thereby
allowing it to be executed after the branch.

45.6 Conditional Execution

In cases where you want the conditional branch to skip over one or two words
of code, the branch can be replaced with the execute conditionally (XC)
instruction. There are two forms of the XC instruction. One form is the condi-
tional execute of a 1-word instruction (XC 1). The second form is the condition-
al execute of one 2-word instruction or two 1-word instructions (XC 2). Condi-
tions for XC are the same as for conditional branches, calls, and returns (see
Table 4-8 on page 4-17).

Example 4-4 shows a code example for a conditional branch and
Example 4-5 shows a code example for a conditional execution.

Example 4—4. Conditional Branch Operation

BCND SUM,NC
ADD ONE
SUM APAC

Example 4-5. Use of Conditional Execution (XC Instruction)

4-20

XC 1.C
ADD ONE
APAC

The code in Example 4—4 executes in six cycles (four for the BCND, one for
the ADD, and one for the APAC). The code in Example 4-5 executes in three
cycles (one each for the XC, ADD, and APAC). If the condition (C = 1) is met
in Example 4-5, the ADD instruction is executed. If the condition is not met,
a no operation (NOP) instruction is executed instead of the ADD.

Conditional Operations

The condition (C = 1) must be stable one full cycle before the XC instruction
is executed. This ensures that the decision is made before the instruction fol-
lowing XC is decoded. You should avoid changing the XC test conditions in the
1-word instruction before XC. If no interrupts occur, this instruction has no ef-
fect on XC. However, if an interrupt occurs, it can trap between the instruction
and XC, thus, affecting the condition before XC is executed.

Example 4—6 and Example 4—7 show cycle dependency for the XC instruc-
tion.

Example 4—-6. XC Execution with Unstable Condition

LACL #0 :ACC =0

ADD TEMP1 :ACC = TEMP1

XC 2,EQ JIf ACC == 0,

SPLK #OEEEEh,TEMP2 ;then TEMP2 = OEEEEh

Example 4—-7. XC Execution with Stable Condition

LACL #0 JACC =0

ADD #01234h ;ACC = 00001234

XC 2,EQ JIFACC ==0,

SPLK #OEEEEh,TEMP2 ;then TEMP2 is unmodified

In the code in Example 4—6, the NEQ condition (ACC = TEMP1 = 0) is not
stable one full cycle before the XC instruction is executed. The NEQ status,
caused by the ADD instruction, is not established because the ADD is only a
1-cycle instruction. Therefore, the previous EQ condition, caused by the LACL
instruction, determines the conditional execute. Since the condition is met
(ACC = 0), the one 2-word instruction is executed, and TEMP2 is loaded by
the SPLK instruction. If an interrupt occurs, it can trap before XC and after ADD
so the SPLK instruction cannot execute. In the code in Example 4-7, the NEQ
condition (ACC # 0) is stable one full cycle before the XC instruction is
executed. The NEQ status, caused by the ADD instruction, is established be-
cause the long immediate value (#01234h) used with ADD is a 2-cycle instruc-
tion. Since the condition is not met, a NOP instruction is executed instead of
the one 2-word instruction, and TEMP2 is not affected. If an interrupt occurs,
it has no effect on this instruction sequence.

Program Control 4-21

Single Instruction Repeat Function

4.6 Single Instruction Repeat Function

4-22

A single instruction can be repeated N + 1 times, where N is the value loaded
into a 16-bit repeat counter register (RPTC) by the RPT or RPTZ instruction.
The maximum number of executions of a given instruction is 65 536. The
RPTC cannot be programmed; it is is cleared by reset and loaded only by the
RPT or RPTZ instruction. When the repeat function is used, RPTC is decrem-
ented each time the instruction is executed until the RPTC equals 0. Once a
repeat instruction is decoded, all interrupts, including NMI (but not RS), are
masked until the completion of the repeat loop. However, the "C5x responds
to the HOLD signal while executing a repeat loop.

The RPTC is a memory-mapped register. However, you should avoid
writing to this register. Writing to this register can cause undesired
results.

You can use the repeat function with instructions such as multiply/accumu-
lates, block moves, 1/O transfers, and table reads/writes. When you use the
repeat function, these multicycle instructions are pipelined and the instruction
effectively becomes a single-cycle instruction after the first iteration. Absolute
program or data addresses are automatically incremented when you use the
repeat function. For example, the TBLR instruction can require three or more
cycles to execute, but when the instruction is repeated, a table location can be
read every cycle.

Not all instructions can be repeated or are meaningful to repeat. Table 4-10
through Table 4-13 list all 'C5x instructions according to their repeatability.

Single Instruction Repeat Function

Table 4-10. Muilti-cycle Instructions Transformed Into Single-Cycle Instructions by the

Repeat Function

Mnemonic 1 Description

BLDD Block move from data to data memory

BLDP Block move from data to program memory with destination address in BMAR

BLPD Block move from program to data memory

IN Input data from 1/O port to data memory location

MAC Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREGO; mul-
tiply data memory value by program memory value and store result in PREG

MACD Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREGO; mul-
tiply data memory value by program memory value and store result in PREG; and move
data

MADD Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREGO; mul-
tiply data memory value by value specified in BMAR and store result in PREG; and move
data

MADS Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREGO; mul-
tiply data memory value by value specified in BMAR and store result in PREG

ouT Output data from data memory location to 1/O port

TBLR Transfer data from program to data memory with source address in ACCL

TBLW Transfer data from data to program memory with destination address in ACCL

1t Bold typeface indicates instructions that are new for the 'C5x instruction set.

Program Control 4-23

Single Instruction Repeat Function

Table 4-11. Repeatable Instructions

Mnemonic 1 Description

ADCB Add ACCB and carry bit to ACC

ADD Add data memory value, with left shift, to ACC

ADDB Add ACCB to ACC

ADDC Add data memory value and carry bit to ACC with sign extension suppressed

ADDS Add data memory value to ACC with sign extension suppressed

ADDT Add data memory value, with left shift specified by TREG1, to ACC

APAC Add PREG, with shift specified by PM bits, to ACC

APL AND data memory value with DBMR, and store result in data memory location

BLDD Block move from data to data memory

BLDP Block move from data to program memory with destination address in BMAR

BLPD Block move from program to data memory

BSAR Barrel-shift ACC right

DMOV Move data in data memory

IN Input data from 1/O port to data memory location

LMMR Load data memory value to memory-mapped register

LTA Load data memory value to TREGO; add PREG, with shift specified by PM bits, to ACC

LTD Load data memory value to TREGO; add PREG, with shift specified by PM bits, to ACC;
and move data

LTS Load data memory value to TREGO; subtract PREG, with shift specified by PM bits, from
ACC

MAC Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREGO; mul-
tiply data memory value by program memory value and store result in PREG

MACD Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREGO; mul-
tiply data memory value by program memory value and store result in PREG; and move
data

MADD Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREGO; mul-

tiply data memory value by value specified in BMAR and store result in PREG; and move
data

T Bold typeface indicates instructions that are new for the 'C5x instruction set.

4-24

Single Instruction Repeat Function

Table 4-11. Repeatable Instructions (Continued)

Mnemonic T Description

MADS Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREGO; mul-
tiply data memory value by value specified in BMAR and store result in PREG

MPYA Add PREG, with shift specified by PM bits, to ACC; multiply data memory value by TREGO
and store result in PREG

MPYS Subtract PREG, with shift specified by PM bits, from ACC; multiply data memory value by
TREGO and store result in PREG

MAR Modify ARn

NOP No operation

NORM Normalize ACC

OPL OR data memory value with DBMR and store result in data memory location

ouT Output data from data memory location to 1/O port

POP Pop top of stack to ACCL; zero ACCH

POPD Pop top of stack to data memory location

PSHD Push data memory value to top of stack

PUSH Push ACCL to top of stack

ROL Rotate ACC left 1 bit

ROLB Rotate ACCB and ACC left 1 bit

ROR Rotate ACC right 1 bit

RORB Rotate ACCB and ACC right 1 bit

SACH Store ACCH, with left shift, in data memory location

SACL Store ACCL, with left shift, in data memory location

SAMM Store ACCL in memory-mapped register

SAR AR, {ind} Store ARn (modified in indirect addressing mode) in data memory location

SATH Barrel-shift ACC right O or 16 bits as specified by TREG1

SATL Barrel-shift ACC right as specified by TREG1

SBB Subtract ACCB from ACC

SBBB Subtract ACCB and logical inversion of carry bit from ACC

tBold typeface indicates instructions that are new for the 'C5x instruction set.

Program Control

4-25

Single Instruction Repeat Function

Table 4-11. Repeatable Instructions (Continued)

Mnemonic 1 Description

SFL Shift ACC left 1 bit

SFLB Shift ACCB and ACC left 1 bit

SFR Shift ACC right 1 bit

SFRB Shift ACCB and ACC right 1 bit

SMMR Store memory-mapped register in data memory location

SPAC Subtract PREG, with shift specified by PM bits, from ACC

SPH Store PREG high byte, with shift specified by PM bits, in data memory location

SPL Store PREG low byte, with shift specified by PM bits, in data memory location

SQRA Add PREG, with shift specified by PM bits, to ACC; load data memory value to TREGO;
square value and store result in PREG

SQRS Subtract PREG, with shift specified by PM bits, from ACC; load data memory value to
TREGO; square value and store result in PREG

SST Store STn in data memory location

SUB Subtract data memory value, with left shift, from ACC

SUBB Subtract data memory value and logical inversion of carry bit from ACC with sign extension
suppressed

SUBC Conditional subtract

SUBS Subtract data memory value from ACC with sign extension suppressed

SUBT Subtract data memory value, with left shift specified by TREG1, from ACC

TBLR Transfer data from program to data memory with source address in ACCL

TBLW Transfer data from data to program memory with destination address in ACCL

XPL Exclusive-OR data memory value with DBMR and store result in data memory location

T Bold typeface indicates instructions that are new for the 'C5x instruction set.

4-26

Single Instruction Repeat Function

Table 4-12. Instructions Not Meaningful to Repeat

Mnemonic 1 Description

ABS Absolute value of ACC; zero carry bit

AND AND data memory value with ACCL; zero ACCH

ANDB AND ACCB with ACC

BIT Test bit

BITT Test bit specified by TREG2

CLRC Clear status bit

CMPL 1s complement ACC

CMPR Compare ARn with ARCR as specified by CM bits

CPL Compare data memory value with DBMR

CRGT Store ACC in ACCB if ACC > ACCB

CRLT Store ACC in ACCB if ACC < ACCB

EXAR Exchange ACCB with ACC

LACB Load ACC to ACCB

LACC Load data memory value, with left shift, to ACC

LACL Load data memory value to ACCL; zero ACCH

LACT Load data memory value, with left shift specified by TREG1, to ACC

LAMM Load contents of memory-mapped register to ACCL; zero ACCH

LAR Load data memory value to ARX

LDP Load data memory value to DP bits

LPH Load data memory value to PREG high byte

LST Load data memory value to STm

LT Load data memory value to TREGO

LTP Load data memory value to TREGO; store PREG, with shift specified by PM bits, in
ACC

MPY Multiply data memory value by TREGO and store result in PREG

MPYU Multiply unsigned data memory value by TREGO and store result in PREG

tBold typeface indicates instructions that are new for the 'C5x instruction set.

Program Control 4-27

Single Instruction Repeat Function

Table 4-12. Instructions Not Meaningful to Repeat (Continued)
Mnemonic 1 Description

NEG Negate (2s complement) ACC

OR OR data memory value with ACCL

ORB OR ACCB with ACC

PAC Load PREG, with shift specified by PM bits, to ACC
SACB Store ACC in ACCB

SAR AR, dma Store ARn direct addressed in data memory location
SETC Set status bit

SPM Set product shift mode (PM) bits

XOR Exclusive-OR data memory value with ACCL

XORB Exclusive-OR ACCB with ACC

ZALR Zero ACCL and load ACCH with rounding

ZAP Zero ACC and PREG

ZPR Zero PREG

T Bold typeface indicates instructions that are new for the 'C5x instruction set.

4-28

Single Instruction Repeat Function

Table 4-13. Nonrepeatable Instructions
Mnemonic T Description
ADD #k Add short immediate to ACC

ADD #lk, shift
ADRK

AND #lk, shift
APL #lk

B

BACC
BACCD
BANZ
BANZD
BCND
BCNDD

BD

CALA
CALAD

CALL

CALLD

CcC

CCD

CPL #lk
IDLE

IDLE2

INTR

LACC #lk, shift
LACL #k

LAR #k

LAR #lk

LDP #k

Add long immediate, with left shift, to ACC

Add short immediate to AR

AND long immediate, with left shift, with ACC

AND data memory value with long immediate and store result in data memory location
Branch unconditionally

Branch to program memory location specified by ACCL
Delayed branch to program memory location specified by ACCL
Branch to program memory location if AR not zero

Delayed branch to program memory location if AR not zero
Branch conditionally to program memory location

Delayed branch conditionally to program memory location
Delayed branch unconditionally

Call to subroutine addressed by ACCL

Delayed call to subroutine addressed by ACCL

Call to subroutine unconditionally

Delayed call to subroutine unconditionally

Call to subroutine conditionally

Delayed call to subroutine conditionally

Compare data memory value with long immediate

Idle until nonmaskable interrupt or reset

Idle until nonmaskable interrupt or reset — low-power mode
Software interrupt that branches program control to program memory location
Load long immediate, with left shift, to ACC

Load short immediate to ACCL; zero ACCH

Load short immediate to ARX

Load long immediate to ARX

Load short immediate to DP bits

tBold typeface indicates instructions that are new for the 'C5x instruction set.

Program Control 4-29

Single Instruction Repeat Function

Table 4-13. Nonrepeatable Instructions (Continued)

Mnemonic 1 Description

MPY #k Multiply short immediate by TREGO and store result in PREG

MPY #lk Multiply long immediate by TREGO and store result in PREG

NMI Nonmaskable interrupt and globally disable interrupts (INTM = 1)

OPL #lk OR data memory value with long immediate and store result in data memory location
OR #lk, shift OR long immediate, with left shift, with ACC

RET Return from subroutine

RETC Return from subroutine conditionally

RETCD Delayed return from subroutine conditionally

RETD Delayed return from subroutine

RETE Return from interrupt with context switch and globally enable interrupts (INTM = 0)
RETI Return from interrupt with context switch

RPT Repeat next instruction specified by data memory value

RPTB Repeat block of instructions specified by BRCR

RPTZ Clear ACC and PREG,; repeat next instruction specified by long immediate

SBRK Subtract short immediate from AR

SPLK #lk Store long immediate in data memory location

SUB #k Subtract short immediate from ACC

SUB #lk, shift
TRAP

XC

XOR #lk, shift
XPL #lk

Subtract long immediate, with left shift, from ACC

Software interrupt that branches program control to program memory location 22h

Execute next instruction(s) conditionally

XOR long immediate, with left shift, with ACC

Exclusive-OR data memory value with long immediate and store result in data memory

location

T Bold typeface indicates instructions that are new for the *C5x instruction set.

4-30

Block Repeat Function

4.7 Block Repeat Function

A block of instructions can be repeated N + 1 times, where N is the value
loaded into a 16-bit block repeat counter register (BRCR) by the RPTB instruc-
tion. The maximum number of executions of a given instruction block is
65 536. The block repeat feature provides no-overhead looping for imple-
mentation of FOR and DO loops. The block repeat function is controlled by
three registers (PASR, PAER, and BRCR) and the block repeat active flag
(BRAF) bit in the PMST. You can set or clear the BRAF bit via the PMST.

When the repeat block (RPTB) instruction is executed, it automatically sets the
BRAF bit, loads the program address start register (PASR) with the address
of the instruction following the RPTB instruction, and loads the program ad-
dress end register (PAER) with its long immediate operand. The long immedi-
ate operand is the address of the instruction following the last instruction in the
loop, minus 1. The repeat block must contain at least three instruction words.
With each PC update, the PAER is compared to the PC. If they are equal, the
BRCR contents are compared to 0. If the BRCR is greater than 0, it is decrem-
ented, and the PASR is loaded into the PC, therefore restarting the loop. If they
are not equal, the BRAF bit is cleared and the processor resumes execution
past the end of the code’s loop. Example 4—8 shows how the RPTB instruction
can be used.

Example 4-8. Use of Block Repeat (RPTB Instruction)

SPLK #0Fh,BRCR ;Set loop count to 16.

RPTB END_LOOP-1 ;For|=BRCR;|>=0; |——.
*

ZAP :ACC = PREG = 0.

SQRA *AR2 :PREG = X 2,

SPL SQRX :Save X2,

MPY * :PREG = b x X.

LTA SQRX :ACC =bX. TREG=X 2,

MPY * :PREG = aX 2.

APAC :ACC = aX 2 + bX.

ADD * 0,AR3 (ACC=aX 2+bX+c=Y.

SACL *0,AR1 :Save Y.

CRGT :Save MAX.
END_LOOP

Example 4-8 implements 16 executions of Y = aX2 + bX + ¢ and saves the
maximum value in ACCB. Note that the initialization of the auxiliary registers
is not shown in the coded example. PAER is loaded with the address of the last
word in the code segment. The label END_LOOP is placed after the last
instruction, and the RPTB instruction long immediate is defined as
END_LOOP-1, in case the last word in the loop is a 2-word instruction.

Program Control 4-31

Block Repeat Function

4.7.1 Context Save and Restore Used With Block Repeat

Thereis only one set of block repeat registers, so multiple block repeats cannot
be nested without saving the context of the outside block or using the BANZD
instruction. The simplest method of executing nested loops is to use the RPTB
instruction for only the innermost loop and using the BANZD instruction for all
the outer loops. This is still a valuable cycle-saving operation because the in-
nermostloop is repeated significantly more times than the outer loops. You can
nest block repeats by storing the context of the outer loop before initiating the
inner loop, then restoring the outer loop’s context after the inner loop com-
pletes. The context save and restore are shown in Example 4-9.

Example 4-9. Context Save and Restore Used With Block Repeat

4-32

SMMR BRCR,TEMP1 ;Save block repeat counter

SMMR PASR,TEMP2 :Save block start address

SMMR PAER,TEMP3 ;Save block end address

SPLK #NUM_LOOP,BRCR ;Set inner loop count

RPTB END_INNER :For 1 =0; I<=BRCR; |++
END_INNER

LMMR BRCR,TEMP1 ;Restore block repeat counter

OPL #1,PMST ;Set BRAF to continue outer loop

LMMR PASR,TEMP2 ;Restore block start address

LMMR PAER,TEMP3 :Restore block end address

In Example 4-9, the context save and restore operations require 14 cycles.
Repeated single and BANZ/BANZD loops can also be inside a block repeat
and can include subroutine calls. Upon returning from a subroutine call, the
block repeat resumes. Repeated blocks can also be interrupted. When an en-
abled interrupt occurs during a repeated block of code, the CALU traps to the
interrupt and, when the interrupt service routine returns, the block repeat
resumes.

Caution should be exercised when interrupting block repeats. If the interrupt
service routine uses block repeats, check whether a block repeat has been in-
terrupted and, if so, save the context of the block repeat, as shown in
Example 4-9. Smaller external loops can be implemented with the BANZD-
looping method that requires two extra cycles per loop (that is, if the loop count
is less than eight, it can be more efficient to use the BANZD technique). Single-
cycle instructions can be repeated within a block repeat by using the RPT or
RPTZ instructions.

WHILE loops can be implemented with the RPTB instruction and a conditional
reset of the BRAF bit. The following code example clears BRAF bit so that the

Block Repeat Function

processor will drop out of the code loop and continue to sequentially access
instructions past the end of the loop if an overflow occurs:

XC 2,0V :If overflow,
APL #0FFFEh,PMST ;then turn off block repeat.

The equivalent of a WHILE loop can be implemented by clearing the BRAF bit
if the exit condition is met. If this is done, the program completes the current
pass through the loop but does not go back to the top. To exit, the BRAF bit
must be cleared at least four instruction words before the end of the loop. You
can exit block repeat loops and return to them without stopping and restarting
the loop. Branches, calls, and interrupts do not necessarily affect the loop.
When program control is returned to the loop, loop execution is resumed.
Example 4-10 shows the block repeat with a small loop of code that executes
a series of tasks. The tasks are stored in a table addressed by TEMPOF. The
number of tasks to be executed is defined at NUM_TASKS.

Example 4-10. Block Repeat with Small Loop of Code

BLPD NUM_TASKS,BRCR ;Set loop count.
SPLK #(TASKS-1),TEMPOF ;TEMPOF points to list of
;tasks.
RPTB ENDCALL-1 ;Forl =0,1 <= NUM_TASKS;
HEn
TASK_HANDLER
LACC TEMPOF ;ACC points to task table.
ADD #1 ;Increment pointer to next
‘task.
SACL TEMPOF ;Save for next pass of loop.
TBLR TEMPOE :Get task address.
LACC TEMPOE ;ACC = task address.
CALA :Call task.
ENDCALL

In the setup of Example 4-10, the BRCR is loaded with the number of tasks
to be executed. Next, the address of the task table is loaded into a temporary
register. The block repeat is started with the execution of the RPTB instruction.
The PASR is loaded with the address of the LACC TEMPOF instruction. The
PAER is loaded with the address of the last word of code. Notice that the label
marking the end of the loop is placed after the last instruction, then the PAER
is loaded with that label, minus 1. It is possible to place the label before the
CALA instruction, then load the PAER with the label address because this is
a 1-word instruction. However, if the last instruction in this loop had been a
2-word instruction, the second word of the instruction would not be read and
the long immediate operand would be substituted with the first instruction in
the loop.

Program Control 4-33

Block Repeat Function

Inside the loop, the pointer to the task table is incremented and saved. Then,
the task address is read from the table and loaded into the ACC. Next, the task
is called by the CALA instruction. Notice that, when the task returns to the task
handler, it returns to the top of the loop. This is because the PC has already
been loaded with the PASR before the CALA executes the PC discontinuity.
Therefore, when the CALA is executed, the address at the top of the loop is
pushed onto the PC stack.

4.7.2 Interrupt Operation in a Block Repeat

The single-word instruction at the end of a repeat block is not interruptible, ex-
cept, when the previous instruction is a single-word multiple cycles instruction
as shown in Example 4-11 and Example 4-12. Since BLDD BMAR, *+ is a
single-word multiple-cycle instruction, the interrupt return is to the end of the
repeat block (see Example 4-12).

An incoming interrupt is latched by the 'C5x as soon as it meets the interrupt
timing requirement. However, the PC does not branch to the corresponding
interrupt service routine vector if it is fetching the last word of a repeat block
loop. This is the functional equivalent to disabling interrupts before the last
instruction word is fetched and reenabling interrupts afterward. Interrupt
operation with repeat blocks can potentially increase the worst-case interrupt
latency time.

Note:

When the case in Example 4-12 occurs, execute the following steps:

1) Save the PMST at the beginning of the interrupt service routine.
2) Clear the BRAF bit inside the interrupt service routine.
3) Restore the PMST before returning from the interrupt service routine.

Example 4-11. Interrupt Operation With a Single-Word Instruction at the End of an RPTB

4-34

RPTB END_LOOP-1
SARARO,* < return from interrupt here if not the last loop iteration

LACC *+

SACL * « interrupt occurs here
ENDLOOP:

MAR* AR1 «~ return from interrupt here if interrupt occurs during last
two instruction words of the last loop iteration

Block Repeat Function

Example 4-12. Interrupt Operation With a Single-Word Instruction Before the
End of RPTB

RPTB END_LOOP-1
SAR ARO,*

BLDD BMAR,*+
~ Interrupt occurs here and return at SACL
SACL *
END_LOOP:
MAR * AR1

Program Control 4-35

Interrupts

4.8

48.1

4-36

Interrupts

The 'C5x CPU supports 16 user-maskable interrupts (INT16-INT1); however,
each 'C5x DSP does not necessarily use all 16 interrupts. For example, all the
'C5x DSPs use only 9 of these interrupts except 'C57, which uses 10 of them
(the others are tied high internally). External interrupts are generated by exter-
nal hardware using INT1-INT4. Internal interrupts generated by the on-chip
peripherals are:

(1 The timer (TINT)
(1 The serial ports (RINT, XINT, TRNT, TXNT, BRNT, and BXNT)
(1 Host port interface (HINT)

In addition, the 'C5x has three software interrupt instructions, INTR, NMI, and
TRAP; and two external nonmaskable interrupts, RS and NMI. The reset (RS)
interrupt has the highest priority, and the INT16 interrupt has the lowest priority.
The INT1-INT4 and NMl interrupts are valid if the signal is high for at least two
machine cycles and low for a minimum of three machine cycles. This triggering
gives the 'C5x the ability to avoid false interrupts from noise or taking multiple
interrupts on a single, long interrupt signal.

Note:

If the CPU is in IDLE2 mode, an interrupt input must be high for at least four
machine cycles and low for a minimum of five machine cycles to be properly
recognized.

Interrupt Vector Locations

Table 4-14 shows interrupt vector locations and priorities for all internal and
external interrupts. Interrupt addresses are spaced two locations apart so that
branch instructions can be accommodated in these locations. The TRAP
instruction (software interrupt) is not prioritized but is included here because
it has its own vector location.

To make vectors stored in ROM reprogrammable, you can use the following
code:

LAMM TEMPO :ACC = ISR address.
BACC ;Branch to ISR.

TEMPO resides in DARAM block B2 and holds the address of the interrupt ser-
vice routine (ISR). Note that the ISR addresses must be loaded into block B2
before interrupts are enabled. For further information regarding interrupt op-
eration with respect to specific DSPs in the 'C5x generation, see subsection
9.1.2, External Interrupts, on page 9-4.

Interrupts

Table 4-14. Interrupt Vector Locations and Priorities

Location
Name Dec Hex Priority Function
RS 0 0 1 (highest) External nonmaskable reset signal
INT1 2 2 3 External user interrupt #1
INT2 4 4 4 External user interrupt #2
INT3 6 6 5 External user interrupt #3
TINT 8 8 6 Internal timer interrupt
RINT 10 A 7 Serial port receive interrupt
XINT 12 C 8 Serial port transmit interrupt
TRNTT 14 E 9 TDM port receive interrupt
TXNTH 16 10 10 TDM port transmit interrupt
INT4 18 12 11 External user interrupt #4
— 20-23 14-17 N/A Reserved
HINT 24 18 — HINT ('C57 only)
— 26-33 1A-21 N/A Reserved
TRAP 34 22 N/A Software trap instruction
NMI 36 24 2 Nonmaskable interrupt
—_— 38-39 26-27 N/A Reserved for emulation and test
— 40-63 28-3F N/A Software interrupts

T RINT2 on 'C52;

BRNT on 'C56/C57
¥ XINT2 on 'C52; BXNT on 'C56/C57

The interrupt vectors can be remapped to the beginning of any 2K-word page
in program memory space. The interrupt vector address is generated by con-
catenating the IPTR bits in the PMST (see subsection 4.4.2, Processor Mode
Status Registers (PMST), on page 4-7) with the interrupt vector number
(1-16) shifted by 1 as shown in Figure 4—6.

Upon reset, the IPTR bits are all cleared, thereby mapping the vectors to page
0 in program memory space. Therefore, the reset vector always resides at
location Oh in program memory space. You can move the interrupt vectors to
another location by loading a nonzero value into the IPTR bits. For example,
you can move the interrupt vectors of INT 5 (as shown in Figure 4-6) to loca-
tion 080Ah by loading the IPTR with 1.

Program Control 4-37

Interrupts

Figure 4-6. Interrupt Vector Address Generation

4.8.2

4-38

Vector

IPTR = 00001 INT =5

/

[o

0

Interrupt Operation

When an interrupt occurs, a flag is activated in the 16-bit interrupt flag register
(IFR). The interrupt flag is activated whether the interrupt is enabled or dis-
abled. An interrupt flag (other than from an active serial port) is automatically
cleared when the corresponding interrupt trap is taken.

The number of the specific interrupt being acknowledged is indicated by ad-
dress bits A5—A1 on the falling edge of the interrupt acknowledge (IACK) sig-
nal. If the interrupt vectors reside in on-chip memory, the CPU should operate
in address visibility mode (AVIS = 0) so the interrupt number can be decoded.
If an interrupt occurs while the CPU is on hold and HM = 0, the address will not
be present when the IACK is activated.

Upon receiving an interrupt, the following actions occur:

The CPU completes execution of current instruction.
Interrupts are globally disabled (INTM = 1).

The PC is pushed to the top of the stack (TOS).

The PC is set to the interrupt vector address.

Key registers are saved into context shadow registers.
IACK signal goes low.

Corresponding interrupt flag bit in the IFR is cleared.

[N I I I

The 'C5x recognizes pending interrupts on a priority basis. At the start of each
machine cycle (when INTM = 0), the interrupt status is polled and the highest
priority interrupt present and enabled is executed. When an interrupt is being
serviced, even higher priority interrupts cannot be serviced until interrupts are
reenabled — usually at the end of the ISR.

Interrupts

4.8.3 Interrupt Flag Register (IFR)

The IFR is a memory-mapped CPU register located at address 06h in data
memory space. The IFR can be read to identify pending external and internal
interrupts and written to clear interrupts. An interrupt sets its corresponding
interrupt flag in the IFR until the interrupt is recognized by the CPU. Any one
of the following events clears the interrupt flag:

[0 The'C5x is reset (RS is active).
[Aninterrupt trap is taken.
1 A 1is written to the appropriate bit in the IFR.

Note that when interrupts are disabled (INTM = 1) and an interrupt causes an
IDLE or IDLEZ instruction to be exited, none of the IFR bits are cleared (includ-
ing the IFR bit that caused the IDLE or IDLE?2 to be exited). The only event,
other than reset or clearing the IFR bits directly in software, that can cause an
IFR bit to be cleared is actually taking the interrupt trap when the the ISR is
entered. Therefore, if an interrupt causes an IDLE or IDLEZ instruction to be
exited when interrupts are disabled, the corresponding IFR bit is not cleared;
whereas, ifinterrupts are enabled and the ISR is entered, the IFR bitis cleared.
Figure 4—7 shows the IFR fields.

A value of 1 in an IFR bit indicates a pending interrupt. A 1 can be written to
a specific bit to clear the corresponding interrupt. Writing a 0 to a specific bit
has no effect. All pending interrupts can be cleared by writing the current con-
tents of the IFR back into the IFR. The following example clears two interrupts,
INT1 and INT3, without affecting any other flags that have been set:

SPLK #5,IFR ;Clear flags for INT1 and INT3.

The IFR sets only one flag for each interrupt recognized. If several hardware
interrupts occur on the same pin before the interruptis recognized by the CPU,
the CPU will respond as though only a single interrupt (the last one) had
occurred.

Figure 4-7. Interrupt Flag Register (IFR) Diagram

Lowest P Priority P» Highest
15-12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved | HINT Reserved [INT4 | TXNT [TRNT | XINT | RINT | TINT | INT3 | INT2 | INT1

Program Control

4-39

Interrupts

4.8.4 Interrupt Mask Register (IMR)

The IMR is a memory-mapped CPU register located at address 04h in data
memory space. The IMR is used for masking external and internal interrupts.
Neither NMI nor RS are in the IMR; therefore, the IMR has no effect on these
nonmaskable interrupts.

Figure 4-8 shows the IMR fields.

Figure 4-8. Interrupt Mask Register (IMR) Diagram

15-12

11

9 8 7 6 5 4 3 2 1 0

Reserved

HINT

Reserved | INT4 | TXNT | TRNT [XINT | RINT [TINT [INT3 | INT2 | INT1

Avalue of 1 in an IMR bit enables the corresponding interrupt, provided that the
INTM bitin STO (see subsection 4.4.3, Status Registers (STOand ST1), on page
4-10) is cleared. The IMR is accessible with both read and write operations.

4.8.5 Interrupt Mode (INTM) Bit

4-40

The INTM bitin STO (see subsection 4.4.3, Status Registers (STO and ST1),
on page 4-10) globally enables or disables all maskable interrupts:

[When INTM = 0, all unmasked interrupts are enabled.
[When INTM = 1, all unmasked interrupts are disabled.

The INTM bit does not modify the IFR or IMR. Any one of the following events
sets the INTM bit:

[0 The 'C5xis reset (RS is active).

[d An interrupt trap is taken.

(1 The NMl instruction is executed.

[The SETC INTM instruction is executed.

Any one of the following events clears the INTM bit:

[The CLRC INTM instruction is executed.
[The RETE instruction is executed.

Interrupts

4.8.6 Nonmaskable Interrupts

The two nonmaskable interrupts, RS and NMI, are unaffected by either the
INTM bit or the contents of the IMR. You can use the NMI as a soft reset of the
'C5x or as the input to a system’s most time-critical interrupt event. When used
as a soft reset, NMI does not perform any of the control bit or register initializa-
tions that are provided by the RS function. The NMI trap can be initiated via
software using the NMI instruction.

Upon receiving an NMI, the following actions occur:

1) The CPU completes execution of all instructions in the pipeline.
2) Interrupts are globally disabled (INTM = 1).

3) The PC is set to the NMI interrupt vector (location 24h).

Because it is possible to service an NMI, even during an ISR, the key registers
are not saved automatically. The NMI is different from RS because it does not
affect any of the 'C5x modes. The NMI is delayed by multicycle instructions
(including RPT) and by HOLD, as described in subsection 4.8.9, Interrupt
Latency, on page 4-43. RS is discussed in Section 4.9, Reset, on page 4-45.

4.8.7 Software-Initiated Interrupts

Notall of the 16 CPU interrupts are utilized on any given ’C5x DSP. The vectors
for the interrupts that are not tied to specific external pins or internal peripher-
als can be used as software interrupts. The three software interrupt instruc-
tions, INTR, NMI, and TRAP, are unaffected by either the INTM bit or the
contents of the IMR. These instructions allow interrupts to be invoked under
software control.

The INTR instruction (page 6-111) allows any ISR to be executed from your
software. An INTR interrupt for the external interrupts (INT1-INT4) executes
like an external interrupt described in subsection 4.8.2, Interrupt Operation.

The NMI instruction (page 6-179) has the same affect as a hardware nonmaskable
interrupt (NMI). The NMI instruction transfers program control to program memory
location 24h. Interrupts are globally disabled (INTM = 1), but key registers are not
saved into context shadow registers.

The TRAP instruction (page 6-277) transfers program control to program
memory location 22h. The TRAP instruction disables interrupts (INTM = 1), but
key registers are not saved into context shadow registers.

Program Control 4-41

Interrupts

4.8.8 Interrupt Context Save

4-42

When an interrupt is executed, certain key CPU registers are saved automati-
cally. The PC is saved on an 8-deep hardware stack (see Section 4.2, Hard-
ware Stack), which is also used for subroutine calls. Therefore, the CPU sup-
ports subroutine calls within an ISR as long as the 8-level stack is not exceed-
ed. Also, there is a 1-deep stack (or shadow registers) for each of the following
registers:

Accumulator (ACC)

Accumulator buffer (ACCB)

Auxiliary register compare register (ARCR)
Index register (INDX)

Processor mode status register (PMST)
Product register (PREG)

Status register 0 (STO)

Status register 1 (ST1)

Temporary register 0 (TREGO) for multiplier
Temporary register 1 (TREG1) for shift count
Temporary register 2 (TREGZ2) for bit test

oo uUrouooo

When the interrupt trap is taken, the contents of all these registers are pushed
onto a 1-level stack, with the exception of the the INTM bit in STO and the XF
bitin ST1. On aninterrupt, the INTM bit is always set to disable interrupts. The
values in the registers at the time of the interrupt trap are still available to the
ISR but are also protected in the shadow registers. The shadow registers are
copied back to the CPU registers when the RETI or RETE instruction is
executed. This function allows the CPU to be used for the ISR without requiring
context save and restore overhead in the ISR.

With only a 1-level stack for the registers, nested interrupts cannot be sup-
ported. In most cases this is not a problem, because without the context save
and restore overhead, serial processing of the interrupts is so efficient that
nested interrupt handling is less effective. If the application requires nested in-
terrupts, they can be handled by using a software stack. Software compatibility
with the 'C2x is maintained because the RET instruction, if it is used to return
from the ISR on a 'C2x, cannot restore these registers. Interrupts are not en-
abled unless a RETE or CLRC INTM instruction is executed.

In the case where the ISR needs to modify values in these registers with re-
spect to the interrupted code, these registers can be restored from the stack
and modified as shown in Example 4-13.

Interrupts

Example 4-13. Modifying Register Values During Interrupt Context Save

ISR
LACC #ISR_RE_ENTER ;ACC = address of reentry point.
PUSH ;Top of stack = reentry point.
RETI ;Pop all the stacks.

ISR_RE_ENTER

CLRC INTM
RET ;Return to interrupted code.

In Example 4-13, the address of the re-entry point within the ISR is pushed
onto the PC stack. The RETI instruction pops all the stacks, including the PC
stack, and resumes execution. At the end of the ISR, a standard return is
executed because the stack is already popped.

4.8.9 Interrupt Latency

The interrupt latency of the 'C5x depends on the current contents of the pipe-
line. The CPU always completes all instructions in the pipeline before execut-
ing a software vector. Figure 4—9 shows the minimum latency from the time an
interrupt occurs externally to the IACK. The minimum IACK time is defined as
eight cycles:

[3 cycles to externally synchronize the interrupt
[1 cycle for the interrupt to be recognized by the CPU
[4 cycles to execute the INTR instruction and flush the pipeline

On the sixth cycle, an INTR is jammed into the pipeline and the INTM bit is set
to 1. On the ninth cycle, the interrupt vector is fetched and the IACK signal is
generated.

Note that if the instruction immediately ahead of the INTR in the pipeline
(Main5 in Figure 4-9) is an SST #0 and INTM was previously cleared, INTM
gets set before this instruction executes and INTM is stored as a 1. Therefore,
if STO is restored in order to return to the previous context, interrupts will be
disabled (INTM = 1) rather than enabled.

Accordingly, if this is critical in an application, an SST #0 instruction should be

executed only with interrupts disabled or interrupts should be reenabled after
loading STO, if necessary.

Program Control 4-43

Interrupts

Figure 4-9. Minimum Interrupt Latency

Interrupt occurs
before the fetch
of this instruction *

Fetch Mainl
Decode
Read

Execute

4-44

Interrupt This instruction will be
written to refetched after return from
IFR * ‘interrupt

Main2 Main3 Main4 Main5 Main6 Dummy Dummy Dummy Vecl Vec2 Dummy Dummy ISR1
Mainl Main2 Main3 Main4 Main5 INTR Dummy Dummy Dummy Vecl Vec2 Dummy Dummy

Mainl Main2 Main3 Maind Main5 INTR Dummy Dummy Dummy Vecl Vec2 Dummy

Mainl Main2 Main3 Main4 Main5 INTR Dummy Dummy Dummy Vecl Vec2

1 Interrupt 1 INTR 1+ 1ACK
latched external jammed into generated here
to the CPU the pipeline

and INTM =1

The maximum latency is a function of the contents of the pipeline. Multicycle
instructions add additional cycles to empty the pipeline. This applies to instruc-
tions that are extended via wait-state insertion on memory accesses. The wait
states required for interrupt vector accesses also affect the latency.

The repeat instructions (RPT and RPTZ) delay execution of interrupts (includ-
ing NMI, but not RS). The repeat instructions require that all executions of the
next instruction be completed before allowing an interrupt to execute to protect
the context of the repeated instructions. This protection is necessary, because
these instructions run parallel operations in the pipeline, and the context of
these additional parallel operations cannot be saved in the ISR.

The HOLD function takes precedence over interrupts and can delay the inter-
rupt trap. If an interrupt occurs when the CPU is in hold (HOLD asserted), the
interrupt is not taken until HOLDA is deasserted when the hold state ends.
However, if the CPU is in the concurrent hold mode (HM = 0) and the interrupt
vector table is located in on-chip memory, the CPU takes the interrupt regard-
less of the HOLD status.

Interrupts cannot be processed between the CLRC INTM instruction and the
next instruction in a program sequence. If an interrupt occurs during the de-
code phase of the CLRC INTM instruction, the CPU always completes CLRC
INTM and the following instruction before the pending interrupt is processed.
Waiting for these instructions to complete, ensures that a return (RET) can be
executed in an ISR before the nextinterruptis processed to protect against PC
stack overflow. If the ISR is ends with an RETE instruction, the CLRC INTM
instruction is unnecessary. Similarly, the SETC INTM instruction and the next
instruction cannot be interrupted.

4.9 Reset

Reset

Reset (RS) is a nonmaskable external interrupt that can be used at any time
to place the 'C5x into a known state. Reset is typically applied after power-up
when the 'C5x is in an unknown state. The reset signal aborts memory opera-
tions; therefore, the system should be reinitialized after each reset. Reset is
the highest priority interrupt; thus, no other interrupt takes precedence over a
reset. You can use the NMI interrupt for soft resets because the NMI does not
abort memory operations or initialize status bits.

A hardware reset clears all pending interrupt flags.

Driving the RS signal low causes the 'C5x to terminate execution and forces
the PC to the reset vector location Oh in program memory space. At power-up,
the state of the 'C5x is undefined. For correct system operation after power-up,
the RS signal must be asserted low for a minimum of six clock cycles so that
the data lines are placed into the high-impedance state and the address lines
are driven low. The 'C5x latches the reset pulse and generates an internal re-
set pulse long enough to guarantee a reset. After the RS signal is high for 17
clock cycles, CPU execution begins at location 0h, which normally contains a
branch instruction to the system initialization routine. When the 'C5x receives
a reset signal, the following sequence of actions occur:

1) The program currently being executed is asynchronously aborted.

2) The CPU registers’ status bits are set per Table 4-15. Note that any
remaining status bits remain undefined and should be initialized appropri-
ately.

3) The PCis cleared. The address bus is unknown while RS is low. If HOLD
is asserted while RS is low, HOLDA is generated. In this case, the address
lines are placed into a high-impedance state until HOLD is brought back
high.

4) Asynchronized reset (SRESET) signal is sent to the peripheral circuits to
initialize them. The peripheral registers’ status bits are set per Table 4-16
on page 4-47. See subsection 9.1.3, Peripheral Reset, on page 9-6.

Execution starts from program memory location Oh when the RS signal is driv-
en high. If HOLD is asserted while RS is low, normal reset operation occurs
internally, butall buses and control lines remain in a high-impedance state, and
HOLDA is asserted, as shown in Figure 4—-10(a) and (b) on page 4-49. Howev-
er, if RS is asserted while HOLD and HOLDA are low, the CPU comes out of
the hold mode momentarily by deactivating HOLDA. This condition should be
avoided. Upon release of HOLD and RS, execution starts from location Oh.

Program Control 4-45

Reset

Note that the external parallel interface signals are asynchronously disabled
during reset; therefore, external DMA is not supported during reset. See sub-
section 8.6.2, External DMA, on page 8-24 for more information.

Table 4-15. CPU Registers’ Bit Status at Reset

Register Bit Status Result

STO INTM - 1 All maskable interrupts are disabled. Note that RS and NMI are nonmaskable.
ov - 0 Overflow bit is cleared.

ST1 C -1 Carry bit is set.
CNF - 0 DARAM block B0 is mapped into data memory space.
HM - 1 Processor halts execution during HOLD.
PM -0 PREG output is not shifted.
SXM - 1 Sign extension on data is enabled.
XF -1 External flag pin is set high.

PMST AVIS - O Internal program address appears at address pins.
BRAF - 0 Block repeat is disabled.
IPTR - O Reset vector is cleared.

MP/MC - (pin) MP/MC pin is sampled to determine use of on-chip ROM.

NDX - O 'C2x-compatible mode is selected.
OVLY - 0 SARAM block is not mapped to data memory space.
RAM - 0 SARAM block is not mapped to program memaory space.
TRM -5 0 'C2x-compatible mode is selected.

IFR All bits - 0 No interrupts are pending.

CBCR CENB1- O Circular buffer 1 is disabled.
CENB2 - 0 Circular buffer 2 is disabled.

GREG All bits - 0 All data memory space is configured as local.

RPTC All bits - 0 Repeat counter is cleared.

4-46

Reset

Table 4-16. Peripheral Registers’ Bit Status at Reset

Register Bit Status Result
PDWSR All bits - 1 All program and data wait-state registers are set to 7.
IOWSR All bits - 1 All /O wait-state registers are set to 7.
CWSR BIG - 0 I/0O space is divided into eight 8K-word blocks.
D - 1 Wait states are enabled for data memory space.
1/0 High - 1 Wait states are enabled for upper half of I1/0 space.
1/0 Low - 1 Wait states are enabled for lower half of I/O space.
P - 1 Wait states are enabled for program memory space.
DRR All bits - 0 Data receive register is cleared.
DXR All bits - 0 Data transmit register is cleared.
SPC/BSPC/ DLB - 0 Digital loop back is disabled.
TsPe FO - 0 Data is transmitted/received as 16-bit words.
Free - 0 Stop serial clock is enabled.
FSM - 0 Serial port is operated in continuous mode.
INO - (pin) INO reflects the current level of the CLKR pin.
IN1 - (pin) IN1 reflects the current level of the CLKX pin.
MCM - 0 CLKX pin is configured as input pin.
RRDY - 0 Receive ready is reset.
RRST -~ 0 Receive serial port is reset.
RSRFULL - O SPC only: receive shift register full flag is reset.
Soft - 0 Stop serial clock immediately is enabled.
TDM - 0 TSPC only: TDM port is configured as standard serial port.
TXM - 0 FSX pin is configured as input pin.
XRDY - 1 Transmit ready is reset.
XRST - 0 Transmit serial port is reset.
XSREMPTY - 0 SPC only: transmit shift register empty flag is reset.

Program Control 4-47

Reset

Table 4-16. Peripheral Registers’ Bit Status at Reset (Continued)

Register Bit Status Result
SPCE BRE -0 Autobuffering receive is disabled.
BXE -0 Autobuffering transmit is disabled.
CLKDV - 00011 Internal transmit clock division factor is set to 3.
CLKP -0 Data is sampled by the receiver on CLKR's falling edge and sent by the
transmitter on CLKX's rising edge.
FE -0 Data is transmitted/received as 16-bit words.
FIG -0 The frame pulses following first frame restart the serial port interface.
FSP -0 Frame sync pulses are active high.
HALTR -0 Autobuffering halt receive is reset.
HALTX -0 Autobuffering halt transmit is reset.
PCM - 0 Pulse coded modulation is not active.
RH - 0 Receive buffer half received bit is reset.
XH - 0 Transmit buffer half transmitted bit is reset.
TIM All bits -1 Timer counts down from FFFFh.
PRD All bits -1 Timer is disabled.
TCR TDDR -0 Each cycle decrements timer by 1.
TSS -0 Timer is in run mode.
HPIC SMOD 0- 1 Zero while in reset, set to one when reset goes high.
HINT -0 No interrupt (external HINT pin is high)

4-48

Figure 4-10. RS and HOLD Interaction

Reset

HoLD \ /
HOLDA \ /
b)
s\ /
i \ S
HoToR \) —

Program Control 4-49

Power-Down Mode

4.10 Power-Down Mode

In the power-down mode, the 'C5x enters a dormant state and dissipates less
power than in the normal mode. You can invoke the power-down mode by
executing either the IDLE or IDLEZ2 instruction, or by driving the HOLD input
low with the HM status bit set. While the 'C5x is in power-down mode, all its
internal contents are maintained; this allows operations to continue unaltered
when the power-down mode is terminated.

4.10.1 IDLE Instruction

The IDLE instruction halts all CPU activities except the system clock. Since the
system clock remains applied to the peripherals, the peripheral circuits contin-
ue operating and the CLKOUT1 pin remains active. Thus peripherals such as
serial ports and timers can take the CPU out of its power-down state.

This power-down mode is terminated upon receipt of an interrupt. If INTM =0
when the interrupt takes place, then the CPU enters the ISR when IDLE is ter-
minated. If INTM = 1, then the CPU continues with the instruction following the
IDLE.

4.10.2 IDLE2 Instruction

4-50

The IDLEZ2 instruction halts all CPU activities and the on-chip peripherals. Un-
like the IDLE instruction, the IDLEZ2 instruction disables the CLKOUT1 signal.
Because the on-chip peripherals are stopped in this power-down mode, they
cannot be used to generate the interrupt to wake up the CPU as in the IDLE
mode. However, the power is significantly reduced because the complete DSP
is stopped. Note that the HPI has some special IDLE2 considerations, see
Section 9.10, Host Port Interface, on page 9-87.

This power-down mode is terminated by activating any of the external interrupt
pins (RS, NMI, INTZ, INT2, INT3, and INT4) for at least five machine cycles.
If INTM = 0 when the interrupt takes place, then the CPU enters the ISR when
IDLE2 is terminated. If INTM = 1, then the CPU continues with the instruction
following the IDLE2. Reset all peripherals when IDLE2 terminates, especially
if the peripherals are externally clocked.

Power-Down Mode

4.10.3 Power Down Using HOLD

The power-down mode can also be initiated by the HOLD signal. When the
HOLD signal initiates power-down and HM = 1, the CPU stops executing and
address, data, and control lines go into high impedance for further power re-
duction. When the HOLD signal initiates power-down and HM =0, the address,
data, and control lines go into high impedance, but the CPU continues to
execute internally. When external memory accesses are not required in the
system, the HM = 0 mode can be used. The 'C5x continues to operate normally
unless an off-chip access is required by an instruction, then the CPU halts until
the hold is removed.

This power-down mode is terminated when the HOLD signal becomes inac-
tive. HOLD does not stop the operation of on-chip peripherals (serial ports and
timers); the peripherals continue to operate regardless of the level on HOLD
or the status of the HM bit.

Program Control 4-51

Chapter 5

Addressing Modes

This chapter describes each of the following addressing modes and gives the
opcode formats and some examples.

Direct addressing

Indirect addressing

Immediate addressing
Dedicated-register addressing
Memory-mapped register addressing
Circular addressing

Uooooo

Topic Page
5.1 Direct AddreSSingovrirt e 5
B2 [elEe: ACESENE cococcocssocsoossoosoocsoossoosooasoossosac 54]
5.3 Immediate AAressing c.oiii 5
5.4 Dedicated-Register Addressing — i 5-
5.5 Memory-Mapped Register Addressing 5-

5.6 Circular Addressingouurrti i 521 |

5-1

Direct Addressing

5.1 Direct Addressing

In the direct memory addressing mode, the instruction contains the lower 7 bits of
the data memory address (dma). The 7-bit dma is concatenated with the 9 bits of
the data memory page pointer (DP) in status register O to form the full 16-bit data
memory address. This 16-bit data memory address is placed on an internal direct
data memory address bus (DAB). The DP points to one of 512 possible data
memory pages and the 7-bit address in the instruction points to one of 128 words
within that data memory page. You can load the DP bits by using the LDP or the

LST #0 instruction.

Figure 5-1 illustrates how the 16-bit data memory address is formed.

Figure 5-1. Direct Addressing

STO DP (9) IREG (16)
9 7 LSBs
\ 4 \ 4
15 6 0 16-bit data memory address
DP dma >
" [Pacesn
PAGE 510
° °
[] []
° °
512 DATA
PAGES PAGE 3 Yy DAB
PAGE 2
PAGE 1
= PAGE 0 o
[]
MEMORY- N
128 WORD (MAPPED
PAGE | REGISTERS
AND
DARAM B2)

Direct Addressing

Note:

The DP is not initialized by reset and, therefore, is undefined after power-up.
The 'C5x development tools, however, use default values for many parameters,
including the DP. Because of this, programs that do not explicitly initialize the
DP may execute improperly, depending on whether they are executed on a
'C5x device or with a development tool. Thus, it is critical that all programs
initialize the DP in software.

Figure 5-2 illustrates the direct addressing mode. Bits 15 through 8 contain
the opcode. Bit 7, with a value of 0, defines the addressing mode as direct, and
bits 6 through 0 contain the dma.

Figure 5-2. Direct Addressing Mode

LDP
ADD

4019Dh ADD opcode 010h
010h, 5
15 8 7 6 0
Machine Code loo10 0101 Jofoo1 0000
‘ / /
/ /
DP [1100 1110 1] / /
/ /
\ \ / /
DAB [L100 1110 1001 o000 0]

Operand Data(DAB)

Note: DAB is the 16-bit internal data memory address bus.

Addressing Modes 5-3

Indirect Addressing

5.2 Indirect Addressing

Eight 16-bit auxiliary registers (ARO—AR7) provide flexible and powerful indirect
addressing. In indirect addressing, any location in the 64K-word data memory
space can be accessed using a 16-bit address contained in an AR. Figure 5-3
shows the hardware for indirect addressing.

Figure 5-3. Indirect Addressing

Data bus (16)

Auxiliary registers
ARO

ARB ARP
% AR1
ARP = 2
() AR2 ——

ARS3
AR4
AR5
ARG
AR7

A

ARAU

16

v
16-bit data address

To select a specific AR, load the auxiliary register pointer (ARP) with a value
from O through 7, designating ARO through AR7, respectively. The register
pointed to by the ARP is referred to as the current auxiliary register (current
AR). You can load the address into the AR using the LAR instruction and you
can change the content of the AR by the:

(10 ADRK instruction
0 MAR instruction
[SBRK instruction
[J Indirect addressing field of any instruction supporting indirect addressing.

The content of the current AR is used as the address of the data memory oper-
and. After the instruction uses the data value, the content of the current AR can
be incremented or decremented by the auxiliary register arithmetic unit
(ARAU), which implements unsigned 16-bit arithmetic.

Indirect Addressing

The ARAU performs auxiliary register arithmetic operations in the decode
phase of the pipeline (when the instruction specifying the operation is being
decoded). This allows the address to be generated before the decode phase
ofthe nextinstruction. The content of the current AR is incremented or decrem-
ented after it is used in the current instruction.

You can load the ARs via the data bus by using memory-mapped writes to the
ARs. The following instructions can write to the memory-mapped ARs:

APL OPL SAMM XPL
BLDD SACH SMMR
LMMR SACL SPLK

Be careful when using these memory-mapped loads of the ARs because, in
this case, the memory-mapped ARs are modified in the execute phase of the
pipeline. This causes a pipeline conflict if one of the next two instruction words
modifies that AR. For further information on the pipeline and possible pipeline
conflicts, see Chapter 7, Pipeline.

There are two ways to use the ARs for purposes other than referencing data
memory addresses:

[Use the ARs to support conditional branches, calls, and returns by using
the CMPR instruction. This instruction compares the content of the current
AR with the content of the auxiliary register compare register (ARCR) and
puts the result in the test/control (TC) flag bit of status register ST1.

[0 Use the ARs for temporary storage by using the LAR instruction to load
avalue into the AR and the SAR instruction to store the AR value to a data
memory location.

5.2.1 Indirect Addressing Options
The 'C5x provides four indirect addressing options:

J Noincrementordecrement. The instruction uses the content of the current
AR as the data memory address, but neither increments nor decrements the
content of the current AR.

[Increment or decrement by one. The instruction uses the content of the
current AR as the data memory address and then increments or decrements
the content of the current AR by 1.

[Incrementor decrement by anindex amount. The value in INDX is the
index amount. The instruction uses the content of the current AR as the
data memory address and then increments or decrements the content of
the current AR by the index amount.

Addressing Modes 5-5

Indirect Addressing

[Incrementordecrement by anindex amountusing reverse carry. The
value in INDX is the index amount. The instruction uses the content of the
current AR as the data memory address and then increments or decrements
the content of the current AR by the index amount. The addition or subtrac-
tion is done using reverse carry propagation.

The contents of the current AR are used as the address of the data memory
operand. Then, the ARAU performs the specified mathematical operation on
the indicated AR. Additionally, the ARP can be loaded with a new value. All
indexing operations are performed on the current AR in the same cycle as the
original instruction decode phase of the pipeline.

Indirect auxiliary register addressing lets you make post-access adjustments
of the current AR. The adjustment may be an increment or decrement by one
or may be based upon the contents of the INDX. To maintain compatibility with
the 'C2x devices, clear the NDX bit in the PMST. In the 'C2x architecture, the
current AR can be incremented or decremented by the value in the ARO. When
the NDX bit is cleared, every ARO modification or LAR write also writes the
ARCR and INDX with the same value. Subsequent modifications of the current
ARs with indexed addressing will use the INDX, therefore maintaining compatibility
with existing 'C2x code. The NDX bit is cleared at reset.

The bit-reversed addressing modes (see subsection 5.2.3 on page 5-12) helps
you achieve efficient I/O by the resequencing of data points in a radix-2 fast
Fourier transform (FFT) program. The direction of carry propagation in the
ARAU is reversed when bit-reversed addressing is selected, and INDX is added
to/subtracted from the current AR. Normally, this addressing mode requires that
INDX first be set to a value corresponding to one-half of the array’s size, and
that the current AR be set to the base address of the data (the first data point).

The following indirect-addressing symbols are used in the 'C5x assembly language
instructions:

* No increment or decrement. Content of the current AR is used
as the data memory address and is neither incremented nor
decremented.

*+ Increment by 1. Content of the current AR is used as the data

memory address. After the memory access, the content of the current
AR is incremented by 1.

*— Decrementby 1. Content of current AR is used as the data memory
address. After the memory access, the content of the current AR is
decremented by 1.

*0+ Increment by indexamount. Content of current AR is used as the
data memory address. After the memory access, the content of
INDX is added to the content of the current AR.

5.2.2

Indirect Addressing

*0— Decrement by index amount. Content of current AR

is used as

the data memory address. After the memory access, the content
of INDX is subtracted from the content of the current AR.

*BRO+ Increment by index amount, adding with reverse carry.

Content

of current AR is used as the data memory address. After the memory
access, the content of INDX with reverse carry propagation is added

to the content of the current AR.

*BRO— Decrement by index amount, subtracting with reverse carry.
Content of current AR is used as the data memory address. After the
memory access, the content of INDX with reverse carry propagation

is subtracted from the content of the current AR.

Indirect Addressing Opcode Format

Indirect addressing can be used with all instructions except those with immediate
operands or with no operands. The indirect addressing format is shown in

Figure 5—4 and described in Table 5-1.

Table 5-3 on page 5-9 shows the instruction field bit values, notation, and op-
eration used for indirect addressing. Example 5-1 through Example 5-8 illus-
trate the indirect addressing formats. Example 5-9 shows an indirect address-

ing routine.

Figure 5—4. Indirect Addressing Opcode Format Diagram

15-8 7 6 5 4 3

2-0

Opcode I IDV | INC | DEC N

NAR

Table 5-1. Indirect Addressing Opcode Format Summary

Bit Name Description
15-8 Opcode. This 8-bit field is the opcode for the instruction.
7 | Addressing mode bit. This 1-bit field determines the addressing mode.

1=0 Direct addressing mode.

I=1 Indirect addressing mode.

Addressing Modes

Indirect Addressing

Table 5-1. Indirect Addressing Opcode Format Summary (Continued)

Bit Name Description

6 IDV Index register bit. This 1-bit field determines whether the INDX is used to increment or
decrement the current AR. The IDV bit works in conjunction with the INC and DEC bits to
determine the arithmetic operation.

IDV=0 The INDX is not used in the arithmetic operation. An increment or decrement
(if any) by 1 occurs to the current AR.

IDV =1 The INDX is used in the arithmetic operation. An increment or decrement (if
any) by the contents of INDX or by reverse carry propagation occurs to the
current AR.

5 INC Auxiliary register increment bit. This 1-bit field determines whether the current AR is in-
cremented. The INC bit works in conjunction with the IDV and DEC bits to determine the
arithmetic operation.

INC=0 The current AR is not incremented.

INC=1 The current AR is incremented as determined by the IDV bit.

4 DEC Auxiliary register decrement bit. This 1-bit field determines whether the current AR is de-
cremented. The DEC bit works in conjunction with the IDV and INC bits to determine the
arithmetic operation. See Table 5-2 for specific arithmetic operations.

DEC =0 The current AR is not decremented.

DEC=1 The current AR is decremented as determined by the IDV bit.

3 N Next auxiliary register indicator bit. This 1-bit field determines whether the instruction will
change the ARP value.

N=0 The content of the ARP will remain unchanged.

N=1 The content of NAR will be loaded into the ARP, and the old ARP value is
loaded into the auxiliary register buffer (ARB) of status register ST1.

2-0 NAR Next auxiliary register value bits. This 3-bit field contains the value of the next auxiliary

register. If the N bit is set, NAR is loaded into the ARP.

5-8

Table 5-2. Indirect Addressing Arithmetic Operations

Table 5-3. Instruction Field Bit Values

Indirect Addressing

Bit values

IDV

INC DEC

Arithmetic Operation Performed on Current AR

B P P P O O O

0

B B O O kB Kk O

0

B, O kB O kB O Bk

No operation on current AR

(Current AR) — 1 - current AR

(Current AR) + 1 - current AR

Reserved

(Current AR) — INDX [reverse carry propagation] — current AR

(Current AR) — INDX - current AR

(Current AR) + INDX - current AR

(Current AR) + INDX [reverse carry propagation] — current AR

for Indirect Addressing

Instruction Field Bit Values

15-8 7 6 5 4 3 2-0 Notation Operation

~ Opcode 1 0 0 0 0O < NAR- * No operation on current AR

— Opcode 1 0 0 0 1 ~NAR- * ARn NAR - ARP

~ Opcode 1 0 0 1 0 «~NAR- *— (Current AR) — 1 - current AR

~ Opcode 1 0 0 1 1 <~NAR- *~ ARnN (Current AR) — 1 - current AR,
NAR - ARP

~ Opcode 1 0 1 0 0 «NAR- *+ (Current AR) + 1 — current AR

~ Opcode 1 0 1 0 1 <NAR- *+, ARN (Current AR) +1 — current AR,
NAR - ARP

~ Opcode 1 1 0 0 0 «NAR- *BRO- (Current AR) — rclNDX - current AR

~ Opcode 1 1 0 0 1 «NAR- *BRO-, ARn (Current AR) — rclNDX - current AR,
NAR - ARP

~ Opcode 1 1 0 1 0 «NAR- *0— (Current AR) — INDX - current AR

~ Opcode 1 1 0 1 1 <NAR- *0—, ARn (Current AR) — INDX - current AR,
NAR - ARP

— Opcode 1 1 1 0 0 «~NAR- *0+ (Current AR) + INDX - current AR

— Opcode 1 1 1 0 1 <~NAR- *0+, ARn (Current AR) + INDX - current AR,

NAR - ARP

Addressing Modes 5-9

Indirect Addressing

Table 5-3. Instruction Field Bit Values for Indirect Addressing (Continued)

Instruction Field Bit Values
15-8 7 6 5 4 3 2-0 Notation Operation
~Opcode -~ 1 1 1 1 0 «~NAR- *BRO+ (Current AR) + rcINDX - current AR

~Opcode -~ 1 1 1 1 1 ~NAR- *BRO+, ARn (Current AR) + rcINDX - current AR,
NAR - ARP

Example 5—1. Indirect Addressing With No Change to AR
ADD *,8

o o 1 O0f(f1 0 O Of1 O O O)JO O 0 O

In Example 5-1, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The current
AR is not changed. The instruction word is 2880h.

Example 5-2. Indirect Addressing With Autodecrement
ADD *-,8

o o 1 of12z o O O0Of121 O O 1(0 O0 O0 O

In Example 5-2, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The current
AR is decremented by 1. The instruction word is 2890h.

Example 5-3. Indirect Addressing With Autoincrement
ADD *+,8

0O O 1 0 1 0 0 O 1 0 1 00 O O O

In Example 5-3, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The current
AR is incremented by 1. The instruction word is 28A0h.

5-10

Indirect Addressing

Example 5—-4. Indirect Addressing With Autoincrement and Change AR
ADD *+,8 AR3

o o 1 of12z 0 O Of2 O 1 Of1 0 1 1

In Example 5-4, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The current
AR isincremented by 1. The auxiliary register pointer (ARP) is loaded with the
value 3 for subsequent instructions. The instruction word is 28ABh.

Example 5-5. Indirect Addressing With INDX Subtracted from AR
ADD *0-,8

0 O 1 0|1 O O O 1 1 0 110 0O O O

In Example 5-5, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The content
of INDX is subtracted from the current AR. The instruction word is 28D0h.

Example 5—6. Indirect Addressing With INDX Added to AR
ADD *0+,8

o o 1 012 0o O Of1 1 1 O0OfO0O O 0 O

In Example 5-6, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The content
of INDX is added to the current AR. The instruction word is 28E0h.

Example 5-7. Indirect Addressing With INDX Subtracted from AR With Reverse Carry
ADD *BR0O-,8

0 O 1 0|1 O O O 1 1 0 0|0 O O ©O

In Example 5-7, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The content
of INDX with reverse carry propagation is subtracted from the current AR. The
instruction word is 28CO0h.

Addressing Modes 5-11

Indirect Addressing

Example 5-8. Indirect Addressing With INDX Added to AR With Reverse Carry

ADD *BR0+,8

o o 1 o0f(f2 o O0 oO0Of212 1 1 1(0 O O O

In Example 5-8, the content of the data memory address, defined by the con-
tent of the current AR, is shifted left 8 bits and added to the ACC. The content
of INDX with reverse carry propagation is added to the current AR. The instruc-
tion word is 28F0h.

Example 5-9. Indirect Addressing Routine

* 0% X X X X *

*

* This routine uses indirect addressing to calculate the following equation:

10

VOX(1) x Y(I)
/

=1

* The routine assumes that the X values are located in on-chip RAM block BO,
*and the Y values in block B1. The efficiency of the routine is due to the
* use of indirect addressing and the repeat instruction.

*

SERIES MAR * AR4 ;ARP POINTS TO ADDRESS REGISTER 4.
SETC CNF ;CONFIGURE BLOCK B0 AS PROGRAM MEMORY.
LAR AR4,#0300h ;POINT AT BEGINNING OF DATA MEMORY.
RPTZ #9 ;CLEAR ACC AND PREG; REPEAT NEXT INST. 10 TIMES
MAC OFFOOh,*+ ;MULTIPLY AND ACCUMULATE; INCREMENT ARA4.
APAC ;JACCUMULATE LAST PRODUCT.
RET ;ACCUMULATOR CONTAINS RESULT.

5.2.3 Bit-Reversed Addressing

5-12

In the bit-reversed addressing mode, INDX specifies one-half the size of the
FFT. The value contained in the current AR must be equal to 2n-1, where n is
an integer, and the FFT size is 2N. An auxiliary register points to the physical
location of a data value. When you add INDX to the current AR using bit-
reversed addressing, addresses are generated in a bit-reversed fashion.

Assume that the auxiliary registers are eight bits long, that AR2 represents the
base address of the data in memory (0110 00005), and that INDX contains the
value 0000 1000,. Example 5-10 shows a sequence of modifications to AR2
and the resulting values of AR2. Table 5—4 shows the relationship of the bit pat-
tern of the index steps and the four LSBs of AR2, which contain the bit-
reversed address.

Indirect Addressing

Example 5-10. Sequence of Auxiliary Register Modifications in Bit-Reversed Addressing

*BRO+ ;AR2
*BRO+ ,AR2
*BRO+ ;AR2
*BRO+ ;AR2
*BRO+ ;AR2
*BRO+ ;AR2
*BRO+ ;AR2
*BRO+ ;AR2

0110
0110
0110
0110
0110
0110
0110
0110

0000
1000
0100
1100
0010
1010
0110
1110

(Oth value)
(1st value)
(2nd value)
(3rd value)
(4th value)
(5th value)
(6th value)
(7th value)

Table 5-4. Bit-Reversed Addresses

Step Bit Pattern Bit-Reversed Pattern Bit-Reversed Step
0 0000 0000 0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 9
10 1010 0101 5
11 1011 1101 13
12 1100 0011 3
13 1101 1011 11
14 1110 0111 7
15 1111 1111 15

Addressing Modes

5-13

Immediate Addressing

5.3 Immediate Addressing

In immediate addressing, the instruction word(s) contains the value of the im-
mediate operand. The 'C5x has both 1-word (8-bit, 9-bit, and 13-bit constant)
short immediate instructions and 2-word (16-bit constant) long immediate
instructions. Table 5-5 lists the instructions that support immediate addressing.

Table 5-5. Instructions That Support Immediate Addressing

Short Immediate (1-Word) Long Immediate (2-Word)
8-Bit 9-Bit 13-Bit 16-Bit
Constant Constant Constant Constant
ADD LDP MPY ADD OR
ADRK AND RPT
LACL APL RPTZ
LAR CPL SPLK
RPT LACC SUB
SBRK LAR XOR
SUB MPY XPL
OPL

5.3.1 Short Immediate Addressing
In shortimmediate instructions, the operand is contained within the instruction
machine code. Figure 5-5 shows an example of the short immediate mode.

Note that in this example, the lower 8 bits are the operand and will be added
to the ACC by the CALU.

Figure 5-5. Short Immediate Addressing Mode

ADD #OFEh ADD opcode OFFh

MachineCode [1 011 1000 [1111 1111]

—

— —
- _—
— —
— —
_— —
— —

Operand 1111 111 1]

5-14

Immediate Addressing

5.3.2 Long Immediate Addressing

In long immediate instructions, the operand is contained in the second word
of a two-word instruction. There are two long immediate addressing modes:

[One-operand instructions
1 Two-operand instructions

5.3.2.1 Long Immediate Addressing with Single/No Data Memory Access

Figure 5-6 shows an example of long immediate addressing with no data
memory access. In Figure 5-6, the second word of the 2-word instruction is
added to the ACC by the CALU.

Figure 5-6. Long Immediate Addressing Mode — No Data Memory Access

ADD opcode
ADD #01234h
Machine Code |1 0 1 1 1111 1001 0000
Operand 0001 0010 0011 0100
01234h

5.3.2.2 Long Immediate Addressing with Dual Data Memory Access

The long immediate addressing also could apply for a second data memory
access for the execution of the instruction. The prefetch counter (PFC) is
pushed onto the microcall stack (MCS), and the long immediate value is loaded
into the PFC. The program address/data bus is then used for the operand fetch
or write. At the completion of the instruction, the MCS is popped back to the PFC,
the program counter (PC) is incremented by two, and execution continues. The
PFC is used so that when the instruction is repeated, the address generated can
be autoincremented.

Figure 5-7 shows an example of long immediate addressing with two oper-
ands. In Figure 5—7, the source address (OPERAND1) is fetched via PAB, and
the destination address (OPERAND?2) uses the direct addressing mode. Bits
15 through 8 of machine codel contain the opcode. Bit 7, with a value of 0,
defines the addressing mode as direct, and bits 6 through 0 contain the dma.

Addressing Modes 5-15

Immediate Addressing

Figure 5-7. Long Immediate Addressing Mode — Two Operands

BLDD #02345h,012h

Machine Codel

v

DP [1100

N
N

BLDD opcode 012h
8 7 6 0
10 1000 |0j]o01 0010
/ /
// /
/

N
N/ /

DAB [1 100

110 1001 00 10|

Machine Code2

PC
Operandl Data (PC)
Operand2 Data (DAB)

Note: DAB is the 16-bit internal data memory address bus.

5-16

02345h

10 0011 0100 OlOl|

10 0011 0100 0101]

Dedicated-Register Addressing

5.4 Dedicated-Register Addressing

The dedicated-registered addressing mode operates like the long immediate
addressing mode, except that the address comes from one of two
special-purpose memory-mapped registers in the CPU: the block move
address register (BMAR) and the dynamic bit manipulation register (DBMR).
The advantage of this addressing mode is that the address of the block of
memory to be acted upon can be changed during execution of the program.
The syntax for dedicated-register addressing can be stated in one of two ways:

1 Specify BMAR by its predefined symbol:

BLDD BMAR,DAT100 ;DP = 0. BMAR contains the value 200h.

The content of data memory location 200h is copied to data memory loca-
tion 100 on the current data page.

1 Exclude the immediate value from a parallel logic unit (PLU) instruction:

OPL DAT10 ;DP = 6. DBMR contains the value FFFOh.
:Address 030Ah contains the value 01h
The content of data memory location 030Ah is ORed with the content of

the DBMR. The resulting value FFF1h is stored back in memory location
030Ah.

5.4.1 Using the Contents of the BMAR

The BLDD, BLDP, and BLPD instructions use the BMAR to point at the source
or destination space of a block move. The MADD and MADS instructions also
use the BMAR to address an operand in program memory for a multiply-
accumulate operation.

Figure 5-8 shows how the BMAR is used in the dedicated-register addressing
mode. Bits 15 through 8 of the machine code contain the opcode. Bit 7, with
a value of 0, defines the addressing mode as direct, and bits 6 through 0 con-
tain the dma.

Addressing Modes 5-17

Dedicated-Register Addressing

Figure 5-8. Dedicated-Register Addressing Using the BMAR

BLDD opcode 012h
BLDD BMAR, 012h
15 8 7 6 0
Machine Code [1010 1100/0l001 00 10]
7
/ /
v / /
DP [1100 1110 1 / /
/ /
\ \ / /
DAB [11200 11210 1/001 00 1 0]

|BMAR| —»| PFC |

Operandl Data (PFC)
Operand?2 Data (DAB)

Note: DAB is the 16-bit internal data memory address bus.

5.4.2 Using the Contents of the DBMR

The APL, CPL, OPL, and XPL instructions use the PLU and the contents of the
DBMR when an immediate value is not specified as one of the operands.

Figure 5-9 illustrates how the DBMR is used as an AND mask in the APL
instruction. Bits 15 through 8 of the machine code contain the opcode. Bit 7,
with a value of 0, defines the addressing mode as direct, and bits 6 through
0 contain the dma.

Figure 5-9. Dedicated-Register Addressing Using the DBMR

APL opcode 010h
APL 010h
15 8 76 0
Machine Code [0101 1010 0001 000 Q0
% /
/ %
DP 100 1110 1] e e
/ %
\ \ s /
DAB [11200 1110 1/001 0000
Operandl Data(DAB)

Operand2

Note: DAB is the 16-bit internal data memory address bus.

5-18

Memory-Mapped Register Addressing

5.5 Memory-Mapped Register Addressing

With memory-mapped register addressing, you can modify the memory-
mapped registers without affecting the current data page pointer value. In
addition, you can modify any scratch pad RAM (DARAM B2) location or data
page 0. The memory-mapped register addressing mode operates like the
direct addressing mode, except that the 9 MSBs of the address are forced to
0 instead of being loaded with the contents of the DP. This allows you to
address the memory-mapped registers of data page 0 directly without the
overhead of changing the DP or auxiliary register.

The following instructions operate in the memory-mapped register addressing
mode. Using these instructions does not affect the contents of the DP:

1J LAMM — Load accumulator with memory-mapped register
1 LMMR — Load memory-mapped register

1 SAMM — Store accumulator in memory-mapped register
1 SMMR — Store memory-mapped register

Figure 5-10 illustrates how this is done by forcing the 9 MSBs of the data
memory address to 0, regardless of the current value of the DP when direct
addressingis used or of the current AR value when indirect addressing is used.

Example 5-11 uses memory-mapped register addressing in the direct
addressing mode and Example 5-12 uses the indirect addressing mode.
Figure 5-10. Memory-Mapped Register Addressing

7 LSBs from IREG (direct addressing)
or current AR (indirect addressing)

7 LSBs
15 6 0 16-bitmemory-mapped
register address
0 00O0OO0OOOODP O dma >
A PAGE 0
y DAB
(MEMORY-
128 WORD | 'MAPPED
REGISTERS
AND
DARAM B2)
v al

Addressing Modes 5-19

Memory-Mapped Register Addressing

Example 5-11. Memory-Mapped Register Addressing in the Indirect Addressing Mode
SAMM *+ ;STORE ACC TO PMST REGISTER

In Example 5-11, assume that ARP = 3 and AR3 = FFO7h. The content of the
ACC is stored to the PMST (address 07h) pointed at by the 7 LSBs of AR3.

Example 5-12. Memory-Mapped Register Addressing in the Direct Addressing Mode
LAMM 07h ;ACC = PMST

In Example 5-12, assume that DP = 0184h and TEMP1 = 8060h. The content
of memory location 07h (PMST) is loaded into the ACC. Figure 5-11 illustrates
memory-mapped register addressing in the direct addressing mode.

Figure 5-11. Memory-Mapped Addressing in the Direct Addressing Mode

LAMM opcode 07h
LAMM PMST
15 8 76 0
Machine Code [oooo0o 1000 Jof[ooO0 o011 1]
/ /
/ /
Value [ooo00 0000 O] / /
/ /
\ N\ / /
DAB [00o0OO0O 0000 0/00O0 O0111]
Operand Data(DAB)

Note: DAB is the 16-bit internal data memory address bus.

5-20

Circular Addressing

5.6 Circular Addressing

Many algorithms such as convolution, correlation, and finite impulse response
(FIR) filters can use circular buffers in memory to implement a sliding window,
which contains the most recent data to be processed. The 'C5x supports two
concurrent circular buffers operating via the ARs. The following five
memory-mapped registers control the circular buffer operation:

CBSR1 — Circular buffer 1 start register
CBSR2 — Circular buffer 2 start register
CBER1 — Circular buffer 1 end register
CBER2 — Circular buffer 2 end register
CBCR — Circular buffer control register

oo

The 8-bit CBCR enables and disables the circular buffer operation and is
defined in subsection 4.4.1, Circular Buffer Control Register (CBCR), on
page 4-6.

To define circular buffers, you first load the start and end addresses into the
corresponding buffer registers; next, load a value between the start and end
registers for the circular buffer into an AR. Load the proper AR value, and set
the corresponding circular buffer enable bit in the CBCR. Note that you must
not enable the same AR for both circular buffers; if you do, unexpected results
occur. The algorithm for circular buffer addressing below shows that the test
of the AR value is performed before any modifications:

If (ARn = CBER) and (any AR modification),
Then: ARn = CBSR.
Else: ARN = ARn + step.

If ARn = CBER and no AR modification occurs, the current AR is not modified
and is still equal to CBER. When the current AR = CBER, any AR modification
(increment or decrement) will set the current AR = CBSR. Example 5-13illus-
trates the operation of circular addressing.

Addressing Modes 5-21

Circular Addressing

Example 5-13. Circular Addressing

5-22

mar * aré

Ipd #,0

splk #200h,CBSR1 ; Circular buffer start register
splk #203h,CBER1 ; Circular buffer end register
splk #0Eh,CBCR ; Enable ARG pointing to buffer 1
lar ar6,#200h ;. Casel

lacc * ;ARG =200h

lar ar6,#203h ;. Case?2

lacc * ;. AR6 =203h

lar ar6,#200h ; Case3

lacc *+ ; AR6 =201h

lar ar6,#203h ;. Case4

lacc *+ ;. AR6 =200h

lar ar6,#200h ;. Caseb

lacc *— ;. AR6 = 1FFh

lar ar6,#203h ; Caseb6

lacc *— ;. AR6 = 200h

lar ar6,#202h ;. Case7

adrk 2 i ARG = 204h

lar ar6,#203h ;. Case8

adrk 2 ;. AR6 =200h

In circular addressing, the step is the quantity that is being added to or sub-
tracted from the specified AR. Take care when using a step of greater than 1
to modify the AR pointing to an element of the circular buffer. If an update to
an AR generates an address outside the range of the circular buffer, the ARAU
does not detect this situation, and the buffer does not wrap around. AR up-
dates are performed as described in Section 5.2, Indirect Addressing.
Because of the pipeline, there is a two-cycle latency between configuring the
CBCR and performing AR modifications.

Circular buffers can be used in increment- or decrement-type updates. For
incrementing the value in the AR, the value in CBER must be greater than the
value in CBSR. For decrementing the value in the AR, the value in CBSR must
be greater than the value in CBER.

Chapter 6

Assembly Language Instructions

The 'C5x instruction set supports numerically intensive signal-processing
operations as well as general-purpose applications, such as multiprocessing
and high-speed control. The instruction set is a superset of the 'C1x and 'C2x
instruction sets and is source-code upward compatible with both devices.

Section 6.3, Instruction Set Descriptions, describes individual instructions in
detail. Chapter 5, Addressing Modes, discusses the addressing modes asso-
ciated with the instruction set. Section C.4, 'C2x-to-'C5x Instruction Set Map-
ping, includes a table that maps 'C2x instructions to 'C5x instructions. Note
that the Texas Instruments 'C5x assembler accepts 'C2x instructions as well
as 'Cbhx instructions.

Topic Page
6.1 Instruction Set Symbols and Notations ~ 6-
6.2 Instruction Set SUMMArYttt 6
6.3 Instruction Set DeSCHPtONS .. .o'veeee e 6-

6-1

Instruction Set Symbols and Notations

6.1 Instruction Set Symbols and Notations

For the sake of convenience and as a memory aid, this chapter uses many
symbols and notations while describing the assembly language instructions.
This section provides a centralized list of definitions for these symbols and
notations.

6.1.1 Symbols and Abbreviations Used in the Instruction Set Opcodes

Table 6-1 explains the symbols and abbreviations used in the opcode of the
instruction set summaries (Table 6—4 through Table 6—10) and instruction set
descriptions (Section 6.3, page 6-22).

Table 6-1. Instruction Set Opcode Symbols and Abbreviations

Symbol Meaning

AAA AAAA The data memory address bits. When indirect addressing (1= 1) is being used, the seven
As are the seven least significant bits (LSBs) of a data memory address. For indirect
addressing, the seven As are bits that control auxiliary register manipulation (see Sec-
tion 5.2, Indirect Addressing, on page 5-4.)

ARX A 3-bit value used in the LAR and SAR instructions to designate which auxiliary register
(0-7) will be loaded (LAR) or have its contents stored (SAR).

BITX A 4-bit value (called the bit code) that determines which bit of a designated data memory
value will be tested by the BIT instruction.

CM A 2-bit value that determines the comparison performed by the CMPR instruction.

| The addressing mode bit. When | = 0, the direct addressing mode is being used. When
| =1, the indirect addressing mode is being used.

kkkk kkkk An 8-bit constant used in short immediate addressing for the ADD, ADRK, LACL, LAR,
RPT, SBRK, and SUB instructions.

k kkkk kkkk A 9-bit constant used in short immediate addressing for the LDP instruction.

k kkkk kkkk kkkk

INTR #

PM

SHF
SHFT

A 13-bit constant used in short immediate addressing for the MPY instruction.

The interrupt vector number. A 5-bit value representing a number from 0to 31. The INTR
instruction uses this number to change program control to one of the 32 interrupt vector
addresses.

A 2-bit value copied into the product shift mode (PM) bits of status register ST1 by the
SPM instruction.

A 3-bit shift value for the SACH and SACL instructions.
A 4-bit shift value for the ADD, AND, BSAR, LACC, OR, SUB, and XOR instructions.

6-2

Instruction Set Symbols and Notations

Table 6-1. Instruction Set Opcode Symbols and Abbreviations (Continued)

Symbol Meaning

N A 1-bit field for the XC instruction indicating the number of instructions (one or two) to
conditionally execute.
If N = 0, one instruction will execute.
If N =1, two instructions will execute.

TP A 2-hit value used by the conditional execution instructions to represent the following
conditions:
TP @dition
00 BIO pin low
01 TC=1
10 TC =0 (NTC)
11 None of the above conditions

ZLVC ZLVC Two 4-bit fields designating the following bit conditions to be tested and the bit states:
Bit Condition
V4 ACC=0
L ACC<O0
V Overflow
C Carry
A conditional instruction contains two of these 4-bit fields. The 4-LSB field of the instruction
is amask field. A 1 in a mask bit indicates that the corresponding condition is being tested.
The second 4-bit field (bits 4—7) indicates the state of the conditions being tested. For
example, to test for ACC = 0, the Z and L bits of the 4-LSB field are set, while the V and
C bits are not set. When the Z bit is set, it indicates to test for the condition ACC = 0; when
the L bit is set, it indicates to test for the condition ACC = 0. The conditions possible with
these 8 bits are shown in the BCND, BCNDD, CC, CCD, RETC, RETCD, and XC instruc-
tions. To determine if the conditions are met, the 4-LSB field is ANDed with the 4-bit field
containing the state of the conditions. If any bits are set, the conditions are met.

+ 1 word The second word of a two-word opcode. This second word contains a 16-bit constant.

Depending on the instruction, this constant is a long immediate value, a program
memory address, or an address for an 1/0 port or an I/O-mapped register.

Assembly Language Instructions 6-3

Instruction Set Symbols and Notations

6.1.2 Symbols and Abbreviations Used in the Instruction Set Descriptions

Table 6-2 explains the symbols and abbreviations used in the instruction set
descriptions (Section 6.3, page 6-22).

Table 6-2. Instruction Set Descriptions Symbols and Abbreviations

Symbol Meaning

ACC Accumulator

ACCB Accumulator buffer

ACCH Accumulator high byte, ACC(31-16)

ACCL Accumulator low byte, ACC(15-0)

addr 16-bit data memory address

ALU Arithmetic logic unit

AR Auxiliary register

ARB Auxiliary register buffer (in ST1). This register stores the previous ARP value.

ARCR Auxiliary register compare register

ARnN A value n from 0 to 7 designating the next auxiliary register (AR), the register that will be pointed
to by the ARP when the instruction is complete

ARP Auxiliary register pointer (in STO). This register points to the current auxiliary register (AR).

AVIS Address visibility bit (in PMST)

BIO Branch control input

bit code A 4-bit value that determines which bit of a designated data memory value will be tested by the
BIT instruction.

BMAR Block move address register

BRAF Block repeat active flag bit (in PMST)

C Carry bit (in ST1)

CNF On-chip RAM configuration control bit (in ST1)

cond An operand representing a condition used by instructions that execute conditionally.

current AR The current auxiliary register; that is, the auxiliary register (AR) pointed to by the ARP.

D Data memory address field

dst Destination address field

DATn Label assigned to data memory location n

DBMR Dynamic bit manipulation register

dma The 7 LSBs of a data memory address.

6-4

Instruction Set Symbols and Notations

Table 6-2. Instruction Set Descriptions Symbols and Abbreviations (Continued)

Symbol Meaning

DP Data memory page pointer bits (in STO)

HM Hold mode bit (in ST1)

ind Indirect addressing operand (see Section 5.2, Indirect Addressing, on page 5-4.)

INTM Interrupt mode flag bit (in STO)

k Short immediate operand (an 8-, 9-, or 13-bit constant)

K Avalue from 0to 31 indicating one of the 32 interrupt vector locations. The INTR instruction forces
a branch to the location referenced by K.

Ik Long immediate operand (a 16-bit constant)

MCS Microcall stack

MP/MC Microprocessor/Microcomputer bit (in PMST)

n A value of 1 or 2 designating the number of words following the XC instruction.

ov Overflow bit (in STO)

OVLY RAM overlay bit (in PMST)

OVM Overflow mode bit (in STO)

NDX Enable extra index register bit (in PMST)

PA A 16-bit address for an 1/0 port or an I/O-mapped register (0 < PA < 65535)

PAER Block Repeat Program Address End Register

PASR Block Repeat Program Address Start Register

PC Program counter

PFC Prefetch counter

PGMn Label assigned to program memory location n

PM Product shift mode bits (in ST1)

pma A 16-bit program memory address

PREG Product register

RAM bit Program RAM enable bit (in PMST)

RPTC Repeat counter

shift A 4-bit shift value from 0-15

shift2 A 3-bit shift value from 0-7

src Source address field

Assembly Language Instructions

Instruction Set Symbols and Notations

Table 6-2. Instruction Set Descriptions Symbols and Abbreviations (Continued)

Symbol Meaning

STm Status register m (m =0 or 1)

SXM Sign-extension mode bit (in ST1)

TREGnN Temporary registern (n =0, 1, or 2)

TC Test/control bit (in ST1)

TOS Top of stack

TRM Enable multiple TREGS bit (in PMST)

X A value from 0 to 7 designating one of the eight auxiliary registers (ARO-AR?7).
XF XF pin status bit (in ST1)

6.1.3 Notations Used in the Instruction Set Descriptions

Special notations have been used to describe the execution of the instructions
and to indicate how a particular instruction is to be written. Table 6—3 explains
the notations used in the instruction set descriptions (Section 6.3, page 6-22).

Table 6-3. Instruction Set Descriptions Notations

Notation Meaning
X Logical inversion (1s complement) of x
| x| Absolute value of x
{ } Alternative items, one of which must be entered
nnh Indicates that nn represents a hexadecimal number
(9] The content of register or location r.
Example: (dma) means: The value at data memory address dma.
XY Value x is assigned to register or location y.
Example: (dma) - ACC means: The content of the data memory address is put into
the accumulator.
X oy Value x is switched with value y.
Example: (ACCB) « (ACC) means: The content of the accumulator buffer is switched
with the content of the accumulator.
r(n—-m) Bits n through m of register or location r.
Example: ACC(15-0) means: Bits 15 through 0 of the accumulator.
(r(n—m)) The content of bits n through m of register or location r.

Example: (ACC(31:16)) means: The content of bits 31 through 16 of the accumulator.

6-6

Instruction Set Symbols and Notations

Table 6-3. Instruction Set Descriptions Notations (Continued)

Notation Meaning
Boldface Boldface characters in an instruction syntax are to be typed as shown.
Characters Example: For the syntax: ADD dma, 16, you may use a variety of values for dma, but the
word ADD and the number 16 should be typed as shown.
Samples with this syntax follow:
ADD 7h, 16
ADD X, 16
italic Italic symbols in an instruction syntax represent variables.
symbols Example: For the syntax: ADD dma, you may use a variety of values for dma.
Samples with this syntax follow:
ADD DAT
ADD 15
The # symbol is a prefix for constants used in immediate addressing. For short- or long-immediate
operands, it is used in instructions where there is ambiguity with other addressing modes.
Example: RPT #15 uses short immediate addressing. It causes the next instruction to be
repeated 16 times.
RPT 15 uses direct addressing. The number of times the next instruction
repeats is determined by a value stored in memory.
[X] Operand x is optional.
Example: For the syntax: ADD dma, [,shift], you may use a variety of values for dma.
Samples with this syntax follow:
ADD 7h
You have the option of adding a shift value, as in the instruction:
ADD 7h, 5
[x1[,x2]] Operands x1 and x2 are optional, but you cannot include x2 without also including x1.
Example: For the syntax: ADD ind, [,shift[,ARn]], you must supply ind, as in the instruction:
ADD *+
You have the option of including shift, as in the instruction:
ADD *+, 5
If you wish to include AR n, you must also include shift, as in:
ADD *+, 0, AR2

Assembly Language Instructions 6-7

Instruction Set Summary

6.2 Instruction Set Summary

This section summarizes the instruction set and instruction set opcodes for the
'C5x. Table 6—4 through Table 6—10 alphabetically list the 'C5x instructions
within the following functional groups:

(1 Accumulator memory reference instructions (Table 6—4)

(O Auxiliary registers and data memory page pointer instructions (Table 6-5
on page 6-13)

Parallel logic unit (PLU) instructions (Table 6—6 on page 6-14)
TREGO, PREG, and multiply instructions (Table 6—7 on page 6-15)
Branch and call instructions (Table 6—8 on page 6-17)

I/O and data memory operation instructions (Table 6—9 on page 6-19)

U U o oo

Control instructions (Table 6-10 on page 6-20)

The number of words that an instruction occupies in program memaory is speci-
fied in the Words column of the table. Several instructions specify two values
in the Words column because different forms of the instruction occupy a differ-
ent number of words. For example, the ADD instruction occupies one word
when the operand is a short immediate value or two words if the operand is
a long immediate value. The number of cycles that an instruction requires to
execute isin the Cycles column of the table. The tables assume that all instruc-
tions are executed from internal program memory (ROM) and internal data
memory (RAM). The cycle timings are for single-instruction execution, not for
repeat mode. Additional information is presented in Section 6.3, Instruction
Set Descriptions on page 6-22. Bold typeface indicates instructions that are
new for the 'C5x instruction set.

A read or write access to any peripheral memory-mapped register
in data memory locations 20h—4Fh will add one cycle to the cycle
time shown. This occurs because all peripherals perform these
accesses over the Tl Bus, which requires an additional cycle.

Note that all writes to external memory require two cycles. Reads require one
cycle. Any write access immediately before or after a read cycle will require
three cycles (refer to Chapter 8). In addition, if two pipelined instructions try to
access the same 2K-word single-access memory block simultaneously, one

Instruction Set Summary

extra cycle is required. For example, the DMOV instruction when used with the
RPT instruction, requires one cycle in the dual-access RAM but requires two
cycles in the single-access RAM. Wait states are added to all external accesses
according to the configuration of the software wait-state registers described in
Section 9.4, Software-Programmable Wait-State Generators, on page 9-13.

Table 6—-4. Accumulator Memory Reference Instructions

Mnemonic T Description Words Cycles¥ Opcode Page
ABS Absolute value of ACC; 1 1 1011 1110 0000 0000 6-28
zero carry bit
ADCB Add ACCB and carry bitto ACC 1 1 1011 1110 0001 0001
ADD Add data memory value, with left 1 1 0010 SHFT IAAA AAAA
shift, to ACC
Add data memory value, with left 1 1 0110 0001 IAAA AAAA
shift of 16, to ACC
Add short immediate to ACC 1 1 1011 1000 kkkk kkkk
Add long immediate, with left shift, 2 2 1011 1111 1001 SHFT
to ACC + 1 word
ADDB Add ACCB to ACC 1 1 1011 1110 0001 0000
ADDC Add data memory value and carry 1 1 0110 0000 IAAA AAAA 6-36
bit to ACC with sign extension
suppressed
ADDS Add data memory value to ACC 1 1 0110 0010 IAAA AAAA 6-38
with sign extension suppressed
ADDT Add data memory value, with left 1 1 0110 0011 IAAA AAAA 6-40
shift specified by TREG1, to ACC
AND AND data memory value with 1 1 0110 1110 IAAA AAAA
ACCL; zero ACCH
AND long immediate, with left 2 2 1011 1111 1011 SHFT
shift, with ACC + 1 word
AND long immediate, with left 2 2 1011 1110 1000 0001
shift of 16, with ACC + 1 word
ANDB AND ACCB with ACC 1 1 1011 1110 0001 o0010 6-46
BSAR Barrel-shift ACC right 1 1 1011 1111 1110 SHFT 6-82
T Bold typeface indicates instructions that are new for the 'C5x instruction set.
¥ The cycle timings are for single-instruction execution, not for repeat mode.
§ Peripheral memory-mapped register access
Assembly Language Instructions 6-9

Instruction Set Summary

Table 6-4. Accumulator Memory Reference Instructions (Continued)

Mnemonic T Description Words Cycles* Opcode Page
CMPL 1s complement ACC 1 1 1011 1110 0000 0001 6-94
CRGT Store ACC in ACCB if 1 1 1011 1110 0001 1011 6-100
ACC > ACCB
CRLT Store ACC in ACCB if 1 1 10112 1110 0001 1100 6-10
ACC < ACCB
EXAR Exchange ACCB with ACC 1 1 10112 1110 0001 1101 6-106
LACB Load ACC to ACCB 1 1 10112 1110 0001 1111
LACC Load data memory value, with 1 1 0001 SHFT IAAA AAAA
left shift, to ACC
Load long immediate, with left 2 2 1011 1111 1000 SHFT
shift, to ACC + 1 word
Load data memory value, with 1 1 0110 1010 IAAA AAAA
left shift of 16, to ACC
LACL Load data memory value to 1 1 0110 1001 IAAA AAAA
ACCL; zero ACCH
Load shortimmediate to ACCL; 1 1 1011 1001 kkkk kkkk
zero ACCH
LACT Load data memory value, with left 1 1 0110 1011 IAAA AAAA
shift specified by TREG1, to ACC
LAMM Load contents of memory- 1 l1or28 0000 1000 IAAA AAAA [6-12
mapped register to ACCL; zero
ACCH
NEG Negate (2s complement) ACC 1 1 1011 1110 0000 0010
NORM Normalize ACC 1 1 1010 0000 IAAA AAAA 6-18
OR OR data memory value with 1 1 0110 1101 IAAA AAAA
ACCL
OR long immediate, with left 2 2 1011 1111 1100 SHFT
shift, with ACC + 1 word
OR long immediate, with left 2 2 1011 1110 1000 0010
shift of 16, with ACC + 1 word

T Bold typeface indicates instructions that are new for the 'C5x instruction set.
 The cycle timings are for single-instruction execution, not for repeat mode.
§ Peripheral memory-mapped register access

6-10

Table 6-4. Accumulator Memory Reference Instructions (Continued)

Instruction Set Summary

Mnemonic T Description Words Cycles¥ Opcode Page

ORB OR ACCB with ACC 1 1 1011 1110 0001 0011 6-190

ROL Rotate ACC left 1 bit 1 1 1011 1110 0000 1100 6-210

ROLB Rotate ACCB and ACC left 1 bit 1 1 1011 1110 0001 0100 6-211

ROR Rotate ACC right 1 bit 1 1 1011 1110 0000 1101 6-212

RORB Rotate ACCB and ACC right 1 bit 1 1 1011 1110 0001 0101 6-213

SACB Store ACC in ACCB 1 1 1011 1110 0001 1110 6-220

SACH Store ACCH, with left shift, in 1 1 1001 1SHF IAAA AAAA [6-221
data memory location

SACL Store ACCL, with left shift, in 1 1 1001 OSHF IAAA AAAA [6-223
data memory location

SAMM Store ACCL in memory- 1 1or28 1000 1000 IAAA AAAA [6-225
mapped register

SATH Barrel-shift ACC right O or 16 bits 1 1 1011 1110 0101 1010 6-229
as specified by TREG1

SATL Barrel-shift ACC right as specified 1 1 1011 1110 0101 1011 6-231
by TREG1

SBB Subtract ACCB from ACC 1 1 1011 1110 0001 1000 6-232

SBBB Subtract ACCB and logical inver- 1 1 1011 1110 0001 1001 6-233
sion of carry bit from ACC

SFL Shift ACC left 1 bit 1 1 1011 1110 0000 1001 6-237

SFLB Shift ACCB and ACC left 1 bit 1 1 1011 1110 0001 0110 6-238

SFR Shift ACC right 1 bit 1 1 1011 1110 0000 1010 6-239

SFRB Shift ACCB and ACC right 1 bit 1 1 1011 1110 0001 0111 6-241

1t Bold typeface indicates instructions that are new for the 'C5x instruction set.

$The cycle timings are for single-instruction execution, not for repeat mode.

§ Peripheral memory-mapped register access

Assembly Language Instructions 6-11

Instruction Set Summary

Table 6-4. Accumulator Memory Reference Instructions (Continued)

Mnemonic T Description Words Cycles¥ Opcode Page
SUB Subtract data memory value, 1 1 0011 SHFT IAAA AAAA
with left shift, from ACC
Subtract data memory value, 1 1 0110 0101 IAAA AAAA
with left shift of 16, from ACC
Subtract short immediate from 1 1 1011 1010 kkkk kkkk 6-259
ACC
Subtract long immediate, with 2 2 1011 1111 1010 SHFT 6-259
left shift, from ACC + 1 word
SUBB Subtract data memory value 1 1 0110 0100 IAAA AAAA
and logical inversion of carry bit
from ACC with sign extension
suppressed
SUBC Conditional subtract 1 1 0000 1010 IAAA AAAA |6-26
SUBS Subtract data memory value 1 1 0110 0110 IAAA AAAA |6-26
from ACC with sign extension
suppressed
SUBT Subtract data memory value, 1 1 0110 0111 IAAA AAAA
with left shift specified by
TREGL1, from ACC
XOR Exclusive-OR data memory 1 1 0110 1100 IAAA AAAA 6-280
value with ACCL
Exclusive-OR long immediate, 2 2 1011 1110 1000 0011 6-280
with left shift of 16, with ACC + 1 word
Exclusive-OR long immediate, 2 2 1011 1111 1101 SHFT
with left shift, with ACC + 1 word
XORB Exclusive-OR ACCB with ACC 1 1 1011 1110 0001 1010
ZALR Zero ACCL and load ACCH 1 1 0110 1000 IAAA AAAA |6-28
with rounding
ZAP Zero ACC and PREG 1 1 1011 1110 0101 1001 6-289

T Bold typeface indicates instructions that are new for the 'C5x instruction set.
¥ The cycle timings are for single-instruction execution, not for repeat mode.

§ Peripheral memory-mapped register access

6-12

Instruction Set Summary

Table 6-5. Auxiliary Registers and Data Memory Page Pointer Instructions

Mnemonic T Description Words Cyclest Opcode Page

ADRK Add short immediate to AR 1 1 0111 1000 kkkk kkkk 6-42

CMPR Compare AR with ARCR as 1 1 1011 1111 0100 01CM [6-95
specified by CM bits

LAR Load data memory value to ARX 1 2 0000 OARX IAAA AAAA [6-124
Load short immediate to ARx 1 2 1011 OARX Kkkkk kkkk 6-124
Load long immediate to ARX 2 2 1011 1111 0000 1ARX [6-124

+ 1 word

LDP Load data memory value to 1 2 0000 1101 IAAA AAAA [6-127
DP bits
Load shortimmediate to DP bits 1 2 1011 1101 kkkk kkkk 6-127,

MAR Modify AR 1 1 1000 1011 IAAA AAAA [6-166

SAR Store ARX in data memory 1 1 1000 OARX IAAA AAAA [6-227
location

SBRK Subtract short immediate from 1 1 0111 1100 kkkk kkkk 6-234
AR

1t Bold typeface indicates instructions that are new for the 'C5x instruction set.
¥ The cycle timings are for single-instruction execution, not for repeat mode.

Assembly Language Instructions 6-13

Instruction Set Summary

Table 6—6. Parallel Logic Unit (PLU) Instructions

Mnemonic T Description Words Cycles* Opcode Page

APL AND data memory value with 1 1 0101 1010 IAAA AAAA 6-48
DBMR, and store result in data
memory location
AND data memory value with 2 2 0101 1110 IAAA AAAA
long immediate and store + 1 word
result in data memory location

CPL Compare data memory value 1 1 0101 1011 IAAA AAAA 6-97
with DBMR
Compare data memory value 2 2 0101 1111 IAAA AAAA
with long immediate + 1 word

OPL OR data memory value with 1 1 0101 1001 IAAA AAAA |6-184
DBMR and store result in data
memory location
OR data memory value with 2 2 0101 1101 |IAAA AAAA |6-184
long immediate and store + 1 word
result in data memory location

SPLK Store long immediate in data 2 2 1010 1110 |IAAA AAAA |6-25
memory location + 1 word

XPL Exclusive-OR data memory 1 1 0101 1000 IAAA AAAA |6-284
value with DBMR and store
result in data memory location
Exclusive-OR data memory 2 2 0101 1100 IAAA AAAA |6-284
value with long immediate and + 1 word
store result in data memory
location

LPH Load data memory value to 1 1 0111 0101 IAAA AAAA
PREG high byte

LT Load data memory value to 1 1 0111 0011 IAAA AAAA |6-138

TREGO

T Bold typeface indicates instructions that are new for the 'C5x instruction set.

$The cycle timings are for single-instruction execution, not for repeat mode.

6-14

Instruction Set Summary

Table 6-7. TREGO, PREG, and Multiply Instructions

Mnemonic T Description Words Cyclest¥ Opcode

2 8
Bl a
o ()

LTA Load data memory value to 1 1 0111 0000 IAAA AAAA
TREGO; add PREG, with shift
specified by PM bits, to ACC

LTD Load data memory value to 1 1 0111 0010 IAAA AAAA [6-142
TREGO; add PREG, with shift
specified by PM bits, to ACC;
and move data

LTP Load data memory value to 1 1 0111 0001 IAAA AAAA [6-145
TREGO; store PREG, with shift
specified by PM bits, in ACC

LTS Load data memory value to 1 1 0111 0100 IAAA AAAA [6-147
TREGO; subtract PREG, with
shift specified by PM bits, from
ACC

MAC Add PREG, with shift specified 2 3 1010 0010 IAAA AAAA [6-149
by PM bits, to ACC; load data + 1 word
memory value to TREGO; multi-
ply data memory value by pro-
gram memory value and store
result in PREG

MACD Add PREG, with shift specified 2 3 1010 0011 I1AAA AAAA
by PM bits, to ACC; load data + 1 word
memory value to TREGO; multi-
ply data memory value by pro-
gram memory value and store
resultin PREG; and move data

)

-15

w

MADD Add PREG, with shift specified 1 3 1010 1011 |IAAA AAAA [6-158
by PM bits, to ACC; load data
memory value to TREGO; multi-
ply data memory value by value
specified in BMAR and store
resultin PREG; and move data

MADS Add PREG, with shift specified 1 3 1010 1010 IAAA AAAA
by PM bits, to ACC; load data
memory value to TREGO; multi-
ply data memory value by value
specified in BMAR and store
result in PREG

1t Bold typeface indicates instructions that are new for the 'C5x instruction set.
tThe cycle timings are for single-instruction execution, not for repeat mode.

Assembly Language Instructions 6-15

Instruction Set Summary

Table 6-7. TREGO, PREG, and Multiply Instructions (Continued)

Mnemonic T Description Words Cycles* Opcode Page

MPY Multiply data memory value by 1 1 0101 0100 IAAA AAAA
TREGO and store resultin PREG
Multiply short immediate by 1 1 110k Kkkkk kkkk Kkkk
TREGO and store resultin PREG
Multiply long immediate by 2 2 1011 1110 1000 0000
TREGO and store resultin PREG + 1 word

MPYA Add PREG, with shift specified 1 1 0101 0000 IAAA AAAA 6-17
by PM bits, to ACC; multiply
data memory value by TREGO
and store result in PREG

MPYS Subtract PREG, with shift speci- 1 1 0101 0001 IAAA AAAA
fied by PM bits, from ACC; multi-
ply data memory value by
TREGO and store resultin PREG

MPYU Multiply unsigned data memory 1 1 0101 0101 IAAA AAAA |6-17
value by TREGO and store result
in PREG

PAC Load PREG, with shift specified 1 1 1011 1110 0000 0011 6-19
by PM bits, to ACC

SPAC Subtract PREG, with shift speci- 1 1 1011 1110 0000 0101
fied by PM bits, from ACC

SPAC Subtract PREG, with shift speci- 1 1 1011 1110 0000 0101
fied by PM bits, from ACC

SPH Store PREG high byte, with shift 1 1 1000 1101 |IAAA AAAA 6-24
specified by PM bits, in data
memory location

SPL Store PREG low byte, with shift 1 1 1000 1100 IAAA AAAA 6-249
specified by PM bits, in data
memory location

SPM Set product shift mode (PM) bits 1 1 1011 1111 0000 OO0OPM 6-25

SQRA Add PREG, with shift specified 1 1 0101 0010 IAAA AAAA 6-25

by PM bits, to ACC; load data
memory value to TREGO; square
value and store result in PREG

T Bold typeface indicates instructions that are new for the 'C5x instruction set.
¥ The cycle timings are for single-instruction execution, not for repeat mode.

6-16

Table 6-7. TREGO, PREG, and Multiply Instructions (Continued)

Instruction Set Summary

Mnemonic T Description Words Cycles¥ Opcode Page

SQRS Subtract PREG, with shift speci- 1 1 0101 0011 IAAA AAAA 6-255]
fied by PM bits, from ACC; load
data memory value to TREGO;
square value and store result in
PREG

ZPR Zero PREG 1 1 1011 1110 0101 1000 6-290

tBold typeface indicates instructions that are new for the 'C5x instruction set.

¥ The cycle timings are for single-instruction execution, not for repeat mode.

Table 6-8. Branch and Call Instructions

Mnemonic T Description Words Cyclest¥ Opcode Page

B Branch unconditionally to pro- 2 4 0111 1001 1AAA AAAA
gram memory location + 1 word

BACC Branch to program memory 1 4 1011 1110 0010 0000
location specified by ACCL

BACCD Delayed branch to program 1 2 1011 1110 0010 0001
memory location specified by
ACCL

BANZ Branch to program memory 2 4%or2# 0111 1011 1AAA AAAA [6-54
location if AR not zero + 1 word

BANZD Delayed branch to program 2 2 0111 1111 1AAA AAAA 6-56
memory location if AR not zero + 1 word

BCND Branch conditionally to pro- 2 4Tor2# 1110 00TP ZLVC ZLVC 6-58
gram memory location + 1 word

BCNDD Delayed branch conditionallyto 2 2 1111 00TP ZLVC ZLVC
program memory location + 1 word

BD Delayed branch unconditionally 2 2 0111 1101 1AAA AAAA
to program memory location + 1 word

CALA Callto subroutine addressedby 1 4 1011 1110 0011 0000

ACCL

1t Bold typeface indicates instructions that are new for the 'C5x instruction set.

tThe cycle timings are for single-instruction execution, not for repeat mode.

1 Conditions true

Condition false

Assembly Language Instructions

6-17

Instruction Set Summary

Table 6-8. Branch and Call Instructions (Continued)

Mnemonic T Description Words Cycles* Opcode Page

CALAD Delayed call to subroutine ad- 1 2 1011 1110 0011 1101 6-84
dressed by ACCL

CALL Call to subroutine unconditionally 2 4 0111 1010 1AAA AAAA

+ 1 word

CALLD Delayed call to subroutine 2 2 0111 1110 1AAA AAAA 6-86
unconditionally + 1 word

ccC Call to subroutine conditionally 2 4Tor2# 1110 10TP ZLVC ZLVC 6-88

+ 1 word

CCD Delayed call to subroutine 2 2 1111 10TP ZLVC ZLVC
conditionally + 1 word

INTR Software interrupt that branches 1 4 1011 1110 0111 NTR# 6-111
program control to program
memory location

NMI Nonmaskable interrupt and glo- 1 4 1011 1110 0101 0010
bally disable interrupts (INTM = 1)

RET Return from subroutine 1 4 1110 1111 0000 0000 6-20

RETC Return from subroutine 1 2 1110 11TP ZLVC ZLVC
conditionally

RETCD Delayed return from subroutine 1 4%or2# 1111 11TP ZLVC ZLVC 6-20
conditionally

RETD Delayed return from subroutine 1 2 1111 1111 0000 0000 6-20

RETE Return from interrupt with con- 1 4 1011 1110 0011 1010 6-208
text switch and globally enable
interrupts (INTM = 0)

RETI Return from interrupt with con- 1 4 1011 1110 0011 1000 6-209
text switch

TRAP Software interrupt that branches 1 4 1011 1110 0101 0001 6-27
program control to program
memory location 22h

XC Execute next instruction(s) 1 1 111N 01TP ZLVC ZLVC 6-278
conditionally

T Bold typeface indicates instructions that are new for the *C5x instruction set.
¥ The cycle timings are for single-instruction execution, not for repeat mode.

1l conditions true

Condition false

6-18

Table 6-9. I/O and Data Memory Operation Instructions

Instruction Set Summary

Mnemonic T Description Words Cyclest Opcode Page
BLDD Block move from data to data 2 3 1010 1000 IAAA AAAA
memory + 1 word
Block move from data to data 2 3 1010 1001 IAAA AAAA
memory with destination address + 1 word
long immediate
Block move from data to data 1 2 1010 1100 IAAA AAAA
memory with source address in
BMAR
Block move from data to data 1 2 1010 1101 IAAA AAAA
memory with destination address
in BMAR
BLDP Block move from data to program 1 2 0101 0111 IAAA AAAA
memory with destination address
in BMAR
BLPD Block move from program to data 1 2 1010 0100 IAAA AAAA
memory with source address in
BMAR
Block move from program to data 2 3 1010 0101 IAAA AAAA
memory with source address long + 1 word
immediate
DMOV Move data in data memory 1 1 0111 0111 IAAA AAAA [6-104
IN Input data from 1/O port to data 2 2 1010 1111 IAAA AAAA [6-109
memory location + 1 word
LMMR Load data memory value to 2 20r3%8 1000 1001 IAAA AAAA [6-130
memory-mapped register + 1 word
ouT Output data from data memory 2 3 0000 1100 IAAA AAAA [6-191
location to I/O port + 1 word
SMMR Store memory-mapped register 2 20r3%8 0000 1001 IAAA AAAA [6-243
in data memory location + 1 word
TBLR Transfer data from program to 1 3 1010 0110 IAAA AAAA [6-271
data memory with source
address in ACCL
TBLW Transfer data from data to pro- 1 3 1010 0111 IAAA AAAA [6-274
gram memory with destination
address in ACCL
1 Bold typeface indicates instructions that are new for the 'C5x instruction set.
tThe cycle timings are for single-instruction execution, not for repeat mode.
§ pPeripheral memory-mapped register access
Assembly Language Instructions 6-19

Instruction Set Summary

Table 6-10. Control Instructions

Mnemonic T Description Words Cycles¥ Opcode Page

BIT Test bit 1 1 0100 BITX IAAA AAAA [6-63

BITT Test bit specified by TREG2 1 1 0110 1111 IAAA AAAA [6-65

CLRC Clear overflow mode (OVM) bit 1 1 1011 1110 0100 0010
Clear sign extension mode 1 1 1011 1110 0100 0110 6-92
(SXM) bit
Clear hold mode (HM) bit 1 1 1011 1110 0100 1000
Clear test/control (TC) bit 1 1 1011 1110 0100 1010 6-92
Clear carry (C) bit 1 1 1011 1110 0100 1110
Clear configuration control 1 1 1011 1110 0100 0100 6-92
(CNF) bit
Clear interrupt mode (INTM) bit 1 1 1011 1110 0100 0000
Clear external flag (XF) pin 1 1 1011 1110 0100 1100

IDLE Idle until nonmaskable interrupt 1 1 1011 1110 0010 0010
or reset

IDLE2 Idle until nonmaskable interrupt 1 1 1011 1110 0010 0011
or reset — low-power mode

LST Load data memory value to STO 1 2 0000 1110 IAAA AAAA |6-135
Load data memory value to ST1 1 2 0000 1111 IAAA AAAA |6-13

NOP No operation 1 1 1000 1011 0000 0000

POP Pop top of stack to ACCL; zero 1 1 1011 1110 0011 0010
ACCH

POPD Pop top of stack to data memory 1 1 1000 1010 IAAA AAAA
location

PSHD Push data memory value to top 1 1 0111 0110 IAAA AAAA
of stack

PUSH Push ACCL to top of stack 1 1 1011 1110 0011 1100 6-200

T Bold typeface indicates instructions that are new for the 'C5x instruction set.
$The cycle timings are for single-instruction execution, not for repeat mode.

6-20

Instruction Set Summary

Table 6-10. Control Instructions (Continued)

Mnemonic T Description Words Cycles¥ Opcode Page

RPT Repeat next instruction specified 1 1 0000 1011 IAAA AAAA [6-214
by data memory value
Repeat next instruction specified 1 2 1011 1011 Kkkkk kkkk 6-214
by short immediate
Repeat next instruction specified 2 2 1011 1110 1100 0100 6-214)
by long immediate + 1 word

RPTB Repeat block of instructions 2 2 1011 1110 1100 0110 6-217,
specified by BRCR + 1 word

RPTZ Clear ACC and PREG; repeat 2 2 1011 1110 1100 o0101 6-219
next instruction specified by + 1 word
long immediate

SETC Set overflow mode (OVM) bit 1 1 1011 1110 0100 0011 6-235
Set sign extension mode (SXM) 1 1 1011 1110 0100 0111 6-235
bit
Set hold mode (HM) bit 1 1 1011 1110 0100 1001 6-235
Set test/control (TC) bit 1 1 1011 1110 0100 1011 6-235
Set carry (C) bit 1 1 1011 1110 0100 1111 6-235
Set external flag (XF) pin high 1 1 1011 1110 0100 1101 6-235
Set configuration control (CNF) 1 1 1011 1110 0100 0101 6-235
bit
Set interrupt mode (INTM) bit 1 1 1011 1110 0100 0001 6-235

SST Store STO in data memory 1 1 1000 1110 IAAA AAAA [6-257
location
Store ST1 in data memory 1 1 1000 1111 IAAA AAAA 6-257
location

tBold typeface indicates instructions that are new for the 'C5x instruction set.
¥ The cycle timings are for single-instruction execution, not for repeat mode.

Assembly Language Instructions 6-21

Instruction Set Descriptions

6.3 Instruction Set Descriptions

This section provides detailed information on the instruction set for the 'C5x
family; see Table 6—4 through Table 6-10 for a complete list of available
instructions. Each instruction description presents the following information:

Assembler syntax
Operands
Opcodes
Execution

Status Bits
Description
Words

Cycles

Examples

Uoooooooo

The EXAMPLE instruction is provided to familiarize you with the format of the
instruction descriptions and to explain what is described under each heading.

6-22

Syntax

Operands

Opcode

Direct: EXAMPLE dma [,shift]
Indirect: EXAMPLE {ind} [,shift][,ARN]
Short immediate: EXAMPLE #k

Long immediate: EXAMPLE #lk

Each instruction description begins with an assembly language syntax expres-
sion. A source statement can contain four ordered fields. The general syntax
for source statements is as follows:

[label 1 [[] mnemonic [operand list] [;comment |
Follow these guidelines:
[Allstatements must begin with alabel, a blank, an asterisk, or a semicolon.

[Labels are optional; if used, they must begin in column 1. Labels may be
placed either before the instruction mnemonic on the same line or on the
preceding line in the first column.

[One or more blanks must separate each field. Tab characters are equiva-
lent to blanks.

1 Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

See Table 6-2 on page 6-4 for definitions of symbols and abbreviations used
in the syntax expression.

0<dmac<127

0 < pma < 65535

0 <shift< 15

0<shift2 <7

0<sn<7

0<k<255

0 <1k £65535

0<sx<7

ind: {* *+ * *0+ *0- *BRO+ *BRO-}

Operands can be constants or assembly-time expressions that refer to
memory, 1/O ports, register addresses, pointers, shift counts, and a variety of
other constants. This section also gives the range of acceptable values for the
operand types.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|xxxxxxxxxxxxxxxx|

The opcode graphic shows bit values or field names that make up each instruc-
tion. See Table 6—1 on page 6-2 for definitions of symbols and abbreviations
used in the instruction opcodes.

6-23

Execution

Status Bits

Description

Words

Cycles

6-24

(PC)+1 - PC
(ACC) + (dma) - ACC
0 - C

The execution section symbolically represents the process that takes place
when the instruction is executed. See Table 6—2 on page 6-4 for definitions of
symbols and abbreviations used in the execution section.

Affected by: Not affected by: Affects:
OVM SXM C and OV

Aninstruction’s execution may be affected by the state of the fields in the status
registers; also it may affect the state of the status register fields. Both the
effects on and the effects ofthe status register fields are listed in this section.

This section describes the instruction execution and its effect on the rest of the
processor or memory contents. Any constraints on the operands imposed by
the processor or the assembler are discussed. The description parallels and
supplements the information given symbolically in the execution section.

This section specifies the number of memory words required to store the in-
struction and its extension words.

This section provides tables showing the number of cycles required for a given
instruction to execute in a given memory configuration — both as a single
instruction and in the repeat (RPT) mode. The following are examples of the
cycle timing tables.

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1 1+p

External 1+d 1+d 1+d 2+d+p

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n n+p

External n+nd n+nd n+nd n+1+p+nd

The column headings in the tables indicate the program source location. The
program source locations are defined as follows:

ROM
DARAM

SARAM

External Memory

The instruction executes from on-chip program ROM.

The instruction executes from on-chip dual-access
program RAM.

The instruction executes from on-chip single-access
program RAM.

The instruction executes from external program
memory.

If an instruction requires memory operand(s), the rows in the tables indicate
the location(s) of the operand(s). The operands are defined as follows:

DARAM
SARAM
External
ROM
MMR
MMPORT

The operand is in internal dual-access RAM.
The operand is in internal single-access RAM.
The operand is in external memory.

The operand is in internal program ROM.

The operand is a memory-mapped register.
The operand is a memory-mapped I/O port.

The number of cycles required for each instruction is given in terms of the pro-
cessor machine cycles (CLKOUT1 period). The additional wait states for pro-
gram/data memory and I/O accesses are defined below. Note that these addi-
tional cycles can be generated by the on-chip software wait-state generator
or by the external READY signal. These variables can also use the subscripts
sre, dst, and code to indicate source, destination, and code, respectively.

d Data memory wait states. Represents the number of additional clock
cycles the device waits for external data memory to respond to an

access.

io 1/0O wait states. Represents the number of additional clock cycles
the device waits for an external 1/0O to respond to an access.

n Repetitions (where n > 2 to fill the pipeline). Represents the number
of times a repeated instruction is executed.

p Program memory wait states. Represents the number of additional
clock cycles the device waits for external program memory to
respond to an access.

6-25

Table 6-11 lists the on-chip single-access RAM available on each 'C5x pro-
cessor. The on-chip single-access RAM is divided into 1K- and/or 2K-word
blocks contiguous in address memory space. All'C5x processors support par-
allel accesses to these on-chip SARAM blocks. However, one SARAM block
allows only one access per cycle. In other words, the processor can read/write
on one SARAM block while accessing another SARAM block.

All external reads require at least one machine cycle while all external writes
require atleast two machine cycles. However, if an external write is immediate-
ly followed or preceded by an external read cycle, then the external write
requires three cycles. See Section 8.9, External Memory Interface Timings, on
page 8-39 for details. If you use an on-chip wait-state generator to add m (m>0)
wait states to an external access, then both the external reads and the external
writes require m+1 cycles, assuming that the external READY line is driven
high. If you use the READY input line to add m additional cycles to an external
access, then external reads require m+1 cycles and external write accesses
require m+2 cycles. See Section 9.4, Software-Programmable Wait-State
Generators, on page 9-13 and the data sheet for READY electrical specifica-
tions.

Table 6-11. Address Blocks for On-Chip Single-Access RAM

6-26

Device SARAM Block size Hex Address Range
'C50 9K-word 2K-word block 0800-0FFF
2K-word block 1000-17FF
2K-word block 1800-1FFF
2K-word block 2000-27FF
1K-word block 2800-2BFF
'C51 1K-word 1K-word block 0800-0BFF
'C53/'C53S 3K-word 2K-word block 0800-0FFF
1K-word block 1000-13FF
'LC56 6K-word 2K-word block 0800-0FFF
2K-word block 1000-17FF
2K-word block 1800-1FFF
'C57S/'LC57 6K-word 2K-word block 0800-0FFF
2K-word block 1000-17FF
2K-word block 1800-1FFF

Example

The instruction cycles are based on the following assumptions:

[Atleastfour instructions following the current instruction are fetched from
the same memory section (on-chip or external) as the current instruction,
exceptin instructions that cause a program counter discontinuity, such as
B, CALL, etc.

[When executing a single instruction, there is no pipeline conflict between
the current instruction and the instructions immediately preceding or fol-
lowing that instruction. The only exception is the conflict between the fetch
phase of the pipeline and the memory read/write (if any) access of the
instruction under consideration. See Chapter 7 for pipeline operation.

[Inthe repeat execution mode, all conflicts caused by the pipelined execu-
tion of that instruction are considered.

Refer to Appendix B for a summary of instruction cycle classifications.

Example code is shown for each instruction. The effect of the code on memory
and/or registers is summarized.

6-27

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

Example 1

Example 2

6-28

ABS
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111000000000

(PC)+1 - PC

[(ACC)] - ACC

0 - C

Affected by: Not affected by: Affects:
OVM SXM C and OV

If the contents of the accumulator (ACC) are greater than or equal to 0, the con-
tents of the ACC is unchanged. If the contents of the ACC are less than 0, the
contents of the ACC is replaced by its 2s-complement value. The ABS instruc-
tion clears the C bit.

Note that 8000 0000h is a special case. When the OVM bitis cleared, the ABS
of 8000 0000h is 8000 0000h. When the OVM bit is set, the ABS of
8000 0000h is 7FFF FFFFh. In either case, the OV bit is set.

ABS is an accumulator memory reference instruction (see Table 6-4).
1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory
n n n n+p
ABS
Before Instruction After Instruction
ACC | 1234n] acc [0] 1234h
C C
ABS
Before Instruction After Instruction
Acc [__FrrrFrern) acc [0]
C C

Example 3 ABS ;(OVM = 1)

Before Instruction After Instruction
Acc [_eooooooon] acc [0]
C C
oV oV
Example 4 ABS ;(OVM = 0)
Before Instruction After Instruction
Acc [_eooooosh] Acc [0]
C C
ov ov

6-29

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-30

ADCB
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111000010001

(PC)+1 - PC
(ACC) + (ACCB) + (C) -~ ACC
Affected by: Affects:
OVM C and OV

The contents of the accumulator buffer (ACCB) and the value of the C bit are
added to the contents of the accumulator (ACC). The result is stored in the
ACC and the contents of the ACCB are unaffected. The C bitis set, if the result
of the addition generates a carry; otherwise, the C bit is cleared.

ADCB is an accumulator memory reference instruction (see Table 6—4).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
ADCB

Before Instruction After Instruction

ace |] acc [0]
C C
ACCB | 2h| ACCB

Syntax Direct: ADD dma [,shift]
Indirect: ADD {ind} [,shift] [,LARN]
Short immediate: ADD #k
Long immediate: ~ ADD #Ik [,shiff]

Operands O0<dma<127
0 < shift <16 (defaults to 0)
0<n<7
0<k<255
—32768 < [k < 32767
ind: {* *+ * *0+ *0- *BRO+ *BRO-}

Opcode Direct addressing with shift
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o o 1 o] SHFT | 0| dma

T See Table 6-1 on page 6-2.

Indirect addressing with shift
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 o0 SHFT T | 1] See Section 5.2

T See Table 6-1 on page 6-2.

Direct addressing with shift of 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo 1 12 oJo o o 1]o] dma

Indirect addressing with shift of 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 6 1 1 0|0 0 0 1 | 1 | See Section 5.2 |

Short immediate addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 0 1 1 1 0 o0 o] 8-Bit Constant |

Long immediate addressing with shift
151413121110987654|3210
1 0 1 1 1 3+ —34—+—T 0 0 1| SHFTT

16-Bit Constant

T See Table 6-1 on page 6-2.
Execution Direct or indirect addressing:

(PC)+1 - PC
(ACC) + ((dma) x 2shifty _, AcCC

6-31

Status Bits

Description

Words

6-32

Short immediate addressing:
(PC)+1 - PC
(ACC)+k - ACC

Long immediate addressing:
(PC)+2 -~ PC
(ACC) + (Ik x 2shift y . AcCC

Affected by: Affects.

OVM and SXM C and OV Direct or indirect addressing
OVM C and OV Short immediate addressing
OVM and SXM C and OV Long immediate addressing

If direct, indirect, or long immediate addressing is used, the contents of the
data memory address (dma) or a 16-bit constant are shifted left, as defined by
the shift code, and added to the contents of the accumulator (ACC). The result
is stored in the ACC. During shifting, the accumulator low byte (ACCL) is
zero-filled. If the SXM bit is cleared, the high-order bits of the ACC are zero-
filled; if the SXM bit is set, the high-order bits of the ACC are sign-extended.

Note that when the auxiliary register pointer (ARP) is updated during indirect
addressing, you must specify a shift operand. If you don’t want a shift, you must
enter a O for this operand. For example:

ADD*+,0,AR0

If short immediate addressing is used, an 8-bit positive constant is added to
the contents of the ACC. The resultis stored in the ACC. In this mode, no shift
value may be specified and the addition is unaffected by the SXM bit.

The C bit is set, if the result of the addition generates a carry; otherwise, the
C bit is cleared. If a 16-bit shift is specified with the ADD instruction, the C bit
is set only if the result of the addition generates a carry; otherwise, the C bit
is unaffected. This allows the accumulation to generate the proper single carry
when a 32-bit number is added to the ACC.

ADD is an accumulator memory reference instruction (see Table 6-4).

1 (Direct, indirect, or short immediate addressing)

2 (Long immediate addressing)

Cycles For the short and long immediate addressing modes, the ADD instruction is
not repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1, 2t 1+p

External 1+d 1+d 1+d 2+d+p

Tifthe operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

T if the operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory
2 2 2 2+2p
Example 1 ADD DAT1,1 ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
301h | 1h] 301h
ACC I 2h] acc [o]
C C

6-33

Example 2 ADD *+,0,AR0

Before Instruction After Instruction
ARP | 4] ARP [d
AR4 | 0302h] AR4
Data Memory Data Memory
302h | 2h| 302h
ACC | 2h] acc [o]
C C
Example 3 ADD #1h ;Add short immediate
Before Instruction After Instruction
ACC | 2 acc [0
C C
Example 4 ADD #1111h,1 ;Add long immediate with shift of 1
Before Instruction After Instruction
ACC | 2 acc [0
C C

6-34

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

ADDB

None

15 14 13 12 11 10 9 8 7

|101111100

(PC)+1 - PC
(ACC) + (ACCB) — ACC

Affected by: Affects:
OVM C and OV

The contents of the accumulator buffer (ACCB) are added to the contents of
the accumulator (ACC). The resultis stored in the ACC and the contents of the
ACCB are unaffected. The C hit is set, if the result of the addition generates

a carry; otherwise, the C bit is cleared.

ADDB is an accumulator memory reference instruction (see Table 6-4).

After Instruction

ACC 1236h

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
ADDB
Before Instruction
ACC | 1234h|
ACCB | 2h]
C

accs [0]
C

6-35

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-36

Direct: ADDC dma
Indirect: ADDC {ind} [,ARN]

O0<dmac<127
0<n<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5

|0110000

o
o

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5

4 3 2 1 O

lo 2 1 0o o o o of1] See Section 5.2
(PC)+1 - PC

(ACC) + (dma) + (C) - ACC

Affected by: Not affected by: Affects:

OVM SXM C and OV

The contents of the data memory address (dma) and the value of the C bit are
h sign extension sup-
set, if the result of the

added to the contents of the accumulator (ACC) wit
pressed. The result is stored in the ACC. The C bit is

addition generates a carry; otherwise, the C bit is cleared.

The ADDC instruction can be used in performing multiple-precision arithmetic.

ADDC is an accumulator memory reference instructio

1

Cycles for a Single Instruction

n (see Table 6-4).

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block

Example 1

Example 2

ADDC DATO ;(DP = 6)

Before Instruction

Data Memory
300h | 04h|

ACC | 13n]
c

ADDC *~,AR4 ;(OVM = 0)

Before Instruction

ARP | 0]
ARO | 300h]
Data Memory
300h | 0h|
ACC | FFFF FFFFh]
C
oV

After Instruction
Data Memory

300h
acc [0]
C

After Instruction

AP

ARO
Data Memory
300h
Acc
C
&

6-37

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-38

Direct: ADDS dma
Indirect: ADDS {ind} [,LARN]

0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9

o]
~
o
a1
IN
w
N
[
o

[o 1 1 0o 0 0 1 o]o] dma

Indirect addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo 12 1 0o o o 1 ofa1] See Section 5.2
(PC)+1 -~ PC

(ACC) + (dma) -~ ACC

(dma) is an unsigned16-bit number

Affected by: Not affected by: Affects:

OVM SXM C and OV

The contents of the data memory address (dma) are added to the contents of
the accumulator (ACC) with sign extension suppressed. The data is treated
as an unsigned 16-bit number, regardless of the SXM bit. The contents of the
ACC are treated as a signed number. The result is stored in the ACC. The C
bit is set, if the result of the addition generates a carry; otherwise, the C bit is
cleared.

The ADDS instruction produces the same results as an ADD instruction with
the SXM bit cleared and a shift count of 0.

ADDS is an accumulator memory reference instruction (see Table 6—4).

1
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

1 If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

T 1f the operand and the code are in the same SARAM block

Example 1 ADDS DATO ;(DP = 6)
Before Instruction After Instruction
Data Memory Data Memory
300h | FOO06h| 300h
ACC | 0000 0003h] Acc o]
C C
Example 2 ADDS *
Before Instruction After Instruction
ARP | q Are I
ARO | 0300h| ARO
Data Memory Data Memory
300h | FFFFh| 300h
ACC | 7FFF 0000h] acc [o]
C C

6-3

©

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-40

Direct: ADDT dma
Indirect: ADDT {ind} [,ARnN]

0<dmac<127
0<n<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 0 0 o0 1 1]o0] dma |
Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0 0o 0 1 1]1] See Section 5.2 |
(PC)+1 - PC
(ACC) + ((dma) x 2TREG1(3-0)) _, AcCC
If SXM = 0:
(dma) is not sign-extended
If SXM = 1:
(dma) is sign-extended
Affected by: Affects:
OVM, SXM, and TRM C and OV

The contents of the data memory address (dma) are shifted left from 0 to 15
bits, as defined by the 4 LSBs of TREG1, and added to the contents of the ac-
cumulator (ACC). The result is stored in the ACC. Sign extension on the dma
value is controlled by the SXM bit. The C bit is set, if the result of the addition
generates a carry; otherwise, the C bit is cleared.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGs.
Subsequent calls to the ADDT instruction will shift the value by the TREG1 val-
ue (which is the same as TREGO), maintaining 'C5x object-code compatibility
with the "C2x.

ADDT is an accumulator memory reference instruction (see Table 6—4).

1

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,21 1+p

External 1+d 1+d 1+d 2+d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Example 1 ADDT DAT127 ;(DP = 4, SXM = 0)
Before Instruction
Data Memory
027Fh | 09h|
TREG1 | FF94h|
ACC | F715h]
C
Example 2 ADDT *—,AR4 ;(SXM = 0)
Before Instruction
ARP | 0l
ARO | 027Fh]|
Data Memory
027Fh | 09h|
TREG1 | FF94h|
ACC F715h]|

I
c

Data Memory
027Fh

TREG1
ACC

ARP
ARO

Data Memory
027Fh

TREG1
ACC

[]

C

o [c]

>
=
]
=
=1
w0
=
c
(o]
[=
o
>

FF94
F7A5

027E

FF94
F7A5

>

=

@

=

=1

w0

=

c

(o]

(=14

S
o o
© ©
> > > =y N > =y =y

»
N
=

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-42

ADRK #k
0<k<255

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o 1 1 1 1 0 0 O 8-Bit Constant

(PC)+1 - PC
(current AR) + 8-bit positive constant — current AR

None affected.

The 8-bit immediate value, right-justified, is added to the current auxiliary reg-
ister (AR). The resultis stored inthe AR. The addition takes place in the auxilia-
ry register arithmetic unit (ARAU), with the immediate value treated as an 8-bit
positive integer. All arithmetic operations on the AR are unsigned.

ADRK is an auxiliary registers and data memory page pointer instruction (see
Table 6-5).

1
The ADRK instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory
1 1 1 1+p
ADRK #80h
Before Instruction After Instruction
ARP | 5] ARP
AR5 | 4321h| AR5

Syntax Direct: AND dma
Indirect: AND {ind} [,LARN]
Long immediate: AND #lk [,shift]

Operands O0<dma<127
0<n<7
Ik: 16-bit constant
0 < shift< 16
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Opcode Direct addressing
15 14 13 12 11 10 9 8
[o 1 1 0o 1 1 1 O]

;
0 | dma |

Indirect addressing
15 14 13 12 11 10 9 8
[o 1 1 0o 1 1 1 o]

7 6 5 4 3 2 1 0
1 | See Section 5.2 |

Long immediate addressing with shift

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i1 0 1 1 1 1 1 1 1 0 1 1| SHFTT
16-Bit Constant

T See Table 6-1 on page 6-2.
Long immediate addressing with shift of 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 0 1 1 1 1+—3+—6—1T 0 O 0 0 0 0 1
16-Bit Constant

Execution Direct or indirect addressing:
(PC)+1 - PC
(ACC(15-0)) AND (dma) —» ACC(15-0)
0 - ACC(31-16)

Long immediate addressing:

(PC)+2 - PC .

(ACC(30-0)) AND (lk x 2shifty _, AccC
Status Bits Not affected by:

SXM Long immediate addressing
Description If along immediate constant is specified, the constant is shifted left and zero-

extended on both ends and is ANDed with the contents of the accumulator
(ACC). The result is stored in the ACC. If a constant is not specified, the con-
tents of the data memory address (dma) are ANDed with the contents of the
accumulator low byte (ACCL). The result is stored in the ACCL and the accu-
mulator high byte (ACCH) is zero-filled.

AND is an accumulator memory reference instruction (see Table 6-4).

6-43

Words 1 (Direct or indirect addressing)
2 (Long immediate addressing)

Cycles For the long immediate addressing modes, the AND instruction is not
repeatable.
Cycles for a Single Instruction (direct or indirect addressing)
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p
tifthe operand and the code are in the same SARAM block.
Cycles for a Repeat (RPT) Execution (direct or indirect addressing)
Operand ROM DARAM SARAM External Memory
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd
1 1f the operand and the code are in the same SARAM block.
Cycles for a Single Instruction (long immediate addressing)
ROM DARAM SARAM External Memory
2 2 2 2+2p
Example 1 AND DAT16 ;(DP = 4)
Before Instruction After Instruction
Data Memory Data Memory
0210h | 00FFh] 0210h
ACC | 1234 5678h)| ACC 0000 0078h
Example 2 AND *
Before Instruction After Instruction
ARP o] ARP [d
ARO 0301h| ARO
Data Memory Data Memory
0301h FFooh| 0301h
ACC 1234 5678h| ACC 0000 5600h

6-44

Example 3 AND #00FFh,4

Before Instruction After Instruction
ACC | 1234 5678h| ACC 0000 0670h

6-45

Syntax ANDB

Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0
Execution (PC)+1 - PC
(ACC) AND (ACCB) - ACC
Status Bits None affected.
Description The contents of the accumulator (ACC) are ANDed with the contents of the

accumulator buffer (ACCB). The result is stored in the ACC and the contents
of the ACCB are unaffected.

ANDB is an accumulator memory reference instruction (see Table 6-4).

Words 1
Cycles Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
Example ANDB
Before Instruction After Instruction
ACC | OFOF FFFFh]| ACC
ACCB | 5555 5555h | ACCB

6-46

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

APAC
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000000100

(PC)+1 - PC
(ACC) + (shifted PREG) - ACC

Affected by: Not affected by: Affects:
OVM and PM SXM C and OV

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the contents of the accumulator (ACC). The result is stored
inthe ACC. The C bitis set, if the result of the addition generates a carry; other-
wise, the C bitis cleared. The contents of the PREG are always sign extended.

The APAC instruction is a subset of the LTA, LTD, MAC, MACD, MADS,
MADD, MPYA, and SQRA instructions.

APAC is a TREGO, PREG, and multiply instruction (see Table 6-7).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p

APAC ;(PM = 01)

Before Instruction After Instruction
PREG I 40h| PREG
ACC I 20h] acc [o]
C C

6-47

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-48

Direct: APL [#lk,)] dma
Indirect: APL [#Ik,] {ind} [,ARN]

0<dma<127

Ik: 16-bit constant

0<sn<7

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing with long immediate not specified
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo 1 o0 1 1 o 1 ool dma |

Indirect addressing with long immediate not specified
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 0 1 1 0o 1 of1] See Section 5.2 |

Direct addressing with long immediate specified
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 ' dma

16-Bit Constant

Indirect addressing with long immediate specified
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0O 1 0 1 1 1 1 9|+ SeeSections2

16-Bit Constant

Long immediate not specified:
(PC)+1 - PC
(dma) AND (DBMR) - dma

Long immediate specified:
(PC)+2 - PC
(dma) AND |k - dma

Affects: TC

If a long immediate constant is specified, the constant is ANDed with the con-
tents of the data memory address (dma). If a constant is not specified, the con-
tents of the dma are ANDed with the contents of the dynamic bit manipulation
register (DBMR). In both cases, the result is written directly back to the dma
and the contents of the accumulator (ACC) are unaffected. The TC bit is set,
if the result of the AND operation is 0; otherwise, the TC bit is cleared.

APL is a parallel logic unit (PLU) instruction (see Table 6—6).

1 (Long immediate not specified)

2 (Long immediate specified)

Cycles Cycles for a Single Instruction (second operand DBMR)

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,37 1+p

External 2+2d 2+2d 2+2d 5+2d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (second operand DBMR)

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p
SARAM 2n-2 2n-2 2n-2, 2n-2+p
2n+1T
External 4n-2+2nd 4n-2+2nd 4n-2+2nd 4n+1+2nd+p

T if the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate specified)

ROM DARAM SARAM External Memory
DARAM 2 2 2 2+2p
SARAM 2 2 2 2+2p
External 3+2d 3+2d 3+2d 6+2d+2p

Cycles for a Repeat (RPT) Execution (long immediate specified)

ROM DARAM SARAM External Memory
DARAM n+1 n+1 n+1 n+1+2p
SARAM 2n-1 2n-1 2n-1, 2n-1+2p
2n+2t
External 4An-1+2nd 4n-1+2nd 4n-1+2nd 4n+2+2nd+2p

T If the operand and the code reside in same SARAM block

6-49

Example 1 APL #0023h,DAT96 ;(DP = 0)
Before Instruction
Data Memory
60h | ooh|
TC
Example 2 APL DAT96 ;(DP = 0)
Before Instruction
DBMR | FFOOh|
Data Memory
60h | 1111h|
TC
Example 3 APL #0100h,*,AR6
Before Instruction
ARP | 5
TC
AR5 | 300h]|
Data Memory
300h | OFFFh|
Example 4 APL * AR7
Before Instruction
ARP | 6]
TC
ARG | 310h]
DBMR | 0303h]|
Data Memory
310h | OEFFh|

6-50

Data Memory
60h

DBMR

Data Memory
60h

ARP

AR5

Data Memory
300h

ARP

ARG
DBMR

Data Memory
310h

TC

[9]

TC

[o]

TC

[o]

TC

After Instruction

o
o
0

After Instruction
FFOO0

!!

1100

After Instruction

300

it

0100

After Instruction

310
0303

0203

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

B pma, {ind} [,ARN]]

0 < pma < 65535
O0sn<7
ind: {* ** *~ *0+ *0- *BRO+ *BRO-}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 1}1} See Section 5.2

16-Bit Constant

pma - PC
Modify current AR and ARP as specified

None affected.

Control is passed to the program memory address (pma). The current auxiliary
register (AR) and auxiliary register pointer (ARP) are modified as specified.
The pma can be either a symbolic or numeric address.

B is a branch and call instruction (see Table 6-8).
2
The B instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+4pt

T The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

B 191,*+,AR1

The value 191 is loaded into the program counter (PC), and the program con-
tinues executing from that location. The current AR is incremented by 1, and
ARP is set to 1.

6-51

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Example

6-52

BACC
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000100000

ACC(15-0) -~ PC
None affected.

Control is passed to the 16-bit address residing in the accumulator low byte
(ACCL).

BACC is a branch and call instruction (see Table 6-8).
1
The BACC instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3pt

T The'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

BACC ;(ACC contains the value 191)

The value 191 is loaded into the program counter (PC), and the program con-
tinues executing from that location.

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Example

BACCD
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000100001

ACC(15-0) -~ PC
None affected.

The one 2-word instruction or two 1-word instructions following the BACCD
instruction are fetched from program memory and executed before the branch
is taken. After the instructions are executed, control is passed to the 16-bit ad-
dress residing in the accumulator low byte (ACCL).

BACCD is a branch and call instruction (see Table 6-8).
1
The BACCD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory
2 2 2 2+p
BACCD ;(ACC contains the value 191)
MAR *+ AR1
LDP #5

After the current AR, ARP, and DP are modified as specified, program execu-
tion continues from location 191.

6-53

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-54

BANZ pma /|, {ind} [,LARN]]

0 < pma < 65535
O<sn<s7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 31 3+ See Section 5.2

16-Bit Constant

If (current AR) Z O:

pma - PC
Else:
(PC)+2 - PC

Modify current AR as specified
None affected.

If the contents of the current auxiliary register (AR) are not 0, control is passed
to the program memory address (pma); otherwise, control is passed to the
next instruction. The default modification to current AR is a decrement by 1.
You can cause N loop iterations to be executed by initializing the auxiliary reg-
ister loop counter to N—1 before loop entry. The pma can be either a symbolic
or numeric address.

BANZ is a branch and call instruction (see Table 6-8).
2
The BANZ instruction is not repeatable.

Cycles for a Single Instruction

Condition ROM DARAM SARAM External Memory
True 4 4 4 4+4pt
False 2 2 2 2+2p

t The'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example 1 BANZ PGMO

Before Instruction After Instruction
ARP | ol ARP [
ARO | 5h| ARO

0is loaded into the program counter (PC), and the program continues execut-
ing from that location.

or
Before Instruction After Instruction
ARP | o] ARP [d
ARO | Oh] ARO

The PC is incremented by 2, and execution continues from that location.

Example 2 MAR * ARO
LAR AR1,#3
LAR ARO,#60h
PGM191 ADD *+,AR1
BANZ PGM191,AR0

The contents of data memory locations 60h—63h are added to the accumulator
(ACC).

6-55

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-56

BANZD pma [, {ind} [,ARN]]

0 < pma < 65535
O<sn<s7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

151413121110987|6543210
o 1 1 1 1 3—3F—+%F Iﬁ See Section 5.2
16-Bit Constant

If (current AR) Z O:

pma - PC
Else:
(PC)+2 - PC

Modify current AR as specified
None affected.

The one 2-word instruction or two 1-word instructions following the branch
instruction are fetched from program memory and executed before the branch
is taken.

After the instructions are executed if the contents of the current auxiliary regis-
ter (AR) are not 0, control is passed to the program memory address (pma);
otherwise, control is passed to the next instruction. The default modification
to current AR is a decrement by 1. You can cause N loop iterations to be
executed by initializing the auxiliary register loop counter to N-1 before loop
entry. The pma can be either a symbolic or numeric address.

BANZD is a branch and call instruction (see Table 6-8).
2
The BANZD instruction is not repeatable.

Cycles for a Single Instruction
ROM DARAM SARAM External Memory
2 2 2 2+2p

Example BANZD PGMO

LACC #01h
LDP #5
Before Instruction After Instruction
ARP | 0] ARP [0
ARO | 5h| ARO
DP I 4] DP
ACC | 00h| ACC 01h

After the current DP and accumulator (ACC) are modified as specified, pro-
gram execution continues from location 0.

6-5

~

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-58

BCND pma, cond[,cond1][,...]
0 < pma < 65535

Conditions: ACC=0 EQ
ACCZ#0 NEQ
ACC<O0 LT
ACC<0 LEQ
ACC>0 GT
ACC=0 GEQ
C=0 NC
c=1 C
ov=0 NOV
ov=1 ov
TC=0 NTC
TC=1 TC
BIO low BIO
Unconditionally UNC

156 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 1 D__O——G—erPTI ZINC T zLve t

16-Bit Constant

t See Table 6-1 on page 6-2.
If (condition(s)):

pma - PC
Else:
(PC)+2 - PC

None affected.

If the specified conditions are met, control is passed to the program memory
address (pma); otherwise, control is passed to the next instruction. Not all
combinations of the conditions are meaningful and testing BIO is mutually
exclusive to testing TC.

BCND is a branch and call instruction (see Table 6-8).
2
The BCND instruction is not repeatable.

Cycles for a Single Instruction

Condition ROM DARAM SARAM External Memory
True 4 4 4 4+4pt
False 2 2 2 2+2p

T The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example BCND PGM191,LEQ,C

If the accumulator (ACC) contents are less than or equal to 0 and the C bit is
set, program address 191 is loaded into the program counter (PC), and the
program continues executing from that location. If these conditions are not
met, execution continues from location PC + 2.

6-59

Syntax BCNDD pma, cond [,cond1] [,...]

Operands 0 < pma < 65535
Conditions: ACC=0 EQ
ACC#0 NEQ
ACC<O0 LT
ACC=<0 LEQ
ACC>0 GT
ACC=0 GEQ
C=0 NC
c=1 C
ov=0 NOV
ov=1 oV
TC=0 NTC
TC=1 TC
BIO low BIO
Unconditionally UNC
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 : 3 2 1 0
11 1 J__o-—-e—|r FP-F I zve T | zLve t

16-Bit Constant

1t See Table 6-1 on page 6-2.

Execution If (condition(s)):
pma - PC
Else:
(PC)+2 - PC
Status Bits None affected.
Description The one 2-word instruction or two 1-word instructions following the branch are

fetched from program memory and executed before the branch is taken. The
two instruction words following the BCNDD instruction have no effect on the
conditions being tested.

After the instructions are executed if the specified conditions are met, control
is passed to the program memory address (pma); otherwise, control is passed
to the next instruction. Not all combinations of the conditions are meaningful
and testing BIO is mutually exclusive to testing TC.

BCNDD is a branch and call instruction (see Table 6-8).

Words 2
Cycles The BCNDD instruction is not repeatable.
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
2 2 2 2+2p

6-60

Example BCNDD PGM191,0V
MAR *,AR1
LDP #5

After the current AR, ARP, and DP are modified as specified, program execu-
tion continues at location 191 if the overflow (OV) bit is set. If the OV bit is
cleared, execution continues at the instruction following the LDP instruction.

6-61

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-62

BD pmal, {ind} [,ARN]]

0 < pma < 65535
O<sn<s7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0O 1 1 1 1 1 —0—+% Ii—l[See Section 5.2
16-Bit Constant

pma - PC
Modify current AR and ARP as specified

None affected.

The one 2-word instruction or two 1-word instructions following the branch
instruction are fetched from program memory and executed before the branch
is taken.

After the instructions are executed, control is passed to the program memory
address (pma). The current auxiliary register (AR) and auxiliary register point-
er (ARP) are modified as specified. The pma can be either a symbolic or
numeric address.

BD is a branch and call instruction (see Table 6-8).
2
The BD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory
2 2 2 2+2p
BD 191
MAR *+,AR1
LDP #5

After the current AR, ARP, and DP are modified as specified, program execu-
tion continues from location 191.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Direct: BIT dma, bit code
Indirect: BIT {ind} , bit code [,ARN]

0<dmac<127

0<sn<7

0 < bit code <15

ind: {* *+ * *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
lo 1 0o o] BITX | o | dma
T See Table 6-1 on page 6-2.
Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
o 1 0 o] BITX T | 1] See Section 5.2
T See Table 6-1 on page 6-2.
(PC)+1 - PC

(dma bit at bit address (15 — bit code)) - TC
Affects: TC

The specified bit of the data memory address (dma) value is copied to the TC
bitin ST1. The APL, BITT, CMPR, CPL, LST1, NORM, OPL, and XPL instruc-
tions also affect the TC bit. The bit code value corresponds to a specified bit

of the dma, as given by the following table:

Bit Bit Code
(LSB) 0 11 11
1 11 1 0
2 1 1 0 1
3 1 1 00
4 1 0 1 1
5 1 0 1 0
6 1 0 0 1
7 1 0 0O
8 0 1 1 1
9 0 1 1 0
10 0 1 0 1
11 0 1 0O
12 0 0 1 1
13 0 01 0
14 0 0 0 1
(MSB) 15 0 0 0O

BIT is a control instruction (see Table 6-10).

6-63

Words

Cycles

Example 1

Example 2

6-64

1
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

1 1f the operand and the code are in the same SARAM block

BIT Oh,15 ;(DP = 6).Test LSB at 300h

Before Instruction

Data Memory
300h | 4DC8h|

TC | 0]

BIT *,0,AR1 ;Test MSB at 310h

Before Instruction

ARP | o]

ARO | 310h]
Data Memory

310h | 8000h|

TC | 0]

Data Memory
300h

TC

ARP
ARO

Data Memory
310h

TC

After Instruction

4DC8h

)

After Instruction

310

8000

Syntax

Operands

Opcode

Execution

Status Bits

Description

Direct: BITT dma
Indirect: BITT {ind} [,ARN]

O0<dmacs127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8
[o 1 1 0o 1 1 1 1

Indirect addressing
15 14 13 12 11 10 5 4 3 2 1 0
[o 1 1 o 1 1 1 1| 1] See Section 5.2

©
(06}
~
»

(PC)+1 - PC
(dma bit at bit address (15 -TREG2(3-0))) -~ TC

Affects: TC

The specified bit of the data memory address (dma) value is copied to the TC
bitin ST1. The APL, BIT, CMPR, CPL, LST1, OPL, NORM, and XPL instruc-
tions also affect the TC bit. The bit code value contained in the 4 LSBs of the
TREG2 corresponds to a specified bit of the dma, as given by the following
table:

Bit Bit Code
(LSB) 0 1 1 1 1
1 1 1 1 0
2 1 1 0 1
3 1 1 0 O
4 1 0 1 1
5 1 01 O
6 1 0 0 1
7 1 0 0 O
8 0 1 1 1
9 01 1 0
10 0 1 0 1
11 01 0O
12 0 0 1 1
13 0O 01 0
14 0 0 0 1
(MSB) 15 0O 0 0O

6-65

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instructions that load TREGO to write to all three TREGs.
Subsequent calls to the BITT instruction will use the TREG2 value (which is
the same as TREGO), maintaining 'C5x object-code compatibility with the
'C2x.

BITT is a control instruction (see Table 6-10).

Words 1
Cycles Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p
tif the operand and the code are in the same SARAM block
Cycles for a Repeat (RPT) Execution
Operand ROM DARAM SARAM External Memory
DARAM n n n n+p
SARAM n n n, n+1t n+p
External n+nd n+nd n+nd n+1+p+nd
tif the operand and the code are in the same SARAM block
Example 1 BITT 00h ;(DP = 6). Test bit 14 of data at 300h
Before Instruction After Instruction
Data Memory Data Memory
300h | 4DC8h 300h
TREG2 I 1h] TREG2
TC | g T
Example 2 BITT * ;Test bit 1 of data at 310h
Before Instruction After Instruction
ARP | 1] ARP
ARL I 310h| ARL
Data Memory Data Memory
310h | 8000h] 310h 8000h
TREG2 | OEh] TREG2 OEh
Tc | o T I

6-66

Syntax

Operands

Opcode

General syntax:

BLDD src, dst

All valid cases have the general syntax:

Direct BMAR/DMA:
Indirect BMAR/DMA:
Direct DMA/BMAR:
Indirect DMA/BMAR:
Direct K/IDMA:
Indirect K/DMA:
Direct DMA/K:
Indirect DMA/K:

0 < addr £ 65535
0<dmac<127
O0<sn<7

ind: {* *+ *~ *0+

BLDD BMAR, dma

BLDD BMAR, {ind} [,ARN]
BLDD dma, BMAR

BLDD {ind}, BMAR [,ARN]
BLDD #addr, dma

BLDD #addr, {ind} [,ARN]
BLDD dma, #addr

BLDD {ind}, #addr [,ARn]

*0— *BRO+ *BRO-}

Direct addressing with SRC specified by BMAR

15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 O

[1 0o 1 o0 1

1 0 o]o] dma |

Indirect addressing with SRC specified by BMAR

15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 O

|10101

1 0 of 1] See Section 5.2 |

Direct addressing with DEST specified by BMAR

15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 O

|10101

1 0 1]o0]

dma

Indirect addressing with DEST specified by BMAR
15 14 13 12 11 10 9 8 7 6 5 4 3 2

|l o 1 o0 1 1 0 1| l| See Section 5.2

Direct addressing with SRC specified by long immediate
15 14 13 12 11 10 9 8 7 6 5 4 3 2

——
1 0 1 0 1 B —0—071T0] dma

16-Bit Constant

Indirect addressing with SRC specified by long immediate
15 14 13 12 11 10 9 8 7 6 5 4 3 2

| :
1 0 1 Q 1 0—>F6 ul1| See Section 5.2

16-Bit Constant

Direct addressing with DEST specified by long immediate
15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 0 1 0 1 0 6—+10 dma

16-Bit Constant

Execution

Status Bits

Description

6-68

Indirect addressing with DEST specified by long immediate
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 0——0 1I1I See Section 5.2

16-Bit Constant

(PFC) - MCS

If long immediate:
(PC)+2 - PC
#lk - PFC

Else:
(PC)+1 - PC
(BMAR) - PFC

While (repeat counter) # O:

(src, addressed by PFC) - dstorsrc — (dst, addressed by PFC)
Modify current AR and ARP as specified

(PFC)+1 - PFC

(repeat counter) -1 - repeat counter

(src, addressed by PFC) - dstorsrc — (dst, addressed by PFC)
Modify current AR and ARP as specified

(MCS) - PFC

None affected.

The contents of the data memory address (dma) pointed at by src (source) are
copied to the dma pointed at by dst (destination). The source and/or destina-
tion space can be pointed at by a long immediate value, the contents of the
block move address register (BMAR), or a dma. Not all src/dst combinations
of pointer types are valid. The source and destination blocks do not have to
be entirely on-chip or off-chip.

In the indirect addressing mode, you can use the RPT instruction with the
BLDD instruction to move consecutive words in data memory. The number of
words to be moved is one greater than the number contained in the repeat
counter register (RPTC) at the beginning of the instruction. If along immediate
value or the contents of the BMAR is specified in the repeat mode, the source
and/or destination address is automatically incremented. If a dma is specified
in the repeat mode, the dma address is not automatically incremented. When
used with the RPT instruction, the BLDD instruction becomes a single-cycle
instruction, once the RPT pipeline is started. Interrupts are inhibited during a
BLDD operation used with the RPT instruction.

BLDD is an I/O and data memory operation instruction (see Table 6-9).

Neither the long immediate value nor the BMAR can be used as the
address to the on-chip memory-mapped registers. The direct or
indirect addressing mode can be used as the address to the
on-chip memory-mapped registers.

Words 1 (One source or destination is specified by BMAR)
2 (One source or destination is specified by long immediate)
Cycles
Cycles for a Single Instruction (SRC or DEST in BMAR)
Operand ROM DARAM SARAM External Memory
Source: DARAM 2 2 2 2+p
Destination: DARAM
Source: SARAM 2 2 2 2+p
Destination: DARAM
Source: External 2+dge 2+dgre 2+dgre 2+dgrctp
Destination: DARAM
Source: DARAM 2 2 2,3t 2+p
Destination: SARAM
Source: SARAM 2 2 2,3f 2+p
Destination: SARAM
Source: External 2+dgyc 2+dgsc 2+dgy, 2+dgretp
Destination: SARAM 3+dg
Source: DARAM 3+dgst 3+dyst 3+dgst 5+dgstP
Destination: External
Source: SARAM 3+dgst 3+dgst 3+dgst 5+dgg+P
Destination: External
Source: External 3+dgretdyst 3+dgretdyst 3+dgretdyst 5+dgretdgg+p

Destination: External

1 1f the destination operand and the code are in the same SARAM block

6-69

Cycles for a Repeat (RPT) Execution (SRC or DEST in BMAR)

Operand ROM DARAM SARAM External Memory
Source: DARAM n+1 n+1 n+1 n+1+p
Destination: DARAM

Source: SARAM n+1 n+1 n+1 n+1+p
Destination: DARAM

Source: External n+1+ndg,c n+1+ndg.e n+1+ndgc n+1+ndg,c+p
Destination: DARAM

Source: DARAM n+1 n+1 n+1, n+3% n+1+p
Destination: SARAM

Source: SARAM n+1, 2n-1% n+1, 2n-1% n+1, 2n-1%, n+1+p, 2n—1+p¥
Destination: SARAM n+38, 2n+18

Source: External n+1+ndg. ' n+1+ndgc n+1+ndgc, n+1+ndg,c+p
Destination: SARAM n+3+ndg;c

Source: DARAM 2n+1+ndyg; 2n+1+ndyg; 2n+1+ndgs; 2n+1+ndgg+p
Destination: External

Source: SARAM 2n+1+ndyg; 2n+1+ndyg; 2n+1+ndgg; 2n+1+ndgg+p
Destination: External

Source: External 4n—1+ndg.c 4n—1+ndg.e 4n—=1+ndg,¢ 4n+1+ndg,c+ndyss+p
Destination: External +Nndyst +Nndyst +Nndgst

1 1f the destination operand and the code are in the same SARAM block
¥ 1f both the source and the destination operands are in the same SARAM block
8 If both operands and the code are in the same SARAM block

Cycles for a Single Instruction (SRC or DEST long immediate)

Operand ROM DARAM SARAM External Memory

Source: DARAM 3 3 3 3+2p
Destination: DARAM

Source: SARAM 3 3 3 3+2p
Destination: DARAM

Source: External 3+dgre 3+dge 3+dge 3+dgct2p
Destination: DARAM

Source: DARAM 3 3 3,41 3+2p
Destination: SARAM

Source: SARAM 3 3 3, 41 3+2p
Destination: SARAM

T 1f the destination operand and the code are in the same SARAM block

6-70

Cycles for a Single Instruction (SRC or DEST long immediate) (Continued)

Operand ROM DARAM SARAM External Memory

Source: External 3+dge 3+dgre 3+dgre, 4+dge 3+dgt2p
Destination: SARAM

Source: DARAM 4+dygt 4+dygt 4+dygt 6+dggt2p
Destination: External

Source: SARAM 4+dyst A+dgst 4+dyst 6+0gsi+2p
Destination: External

Source: External 4+dgpct+dyst 4+dgpc+dyst 4+dgpc+dyst 6+dsc+dgs+2p
Destination: External

Source: DARAM n+2 n+2 n+2 n+2+2p
Destination: DARAM

1 1f the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (SRC or DEST long immediate)

Operand ROM DARAM SARAM External Memory

Source: SARAM n+2 n+2 n+2 n+2+2p
Destination: DARAM

Source: External n+2+ndgyc n+2+ndgc n+2+ndg,¢ n+2+ndgyc
Destination: DARAM

Source: DARAM n+2 n+2 n+2, n+4t n+2+2p
Destination: SARAM

Source: SARAM n+2, 2n¥ n+2, 2nt n+2, 2n¥, n+2+2p, 2n+2p¥
Destination: SARAM n+4T, 2n+28

Source: External n+2ndgc n+2ndgc n+2ndgyc, N+2+ndg,c+2p
Destination: SARAM n+4+ndg;c

Source: DARAM 2n+2+ndyg; 2n+2+ndggt 2n+2+ndyg; 2n+2+ndggt +2p

Destination: External

Source: SARAM 2n+2+ndyg; 2n+2+ndyg; 2n+2+ndgyg; 2n+2+ndyg+2p
Destination: External

Source: External An+ndgc+ndyst 4n+ndgo+ndysy 4n+ndge+ndys; 4n+2+ndg,e+Ndgss+2p
Destination: External

1 If the destination operand and the code are in the same SARAM block
%1 both the source and the destination operands are in the same SARAM block
§f both operands and the code are in the same SARAM block

6-71

Example 1

Example 2

Example 3

Example 4

Example 5

6-72

BLDD #300h,20h ;(DP = 6)

Data Memory

300h
320h

BLDD *+,#321h,AR3

ARP
AR2

Data Memory

301h
321h

BLDD BMAR,*

ARP
BMAR
AR2

Data Memory

320h
340h

Before Instruction

I oh|
| OFh|

Before Instruction
| 2|
| 301h]

| 01h]
| OFh]

Before Instruction

| 2]
| 320h]
| 340h]

| 01h]
| OFh]

BLDD 00h,BMAR ;(DP = 6)

Data Memory

300h
BMAR

Data Memory

320h

RPT 2
BLDD #300h,*+

ARP
ARO
300h
301h
302h
320h
321h
322h

Before Instruction

| OFh|
| 320h]

| 01h|

Before Instruction

ol
320h]
7F98h|
FFE6h]|
9522h
8DEEh|
9315h
2531h

Data Memory
300h

320h

ARP
AR2

Data Memory
301h

321h

ARP
BMAR
AR2

Data Memory
320h

340h

Data Memory
300h

BMAR

Data Memory
320h

ARP
ARO
300h
301h
302h
320h
321h
322h

After Instruction

!!
-0l |=

After Instruction

302

320
340

>
=+
@
=
=3
7]
Z
=
c
S
=3
o
=]
2l [8
=N =| = 5| |w

ol o
==
| |=

After Instruction

o
T
o0l |=

320

o
T
=y

After Instruction

323
7F98
FFEG6
9522
7F98
OFFE6
9522

Syntax

Operands

Opcode

Execution

Status Bits

Description

Direct: BLDP dma
Indirect: BLDP {ind} [,ARN]

0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8
[o 1 0o 1 0 1 1 1

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 0 1 0 1 1 1] 1] See Section 5.2 |

(PC)+1 - PC
(PFC) -~ MCS
(BMAR) — PFC

While (repeat counter) # 0:
dma - (dst, addressed by PFC)
Modify current AR and ARP as specified
(PFC)+1 - PFC
(repeat counter) -1 — repeat counter
dma - (dst, addressed by PFC)
Modify current AR and ARP as specified
(MCS) - PFC

None affected.

The contents of the data memory address (dma) are copied to the program
memory address (pma) pointed at by the block move address register
(BMAR). The source and destination blocks do not have to be entirely on-chip
or off-chip.

In the indirect addressing mode, you can use the RPT instruction with the
BLDP instruction to move consecutive words in data memory to a contiguous
program memory space pointed at by the BMAR. The number of words to be
moved is one greater than the number contained in the repeat counter register
(RPTC) atthe beginning of the instruction. The contents of the BMAR are auto-
matically incremented when used in the repeat mode. When used with the
RPT instruction, the BLDP instruction becomes a single-cycle instruction,
once the RPT pipeline is started. Interrupts are inhibited during a BLDP opera-
tion used with the RPT instruction.

BLDP is an I/0 and data memory operation instruction (see Table 6-9).

6-73

Words

Cycles
Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
Source: DARAM 2 2 2 2+p

Destination: DARAM

Source: SARAM 2 2,31 2 2+p

Destination: DARAM

Source: External 2+dge 2+dgc 2+dg/c 3+dsetPeode
Destination: DARAM

Source: DARAM 2 2 2,3f 2+p

Destination: SARAM

Source: SARAM 2 2 2,371 48 2+p

Destination: SARAM

Source: External 2+dgrc 2+dsrc 2+dgre, 3+dgreT 3+dsrctPeode
Destination: SARAM

Source: DARAM 3+Pyst 3+Pgst 3+Pgst 4+pgst*Peode
Destination: External

Source: SARAM 3+Pgst 3+Pgst 3+Pgst 4+PdstT 4+PasttPeode
Destination: External

Source: External 3+dsrc+Pgst 3+dsrctPast 3+dgrctPyst S+dsrctPasttPeode

Destination: External

T 1f the destination operand and the code are in the same SARAM block
8 f both operands and the code are in the same SARAM block
1 1f the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
Source: DARAM n+1 n+1 n+l N+1+Peode
Destination: DARAM

Source: SARAM n+1 n+1 n+1, n+21 N+1+Pcode
Destination: DARAM

Source: External n+1+ndg,c n+1+ndg.e n+1+ndgc N+2+ndg;c+Peode

Destination: DARAM

T 1f the destination operand and the code are in the same SARAM block

¥ If both the source and the destination operands are in the same SARAM block
8 f both operands and the code are in the same SARAM block

11 the source operand and the code are in the same SARAM block

6-74

Cycles for a Repeat (RPT) Execution (Continued)

Operand

External Memory

Source: DARAM
Destination: SARAM

Source: SARAM
Destination: SARAM

Source: External
Destination: SARAM

Source: DARAM
Destination: External

Source: SARAM
Destination: External

Source: External
Destination: External

ROM DARAM SARAM
n+1 n+1, n+21
n+1, 2n-1% n+1, 2n-1% n+1, 2n-1%,
n+2T 1, 2n+18
n+1+ndgc n+1+ndgc n+1+ndgc,
n+2+np5,cT
2n+1+npyst 2n+1+npyst 2n+1+npyst
2n+1+npygt 2n+1+npygt 2n+1+npyst,
2n+2+npgg; T
4n—-1+ndg,c 4n-1+ndg, 4n—1+ndg.c
+NPyst +NPgst +NPgst

N+1+pcoge
N+1+peoge,
2n—1+pgoget
N+2+ndgrc+Peode
2n+2+NnpgsttPeode

2n+2+NPgst*+Peode

4n+1+ndg o +NPgst
*+Pcode

1 If the destination operand and the code are in the same SARAM block

¥ 1f both the source and the destination operands are in the same SARAM block
§f both operands and the code are in the same SARAM block

11 the source operand and the code are in the same SARAM block

Example 1

Example 2

BLDP 00h ;(DP=6)

Data Memory
300h

BMAR

Program Memory
2800h

BLDP *,ARO

ARP
AR7

Data Memory
310h

BMAR

Program Memory
2800h

Before Instruction

After Instruction

Data Memory

| A089h| 300h A089h

| 2800h| BMAR 2800h
Program Memory

| 1234h| 2800h A089h

Before Instruction After Instruction
| 7] ARP L d
| 310h] AR7 310h
Data Memory

| FOFOh| 310h FOFOh

| 2800h] BMAR 2800h
Program Memory

| 1234h| 2800h FOFOh

6-7

;]

Syntax General syntax: BLPD src, dst

All valid cases have the general syntax:
Direct BMAR/DMA: BLPD BMAR, dma
Indirect BMAR/DMA: BLPD BMAR , {ind} [,ARn]

Direct K'DMA: BLPD #pma, dma

Indirect K/DMA: BLPD #pma, {ind} [,ARN]
Operands 0 < pma < 65535

O0<dmas<127

0<n<7

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Opcode Direct addressing with SRC specified by BMAR
15 14 13 12 11 10 9 8 7 6 5 4 3 2
[1 o 1 0 0 1 0 O0]oO| dma

Indirect addressing with SRC specified by BMAR
15 14 13 12 11 10 9 8 7 6 5 4 3 2

|1 o 1 0 O 1 0 0| 1| See Section 5.2

Direct addressing with SRC specified by long immediate
15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 0 1J_0—4——e——ﬂ-‘|—cri dma

16-Bit Constant

Indirect addressing with SRC specified by long immediate
15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 0 1 0 O 1—6—T‘|—1_[See Section 5.2

16-Bit Constant

Execution If long immediate:
(PC)+2 - PC
(PFC) - MCS
lk - PFC
Else:

(PC)+1 - PC
(PFC) - MCS
(BMAR) - PFC

6-76

While (repeat counter) # 0:
(pma, addressed by PFC) - dst
Modify current AR and ARP as specified
(PFC)+1 - PFC
(repeat counter) -1 - repeat counter

(pma, addressed by PFC) - dst
Modify current AR and ARP as specified
(MCS) - PFC

Status Bits None affected.
Description The contents of the program memory address (pma) pointed at by src(source)
are copied to the data memory address (dma) pointed at by dst (destination).
The source space can be pointed at by a long immediate value or the contents
of the block move address register (BMAR). The destination space can be
pointed at by a dma or the contents of current AR. Not all src/dst combinations
of pointer types are valid. The source and destination blocks do not have to
be entirely on-chip or off-chip.
In the indirect addressing mode, you can use the RPT instruction with the
BLPD instruction to move consecutive words in program memory to data
memory. The number of words to be moved is one greater than the number
contained in the repeat counter register (RPTC) at the beginning of the instruc-
tion. If a long immediate value or the contents of the BMAR is specified in the
repeat mode, the source address is automatically incremented. When used
with the RPT instruction, the BLPD instruction becomes a single-cycle instruc-
tion, once the RPT pipeline is started. Interrupts are inhibited during a BLPD
operation used with the RPT instruction.
BLPD is an I/0 and data memory operation instruction (see Table 6-9).
Words 1 (Source is specified by BMAR)
2 (Source is specified by long immediate)
Cycles
Cycles for a Single Instruction (SRC in BMAR)
Operand ROM DARAM SARAM External Memory
Source: DARAM/ROM 2 2 2 2+Peode
Destination: DARAM
Source: SARAM 2 2 2 2+Pcode
Destination: DARAM
Source: External 2+Psre 2+Pgrc 2+Pgrc 2+PsrctPeode

Destination: DARAM

1 1f the destination operand and the code are in the same SARAM block

6-77

Cycles for a Single Instruction (SRC in BMAR) (Continued)

Operand ROM DARAM SARAM External Memory

Source: DARAM/ROM 2 2 2,3t 2+Pcode
Destination: SARAM

Source: SARAM 2 2 2,3t 2+Peode
Destination: SARAM

Source: External 2+Psrc 2+Psrc 2+Psre, 3+Psre’ 2+Psrc*+2Pcode
Destination: SARAM

Source: DARAM/ROM 3+dyst 3+dyst 3+dyst 5+dgst*+Pcode
Destination: External

Source: SARAM 3+dgst 3+dyst 3+dyst 5+dgs+Peode
Destination: External

Source: External 3+Psrctdgst 3+Pgrctdgst 3+Pgrctdgst S5+Psrc+dgsttPeode
Destination: External

T 1f the destination operand and the code are in the same SARAM block

6-78

Cycles for a Repeat (RPT) Execution (SRC in BMAR)

Operand ROM DARAM SARAM External Memory
Source: DARAM/ROM n+1 n+1 n+1 N+1+Psode
Destination: DARAM

Source: SARAM n+1 n+1 n+1 N+1+Pcode
Destination: DARAM

Source: External n+1+nps/c N+1+NPgyc n+1+npg,c N+1+Nps/c+Peode
Destination: DARAM

Source: DARAM/ROM n+1 n+1 n+1, n+37 N+1+Peode
Destination: SARAM

Source: SARAM n+1, 2n-1% n+1, 2n-1% n+1, 2n-1%, N+1+peode
Destination: SARAM n+3%, 2n+18 2n—1+pcodet
Source: External Nn+1+npg,c Nn+1+Npg,c n+1+npg,c, N+1+NPg;c+Pcode
Destination: SARAM n+3+npg;c

Source: DARAM/ROM 2n+1+ndyg; 2n+1+ndyg; 2n+1+ndyg 2n+1+ndgyst+Peode
Destination: External

Source: SARAM 2n+1+ndyg; 2n+1+ndyg; 2n+1+ndyg; 2n+1+ndgyst+Peode
Destination: External

Source: External 4n=1+npgc 4n=1+npgc 4n=1+npg,c An+1+npgrc+tndyst
Destination: External +Nndyst +Nndyst +Nndgyst +Peode

1 If the destination operand and the code are in the same SARAM block
% 1f both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Cycles for a Single Instruction (SRC long immediate)

Operand ROM DARAM SARAM External Memory

Source: DARAM/ROM 3 3 3 3+2Pcode
Destination: DARAM

Source: SARAM 3 3 3 3+2Pcode
Destination: DARAM

Source: External 3+Psrc 3+Psrc 3+Psrc 3+Psrct2Pcode
Destination: DARAM

Source: DARAM/ROM 3 3 3,41 3+2pcode
Destination: SARAM

Source: SARAM 3 3 3,41 3+2pcode
Destination: SARAM

1 1f the destination operand and the code are in the same SARAM block

6-79

Cycles for a Single Instruction (SRC long immediate) (Continued)

Operand ROM DARAM SARAM External Memory

Source: External 3+Psrc 3+Psrc 3+Psrc: 4*+Psrc’ 3+Psrc*+2Pcode
Destination: SARAM

Source: DARAM/ROM 4+dyst 4+dyst 4+dgst 6+dyst*+2Pcode
Destination: External

Source: SARAM 4+dyst A+dgsy A+dysy 6+dysi+2Pcode
Destination: External

Source: External A+Pgrctdgst 4+pgrctdgst A+pgretdyst 6+Psrctdgst+2Pcode
Destination: External

T 1f the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (SRC long immediate)

Operand ROM DARAM SARAM External Memory

Source: DARAM/ROM n+2 n+2 n+2 N+2+2pcoge
Destination: DARAM

Source: SARAM n+2 n+2 n+2 N+2+2Pcode
Destination: DARAM

Source: External N+2+NPgyc N+2+NPgyc N+2+NPgyc N+2+NPsrc*+2Pcode
Destination: DARAM

Source: DARAM/ROM n+2 n+2 n+2, n+4f N+2+2Pcode
Destination: SARAM

Source: SARAM n+2, 2n+ n+2, 2n* n+2, 2n#, N+2+2Pcode
Destination: SARAM n+4T, 2n+28 2n+2pcodet
Source: External n+2+npgc ' N+2+NPgc n+2+Npgyc, N+2+NPgrc+2Pcode
Destination: SARAM n+4+npgct

Source: DARAM/ROM 2n+2+ndggy 2n+2+ndggy 2n+2+ndygy 2n+2+ndgst+2Pcode
Destination: External

Source: SARAM 2n+2+ndggy 2n+2+ndgg; 2n+2+ndygy 2n+2+ndgst+2Pcode
Destination: External

Source: External An+npgetndysst 4n+npgc+ndysy 4n+Npsre+ndysy 4N+2+NPgre+Ndysy
Destination: External +2Pcode

T 1f the destination operand and the code are in the same SARAM block
% If both the source and the destination operands are in the same SARAM block
8 f both operands and the code are in the same SARAM block

6-80

Example 1 BLPD #800h,00h ;(DP=6)
Before Instruction

Program Memory

800h | OFh]
Data Memory
300h | oh|
Example 2 BLPD #800h,*,AR7
Before Instruction
ARP | 0]
ARO | 310h]
Program Memory
800h | 1111h
Data Memory
310h | 0100h]|
Example 3 BLPD BMAR,00h ;(DP=6)
Before Instruction
BMAR | 800h]
Program Memory
800h | OFh]
Data Memory
300h | oh|
Example 4 BLPD BMAR,*+,AR7
Before Instruction
ARP | 0]
ARO | 300h]
BMAR | 810h|
Program Memory
810h | 4444h]
Data Memory
300h | 0100h|

Program Memory
800h

Data Memory
300h

ARP
ARO

Program Memory
800h

Data Memory
310h

BMAR

Program Memory
800h

Data Memory
300h

ARP
ARO
BMAR

Program Memory
810h

Data Memory
300h

>
=
@
=
=1
w0
=
c
(o]
=
S

o

T

>

o
T
=

1111

>
=
D
&)
5
wn
=
c
(o]
=

w S

@

o

0 =y > ~l

1111

After Instruction
800

o
m
=2 =

o
T
=)

4444

4444

>
=
[¢)
=
=)
@
2
=
c
3]
=
o

Ol | W

=l O >

ol |2

= =3 EE

6-8

ue

Syntax BSAR shift

Operands 1 <shift< 16
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 1 1 1 1 1 1 1 1 0 SHFT T
t See Table 6-1 on page 6-2.
Execution (PCO)+1 - PC
(ACC) / 2shift _, ACC
Status Bits Affected by: SXM
Description The contents of the accumulator (ACC) are right-barrel arithmetic shifted 1 to

16 bits, as defined by the shift code, in a single cycle. If the SXM bit is
cleared, the high-order bits of the ACC are zero-filled; if the SXM bit is set, the
high-order bits of the ACC are sign-extended.

BSAR is an accumulator memory reference instruction (see Table 6—4).

Words 1
Cycles Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
Example 1 BSAR 16 ;(SXM=0)
Before Instruction After Instruction
ACC | 0001 0000h] ACC
Example 2 BSAR 4 ;(SXM=1)
Before Instruction After Instruction
ACC | FFF1 0000h] ACC

6-82

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

CALA
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000110000

(PC)+1 - TOS
(ACC(15-0)) — PC

None affected.

The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). The contents of the accumulator low byte (ACCL) are loaded
into the PC. Execution continues at this address.

The CALA instruction is used to perform computed subroutine calls. CALA is
a branch and call instruction (see Table 6-8).

1
The CALA instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3pt

T The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

CALA
Before Instruction After Instruction
PC | 25h| PC
ACC | 83h| ACC
TOS | 100h] TOS

6-83

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-84

CALAD
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111000111101

(PC)+3 - TOS
(ACC(15-0)) — PC

None affected.

The current program counter (PC) is incremented by 3 and pushed onto the
top of the stack (TOS).

Then, the one 2-word instruction or two 1-word instructions following the
CALAD instruction are fetched from program memory and executed before the
call is executed.

Then, the contents of the accumulator low byte (ACCL) are loaded into the PC.
Execution continues at this address.

The CALAD instruction is used to perform computed subroutine calls. CALAD
is a branch and call instruction (see Table 6-8).

1
The CALAD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory
2 2 2 2+p
CALAD
MAR *+ AR1
LDP #5
Before Instruction After Instruction
ARP | 0] ARP
ARO | 8] ARO [9
DP I 0] DP
PC I 25h] PC
ACC | 83h] ACC 83h
TOS | 100h] TOS 28h

After the current AR, ARP, and DP are modified as specified, the address of
the instruction following the LDP instruction is pushed onto the stack, and pro-
gram execution continues from location 83h.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

CALL pma [{ind} [, ARN]]

0 < pma < 65535
Osn<7
ind: {* *+ * *0+ *0- *BRO+ *BRO-}

15 14 13 12 11 10 9 8 7 : 6 5 4 3 2 1 0
0 1 1 1 1 o + 0 I T See Section 5.2
16-Bit Constant

(PC)+2 - TOS
pma - PC
Modify current AR and ARP as specified

None affected.

The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). The program memory address (pma) is loaded into the PC.
Execution continues at this address. The current auxiliary register (AR) and
auxiliary register pointer (ARP) are modified as specified. The pma can be
either a symbolic or numeric address.

CALL is a branch and call instruction (see Table 6-8).
2
The CALL instruction is not repeatable.

Cycles for a Single Instruction
ROM DARAM SARAM External Memory

4 4 4 4+4pt

T The’'csx performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

CALL PRG191,*+,AR0

Before Instruction After Instruction
ARP |] e I
AR1 | 05h| AR1 06h
PC | T eC
TOS | 100h] TOS 32h

OBFh is loaded into the PC, and the program continues executing from that
location.

6-8

)]

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-86

CALLD pma [{ind} [,ARN]]

0 < pma < 65535
Osn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0O 1 1 J——l———l_—:t_—e_—l—l_l[See Section 5.2
16-Bit Constant

(PC)+4 - TOS
pma - PC
Modify current AR and ARP as specified

None affected.

The current program counter (PC) is incremented by 4 and pushed onto the
top of the stack (TOS).

Then, the one 2-word instruction or two 1-word instructions following the
CALLD instruction are fetched from program memory and executed before the
call is executed.

Then, the program memory address (pma) is loaded into the PC. Execution
continues at this address. The current auxiliary register (AR) and auxiliary reg-
ister pointer (ARP) are modified as specified. The pma can be either a symbol-
ic or numeric address.

CALLD is a branch and call instruction (see Table 6-8).
2
The CALLD instruction is not repeatable.

Cycles for a Single Instruction
ROM DARAM SARAM External Memory

2 2 2 2+2p

Example CALLD PRG191

MAR *+ AR1
LDP #5
Before Instruction After Instruction

ARP | 0] ARP
ARO | 09h] ARO 0Ah
DP I 1] DP
PC I 30n| PC
TOS | 100h] TOS 34h

After the current AR, ARP, and DP are modified as specified, the address of
the instruction following the LDP instruction is pushed onto the stack, and pro-
gram execution continues from location OBFh.

o)
les)
N

Syntax CC pma cond [,cond1] [,...]

Operands 0 < pma < 65535
Conditions: ACC=0 EQ
ACC#0 NEQ
ACC<O0 LT
ACC<0 LEQ
ACC>0 GT
ACC=0 GEQ
Cc=0 NC
c=1 C
ov=0 NOV
ov=1 ov
TC=0 NTC
TC=1 TC
BIO low BIO
Unconditionally UNC
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 . 3 2 1 0
1 1 1 0 1 0! Fp-+ I ZINC T | zve t

16-Bit Constant

t See Table 6-1 on page 6-2.

Execution If (condition(s)):
(PC)+2 - TOS
pma - PC

Else:
(PC)+2 - PC

Status Bits None affected.

Description If the specified conditions are met, the current program counter (PC) is increm-
ented and pushed onto the top of the stack (TOS). The program memory ad-
dress (pma) is loaded into the PC. Execution continues at this address. The
pma can be either a symbolic or numeric address. Not all combinations of the
conditions are meaningful. In addition, the NTC, TC, and BIO conditions are
mutually exclusive. If the specified conditions are not met, control is passed
to the next instruction.

The CC instruction functions in the same manner as the CALL instruction
(page 6-85) if all conditions are true. CC is a branch and call instruction (see
Table 6-8).

Words 2

6-88

Cycles

Example

The CC instruction is not repeatable.

Cycles for a Single Instruction

Condition ROM DARAM SARAM External Memory
True 4 4 4 4+4pt
False 2 2 2 2+2p

T The'csx performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

CC PGM191,LEQ,C

If the accumulator (ACC) contents are less than or equal to 0 and the C bit is
set, OBFh is loaded into the program counter (PC), and the program continues
executing from that location. If the conditions are not met, execution continues
at the instruction following the CC instruction.

6-89

Syntax

Operands

Opcode

Execution

Status Bits

Description

6-90

CCD pma cond [,cond1][,...]

0 < pma < 65535

Conditions: ACC=0 EQ
ACC#0 NEQ
ACC<0 LT
ACC<0 LEQ
ACC>0 GT
ACC=0 GEQ
C=0 NC
c=1 C
ov=0 NOV
ov=1 oV
TC=0 NTC
TC=1 TC
BIO low BIO
Unconditionally UNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 1 1 1 JC‘,—lr TP+ I ZINC T | zLve t
16-Bit Constant

t See Table 6-1 on page 6-2.

If (condition(s)):
(PC)+4 - TOS

pma - PC
Else:
(PC)+2 - PC

None affected.

If the specified conditions are met, the current program counter (PC) is
incremented by 4 and pushed onto the top of the stack (TOS).

Then, the one 2-word instruction or two 1-word instructions following the CCD
instruction are fetched from program memory and executed before the call is
executed.

Then, the program memory address (pma) is loaded into the PC. Execution
continues at this address. The pma can be either a symbolic or numeric ad-
dress. Not all combinations of the conditions are meaningful. In addition, the
NTC, TC, and BIO conditions are mutually exclusive.

If the specified conditions are not met, control is passed to the nextinstruction.

The CCD functions in the same manner as the CALLD instruction (page 6-86)
if all conditions are true. CCD is a branch and call instruction (see Table 6-8).

Words

Cycles

Example

2
The CCD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+2p

CCD PGM191,LEQ,C
MAR *+ AR1
LDP #5

The current AR, ARP, and DP are modified as specified. If the accumulator
(ACC) contents are less than or equal to 0 and the C bit is set, the address of
the instruction following the LDP instruction is pushed onto the stack and pro-
gram execution continues from location OBFh. If the conditions are not met,
execution continues at the instruction following the LDP instruction.

6-91

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

6-92

CLRC control bit

control bit. {C, CNF, HM, INTM, OVM, SXM, TC, XF}

CLRC OVM (Clear overflow mode)

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
| 10 1 1 1 1 1 o0 O 0 0 0o 0 1 o©
CLRC SXM (Clear sign extension mode)

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
1 o 1 1 1 1 1 0 o0 0 0 0 1 1 0
CLRC HM (Clear hold mode)

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
[1 o 1 1 1 1 1 0 o0 0 0 1 0 0 O
CLRC TC (Clear test/control)

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
[1 o 1 1 1 1 1 0 o0 0 0 1 0 1 O
CLRC C (Clear carry)

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
| 10 1 1 1 1 1 o0 O 0 0 1 1 1 o©
CLRC CNF (Clear configuration control)

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
[1 o 1 1 1 1 1 0 o0 0 0 0 1 0 0
CLRC INTM (Clear interrupt mode)

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
[1 o 1 1 1 1 1 0 o0 0 0 0 0 0 O
CLRC XF (Clear external flag pin)

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0

10 1 1 1 1 1 o0 O 0 0 1 1 0 O

(PC)+1 - PC
0 - control bit

Affects selected control bit.

The specified control bit is cleared. The LST instruction can also be used to

load STO and ST1. See Section 4.4, Status and Control Registers, for more

information on each control bit.

CLRC is a control instruction (see Table 6-10).

1

Cycles Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory
n n n n+p
Example CLRC TC ;TC is bit 11 of ST1
Before Instruction After Instruction
ST1 | x9xxh| ST1

6-93

Syntax CMPL

Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1
Execution (PC)+1 - PC
(ACC) - ACC
Status Bits Does not affect: C
Description The contents of the accumulator (ACC) are replaced with its logical inversion

(1s complement).

CMPL is an accumulator memory reference instruction (see Table 6-4).

Words 1
Cycles Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p
Example CMPL

Before Instruction After Instruction
ACC | F798 2513h] ACC
C C

6-94

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

CMPR CM
0<sCM<3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 o 1 1 1 1 1 1 0 1 0 0 0 1] cmt

T See Table 6-1 on page 6-2.

(PC)+1 - PC
Compare (current AR) to (ARCR)
If condition true:

1 -5 TC
If condition false:

0 - TC
Affected by: Not affected by: Affects: Does not affect:
NDX SXM TC SXM

The contents of the current auxiliary register (AR) are compared with the con-
tents of the auxiliary register compare register (ARCR), as defined by the value
of CM:

If CM = 00, test for (current AR) = (ARCR)
If CM = 01, test for (current AR) < (ARCR)
If CM = 10, test for (current AR) > (ARCR)
If CM = 11, test for (current AR) # (ARCR)

If the condition is true, the TC bit is set. If the condition is false, the TC bit is
cleared.

The ARs are treated as unsigned integers in the comparisons. You can main-
tain software compatibility with the 'C2x by clearing the NDX bit. This causes
any 'C2x instruction that loads auxiliary register O (ARO) to load the ARCR and
index register (INDX) also, maintaining 'C5x object-code compatibility with the
'C2x.

CMPRis an auxiliary registers and data memory page pointer instruction (see
Table 6-5).

1

6-95

Cycles Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory
n n n n+p
Example CMPR 2
Before Instruction After Instruction
ARP | 4] ARP
ARCR | FFFFh| ARCR FFFFh
AR4 | 7FFFh] AR4 7FFFh
TC | 1] TC [o

6-96

Syntax

Operands

Opcode

Execution

Status Bits

Direct: CPL [,#lk] dma

Indirect: CPL [,#Ik] {ind} [,ARN]

0<dmac<127
Ik: 16-bit constant
0<sn<7

ind: {* * *~ *0+ *0— *BRO+

Direct addressing with long immediate not specified

15 14 13 12 11 10

o 1 0 1 1 0

Indirect addressing with long immediate not specified

15 14 13 12 11 10

|010110

See Section 5.2

Direct addressing with long immediate specified

15 14 13 12 11 10

0 1 0 1 1 1

16-Bit Constant

Indirect addressing with long immediate specified

15 14 13 12 11 10

0O 1 o0 1 1

See Section 5.2

16-Bit Constant

Long immediate not specified:
(PC)+1 - PC
Compare (DBMR) to (dma)
If (DBMR) = (dma):
1 - TC
Else:
0 - TC

Long immediate specified:
(PC)+2 - PC
Compare |k to (dma)
If Ik = (dma):

1 - TC
Else:

0 - TC

Not affected by: Affects:
SXM TC

6-97

Description

Words

Cycles

6-98

If a long immediate constant is specified, the constant is compared with the
contents of the data memory address (dma). If a constant is not specified, the
contents of the dma are compared with the contents of the dynamic bit manipu-
lation register (DBMR). If the two quantities involved in the comparison are

equal, the TC bit is set. If the condition is false, the TC bit is cleared.

CPL is a parallel logic unit (PLU) instruction (see Table 6-6).

1 (Long immediate not specified)

2 (Long immediate specified)

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate specified)

Operand ROM DARAM SARAM External Memory
DARAM 2 2 2 2+2p

SARAM 2 2 2,3t 2+2p

External 2+d 2+d 2+d 3+d+2p

1 If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (long immediate specified)

Operand ROM DARAM SARAM External Memory
DARAM n+1 n+1 n+1 n+1+2p
SARAM n+1 n+1 n+l, n+2t n+1+2p
External n+1 n+1 n+1 n+2+2p

T 1f the operand and the code are in the same SARAM block

Example 1 CPL #060h,60h

Data Memory
60h

TC

Example 2 CPL 60h

Data Memory
60h

DBMR
TC

Example 3 CPL #0F1h,*,AR6
ARP
AR7

Data Memory
300h

TC

Example 4 CPL *,AR7
ARP
ARG

Data Memory
300h

DBMR
TC

Before Instruction

| 066h]
I 1]

Before Instruction

| 066h]
| 066h]
| 0]

Before Instruction
| 7]
| 300h]

| OF1h]
I 1

Before Instruction
| 6l
| 300h|

| OF1h|
| 0FOoh|
| 0l

Data Memory
60h

TC

Data Memory
60h

DBMR
TC

ARP
AR7

Data Memory
300h

TC

ARP
ARG

Data Memory
300h

DBMR
TC

After Instruction

066

i

After Instruction

066
066

After Instruction

300

OF1

After Instruction

300

OF1
OFO

6-9

©

Syntax CRGT
Operands None

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111000011011

Execution (PC)+1 - PC
Compare (ACC) to (ACCB)

If (ACC) > (ACCB):
(ACC) - ACCB
1.¢C

If (ACC) < (ACCB):
(ACCB) - ACC
0. C

If (ACC) = (ACCB):

1 -.C
Status Bits Affects: C
Description The contents of the accumulator (ACC) are compared to the contents of the

accumulator buffer (ACCB). The larger value (signed) is loaded into both regis-
ters. If the contents of the ACC are greater than or equal to the contents of the
ACCB, the C bit is set; otherwise, the C bit is cleared.

CRGT is an accumulator memory reference instruction (see Table 6—4).

Words 1
Cycles Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p

6-100

Example 1 CRGT

ACCB
ACC

Example 2 CRGT

ACCB
ACC

Before Instruction

4h|

5h|

0]

Before Instruction

5h

5h|

0]

ACCB
ACC

ACCB
ACC

After Instruction

gl |a
= AR =S

After Instruction

al|a
=R ==

6-101

Syntax CRLT
Operands None

Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111000011100

Execution (PC)+1 - PC
Compare (ACC) to (ACCB)

If (ACC) < (ACCB):
(ACC) - ACCB
1.¢C

If (ACC) > (ACCB):
(ACCB) - ACC
0-C

If (ACC) = (ACCB):

0 -~ C
Status Bits Affects: C
Description The contents of the accumulator (ACC) are compared to the contents of the

accumulator buffer (ACCB). The smaller (signed) value is loaded into both reg-
isters. If the contents of the ACC are less than the contents of the ACCB, the
C bit is set; otherwise, the C bit is cleared.

CRLT is an accumulator memory reference instruction (see Table 6—4).

Words 1
Cycles Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p

6-102

Example 1 CRLT

ACCB
ACC

Example 2 CRLT

ACCB
ACC

Before Instruction

5h|

4h|

0]

Before Instruction

4h|

4h

1]

ACCB
ACC

ACCB
ACC

After Instruction

= EARE=E

After Instruction

0| |=

6-103

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-104

Direct: DMOV dma
Indirect: DMOV {ind} [,LARN]

0<dmac<127
0<n<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10
l[o 1 1 1 o0 1 1

©
(o]
~
(o)}
(&)
D
w
N
[EEN
o

[Eny
o
o
3
[

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 0 1 1 See Section 5.2 |

[EEN
[ERN

(PC)+1 - PC
(dma) - dma+1

Affected by: CNF and OVLY

The contents of the data memory address (dma) are copied to the next higher
dma. The DMOV instruction works only within on-chip data RAM blocks and
within any configurable RAM block that is configured as data memory. In addi-
tion, the DMOV instruction is continuous across on-chip dual-access RAM
block BO and B1 boundaries. The DMOV instruction cannot be used on exter-
nal data memory or memory-mapped registers. If the DMOV instruction is
used on external memory or memory-mapped registers, the DMOV instruction
will read the specified memory location but will perform no operations.

When data is copied from the addressed location to the next higher location,
the contents of the addressed location remain unaffected.

You can use the DMOV instruction in implementing the z—1 delay encountered
in digital signal processing. The DMOV functionis included in the LTD, MACD,
and MADD instructions (see their individual descriptions on page 6-142,
6-153, and 6-158, respectively, for more information).

DMOQV is an I/0 and data memory operation instruction (see Table 6-9).

1

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,37 1+p

External 2+2d 2+2d 2+2d 5+2d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p
SARAM 2n-2 2n-2 2n-2, 2n-2+p
2n+1t
External 4n-2+2nd 4n-2+2nd 4n-2+2nd 4n+1+2nd+p

T 1f the operand and the code are in the same SARAM block

Example 1

Data Memory
308h

Data Memory
309h

Example 2 DMOV *,AR1

ARP
AR1

Data Memory
30Ah

Data Memory
30Bh

DMOV DATS ;(DP = 6)

Before Instruction
Data Memory

| 43h] 308h
Data Memory

| 2h] 309h

Before Instruction

| 0] ARP

| 30Ah] AR1
Data Memory

| 40h] 30Ah

Data Memory
30Bh

| 41h]

After Instruction

!
w
=

N
w
=

After Instruction

30A

!I

N
o
=

N
o
=

6-105

Syntax EXAR

Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1
Execution (PC)+1 - PC
(ACCB) - (ACC)
Status Bits None affected.
Description The contents of the accumulator (ACC) are exchanged (switched) with the

contents of the accumulator buffer (ACCB).

Words 1
Cycles Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
Example EXAR
Before Instruction After Instruction
ACC I 043h] ACC
ACCB | 02h] ACCB

6-106

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Example

IDLE
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000100010

(PC)+1 - PC
Affected by: INTM

The program being executed is forced to wait until an unmasked (external or
internal) interrupt or reset occurs. The program counter (PC) is incremented
only once, and the device remains in idle mode until interrupted.

The idle mode is exited by an unmasked interrupt, even if the INTM bit is set.
Ifthe INTM bit is set, the program continues executing at the instruction follow-
ing the IDLE. If the INTM bit is cleared, the program branches to the corre-
sponding interrupt service routine (ISR).

When an interrupt causes IDLE to be exited with the interrupts disabled
(INTM = 1), no interrupt flag register (IFR) bits are cleared. The IFR bits are
cleared only if interrupts are enabled and IDLE is exited by entering the ISR.

Executing the IDLE instruction causes the 'C5x to enter the power-down
mode. During the idle mode, the timer and serial port peripherals are still
active. Therefore, timer and peripheral interrupts, as well as reset or external
interrupts, will remove the processor from the idle mode.

IDLE is a control instruction (see Table 6-10).
1
The IDLE instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

IDLE ;The processor idles until a reset or unmasked
;interrupt occurs.

6-107

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Example

6-108

IDLE2
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1 1 12 1 0 0 0 1 0 0 0O 1 1

(PC)+1 - PC
Affected by: INTM

The program being executed is forced to wait until an unmasked (external or
internal) interrupt or reset occurs. The functional clock input is removed from
the internal device to make an extremely low-power mode possible. The pro-
gram counter (PC) is incremented only once, and the device remains in idle
mode until interrupted.

The idle2 mode is exited by an unmasked interrupt, even if the INTM bit is set.
Ifthe INTM bitis set, the program continues executing at the instruction follow-
ing the IDLEZ2. Ifthe INTM bitis cleared, then the program branches to the cor-
responding interrupt service routine (ISR).

When an interrupt causes IDLE2 to be exited with the interrupts disabled
(INTM = 1), no interrupt flag register (IFR) bits are cleared. The IFR bits are
cleared only if interrupts are enabled and IDLEZ is exited by entering the ISR.

Executing the IDLE2 instruction causes the 'C5x to enter the power-down
mode. During the idle2 mode, the timer and serial port peripherals are not
active. The idle2 mode is exited by a low logic level on an external interrupt
(INT1-INT4), RS, or NMI with a duration of at least five machine cycles be-
cause interrupts are not latched as in normal device operation.

IDLEZ is a control instruction (see Table 6-10).
1

The IDLEZ instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

IDLE2 ;The processor idles until a reset or unmasked
;external interrupt occurs.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: IN dma, PA
Indirect: IN {ind} ,PA[,ARN]

0<dmac<127

O0sng<7

0 < port address PA < 65535

ind: {* * * *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 +—+—+% I 0 I dma

16-Bit Constant

Indirect addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| -
1 0 1 QO 1 1 T T I 1] See Section 5.2

16-Bit Constant

(PC)+2 - PC

While (repeat counter) Z 0
Port address — address bus A15-A0
Data bus D15-D0 - dma
Port address — dma
Port address + 1 - Port address
(repeat counter — 1) - repeat counter

None affected.

A 16-bit value from an external I/O port is read into the data memory address
(dma). The IS line goes low to indicate an I/O access, and the STRB, RD, and
READY timings are the same as for an external data memory read. While port
addresses 50h—5Fh are memory-mapped (see subsection 9.1.1, Memory-
Mapped Peripheral Registers and I/O Ports); the other port addresses are not.

You can use the RPT instruction with the IN instruction to read consecutive
words in I/O space to data space. The number of words to be moved is one
greater than the number contained in the repeat counter register (RPTC) atthe
beginning of the instruction. When used with the RPT instruction, the IN
instruction becomes a single-cycle instruction, once the RPT pipeline is
started, and the port address is incremented after each access.

IN is an I/O and data memory operation instruction (see Table 6-9).

2

6-109

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
Destination: DARAM 2+i0gpc 2+i0grc 2+i0gpc 3+i0grc*+2Pcode
Destination: SARAM 2+i0grc 2+i0grc 2+i0gyc, 3+i0gc T 3+i0gc+2Pcode

Destination: External

3+dgg+iogre 3+dygrtiogye 3+dgst+iogre

6+dgs+i0src+2Pcode

T If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand

External Memory

Destination: DARAM

Destination: SARAM

Destination: External

ROM DARAM SARAM
2n+niog,c 2n+Ni0g,¢ 2n+niog,¢
2n+niog,c 2n+Ni0gyc 2n+niogyc,
2n+2+niog,
4n_—1+ndd$t 4n_—1+nddst 4n_—1+nddst
+NiOgrc +NiOgrc +Ni0gc

2n+1+ni0grc+2Pcode

2n+1+ni0grc+2Pcode

4n+2+ndyg+Niogre
+2Pcode

T 1f the destination operand and the code are in the same SARAM block

Example 1

Example 2

6-110

IN DAT7,PA5 ;Read in word from peripheral on port

;address 5(i.e., I/O port 55h). Store in
;data memory location 307h (DP=6).

IN *,1024 ;Read in word from peripheral on /O
;port 400h. Store in data memory location

;specified by current auxiliary register.

Syntax
Operands

Opcode

Execution

Status Bits

Description

INTR K
0<K<31

15 14 13 12 11 10 9 8

2 1 0

[1 o 1 1 1 1 1 o0

INTR# 1

T See Table 6-1 on page 6-2.

(PC)+1 - stack
corresponding interrupt vector — PC

Not affected by: Affects:
INTM INTM

A software interrupt that transfers program control to a program memory ad-
dress (pma) interrupt vector specified by K. The current program counter (PC)
isincremented and pushed onto the stack. The pma s loaded into the PC. The
K value corresponds to a pma specified by the following table:

K Interrupt Hex Location K Interrupt Hex Location
0 RS 0 16 Reserved 20
1 INTL 2 17 TRAP 22
2 INT2 4 18 NMI 24
3 INT3 6 19 Reserved 26
4 TINT 8 20 User-defined 28
5 RINT A 21 User-defined 2A
6 XINT C 22 User-defined 2C
7 TRNT E 23 User-defined 2E
8 TXNT 10 24 User-defined 30
9 INT4 12 25 User-defined 32
10 Reserved 14 26 User-defined 34
11 Reserved 16 27 User-defined 36
12 Reserved 18 28 User-defined 38
13 Reserved 1A 29 User-defined 3A
14 Reserved 1C 30 User-defined 3C
15 Reserved 1E 31 User-defined 3E

The INTR instruction allows any interrupt service routine (ISR) to be executed
from your software. The INTM bit has no affect on the INTR instruction. An INTR
interrupt for the INT1-INT4 interrupts looks exactly like an external interrupt
except the interrupt will not clear the appropriate bitin the IFR. See Section 4.8,
Interrupts, on page 4-36 for a complete description of interrupt operation.

INTR is a branch and call instruction (see Table 6-8).

6-111

The reserved interrupt vectors can be used for the 'C50, 'C51, and
'C53. However, software compatibility with other fifth generation
devices is not guaranteed.

Words 1
Cycles The INTR instruction is not repeatable.
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
4 4 4 4+3pt

t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

Example INTR 3 ;Control is passed to program memory location 6h
;PC + 1 is pushed onto the stack.

6-112

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

LACB
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000011111

(PC)+1 - PC
(ACCB) - ACC

None affected.

The contents of the accumulator buffer (ACCB) are loaded into the accumula-
tor (ACC).

LACB is an accumulator memory reference instruction (see Table 6-4).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
LACB
Before Instruction After Instruction
ACC ACC
Acce Acce

6-113

Syntax

Operands

Opcode

Execution

Status Bits

6-114

Direct: LACC dma [,shift]
Indirect: LACC {ind} [,shift [,ARn]]
Long immediate: LACC #Ik [,shiff]

0<dma<127

0<n<7

0 < shift < 16 (defaults to 0)

—32768 < |k < 32767

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing with shift
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

[0 o 0o 1] sHFTT | 0| dma

t See Table 6-1 on page 6-2.

Indirect addressing with shift
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 1 SHFT T | 1] See Section 5.2
t See Table 6-1 on page 6-2.

Direct addressing with shift of 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[0 1 1 0o 1 o 1 o]fo0] dma

Indirect addressing with shift of 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 1 0 1 0 1 0|1| See Section 5.2

Long immediate addressing with shift
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0 1 1 1 11 1 1 0 0 ©O SHFT ¥

16-Bit Constant

t See Table 6-1 on page 6-2.

Direct or indirect addressing:
(PC)+1 - PC
(dma) x 2shiftl _ AcC

Long immediate addressing:

(PC)+2 - PC
lk x 2shifz _, Acc

Affected by: SXM

Description

Words

Cycles

The contents of the data memory address (dma) or a 16-bit constant are
shifted left, as defined by the shift code, and loaded into the accumulator
(ACC). During shifting, the low-order bits of the ACC are zero-filled. If the SXM
bit is cleared, the high-order bits of the ACC are zero-filled; if the SXM bit is
set, the high-order bits of the ACC are sign-extended.

LACC is an accumulator memory reference instruction (see Table 6—4).

1 (Direct or indirect addressing)

2 (Long immediate addressing)

For the long immediate addressing modes, the LACC instruction is not repeat-
able.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,21 1+p

External 1+d 1+d 1+d 2+d+p

Tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory

2 2 2 2+2p

6-115

Example 1

Example 2

Example 3

6-116

LACC DAT6,4 ;(DP =8, SXM =0)
Before Instruction

Data Memory
406h | 01h]

ACC | 1234 5678h]
c

LACC *4 ;(SXM = 0)

Before Instruction

ARP | 2|
AR2 | 0300h|
Data Memory
300h | OFFh|
ACC | 1234 5678H|
C

LACC #F000h,1 ;(SXM = 1)

Before Instruction
1234 5678h|

Acc [Xx] |

C

After Instruction
Data Memory

406h
acc
C

After Instruction

ARP

AR2 0300h
Data Memory
300h OFFh

ACC
C

After Instruction

Acc
C

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: LACL dma
Indirect: LACL {ind} [, ARN]
Short immediate: LACL #k
0<dmac<127

0<sn<7

0<k<255

ind: {* *+ *~ *0+ *0— *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6

[o 1 1 0o 1 o 0 1[o0]

Indirect addressing
15 14 13 12 11 10 9 8 7 6

5 4 3 2 1 0

|01101001|1|

See Section 5.2 |

Short immediate addressing
15 14 13 12 11 10

[{e]
o]
~
[e)]

5 4 3 2 1 0

[1 o 1 1 1 0 o0 1|

8-Bit Constant |

(PC)+1 - PC

Direct or indirect addressing:
0 - ACC(31-16)
(dma) - ACC(15-0)

Short immediate addressing:
0 - ACC(31-8)
k - ACC(7-0)

Not affected by: SXM

The contents of the data memory address (dma) or a zero-extended 8-bit
constant are loaded into the accumulator low byte (ACCL). The accumulator
high byte (ACCH) is zero-filled. The data is treated as an unsigned 16-bit num-
ber rather than a 2s-complement number. The operand is not sign extended
with the LACL instruction, regardless of the state of the SXM bit.

LACL is an accumulator memory reference instruction (see Table 6-4).

1

6-117

Cycles

For the shortimmediate addressing modes, the LACL instruction is not repeat-

able.
Cycles for a Single Instruction (direct or indirect addressing)
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tifthe operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

ROM

DARAM

SARAM External Memory

1 1

1 1+p

Example 1 LACL DAT1 ;(DP = 6)

Data Memory
301h

ACC
c

Example 2 LACL *— AR4

ARP
ARO

Data Memory
401h

ACC
c

6-118

Before Instruction

Oh
| 7FFF FFFFh|

Before Instruction
I 0l
| 401h|

| 00FFh]|
| 7FFF FFFFh]|

After Instruction
Data Memory

301h
ACC
C

After Instruction

ARP

ARO 400h
Data Memory

401h O00FFh

AcC
C

Example 3 LACL #10h
Before Instruction After Instruction

ACC X ACC X

| 7FFF FFEFh]

6-119

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-120

Direct: LACT dma
Indirect: LACT {ind} [,ARN]

O0<dmac<127
0<sn<7
ind: {* *+ * *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 0 1 0 1

[EnY
o
o
3
Q

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 0o 1 o0 1 See Section 5.2 |

=
[EEN

(PC)+1 - PC
(dma) x 2TREG1(3-0) _, ACC

If SXM = 0:
(dma) is not sign extended
If SXM = 1:

(dma) is sign extended

Affected by: SXM

The contents of the data memory address (dma) are shifted left from 0 to 15
bits, as defined by the 4 LSBs of TREG1, and loaded into the accumulator
(ACC). You can use the contents of TREG1 as a shift code to provide a dynam-
ic shift mechanism. During shifting, if the SXM bitis cleared, the high-order bits
are zero-filled; if the SXM bit is set, the high-order bits are sign-extended.

You may use the LACT instruction to denormalize a floating-point number, if
the actual exponent is placed in the 4 LSBs of the TREG1 and the mantissa
is referenced by the dma. You can use this method of denormalization only
when the magnitude of the exponent is 4 bits or less.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction thatloads TREGO to write to all three TREGS.
Subsequent calls to the LACT instruction will shift the value by the TREG1 val-
ue (which is the same as TREGO), maintaining 'C5x object-code compatibility
with the 'C2x.

LACT is an accumulator memory reference instruction (see Table 6-4).

1

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,21 1+p

External 1+d 1+d 1+d 2+d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Example 1 LACT DATL1 ;(DP = 6, SXM = 0)
Before Instruction
Data Memory
301h | 1376h|
ACC | 98F7 EC83h|
C
TREG1 | 14h|
Example 2 LACT *—,AR3 ;(SXM = 1)

Before Instruction

ARP | 1]
AR1 | 310h]
Data Memory
310h | FFOOh|
ACC | 98F7 EC83h|
c
TREG1 | 11h]

Data Memory
301h

After Instruction

1376h

Acc
C

TREG1

ARP
AR1

Data Memory
310h

After Instruction

309h

FFOOh

Acc
C

TREG1

6-121

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-122

Direct: LAMM dma
Indirect: LAMM {ind} [,LARN]

0<dmac<127
0<n<7
ind: {* *+ * *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 5 4

3 2 1 0

[0 o o 0o 1 0 0 o0]fo0] Data Memory Address |
Indirect addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 0 o 1 0 0o oft1] See Section 5.2 |

(PC)+1 - PC
(dma) - ACC(15-0)
0 - ACC(31-16)

Not affected by: SXM

The contents of the addressed memory-mapped register are loaded into the
accumulator low byte (ACCL). The accumulator high byte (ACCH) is zero-
filled. The 9 MSBs of the data memory address are cleared, regardless of the
current value of data memory page pointer (DP) bits or the upper 9 bits of the
current AR. The LAMM instruction allows any memory location on data
memory page 0 to be loaded into the ACC without modifying the DP bits.

LAMM is an accumulator memory reference instruction (see Table 6-4).

1
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
MMRT 1 1 1 1+p
MMPORT 1+iogre 1+i0gre l+iodge 1+2+p+iodgse

T Add one more cycle for peripheral memory-mapped access

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
MMR¥* n n n n+p
MMPORT N+mMiog,; N+MiOgyc N+mMioge N+P+MiOg.e

¥ Add n more cycles for peripheral memory-mapped access

Example 1 LAMM BMAR ;(DP = 6)

Before Instruction

After Instruction
ACC | 2222 1376h] ACC
BMAR | 5555h] BMAR
Data Memory Data Memory
31Fh | 1000h| 31Fh
Example 2 LAMM *
Before Instruction After Instruction
ARP I 1] ARP
AR1 | 325h| AR1
ACC | 2222 1376h] ACC
PRD | OFh] PRD
Data Memory Data Memory
325h | 1000h] 325h

The value in data memory location 325h is not loaded into the ACC, the value
at data memory location 25h (address of the PRD) is loaded into the ACC.

6-123

Syntax Direct: LAR ARXx, dma
Indirect: LAR ARX, {ind} [,ARN]
Short immediate: LAR ARX, #k
Long immediate: LAR ARX, #lk

Operands O0sx<7
0<dma<127
O0<n<s7
0<k<255
0 <lk <65535
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Opcode Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

|ooooo|ARxT|o| dma

t See Table 6-1 on page 6-2.

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 0 O ARXT 1] See Section 5.2

1t See Table 6-1 on page 6-2.

Short immediate addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0 1 1 o0 ARX T 8-Bit Constant

t See Table 6-1 on page 6-2.

Long immediate addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 0 1 1 1 0 1| ARxt

16-Bit Constant

t See Table 6-1 on page 6-2.

Execution Direct or indirect addressing:
(PC)+1 - PC
(dma) - AR

Short immediate addressing:
(PC)+1 - PC

k - AR
Long immediate addressing:
(PC)+2 - PC
k - AR
Status Bits Affected by: Not affected by:
NDX SXM

6-124

Description

Words

Cycles

The contents of the data memory address (dma), an 8-bit constant, or a 16-bit
constant are loaded into the auxiliary register (AR). The constant is acted upon
like an unsigned integer, regardless of the value of the SXM bit.

You can maintain software compatibility with the 'C2x by clearing the NDX bit.
This causes any 'C2x instruction that loads auxiliary register 0 (ARO) to load
the auxiliary register compare register (ARCR) and index register (INDX) also,
maintaining 'C5x object-code compatibility with the 'C2x.

You can use the LAR and SAR (store auxiliary register) instructions to load and
store the ARs during subroutine calls and interrupts. If you do not use an AR
for indirect addressing, LAR and SAR enable the register to be used as an
additional storage register, especially for swapping values between data
memory locations without affecting the contents of the accumulator (ACC).

LAR is an auxiliary registers and data memory page pointer instruction (see
Table 6-5).

1 (Direct, indirect, or short immediate addressing)

2 (Long immediate addressing)

Forthe shortand long immediate addressing modes, the LAR instruction is not
repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
Source: DARAM 2 2 2 2+Pcode

Source: SARAM 2 2 2,3t 2+Pcode

Source: External 2+dgye 2+dgse 2+dgre 3+dsc+Pcode

T 1f the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
Source: DARAM 2n 2n 2n 2n+Peode

Source: SARAM 2n 2n 2n, 2n+1T 2n+pgoge

Source: External 2n+ndge 2n+ndge 2n+Ndgre 2n+1+NdgctPeoge

T If the source operand and the code are in the same SARAM block

6-125

Example 1

Example 2

Example 3

Example 4

6-126

Cycles for a Single Instruction (short immediate addressing)

Operand ROM

DARAM

SARAM

External Memory

2 2

2

2+Peode

1 If the source operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM

SARAM

External Memory

2 2

2

2+2p

LAR ARO,DAT16 ;(DP = 6)

Before Instruction
Data Memory

310h | 18h|
ARO | 6h|
LAR AR4,*—
Before Instruction
ARP | 4]
Data Memory
300h | 32h|
AR4 | 300h|

Data Memory
310h

ARO

ARP

Data Memory
300h

AR4

After Instruction

18h

After Instruction

Note:

LAR in the indirect addressing mode ignores any AR modifications if the AR
specified by the instruction is the same as that pointed to by the ARP. There-
fore, in Example 2, AR4 is not decremented after the LAR instruction.

LAR AR4,#01h

Before Instruction
AR4 | FFO9h|

LAR AR4 #3FFFh

Before Instruction
AR4 | oh|

AR4

AR4

After Instruction

After Instruction

3FFFh

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: LDP dma
Indirect: LDP {ind} [,ARN]
Short immediate: LDP #k

0<dmac<127

0<sn<7

0<k<b511

ind: {* *+ * *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9
[o o o 0o 1 1 0 1]o0] dma |

(o]
~
o
(&)
N
w
N
[N
o

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 0 0 1 1 0 1] 1] SeeSection52 |

Short immediate addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1 0 1 1 1 1 o 9-Bit Constant |

(PC)+1 - PC

Direct or indirect addressing:
Nine LSBs of (dma) - DP bits

Short immediate addressing:
k - DP bits

Affects: DP

The 9 LSBs of the data memory address (dma) contents or a 9-bit constant are
loaded into the data memory page pointer (DP) bits. The DP bits and the 7-bit
dma are concatenated to form the 16-bit dma. The DP bits can also be loaded
by the LST instruction.

LDP is an auxiliary registers and data memory page pointer instruction (see
Table 6-5).

1

6-127

Cycles For the short immediate addressing modes, the LDP instruction is not repeat-

able.
Cycles for a Single Instruction (direct or indirect addressing)
Operand ROM DARAM SARAM External Memory
Source: DARAM 2 2 2 2+Pcode
Source: SARAM 2 2 2,3t 2+Peode
Source: External 2+dgre 2+dgre 2+dgre 3+dgretPeode

1 1f the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
Source: DARAM 2n 2n 2n 2n+Peode

Source: SARAM 2n 2n 2n, 2n+1T 2n+pgoge

Source: External 2n+ndgc 2n+ndgc 2n+ndgc 2n+1+ndg o +Peode

1 1f the source operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

Operand ROM DARAM SARAM External Memory

2 2 2 2+Peode

T 1f the source operand and the code are in the same SARAM block

Example 1 LDP DAT127 ;(DP = 511)
Before Instruction After Instruction
Data Memory Data Memory
FFFFh | FEDCh] FFFFh FEDCh
DP | 1FFh| DP 0DCh
Example 2 LDP #0h
Before Instruction After Instruction
DP I 1FFh| DP

6-128

Example 3 LDP * AR5

ARP
AR4

Data Memory
300h

DP

Before Instruction

4]

300h]

06h]|

1FFh]

ARP
AR4

Data Memory
300h

DP

After Instruction

300

ol 1o
ol |2
e) e S| |0

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-130

Direct: LMMR dma, #addr
Indirect: LMMR {ind}, #addr [,ARn]

0<dma<127

0<n<7

0 < addr < 65535

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0O 0 o0 dma

16-Bit Constant |

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 ee Section 5.2
16-Bit Constant |

PFC - MCS

(PC)+2 - PC

lk - PFC

While (repeat counter Z 0):
(src, addressed by PFC) - (dst, specified by lower 7 bits of dma)
(PFC)+1 - PFC
(repeat counter) —1 - repeat counter

MCS - PFC

None affected.

The memory-mapped register pointed at by the lower 7 bits of the data
memory address (dma) is loaded with the contents of the data memory loca-
tion addressed by the 16-bit source address, #addr. The 9 MSBs of the dma
are cleared, regardless of the current value of the data memory page pointer
(DP) bits or the upper 9 bits of the current AR. The LMMR instruction allows
any memory location on data memory page 0 to be loaded from anywhere in
data memory without modification of the DP bits.

When you use the LMMR instruction with the RPT instruction, the source ad-
dress, #addr, is incremented after every memory-mapped load operation.

LMMR is an I/O and data memory operation instruction (see Table 6-9).

2

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

Source: DARAM 2 2 2 2+2Pcode
Destination: MMR*

Source: SARAM 2 2 2,3t 2+2Pcode
Destination: MMR*

Source: External 2+Psrc 2+Psrc 2+Psrc 3+Psrct2Pcode
Destination: MMR*

Source: DARAM 3+iogst 3+iogst 3+iogst 5+2pPcodetiogst
Destination: MMPORT

Source: SARAM 3+iogst 3+iogst 3+iogsy, 41 5+2Pcodetiogst
Destination: MMPORT

Source: External 3+Psrc+iogst 3+Psrc+i0gst 3+Psrc+i0gst 6+Psrc+2PcodetiOgst
Destination: MMPORT

T 1f the source operand and the code are in the same SARAM block
* Add one more cycle for peripheral memory-mapped register access

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory

Source: DARAM 2n 2n 2n 2n+2pcode
Destination: MMRS

Source: SARAM 2n 2n 2n, 2n+1T 2N+2Pcode
Destination: MMR§

Source: External 2n+ndgc 2n+ndg.e 2n+ndgye 2n+1+ndg;c+2Pcode
Destination: MMRS

Source: DARAM 3n+niogg; 3n+niogg; 3n+niogs; 3n+3+niogst+2Pcode
Destination: MMPORT

Source: SARAM 3n+niogg; 3n+niogg; 3n+niogg, 3n+3+nioyst+2Pcode
Destination: MMPORT 3n+1+niogs

Source: External 4n—=1+ndg,c 4n-1+ndg.e 4n—-1+ndg,e 4n+2+ndg o+ niogg;
Destination: MMPORT +Nioggt +nioggt +Nioggt *+2Pcode

1 1f the source operand and the code are in the same SARAM block
§ Add n more cycles for peripheral memory-mapped register access

6-131

Example 1 LMMR DBMR,#300h

Before Instruction
Data Memory

300h | 1376h|
DBMR | 5555h|
Example 2 LMMR *#300h,AR4 ;CBCR = 1Eh
Before Instruction
ARP | 0|
ARO | 31Eh|
Data Memory
300h | 20h|
CBCR | Ohl

6-132

Data Memory
300h

DBMR

ARO
ARO

Data Memory
300h

CBCR

1376
1376

31E

> >
= =
[0} @D
@ o
=3 =3
[%2] (%]
@Q a
= =
c c
(o] [}
(=7 =
S S

N

=) IN

=y > > =y =y

N
o
=0

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Direct: LPH dma
Indirect: LPH {ind} [,ARN]

0<dmac<127
0<n<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 0 1 O

=
o
(o8
3
Q

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[o 1 1 1 0 1 o0 1]1] See Section 5.2 |

(PC)+1 - PC
(dma) - PREG (31-16)

None affected.

The contents of the data memory address (dma) are loaded into the product
register (PREG) high byte. The contents of the PREG low byte are unaffected.

You can use the LPH instruction to restore the contents of the PREG high byte
after interrupts and subroutine calls, if automatic context save is not used.

LPH is a TREGO, PREG, and multiply instruction (see Table 6-7).

1
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

1 1f the operand and the code are in the same SARAM block

6-133

Example 1 LPH DATO ;(DP = 4)

Data Memory
200h

PREG
Example 2 LPH *,AR6

ARP
AR5

Data Memory
200h

PREG

6-134

Before Instruction

F79Ch|

3007 9844h|

Before Instruction

5]

200h]

F79Ch]|

3007 9844h|

Data Memory
200h

PREG

ARP
AR5

Data Memory
200h

PREG

After Instruction

F79Ch
F79C 9844h

After Instruction

200

F79C
F79C 9844h

il

Syntax

Operands

Opcode

Execution

Status Bits

Description

Direct: LST #m, dma
Indirect: LST #m, {ind} [,ARN]

0<dmac<127

m=0orl

0<sn<7

ind: {* **+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing for LST #0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o o 1 1 1 o]fo0] dma |

Indirect addressing for LST #0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
[0 0 0 0 1 1 1 O0of 1] See Section 5.2 |

Direct addressing for LST #1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o o 1 1 1 1]o0] dma |

Indirect addressing for LST #1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 6o o 0o o0 1 1 1 1| 1| See Section 5.2 |
(PC)+1 - PC

(dma) - STm

dma (13-15) - ARP (regardless of n)

Affects: Does not affect:

ARB, ARP, C, CNF, DP, HM, OV, INTM

OVM, PM, SXM, TC, and XF

The contents of the data memory address (dma) are loaded into status register
STm. The INTM bit is unaffected by an LST #0 instruction. In addition, the
LST #0 instruction does not affect the auxiliary register buffer (ARB), even
though a new auxiliary register pointer (ARP) is loaded. If a next ARP value
is specified via the indirect addressing mode, the specified value is ignored.
Instead, ARP is loaded with the value contained within the addressed data
memory word.

Note:

When ST1 is loaded (LST #1), the value loaded into ARB is also loaded into
ARP.

You can use the LST instruction to restore the status registers after subroutine
calls and interrupts. LST is a control instruction (see Table 6-10).

6-135

Words 1

Cycles Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
Source: DARAM 2 2 2 2+Peode
Source: SARAM 2 2 2,3f 2+Pcode
Source: External 2+dgre 2+dgre 2+dgre 3+dgrctPeode

1 1f the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
Source: DARAM 2n 2n 2n 2n+Pcode

Source: SARAM 2n 2n 2n, 2n+1T 2n+pgoge

Source: External 2n+ndge 2n+ndge 2n+ndge 2n+1+NndgrotPeode

t1f the source operand and the code are in the same SARAM block

Example 1 MAR * ARO
LST #0,*,AR1 ;The data memory word addressed by the contents
;of auxiliary register ARO is loaded into
;status register STO,except for the INTM bit.
;Note that even though a next ARP value is
;specified, that value is ignored, and the
;old ARP is not loaded into the ARB.

Example 2 LST #0,60h ;(DP = 0)
Before Instruction After Instruction
Data Memory Data Memory
60h | 2404h] 60h
STO | 6E00h] STO
ST1 | 0580h] ST1

6-136

Example 3 LST #0,*~,AR1
ARP
AR4

Data Memory
3FFh

STO
ST1

Example 4 LST #1,00h ;(DP = 6)

Data Memory
300h

STO
ST1

Before Instruction
I 4]
| 3FFh

| EE04h]
| 1E00h]
| F7A0h]|

Before Instruction

| E1BCh]|
| 0406h]
| 09A0h]

ARP
AR4

Data Memory
3FFh EEO4
STO EEO4
ST1 F7A0

Data Memory

> >
= =
® ®
= =
=1 =]
[} [}
= =1
c c
Q Q
(=14 =
o o
w
= 8 =
m
jpy jum) [e I o ol IN

300h E1BCh
STO E406
ST1 E1BCh

6-137

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-138

Direct: LT dma

Indirect: LT {ind} [,LARN]

0<dma<127

Osn<s7

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[o 1 1 1 0 o0 1 1]o0] dma |
Indirect addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 1 0 0o 1 1]1] See Section 5.2 |

(PC)+1 - PC
(dma) - TREGO

If TRM = 0:
(dma) -~ TREG1
(dma) - TREG2

Affected by: TRM

The contents of the data memory address (dma) are loaded into TREGO. You
can use the LT instruction to load TREGO in preparation for multiplication.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only

4 bits.

LT is a TREGO, PREG, and multiply instruction (see Table 6-7).

1

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,21 1+p

External 1+d 1+d 1+d 2+d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Example 1

Data Memory
418h

TREGO
Example 2

ARP
AR2

Data Memory
418h

TREGO
TREG1
TREG2

LT *,AR3 ;(TRM = 0)

LT DAT24 ;(DP = 8. TRM = 1)

Before Instruction

| 62h]
I 3h|

Before Instruction
I 2]
| 418h|

62h]
3h|
4h|
5h|

Data Memory
418h

TREGO

ARP
AR2

Data Memory
418h

TREGO
TREG1
TREG2

After Instruction

62h
62h

After Instruction
3
418h

D] O
NTINTIN]IN
S| =| |5

6-139

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-140

Direct: LTA dma
Indirect: LTA {ind} [,ARN]

0<dmac<127
0<n<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 1 0 0 0 o0]fo0] dma |
Indirect addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0111000

o
A=

See Section 5.2 |

(PC)+1 - PC
(dma) - TREGO
(ACC) + (shifted PREG) - ACC

If TRM = 0:
(dma) - TREG1
(dma) - TREG2

Affected by: Affects:
OVM, PM, and TRM C and OV

The contents of the data memory address (dma) are loaded into TREGO. The
contents of the product register (PREG) are shifted, as defined by the PM bits,
and added to the accumulator (ACC). The result is stored in the ACC. The C
bit is set, if the result of the addition generates a carry; otherwise, the C bit is
cleared.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 hits.

LTA is a TREGO, PREG, and multiply instruction (see Table 6-7).

1

Cycles

Example 1

Example 2

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,21 1+p

External 1+d 1+d 1+d 2+d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

LTA DAT36 ;(DP =6, PM =0, TRM = 1)

Before Instruction

Data Memory Data Memory
324h | 62h| 324h
TREGO | 3h| TREGO
PREG | OFh| PREG
ACC |

c

LTA *5 ;(TRM = 0)

Before Instruction

ARP | 4] ARP
AR4 | 324h| AR4
Data Memory Data Memory
324h | 62h| 324h
TREGO | 3h| TREGO
TREG1 | 4h] TREG1
TREG2 | 5h] TREG2
PREG | OFh] PREG
ACC | 5h] Acc [0]
c c

After Instruction

62h
62h
OFh

5 acc [o]
C

After Instruction

324h

62h
62h

o
TN IN
=2 =1 =2 1

[N
~
=

6-141

Syntax

Operands

Opcode

Execution

Status Bits

Description

6-142

Direct: LTD dma
Indirect: LTD {ind} [,ARN]

0<dmac<127
0<n<7
ind: {* *+ * *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 0 o0 1 | o] dma |

o

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1 1 0 o 1 [1] See Section 5.2 |

o

(PC)+1 - PC

(dma) - TREGO

(dma) - dma+1
(ACC) + (shifted PREG) - ACC

If TRM = 0:
(dma) - TREG1
(dma) - TREG2

Affected by: Affects:
OVM, PM, and TRM C and OV

The contents of the data memory address (dma) are loaded into TREGO. The
contents of the dma are also copied to the next higher dma. The contents of
the product register (PREG) are shifted, as defined by the PM bits, and added
to the accumulator (ACC). The result is stored in the ACC. The C bit is set, if
the result of the addition generates a carry; otherwise, the C bitis cleared. See
the DMOV instruction, page 6-104, for information on the data move feature.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction thatloads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 hits.

The LTD instruction functions in the same manner as the LTA instruction with
the addition of data move for on-chip RAM blocks. If you use the LTD instruc-
tion with external data memory, its function is identical to that of the LTA instruc-
tion (page 6-140).

LTD is a TREGO, PREG, and multiply instruction (see Table 6-7).

Words 1

Cycles Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,3t 1+p
External 2+2d 2+2d 2+2d 5+2d+p

T1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p
SARAM 2n-2 2n-2 2n-2, 2n-2+p
2n+1t
External 4n-2+2nd 4n-2+2nd 4n-2+2nd 4n+1+2nd+p

T 1f the operand and the code are in the same SARAM block

Example 1 LTD DAT126 ;(DP =7,PM =0, TRM = 1)
Before Instruction After Instruction

Data Memory Data Memory
3FEh | 62h] 3FEh

Data Memory Data Memory
3FFh | oh| 3FFh
TREGO | 3h| TREGO
PREG | OFh] PREG
ACC | 5h| Acc [o] 14h

C C

6-143

Example 2 LTD *,AR3 ;(TRM = 0)

Before Instruction

ARP | 1]
ARL | 3FEh|

Data Memory
3FEh | 62h|

Data Memory
3FFh | Oh
TREGO | 3h|
TREG1 | 4h|
TREG2 | 5h|
PREG | OFh|
ACC | 5h|

c

6-144

ARP
AR1

Data Memory
3FEh

Data Memory
3FFh

TREGO
TREG1
TREG2
PREG
ACC

o[q]

>
=
@D
o
=
2]
=
c
(o]
=
o

w

T >

m

= [w

()]
N
=

TN I NN
o0l =] =] =] =

[
N
=0

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: LTP dma
Indirect: LTP {ind} [,LARN]

0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8
[o 1 1 1 0 0 0 1

7
| 0| dma |

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[o 1 1 1 0 o o 1] 1] See Section 5.2 |

(PC)+1 - PC
(dma) - TREGO
(shifted PREG) - ACC

If TRM = 0:
(dma) - TREG1
(dma) - TREG2

Affected by: PM and TRM

The contents of the data memory address (dma) are loaded into TREGO. The
contents of the product register (PREG) are shifted, as defined by the PM bits,
and stored in the accumulator (ACC).

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

LTP is a TREGO, PREG, and multiply instruction (see Table 6-7).

1

6-145

Cycles Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

Tifthe operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

Example 1 LTP DAT36 ;(DP =6, PM =0, TRM = 1)
Before Instruction
Data Memory

324h | 62h]
TREGO | 3h]
PREG | OFh]
ACC | 5h|

c

Example 2 LTP *,AR5 ;(PM = 0, TRM = 0)
Before Instruction
ARP | 2]
AR2 | 324h|
Data Memory

324h | 62h|
TREGO | 3h|
TREG1 | 4h|
TREG2 | 5h|
PREG | OFh|
ACC | 5h|

c

6-146

Data Memory
324h

TREGO
PREG
ACC

ARP
AR2

Data Memory
324h

TREGO
TREG1
TREG2
PREG
ACC

C

o[

>
p=J
@D
o
=
2]
=
c
[}
=
S
oll|lo||o
TN N
S|IIT||=

o
m
=0

324

>
=+
@
=
=)
7]
2
=
c
S
=
S

=} oo

Tl] (NN

|15 (=] 1= 1= -] |0

o
T
>

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: LTS dma
Indirect: LTS {ind} [,LARN]

0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7
[o 1 1 1 0 1 0 0]O0] dma |

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l[o 1 1 1 0o 1 o of1] See Section 5.2 |

(PC)+1 - PC
(dma) - TREGO
(ACC) — (shifted PREG) - ACC

If TRM = 0:
(dma) - TREG1
(dma) - TREG2

Affected by: Affects:
OVM, PM, and TRM C and OV

The contents of the data memory address (dma) are loaded into TREGO. The
contents of the product register (PREG) are shifted, as defined by the PM bits,
and subtracted from the accumulator (ACC). The result is stored in the ACC.
The C bit is cleared, if the result of the subtraction generates a borrow; other-
wise, the C bit is set.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

LTS is a TREGO, PREG, and multiply instruction (see Table 6-7).

1

6-147

Cycles Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

Example 1 LTS DAT36 ;(DP =6, PM =0, TRM = 1)
Before Instruction
Data Memory Data Memory
324h | 62h| 324h
TREGO | 3h| TREGO
PREG | OFh| PREG
ACC | 05h| ACC
c
Example 2 LTS *,AR2 ;(TRM = 0)
Before Instruction
ARP | 1] ARP
AR1 | 324h| AR1
324h | 62h| 324h
TREGO | 3h| TREGO
TREG1 | 4h| TREG1
TREG2 | 5h| TREG2
PREG | OFh| PREG
ACC | 05h| ACC
c

6-148

>
=
©
=
=1
7]
o
=
c
=]
=3
S

o

N

=

ol |lo
N
o=

FFEFF FFF6

324

>
=
[0}
o
=
[%2]
=
c
(e}
(=4
g
ol o
NN NN
=Rl R R =3

o
T
=

FFFF FFF6

o[o]

Syntax

Operands

Opcode

Execution

Status Bits

Description

Direct: MAC pma, dma
Indirect: MAC pma, {ind} [,ARN]

0 < pma < 65535

O0<dma<127

O0sn<g7

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 _0
1 0 1 0 0 0 316 dma

16-Bit Constant

Indirect addressing

15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
1 0 1 0 0 0 1 o} See Section 5.2
16-Bit Constant
(PC)+2 - PC
(PFC) -~ MCS
(pma) - PFC

If (repeat counter) # 0:
(ACC) + (shifted PREG) - ACC
(dma) - TREGO
(dma) x (pma, addressed by PFC) - PREG
Modify current AR and ARP as specified
(PFC)+1 - PFC
(repeat counter) —1 - repeat counter

Else:
(ACC) + (shifted PREG) - ACC
(dma) - TREGO
(dma) x (pma, addressed by PFC) - PREG
Modify current AR and ARP as specified
(MCS) - PFC

If TRM = 0:
(dma) - TREG1
(dma) - TREG2

Affected by: Affects:
OVM, PM, and TRM C and OV

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the accumulator (ACC). The resultis stored in the ACC. The
contents of the data memory address (dma) are loaded into TREGO. The

6-149

contents of the dma are multiplied by the contents of the program memory ad-
dress (pma). The result is stored in the PREG. The C bit is set, if the result of
the addition generates a carry; otherwise, the C bit is cleared.

The data and program memory locations on the 'C5x can be any nonreserved
on-chip or off-chip memory locations. If the program memory is block BO of on-
chip RAM, then the CNF bit must be set. When the MAC instruction is used in
the direct addressing mode, the dma cannot be modified during repetition of
the instruction.

When the MAC instruction is repeated, the pma contained in the prefetch
counter (PFC) is incremented by 1 during its operation. This allows access to
a series of operands in memory. When used with the RPT instruction, the MAC
instruction is useful for long sum-of-products operations because the instruc-
tion becomes a single-cycle instruction, once the RPT pipeline is started.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 hits.

MAC is a TREGO, PREG, and multiply instruction (see Table 6-7).

Words 2
Cycles
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
1: DARAM/ROM 3 3 3 3+2pcode
2: DARAM
1: SARAM 3 3 3 3+2pcode
2: DARAM
1: External 3+Pop1 3+Pop1 3+Pop1 3+Pop1+2Pcode
2: DARAM
1: DARAM/ROM 3 3 3 3+2pcode
2: SARAM
1: SARAM 3, 4t 3,4t 3,41 3+2Pcodes 4+2Pcode’
2: SARAM
1: External 3+Pop1 3+pgp1 3+pgp1 3+Pop1+2Pcode
2: SARAM

T1f both operands are in the same SARAM block.

6-150

Cycles for a Single Instruction (Continued)

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM 3+dgp2 3+dgp2 3+dgp2 3+dop2+2pcode

2: External

1: SARAM 3+dop2 3+d0p2 3+d0p2 3+dop2+2pcode

2: External

1: External 4+pgp1+dop2 4+pgp1+dop2 4+Pop1+dop2 4+Pgp1+dop2+2Pcode
2: External

t1f both operands are in the same SARAM block.

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
1: DARAM/ROM n+2 n+2 n+2 N+2+2Pcode

2: DARAM

1: SARAM n+2 n+2 n+2 N+2+2Pcode

2: DARAM

1: External N+2+NPgp1 N+2+NPgp1 N+2+NPgp1 N+2+NPgp1+2Pcode
2: DARAM

1: DARAM/ROM n+2 n+2 n+2 N+2+2Pcode

2: SARAM

1: SARAM n+2, 2n+2T n+2, 2n+27 n+2, 2n+2f N+2+2pcode, 2n+2T
2: SARAM

1: External N+2+NPgp1 N+2+NPgp1 N+2+NPgp1 N+2+NPgp1+2Pcode
2: SARAM

1: DARAM/ROM N+2+ndgp2 N+2+ndgp2 N+2+ndgp2 N+2+ndppo+2Pcode
2: External

1: SARAM N+2+ndgp2 N+2+ndgp2 N+2+ndgp2 N+2+ndpp2+2Pcode
2: External

1: External 2n+2+npgp; 2n+2+npgp; 2n+2+nPgp; 2n+2+npyp1+ndgp2
2: External +ndgp2 +ndgp2 +Ndop2 +2Pcode

1 1f both operands are in the same SARAM block.

6-151

Example 1 MAC OFFO00h,02h ;(DP = 6, PM = 0, CNF = 1)

Data Memory

Before Instruction

302h | 23h]
Program Memory
FFOOh | 4h|
TREGO | 45h|
PREG | 0045 8972h|
ACC | 0723 EC41h]
C
Example 2 MAC OFFO00h,*,AR5 ;(PM = 0, CNF = 1)
Before Instruction
ARP | 4]
AR4 | 302h|
Data Memory
302h | 23h|
Program Memory
FFOOh | 4h|
TREGO | 45h]
PREG | 0045 8972h|
ACC | 0723 EC41h|
c

6-152

Data Memory
302h

Program Memory

FFOOh

TREGO

PREG
ACC

ARP
AR4

Data Memory
302h

Program Memory

FFOOh

TREGO

PREG
ACC

o[9]

>
=
9]
=
=1
7]
23
=
c
)
=3
o
=]

N
w
=

0769 75B3

302

>

=

@

=

=)

7]

=

c

=)

=

S

N =<2 RIN]

N w [QINIIRES
S| || || |o oS|I IT) |5

Q[N
Oflw
Ol

0769 75B3

!

Syntax Direct: MACD pma, dma
Indirect: MACD pma, {ind} [,ARN]

Operands 0 < pma < 65535
0<dma<127
0sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Opcode Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 0 1 316 dma

16-Bit Constant

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 0 1 —+}+1—SeeSectons.2

16-Bit Constant

Execution (PC)+2 - PC
(PFC) - MCS
(pma) - PFC

If (repeat counter) # 0:
(ACC) + (shifted PREG) - ACC
(dma) - TREGO
(dma) x (pma, addressed by PFC) - PREG
Modify current AR and ARP as specified
(PFC)+1 - PFC
(dma) - (dma)+1
(repeat counter) —1 — repeat counter

Else:

(ACC) + (shifted PREG) - ACC

(dma) - TREGO

(dma) x (pma, addressed by PFC) - PREG

(dma) - (dma)+1

Modify current AR and ARP as specified
(MCS) - PFC

If TRM = 0:
(dma) - TREG1
(dma) -~ TREG2

Status Bits Affected by: Affects:
OVM, PM, and TRM C and OV

6-153

Description

Words

6-154

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the accumulator (ACC). The resultis stored in the ACC. The
contents of the data memory address (dma) are loaded into TREGO. The con-
tents of the dma are multiplied by the contents of the program memory address
(pma). Theresultis stored inthe PREG. The C bitis set, if the result of the addi-
tion generates a carry; otherwise, the C bitis cleared. See the DMOV instruc-
tion, page 6-104, for information on the data move feature.

The data and program memory locations on the 'C5x can be any nonreserved
on-chip or off-chip memory locations. If the program memory is block BO of on-
chip RAM, then the CNF bit must be set. When the MACD instruction is used
in the direct addressing mode, the dma cannot be modified during repetition
of the instruction. If the MACD instruction addresses one of the memory-
mapped registers or external memory as a data memory location, the effect
of the instruction will be that of a MAC instruction.

When the MACD instruction is repeated, the pma contained in the prefetch
counter (PFC) is incremented by 1 during its operation. This allows access to
a series of operands in memory. When used with the RPT instruction, the
MACD instruction becomes a single-cycle instruction, once the RPT pipeline
is started.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 hits.

The MACD instruction functions in the same manner as the MAC instruction
with the addition of data move for on-chip RAM blocks. The data move feature
makes the MACD instruction useful for applications such as convolution and
transversal filtering. If you use the MACD instruction with external data
memory, its function is identical to that of the MAC instruction (page 6-149).

MACD is a TREGO, PREG, and multiply instruction (see Table 6-7).

2

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM 3 3 3 3+2Pcode

2: DARAM

1: SARAM 3 3 3 3+2Pcode

2: DARAM

1: External 3+Pop1 3+Pop1 3+Pop1 3+Pop1+2Pcode

2: DARAM

1: DARAM/ROM 3 3 3 3+2Pcode

2: SARAM

1: SARAM 3 3 3, 4%, 58 3+2Pcodes 4+2Pcode’
2: SARAM

1: External 3+Pop1 3+Pop1 3+Pop1 3+Pop1+2Pcode

2: SARAM

1: DARAM/ROM 3+dpp2 3+dgp2 3+dgp2 3+dgp2+2Pcode

2: Externalf

1: SARAM 3+dgp2 3+dgp2 3+dgp2 3+dop2+2Pcode

2: Externalf

1: External 4+pop1+dop2 4+pop1+dop2 4+p0pl+d0p2 4"'popl"'dopZ"'chode
2: Externalf

¥1f both operands are in the same SARAM block
§f both operands and the code are in the same SARAM block
1 Data move operation is not performed when operand2 is in external data memory.

6-155

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
1: DARAM/ROM n+2 n+2 n+2 N+2+2Pcode

2: DARAM

1: SARAM n+2 n+2 n+2 N+2+2Pcode

2: DARAM

1: External N+2+NPgp71 N+2+NPgp1 N+2+NPgp1 N+2+NPpp1+2Pcode
2: DARAM

1: DARAM/ROM 2n 2n 2n, 2n+27T 2n+2pcode

2: SARAM

1: SARAM 2n, 3n* 2n, 3n* 2n, 2n+2T, 2n+2pcoges 3n*

2: SARAM 3n#, 3n+28

1: External 2n+npgpz 2n+npgpz1 2n+NPgp1, 2n+NPpp1+2Pcode
2: SARAM 2n+2+npgp; T

1: DARAM/ROM n+2+ndyp2 n+2+ndgyp2 n+2+ndgp2 N+2+ndyp2+2Pcode
2: Externalf

1: SARAM n+2+ndgyp2 n+2+ndyp2 n+2+ndgp2 N+2+ndyp2+2Pcode
2: Externalf

1: External 2n+2+npgp1 2n+2+npgp1 2n+2+npgyp1 2n+2+npgp;+Nndgp,
2: Externalf +ndgp2 +ndop2 +ndgp2 +2Pcode

1 1f operand2 and code are in the same SARAM block
¥ 1f both operands are in the same SARAM block

8 If both operands and the code are in the same SARAM block
' Data move operation is not performed when operand2 is in external data memory.

Example 1

6-156

Data Memory
308h

Data Memory
309h

Program Memo
FFOOh

TREGO
PREG
ACC

Before Instruction

| 23h|

| 18h]

ry

4h]

45h]

0045 8972h]
0723 EC41h|

MACD OFFO00h,08h ;(DP = 6, PM =0, CNF = 1)

Data Memory
308h

Data Memory

309h 23
Program Memory
FFOOh
TREGO 23
PREG
acc [0
C

Example 2 MACD OFFO0h,*,AR6 ;(PM =0, CF = 1)

Before Instruction After Instruction
ARP | 5] ARP [¢
AR5 | 308h] AR5 308h
Data Memory Data Memory
308h | 23] 308h
Data Memory Data Memory
309h I 18h| 309h
Program Memory Program Memory
FFOOh I 4n] FFOOh
TREGO | 50 TREGO
PREG | 0045 8972h| PREG
ACC | 0723 EC41h| Acc [0] 0769 75B3h
C C

The data move function for MACD can occur only within on-chip data RAM
blocks.

6-157

Syntax

Operands

Opcode

Execution

Status Bits

Description

6-158

Direct: MADD dma
Indirect: MADD {ind} [,LARN]

O0<dmac<127
0<n<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 o 12 o 12 o 1 1]o0] dma

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 0o 1 0o 1 o0 1 | 1] See Section 5.2

A

(PC)+2 - PC
(PFC) - MCS
(BMAR) - PFC

If (repeat counter) # 0:
(ACC) + (shifted PREG) - ACC
(dma) - TREGO
(dma) x (pma, addressed by PFC) - PREG
Modify current AR and ARP as specified
(PFC)+1 - PFC
(dma) - (dma) +1
(repeat counter) — 1 — repeat counter
Else:
(ACC) + (shifted PREG) - ACC
(dma) - TREGO
(dma) x (pma, addressed by PFC) - PREG
(dma) - (dma)+1
Modify current AR and ARP as specified

(MCS) - PFC
Affected by: Affects:
OVM and PM C and OV

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the accumulator (ACC). The resultis stored in the ACC. The
contents of the data memory address (dma) are loaded into TREGO. The con-
tents of the dma are multiplied by the contents of the program memory address
(pma). The result is stored in the PREG. The pma is contained in the block
move address register (BMAR) and is not specified by a long immediate
constant; this enables dynamic addressing of coefficient tables. The C bit is
set, if the result of the addition generates a carry; otherwise, the C bit is
cleared. See the DMOV instruction, page 6-104, for information on the data

move feature.

The data and program memory locations on the 'C5x can be any nonreserved
on-chip or off-chip memory locations. If the program memory is block BO of on-
chip RAM, then the CNF bit must be set. When the MADD instruction is used
in the direct addressing mode, the dma cannot be modified during repetition
of the instruction. If the MADD instruction addresses one of the memory-
mapped registers or external memory as a data memory location, the effect
of the instruction is that of a MADS instruction.

When the MADD instruction is repeated, the pma contained in the prefetch
counter (PFC) is incremented by 1 during its operation. This allows access to
a series of operands in memory. When used with the RPT instruction, the
MADD instruction becomes a single-cycle instruction, once the RPT pipeline
is started.

The MADD instruction functions in the same manner as the MADS instruction
with the addition of data move for on-chip RAM blocks. The data move feature
makes the MADD instruction useful for applications such as convolution and
transversal filtering. If you use the MADD instruction with external data
memory, its function is identical to that of the MADS instruction (page 6-162).

MADD is a TREGO, PREG, and multiply instruction (see Table 6-7).

Words 1
Cycles
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
1: DARAM/ROM 2 2 2 2+Pcode
2: DARAM
1: SARAM 2 2 2 2+Peode
2: DARAM
1: External 2+Pgp1 2+Pop1 2+pops1 2+pop1+Pcode
2: DARAM
1: DARAM/ROM 2 2 2 2+Pcode
2: SARAM
1: SARAM 2 2 2,3%, 48 2+Pcoder 3*+Peode’
2: SARAM
1: External 2+pop1 2+Pgp1 2+Pgp1 2+Pgp1+Pcode
2: SARAM

t1f both operands are in the same SARAM block
8 |f both operands and code are in the same SARAM block
T Data move operation is not performed when operand?2 is in external data memory.

6-159

Cycles for a Single Instruction (Continued)

Operand ROM DARAM SARAM External Memory

1: DARAM/ROM 2+dop2 2+dopp 2+dgp2 2+dop2+Peode

2: Externall

1: SARAM 2+dgp2 2+dgp2 2+dgp2 2+dop2+Peode

2: Externall

1: External 3+Pgp1tdop2 3+Pgp1tdop2 3+Pgp1+dop2 3+Pop1+dop2tPcode
2: Externall

1f both operands are in the same SARAM block

§f both operands and code are in the same SARAM block
1 Data move operation is not performed when operand?2 is in external data memory.

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
1: DARAM/ROM n+1 n+l n+1 N+1+Peode

2: DARAM

1: SARAM n+1 n+l n+1 N+1+Peode

2: DARAM

1: External N+1+NPgpz1 N+1+npgp1 N+1+NPpgp1 N+1+NPgp1+Pcode
2: DARAM

1: DARAM/ROM 2n-1 2n-1 2n-1, 2n+1t 2n=1+pcoge

2: SARAM

1: SARAM 2n-1, 3n-1% 2n-1, 3n-1% 2n-1, 2n+1t, 2n-1+poge, 3n-1%
2: SARAM 3n-1%, 3n+18

1: External 2n—1+npgp; 2n-1+npgp; 2n=1+npgp;, 2n—1+npgp1*+Pcode
2: SARAM 2n+1+npgp; "

1: DARAM/ROM n+1+ndyp2 n+1+ndypo n+1+ndgyp2 n+1+ndyp2+Pcode
2: Externalf

1: SARAM n+1+ndgyp2 n+1+ndypo n+1+ndgyp2 N+1+ndyp2+Pcode
2: External

1: External 2n+1+npgp1 2n+1+npgp1 2n+1+npgypg 2n+1+npgpz+ndgp,
2: Externalf +ndgp2 +ndgp2 +ndgp2 +Peode

1 1f operand2 and code are in the same SARAM block

1f both operands are in the same SARAM block

8 1f both operands and code are in the same SARAM block
T Data move operation is not performed when operand2 is in external data memory.

6-160

Example 1 MADD DAT?7 ;(DP = 6, PM = 0, CNF = 1)

Before Instruction

Data Memory
307h | 8h|

Data Memory
308h | oh|
BMAR | FFOOh|
TREGO | 4Eh|
FFOOh | 2h|
PREG | 0045 8972h]
ACC | 0723 ECA41h|

c
Example 2 MADD *3 ;(PM = 0, CNF = 1)
Before Instruction

ARP | 2]
AR2 | 307h]

Data Memory
307h | 8h|

Data Memory
308h | 9h|
BMAR | FFOOh|
TREGO | 4Eh]
FFOOh | 2h|
PREG | 0045 8972h|
ACC | 0723 EC41h|

C

Data Memory
307h

Data Memory
308h

BMAR
TREGO
FFOOh
PREG
ACC

ARP
AR2

Data Memory
307h

Data Memory
308h

BMAR
TREGO
FFOOh
PREG
ACC

[0]

C

o[9]

After Instruction

FFOO0

=
ofIN| [o) [
O] (= 1= |15 15 = =

0769 75B3

After Instruction

FFOO0

w

o
N oo (o] o] ~
=R =A== = 0| |W

[N
o
>

0769 75B3

!

The data move function for MADD can occur only within on-chip data RAM

blocks.

6-161

Syntax

Operands

Opcode

Execution

Status Bits

Description

6-162

Direct: MADS dma
Indirect: MADS {ind} [,ARn]

0<dmac<127
0<sn<7
ind: {* *+ * *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0o 1 0o 1 0 1

o
o
o
3
)

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 o0 1 o0 1 | 1 | See Section 5.2 |

o

(PC)+1 - PC
(PFC) - MCS
(BMAR) - PFC

If (repeat counter) # 0:
(ACC) + (shifted PREG) - ACC
(dma) - TREGO
(dma) x (pma, addressed by PFC) - PREG
Modify current AR and ARP as specified
(PFC)+1 - PFC
(repeat counter) —1 — repeat counter

Else:
(ACC) + (shifted PREG) - ACC
(dma) - TREGO
(dma) x (pma, addressed by PFC) - PREG
Modify current AR and ARP as specified

(MCS) - PFC
Affected by: Affects:
OVM and PM C and OV

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the accumulator (ACC). The resultis stored in the ACC. The
contents of the data memory address (dma) are loaded into TREGO. The con-
tents of the dma are multiplied by the contents of the program memory address
(pma). The result is stored in the PREG. The pma is contained in the block
move address register (BMAR) and is not specified by a long immediate
constant; this enables dynamic addressing of coefficient tables. The C bit is
set, if the result of the addition generates a carry; otherwise, the C bit is
cleared.

The data and program memory locations on the 'C5x can be any nonreserved
on-chip or off-chip memory locations. If the program memory is block BO of on-
chip RAM, then the CNF bit must be set. When the MADS instruction is used
in the direct addressing mode, the dma cannot be modified during repetition
of the instruction.

When the MADS instruction is repeated, the pma contained in the prefetch
counter (PFC) is incremented by 1 during its operation. This allows access to
a series of operands in memory. When used with the RPT instruction, the
MADS instruction is useful for long sum-of-products operations because the
instruction becomes a single-cycle instruction, once the RPT pipeline is
started.

MADS is a TREGO, PREG, and multiply instruction (see Table 6-7).

Words 1

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
1: DARAM/ROM 2 2 2 2+Pcode

2: DARAM

1: SARAM 2 2 2 2+Pcode

2: DARAM

1: External 2+Pop1 2+pop1 2+Pgp1

2: DARAM

1: DARAM/ROM 2 2 2 2+Pcode

2: SARAM

1: SARAM 2,3t 2,37 2,3t 2+Pcoder 3*Pcode’
2: SARAM

1: External 2+Pgp1 2+pop1 2+Pop1 2+popI+Pcode

2: SARAM

1: DARAM/ROM 2+dgp 2+dgp 2+dgp2 2+dpp2*Peode

2: External

1: SARAM 2+dgpo 2+dgpy 2+dopy 2+dop2+Pcode

2: External

1: External 3+Ppop1+dopz 3+Pgp1tdop2 3+Pgp1tdop2 3+Pgp1+dop2tPcode
2: External

1 1f both operands are in the same SARAM block.

6-163

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
1: DARAM/ROM n+1 n+l n+l N+1+Peode

2: DARAM

1: SARAM n+1 n+l n+1 N+1+Peode

2: DARAM

1: External N+1+Npgp1 Nn+1+npgp1 N+1+Npgp1 N+1+NPgp1+Pcode
2: DARAM

1: DARAM/ROM n+1 n+1 n+1 N+1+Pcode

2: SARAM

1: SARAM n+1, 2n+17 n+1, 2n+17 n+1, 2n+1t N+1+pgoge, 2n+1T
2: SARAM

1: External n+1+Npgpz1 Nn+1+Npgyp1 N+1+nppp1 N+1+NPgp1+Pcode
2: SARAM

1: DARAM/ROM n+1+ndyp2 n+1+ndyp2 n+1+ndgyp2 n+1+ndyp2+Pcode
2: External

1: SARAM n+1+ndyp2 n+1+ndypo n+1+ndgyp2 n+1+ndyp2+Pcode
2: External

1: External 2n+1+npgp1 2n+1+npgp1 2n+1+npypg 2n+1+npgpz+ndgp,
2: External +Nndgp2 +ndgp2 +Nndgp2 +Pcode

T 1f both operands are in the same SARAM block.

Example 1

6-164

MADS DAT12 ;(DP =6, PM = 0, CNF = 1)

Before Instruction
Data Memory

30Ch | 8h|
BMAR | FFOOh|
TREGO | 4Eh]

Program Memory
FFOOh | 2h|
PREG | 0045 8972h|
ACC | 0723 ECA1h]|

c

Data Memory
30Ch

BMAR
TREGO

Program Memory
FFOOh

PREG

Acc [0]
c

After Instruction

FFO0

Iy
o1IN (o] [es]
== S| |5

0769 75B3h

Example 2 MADS * AR3 ;(PM = 0, CNF = 1)

ARP
AR2

Data Memory
30Ch

BMAR
TREGO

Program Memory
FFOOh

PREG

Acc [X]

C

Before Instruction

2|

30Ch|

8h|

FFOOh|

4Eh|

2h|

0045 8972h|

0723 EC41h|

ARP
AR2

Data Memory
30Ch

BMAR
TREGO

Program Memory

FFOOh
PREG
ACC

o[l

30C

FF00

>
=
@
=
=
w0
=
c
(o]
=
o
=]

=

ol n 0 fo°)

S| [= EIERE =] [w

0769 75B3h

6-165

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-166

Direct: MAR dma
Indirect: MAR {ind} [,ARn]

0<n<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0o 0o 0 1 0 1

[
o
o
3
Q

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 o0 o 0o 1 0 1 | 1| seesections.2 |

[EnY

(PC)+1 - PC

Indirect addressing:
Modify current AR and ARP as specified

Direct addressing:
Executes as a NOP

Affected by: NDX

In the indirect addressing mode, the auxiliary registers (ARs) and the auxiliary
register pointer (ARP) are modified; however, the memory being referenced
is unaffected.

You can maintain software compatibility with the 'C2x by clearing the NDX bit.
This causes any 'C2x instruction that modifies ARO to modify the auxiliary reg-
ister compare register (ARCR) and index register (INDX) also, maintaining
'C5x object-code compatibility with the 'C2x.

The MAR instruction modifies the ARs or the ARP bits, and the old ARP bits
are copied to the auxiliary register buffer (ARB) bits. Any operation performed
with the MAR instruction can also be performed with any instruction that sup-
ports indirect addressing. The ARP bits can also be loaded by an LST instruc-
tion.

Note:

The LARP instruction from the 'C2x instruction set is a subset of the MAR
instruction (that is, MAR *,4 performs the same function as LARP 4).

MAR is an auxiliary registers and data memory page pointer instruction (see
Table 6-5).

1

Cycles Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory
n n n n+p
Example 1 MAR * AR1 ;Load ARP with 1
Before Instruction
ARP | 0] ARP
ARB | 7] ARB
Example 2 MAR *+ AR5 ;Increment current auxiliary register (AR1)

:and load ARP with 5.

Before Instruction

AR1 | 34h] AR1
ARP | 1] ARP
ARB | 0] ARB

After Instruction

|

After Instruction

w
&)
=AU =S

Syntax

Operands

Opcode

Execution

Status Bits

Description

6-168

Direct: MPY dma
Indirect: MPY {ind} [,ARnN]
Shortimmediate: MPY #k

Long immediate: MPY #lk

0<dma<127

0<n<7

—4096 < k <4095

-32768 < |k < 32767

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2
[o 1 0 1 0 1 0 o]fo0] dma
Indirect addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2
[o 1 0 1 0 1 0o of1| See Section 5.2
Short immediate addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2
[1 1 o 13-Bit Constant
Long immediate addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2

10 1 1 1 3+—+—6—1T 0 0 0 0 O

16-Bit Constant

Direct or indirect addressing:
(PC)+1 - PC
(TREGO) x (dma) - PREG

Short immediate addressing:
(PC)+1 - PC
(TREGO) x k - PREG

Long immediate addressing:

(PC)+2 - PC

(TREGO) x |k -~ PREG

Affected by: Not affected by:
TRM SXM

If a constant is specified, the constant is multiplied by the contents of TREGO.
If a constant is not specified, the contents of TREGO are multiplied by the con-
tents of the data memory address (dma). The result is stored in the product
register (PREG). Short immediate addressing multiplies TREGO by a signed
13-bit constant. The short immediate constant is right-justified and sign-ex-

tended before the multiplication, regardless of the SXM bit.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

MPY is a TREGO, PREG, and multiply instruction (see Table 6-7).
Words 1 (Direct, indirect, or short immediate addressing)
2 (Long immediate addressing)

Cycles For the short and long immediate addressing modes, the MPY instruction is
not repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1, 2t 1+p

External 1+d 1+d 1+d 2+d+p

T1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

T1f the operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Single Instruction (long immediate addressing)
ROM DARAM SARAM External Memory
2 2 2 2+2p

6-169

Example 1

Data Memory
40Dh

TREGO
PREG

Example 2 MPY * AR2
ARP
AR1

Data Memory
40Dh

TREGO
PREG
Example 3 MPY #031h

TREGO
PREG
Example 4 MPY #01234h

TREGO
PREG

6-170

MPY DAT13 ;(DP = 8)

Before Instruction
Data Memory

| 7h] 40Dh
| 6h| TREGO
| 36h] PREG

Before Instruction

| 1] ARP

| 40Dh| AR1
Data Memory

| 7h| 40Dh

| 6h| TREGO

| 36h| PREG

Before Instruction

| 2h| TREGO

| 36h| PREG
Before Instruction

| 2h| TREGO

| 36h| PREG

After Instruction

(20N]
=20 =2

N
>
=

>
=+
@
=
=
o
o
=
c
o
=,
o
N
S =]
of |~ g
S| |= =aiIN

N
>
=

>
=+
@
=
=1
7]
2]
=
c
3]
=3
)
=]

N

=

[
N
=2

After Instruction

2468

N
=20 E=

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: MPYA dma
Indirect: MPYA {ind} [,LARN]

0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7
[o 1 0 1 0 0 0 o]fo0] dma |

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 0o 1 0o o o of1] seeSection52 |

(PC)+1 - PC
(ACC) + (shifted PREG) - ACC
(TREGO) x (dma) — PREG

Affected by: Affects:
OVM, PM, and TRM C and OV

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the contents of the accumulator (ACC). The result is stored
in the ACC. The contents of TREGO are multiplied by the contents of the data
memory address (dma). The result is stored in the PREG. The C bit is set, if the
result of the addition generates a carry; otherwise, the C bit is cleared.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGsS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREGL1 has only 5 bits, and TREG2 has only
4 bits.

MPYA is a TREGO, PREG, and multiply instruction (see Table 6-7).

1

6-171

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

Example 1

Data Memory
30Dh

TREGO
PREG

ACC
C

Example 2

ARP
AR3

Data Memory
30Dh

TREGO
PREG
ACC

6-172

MPYA * AR4 ;(PM = 0)

MPYA DAT13 ;(DP = 6, PM = 0)

Before Instruction

Data Memory

| 7h| 30Dh
| 6h| TREGO
| 36h] PREG
| 54h| ACC
Before Instruction
| 3| ARP
| 30DH| AR3
Data Memory
| 7h] 30Dh
| 6h| TREGO
| 36h] PREG
| 54h| ACC

[o]

C

o [o]

>
=
@
=
=
%)
128
=
c
o
=3
o
o =
>l o] [N
S| =) 1=

[ee]
>
=

30D

>
=
@
=
=
0
9
=
c
o
=3
o

o =1

> o] [N

Sl = = NEN

oo
>
=

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: MPYS dma
Indirect: MPYS {ind} [,ARnN]

0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8
[o 1 0 1 0 0 0 1

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 1 0o 1 0 0o o 1]1] See Section 5.2 |
(PC)+1 - PC

(ACC) — (shifted PREG) - ACC

(TREGO) x (dma) - PREG

Affected by: Affects:

OVM, PM, and TRM C and OV

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and subtracted from the contents of the accumulator (ACC). The result
is stored in the ACC. The contents of TREGO are multiplied by the contents
of the data memory address (dma). The result is stored in the PREG. The C
bitis cleared, if the result of the subtraction generates a borrow; otherwise, the
C bit is set.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGsS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREGL1 has only 5 bits, and TREG2 has only
4 bits.

MPYS is a TREGO, PREG, and multiply instruction (see Table 6-7).

1

6-173

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

Example 1

Data Memory
30Dh

TREGO
PREG

ACC
C

Example 2

ARP
AR4

Data Memory
30Dh

TREGO
PREG
ACC

6-174

MPYS * AR5 ;(PM = 0)

MPYS DAT13 ;(DP = 6, PM = 0)

Before Instruction

Data Memory

| 7h| 30Dh
| 6h| TREGO
| 36h] PREG
| 54h| ACC
Before Instruction
| 4 ARP
| 30Dh| AR4
Data Memory
| 7h] 30Dh
| 6h| TREGO
| 36h] PREG
| 54h] ACC

C

o =]

>
=
@
=
=
%)
128
=
c
o
=3
o
o =
> of |~
Si=] 1=

=
m
=

30D

>
=
@
=
=
0
9
=
c
o
=3
o

o =1

>|lof |~

Sl = =d B ld]

=
m
=

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: MPYU dma
Indirect: MPYU {ind} [,LARN]

O0<dmacs127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8
[o 1 0 1 0 1 0 1

;
| 0| dma |

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

l[o 1 0o 1 0 1 o 11| See Section 5.2 |
(PC)+1 - PC

Unsigned (TREGO) x unsigned (dma) - PREG

Affected by: Not affected by:.

TRM SXM

The unsigned contents of TREGO are multiplied by the unsigned contents of
the data memory address (dma). The result is stored in the product register
(PREG). The multiplier acts as a signed 17 x 17-bit multiplier for this instruc-
tion, with the MSB of both operands forced to 0.

The p-scaler shifter at the output of the PREG always invokes sign-extension
on the PREG, when the PM bits are set to 115 (right-shift-by-6 mode). There-
fore, you should not use this shift mode if you want unsigned products.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREGL1 has only 5 bits, and TREG2 has only
4 bits.

The MPYU instruction is particularly useful for computing multiple-precision
products, such as multiplying two 32-bit numbers to yield a 64-bit product.
MPYU is a TREGO, PREG, and multiply instruction (see Table 6-7).

1

6-175

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

Example 1 MPYU DAT16 ;(DP = 4)

Data Memory
210h

TREGO
PREG

Example 2 MPYU * AR6
ARP
AR5

Data Memory
210h

TREGO
PREG

6-176

Before Instruction

| FEEE]
| FFFFh|
| 1h|

Before Instruction
| 5]
| 210h]

| FFFFh]|
| FFFFh]|
| 1h|

Data Memory
210h

TREGO
PREG

ARP
AR5

Data Memory
210h

TREGO
PREG

FEFF
FFFF
FFFE 0001

>
=
@
=
=1
7]
[
=
c
]
=3
o
=]
==l 1=

After Instruction

210

FFFF
FFFF
FFFE 0001

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

Example 1

NEG
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 12 1. 1 1 1. 0 0 0 0 0 0 0 1 O

(PC)+1 - PC
(ACC) x -1 - ACC

If (ACC) # O:
0 — C
If (ACC) = 0:
1 d C
Affected by: Affects:
OVM C and OV

The contents of the accumulator (ACC) are replaced with its arithmetic com-
plement (2s complement). If the contents of the ACC are not 0, the C hit is
cleared,; if the contents of the ACC are 0, the C bit is set.

When taking the 2s complement of 8000 0000h, the OV bit is set and: if the
OVM bitis set, the ACC is replaced with 7FFF FFFFh; if the OVM bitis cleared,
the ACC is replaced with 8000 0000h.

NEG is an accumulator memory reference instruction (see Table 6—4).
1

Cycles for a Single Instruction
ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

NEG ;(OVM = X)

Before Instruction After Instruction
ACC | FFFF F228H| acc [o]
C C
oV oV

6-177

Example 2

Example 3

6-178

NEG ;(OVM = 0)
Before Instruction
8000 0000h| ACC

acc [x] |

C

ov

NEG ;(OVM = 1)
Before Instruction
8000 0000h] ACC

acc [x] |

C

ov

After Instruction

[o] 8000 0000n]
C

ov

After Instruction

@) _rreereeed
C

ov

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

NMI
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111001010010

(PC)+1 - stack

24h - PC

1 - INTM

Not affected by: Affects.
INTM INTM

The current program counter (PC) is incremented and pushed onto the stack.
The nonmaskable interrupt vector located at 24h is loaded into the PC. Execu-
tion continues at this address. Interrupts are globally disabled (INTM bitis set).
The NMl instruction has the same affect as a hardware nonmaskable interrupt.
Automatic context save is not performed.

NMI is a branch and call instruction (see Table 6-8).
1
The NMI instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3pt

T The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

NMI ;Control is passed to program memory location 24h
;and PC+1 is pushed onto the stack.

6-179

Syntax
Operands

Opcode

Execution
Status Bits

Description

Words

Cycles

Example

6-180

NOP
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1000101100000000

(PC)+1 - PC
None affected.

No operation is performed. The NOP instruction affects only the program
counter (PC). You can use the NOP instruction to create pipeline and execu-
tion delays.

NOP is a control instruction (see Table 6-10).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p

NOP ;No operation is performed

Syntax
Operands

Opcode

Execution

Status Bits

Description

NORM {ind}
ind: {* *+ *— *0+ *0— *BRO+ *BRO-}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[1 o 1 o o o o of1] See Section 5.2
(PC)+1 -~ PC
If (ACC) = 0
TC - 1
Else:
If (ACC(31)) XOR (ACC(30)) = 0:
TC -~ 0

(ACC)x2 - ACC

Modify current AR as specified
Else:

TC - 1

Affects: TC

The signed number contained in the accumulator (ACC) is normalized.
Normalizing a fixed-point number separates the number into a mantissa and
an exponent by finding the magnitude of the sign-extended number. ACC bit
3lis exclusive-ORed (XOR) with ACC bit 30 to determine if bit 30 is part of the
magnitude or part of the sign extension. If the bits are the same, then they are
both sign bits, and the ACC is shifted left to eliminate the extra sign bit. If the
result of the XOR operation is true, the TC bit is set; otherwise, the TC bit is
cleared.

The current AR is modified as specified to generate the magnitude of the expo-
nent. It is assumed that the current AR is initialized before normalization be-
gins. The default modification of the current AR is an increment.

Multiple executions of the NORM instruction may be required to completely
normalize a 32-bit number in the ACC. Although using NORM with RPT does
not cause execution of NORM to fall out of the repeat loop automatically when
the normalization is complete, no operation is performed for the remainder of
the repeatloop. The NORM instruction functions on both positive and negative
2s-complement numbers.

NORM is an accumulator memory reference instruction (see Table 6—4).

6-181

Words

Cycles

Example 1

Example 2

Example 3

6-182

The NORM instruction executes the auxiliary register operation
during the execution phase of the pipeline. Therefore, the auxiliary
register used in the NORM instruction should not be used by an
auxiliary register instruction in the next two instruction words
immediately following the NORM instruction. Also, the auxiliary
register pointer (ARP) should not be modified by the next two words.

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
NORM *+
Before Instruction After Instruction
ARP | 2 ARP
AR2 I 0oh| AR2
ACC | FFFF FOO1h] acc [0
TC TC
31-bit normalization:
MAR * AR1 ;Use AR1 to store the exponent.
LAR AR1,#0h ;Clear out exponent counter.
LOOP NORM *+ ;One bit is normalized.

BCND LOOP,NTC ;If TC =0, magnitude not found yet.

15-bit normalization:

MAR* AR1 ;Use AR1 to store the exponent.

LAR AR1#0Fh ;lInitialize exponent counter.

RPT #14 ;15—bit normalization specified (yielding
;a 4—bit exponent and 16-bit mantissa).

NORM *— ;NORM automatically stops shifting when

;first significant magnitude bit is found,
;performing NOPs for the remainder of the
;repeat loops

The method in Example 2 normalizes a 32-bit number and yields a 5-bit expo-
nent magnitude. The method in Example 3 normalizes a 16-bit number and
yields a 4-bit magnitude. If the number requires only a small amount of normal-
ization, the Example 2 method may be preferable to the Example 3 method
because the loop in Example 2 runs only until nhormalization is complete;
Example 3 always executes all 15 cycles of the repeat loop. Specifically,
Example 2 is more efficient if the number requires three or fewer shifts. If the
number requires six or more shifts, Example 3 is more efficient.

Note:

The NORM instruction can be used without a specified operand. In that case,
any comments on the same line as the instruction are interpreted as the
operand. If the first character is an asterisk (*), then the instruction is as-
sembled as NORM * with no auxiliary register modification taking place upon
execution. Therefore, Tl recommends that you replace the NORM instruc-
tions with NORM *+ when you want the default increment modification.

6-183

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-184

Direct: OPL [#Ik], dma
Indirect: OPL [#IK], {ind} [, ARN]

0<dmac<127

Ik: 16-bit constant

0<sn<7

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing with long immediate not specified
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo 12 0o 1 1 0o o 1]o0] dma |

Indirect addressing with long immediate not specified
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo 1 0o 1 1 o o 1]1] See Section 5.2 |

Direct addressing with long immediate specified
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 1 0 1 1 1 o —+161 dma

16-Bit Constant

Indirect addressing with long immediate specified
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

0 1 0 1 1 1 0 1 i I See Section 5.2

16-Bit Constant

Long immediate not specified:
(PC)+1 - PC
(dma) OR (DBMR) - dma

Long immediate specified:
(PC)+2 - PC
(dma) OR |k - dma

Affects: TC

If a long immediate constant is specified, the constant is ORed with the con-
tents of the data memory address (dma). If a constant is not specified, the con-
tents of the dma are ORed with the contents of the dynamic bit manipulation
register (DBMR). In both cases, the result is written directly back to the dma
and the contents of the accumulator (ACC) are unaffected. If the result of the
OR operation is 0, the TC bit is set; otherwise, the TC bit is cleared.

OPL is a parallel logic unit (PLU) instruction (see Table 6-6).

1 (Long immediate not specified)

2 (Long immediate specified)

Cycles Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,3t 1+p

External 2+2d 2+2d 2+2d 5+2d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p
SARAM 2n-2 2n-2 2n-2, 2n-2+p
2n+1T
External 4n-2+2nd 4n-2+2nd 4n-2+2nd 4n+1+2nd+p

T if the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate specified)

Operand ROM DARAM SARAM External Memory
DARAM 2 2 2 2+2p

SARAM 2 2 2 2+2p

External 3+2d 3+2d 3+2d 6+2d+2p

Cycles for a Repeat (RPT) Execution (long immediate specified)

Operand ROM DARAM SARAM External Memory
DARAM n+1 n+1 n+1 n+1+2p
SARAM 2n-1 2n-1 2n-1, 2n-1+2p
2n+2t
External 4An-1+2nd 4n-1+2nd 4n-1+2nd 4n+2+2nd+2p

1 1f the operand and the code are in the same SARAM block

6-185

Example 1 OPL DAT10 ;(DP=6)

Before Instruction

DBMR | FFFOh|
Data Memory
30Ah | 0001h]|
Example 2 OPL #0FFFh,DAT10 ;(DP=6)
Before Instruction
Data Memory
30Ah | 0001h]|
Example 3 OPL *,AR6
Before Instruction
ARP | 3|
AR3 | 300h]
DBMR | 00FOh|
Data Memory
300h | 000Fh|
Example 4 OPL #1111h,*,AR3
Before Instruction
ARP | 6|
ARG | 306h|
Data Memory
306h | 0Eh|

6-186

DBMR

Data Memory
30Ah

Data Memory
30Ah

ARP
AR3
DBMR

Data Memory
300h

ARP
ARG

Data Memory
306h

After Instruction
FEFO

!I

FFF1

After Instruction

!

OFFF

After Instruction

300
00FO0

O00FF

After Instruction

306

111F

Syntax

Operands

Opcode

Execution

Status Bits

Direct: OR dma
Indirect: OR {ind} [,LARN]
Long immediate: OR #lk [,shift]

0<dmac<127

0<sn<7

Ik: 16-bit constant

0 <shift<16

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 1 1 0o 1 1 0 1]o0| dma |
Indirect addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 6o 1 1 0 1 1 0 1 | 1 | See Section 5.2 |
Long immediate addressing with shift

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 SHFT T

16-Bit Constant |
T See Table 6-1 on page 6-2.
Long immediate addressing with shift of 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 0 0 0 1 0

16-Bit Constant

T See Table 6-1 on page 6-2.

Direct or indirect addressing:

(PC)+1 - PC

(ACC(15-0)) OR (dma) - ACC(15-0)
(ACC(31-16)) —» ACC(31-16)

Long immediate addressing:
(PC)+2 - PC .
(ACC) OR (lk x 2shifty . AccC

Does not affect: C
Not affected by: SXM

Long immediate addressing

6-187

Description

Words

Cycles

6-188

If along immediate constant is specified, the constant is shifted, as defined by
the shift code, and zero-extended on both ends and is ORed with the contents
of the accumulator (ACC). The result is stored in the ACC. If a constant is not
specified, the contents of the data memory address (dma) are ORed with the
contents of the accumulator low byte (ACCL). The resultis stored in the ACCL
and the contents of the accumulator high byte (ACCH) are unaffected.

OR is an accumulator memory reference instruction (see Table 6-4).

1 (Direct or indirect addressing)

2 (Long immediate addressing)

For the long immediate addressing modes, the OR instruction is not repeat-
able.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

Cycles for a Single Instruction (long immediate addressing)
ROM DARAM SARAM External Memory

2 2 2 2+2p

Example 1

Example 2

Example 3

OR DATS ;(DP = 8)
Before Instruction
Data Memory

408h | F000h|
ACC | 0010 0002h]
C
OR *,ARO
Before Instruction
ARP | 1]
AR1 | 300h]
Data Memory
300h | 1111h|
ACC | 222h]
C

OR #08111h,8

Before Instruction
00FF 0000h]

After Instruction
Data Memory

408h F000h
ACC 0010 FO02h
c

After Instruction

ARP [

AR1 300h
Data Memory
300h 1111h

AcC
C

After Instruction

ACC
c

6-189

Syntax ORB

Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 1
Execution (PC)+1 - PC
(ACC) OR (ACCB) - ACC
Status Bits None affected.
Description The contents of the accumulator (ACC) are ORed with the contents of the ac-

cumulator buffer (ACCB). The result is stored in the ACC and the contents of
the ACCB are unaffected.

ORB is an accumulator memory reference instruction (see Table 6-4).

Words 1
Cycles Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
Example ORB
Before Instruction After Instruction
ACC | 5555 5555h] ACC
C C
ACCB | 0000 0002h] ACCB

6-190

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: OUT dma, PA
Indirect: OUT {ind}, PA[,ARN]

0<dma=<127

0sn<7

0 < port address PA < 65535

ind: {* * * *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 o —o+61 dma
16-Bit Constant

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
O

0 0 0 0 1 1 al Ili See Section 5.2

16-Bit Constant

(PC)+2 - PC

While (repeat counter) # 0
Port address - address bus A15-A0
(dma) - data bus D15-D0
Port address + 1 - Port address
(repeat counter — 1) - (repeat counter)
(dma) - Port address

None affected.

A 16-bit value from the data memory address (dma) is written to the specified
/0 port. The IS line goes low to indicate an 1/O access, and the STRB, R/W,
and READY timings are the same as for an external data memory write. While
port addresses 50h-5Fh are memory-mapped (see subsection 9.1.1,
Memory-Mapped Peripheral Registers and I/0 Ports); the other port address-
es are not.

You can use the RPT instruction with the OUT instruction to write consecutive
words in data memory to I/O space. The number of words to be moved is one
greater than the number contained in the repeat counter register (RPTC) at the
beginning of the instruction. When used with the RPT instruction, the OUT
instruction becomes a single-cycle instruction, once the RPT pipeline is
started, and the port address is incremented after each access.

OUT is an I/O and data memory operation instruction (see Table 6-9).

2

6-191

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
Source: DARAM 3+ioggst 3+ioggt 3+ioggt 5+i0gst+2Pcode
Source: SARAM 3+iogst 3+iogst 3+i0gss, 4+i0gstT 5+i0gst+2Peode

Source: External

3+dgc+i0gst 3+0gc+i0gst 3+dgc+i0gst

6+dsrc+i0gst+2Pcode

T If the source operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand

External Memory

Source: DARAM

Source: SARAM

Source: External

ROM DARAM SARAM
3n+nioggs 3n+niogg; 3n+niogg;
3n+nioggs 3n+niogg; 3n+niogst,
3n+1+niogg
5n-2+ndg.c 5n-2+ndg.c+ 5n-2+ndgc
+Nioggt +Nioggt +Nioggt

3n+3+Niogst+2Pcode

3n+3+Niogs+2Pcode

5n+1+ndg,c+Niogst
+2Pcode

T 1f the source operand and the code are in the same SARAM block

Example 1

Example 2

6-192

;reqgister to peripheral on port address 15
;(i.e., 1/0O port 5Fh).

OUT DATO0,57h ;(DP = 4) Output data word stored in data memory
;location 200h to peripheral on 1/O port 57h.

OUT * PA15 ;Output data word referenced by current auxiliary

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

PAC
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000000011

(PC)+1 - PC
(shifted PREG) — ACC

Affected by: PM

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and loaded into the accumulator (ACC).

PAC is a TREGO, PREG, and multiply instruction (see Table 6-7).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
PAC ;(PM = 0)
Before Instruction After Instruction
PREG | 144h| PREG
ACC I 23h] ACC
C C

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-194

POP
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000110010

(PC)+1 - PC
(TOS) - ACC(15-0)
0 - ACC(31-16)
Pop stack one level

None affected.

The contents of the top of the stack (TOS) are copied to the accumulator low
byte (ACCL). The stack is popped one level after the contents are copied. The
accumulator high byte (ACCH) is zero-filled.

The hardware stack is last-in, first-out with eight locations. Any time a pop oc-
curs, every stack value is copied to the next higher stack location, and the top
value is removed from the stack. After a pop, the bottom two stack words have
the same value. Because each stack value is copied, if more than seven stack
pops (POP, POPD, RET, RETC, RETE, or RETI instructions) occur before any
pushes occur, all levels of the stack contain the same value. No provision ex-
ists to check stack underflow.

POP is a control instruction (see Table 6-10).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p

Example POP

Before Instruction After Instruction

ACC | 82h] AcC

C C

Stack | 45h] Stack
| 6]
| 7
| £
| o
I 56|
| 37h] 61h
| 61h] 61h

6-195

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-196

Direct: POPD dma
Indirect: POPD {ind} [,ARN]

O0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7
[1 0o o 0o 1 0o 1 o]fo0] dma |

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 1 o 1 of 1] See Section 5.2 |

(PC)+1 - PC
(TOS) - dma
Pop stack one level

None affected.

The contents of the top of the stack (TOS) are copied to the data memory ad-
dress (dma). The values are popped one level in the lower seven locations of
the stack. The value in the lowest stack location is unaffected. See the POP
instruction, page 6-194, for more information.

POPD is a control instruction (see Table 6-10).

1
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 2+d 2+d 2+d 4+d+p

tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+2t n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

1 If the operand and the code are in the same SARAM block

Example 1

Data Memory
40Ah

Stack

Example 2 POPD *+,AR1

ARP
ARO

Data Memory
300h

Stack

POPD DAT10 ;(DP = 8)

Before Instruction

55h|
92h|
72h|

sh|

|
|
|
|
| 44h|
|
|
|
|

81h|
75h|
32h|
AAh|

Before Instruction
| ol
| 300h]

55h|
92h|
72h|

8h|

|
|
|
|
| 44h|
|
|
|
|

81h|
75h|
32h|
AAR|

Data Memory
40Ah

Stack

ARP
ARO

Data Memory
300h

Stack

After Instruction

~N ||| [~| |©
a2 (Bl N IN
o115 1= =1 1=]1 1=

> |
=8
=N ==

After Instruction

w
w| [~ |oof [~| [o o
N lal (2] (=] e IN] N =
=l R R = | |-

> 1>
2=
EdlEs

6-197

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-198

Direct: PSHD dma

Indirect: PSHD {ind} [, ARn]

O0<dma<127

0<sn<7

ind: {* *+ *~ *0+ *0-— *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1 1 1 0o 1 1 o]fo0] dma |
Indirect addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lo 1 1 1 0o 1 1 of] See Section 5.2 |

(dma) - TOS
(PC)+1 - PC

Push all stack locations down one level

None affected.

The contents of the data memory address (dma) are copied to the top of the
stack (TOS). The values are pushed down one level in the lower seven loca-
tions of the stack. The value in the lowest stack location is lost. See the PUSH
instruction, page 6-200, for more information.

PSHD is a control instruction (see Table 6-10).

1
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,21 1+p
External 1+d 1+d 1+d 2+d+p

tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

1 If the operand and the code are in the same SARAM block

Example 1

Data Memory
1FFh

Stack

Example 2 PSHD *AR1

ARP
ARO

Data Memory
1FFh

Stack

PSHD DAT127 ;(DP = 3)

Before Instruction

65h|
2h|
33h]
78h]|
99h]|
42h]
50h]|
oh]
oh]

Before Instruction
I o]
| 1FFh|

12h]
2h|
33h|
78h|
99h|
42h]
50h|
oh]
0h]

Data Memory
1FFh

Stack

ARP
ARO

Data Memory
1FFh

Stack

After Instruction

Ol [N |Ww (22l (2]
Ol | |W] IN] |G| O
jo I el I e Y e I o) I o

al s
ol [N
O||=

o
>

After Instruction

[Eny
T
n
= N L

=
N
=

o] [N [w I
| [©] [oo] [&] [N [N
EIEIEEELE

A
o
=

o
=

6-199

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

6-200

PUSH
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000111100

(PC)+1 - PC
Push all stack locations down one level
ACC(15-0) - TOS

None affected.

The values are pushed down one level in the lower seven locations of the
stack. The contents of the accumulator low byte (ACCL) are copied to the top

of the stack (TOS). The values on the stack are pushed down before the ACC
value is copied.

The hardware stack is last-in, first-out with eight locations. If more than eight
pushes (CALA, CALL, CC, INTR, NMI, PSHD, PUSH, or TRAP instructions)

occur before a pop, the first data values written are lost with each succeeding
push.

PUSH is a control instruction (see Table 6-10).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p

Example PUSH

Before Instruction After Instruction

ACC | 7h] ACC

C C

Stack | 2h| Stack
| 5h
| 3]
| on]
|]
| g6h]
| 54h| 86h
| 3Fh| 54h

6-201

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-202

RET
None
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1110111100000000

(TOS) - PC
Pop stack one level

None affected.

The contents of the top of the stack (TOS) are copied to the program counter
(PC). The stack is popped one level after the contents are copied. The RET
instruction is used with the CALA, CALL, and CC instructions for subroutines.

RET is a branch and call instruction (see Table 6-8).
1
The RET instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3pt

1t The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

RET
Before Instruction After Instruction

PC | 96h] PC
Stack | 37h| Stack
I 45h]

| 75h] 21h

I 21h|

I 3Fh]

I 45h]

| 6EN]

| 6Eh| 6Eh

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

RETC cond|, cond1]|,...]

Conditions: ACC=0 EQ
ACC #0 NEQ
ACC<O0 LT
ACC<0 LEQ
ACC>0 GT
ACC=0 GEQ
C=0 NC
c=1 C
ov=0 NOV
ov=1 ov
BIO low BIO
TC=0 NTC
TC=1 TC
Unconditional UNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 0o 1 1] TPt zLve T zLve t

T See Table 6-1 on page 6-2.

If (condition(s)):
(TOS) - PC
Pop stack one level
Else, continue

None affected.

If the specified conditions are met, the contents of the top of the stack (TOS)
are copied to the program counter (PC). The stack is popped one level after
the contents are copied. Not all combinations of the conditions are meaningful.
If the specified conditions are not met, control is passed to the next instruction.

RETC is a branch and call instruction (see Table 6-8).
1
The RETC instruction is not repeatable.

Cycles for a Single Instruction

Condition ROM DARAM SARAM External Memory
True 4 4 4 4+3pt
False 2 2 2 2+p

T The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

6-203

Example RETC GEQ,NOV ;A return, RET, is executed if the
;accummulator contents are positive and the
;OV bit is a zero.

6-204

Syntax RETCD cond |, cond1]|,...]

Operands Conditions: ACC=0 EQ
ACC#0 NEQ
ACC<O0 LT
ACC<0 LEQ
ACC>0 GT
ACC=0 GEQ
C=0 NC
c=1 C
ov=0 NOV
ov=1 ov
BIO low BIO
TC=0 NTC
TC=1 TC
Unconditional UNC
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 1 1] TPt | ZLVCT zLve t
T See Table 6-1 on page 6-2.
Execution If (condition(s)):
(TOS) - PC

Pop stack one level
Else, continue

Status Bits None affected.

Description The one 2-word instruction or two 1-word instructions following the RETCD
instruction are fetched from program memory and executed before the execu-
tion of the return. The two instruction words following the RETCD instruction
have no effect on the conditions being tested.

After the instructions are executed if the specified conditions are met, the con-
tents of the top of the stack (TOS) are copied to the program counter (PC). The
stack is popped one level after the contents are copied. Not all combinations
of the conditions are meaningful. If the specified conditions are not met, control
is passed to the next instruction.

RETCD is a branch and call instruction (see Table 6-8).

Words 1
Cycles The RETCD instruction is not repeatable.
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
2 2 2 2+p

6-205

Example RETCD C ;Areturn, RET, is executed if the carry
MAR *,4 ;bit is set. The two instructions following
LAR AR3,#1h ;the return instruction are executed
;before the return is taken.

6-206

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

Example

RETD
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1 1 1 1 1 1 1 0 0 0 0 0 O 0 O

(TOS) - PC
Pop stack one level

None affected.

The one 2-word instruction or two 1-word instructions following the RETD
instruction are fetched from program memory and executed before the execu-
tion of the return.

After the instructions are executed the contents of the top of the stack (TOS)
are copied to the program counter (PC). The stack is popped one level after
the contents are copied.

RETD is a branch and call instruction (see Table 6-8).
1
The RETD instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory
2 2 2 24p
RETD
MAR *,4
LACC #1h
Before Instruction After Instruction
PC | 96h] PC
ARP | 0] ARP
ACC I oh] ACC
Stack | 37h] Stack
I 45h]
| 75h]
| 21h] 3Fh
| 3]
|]
| oen]
| 6Eh] 6Eh

6-207

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-208

RETE
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 1 1 12 12 1 0 0 0 1 1 1 0 1 0O

(TOS) -~ PC
Pop stack one level
0 - INTM

Affects: ARB, ARP, AVIS, BRAF, C, CNF, DP, HM, INTM, MP/MC, NDX, OV,
OVLY, OVM, PM, RAM, SXM, TC, TRM, and XF

The contents of the top of the stack (TOS) are copied to the program counter
(PC). The stack is popped one level after the contents are copied. The RETE
instruction automatically clears the INTM bit and pops the shadow register val-
ues (see the RETI description, page 6-209).

The RETE instruction is the equivalent of clearing the INTM bit and executing
a RETI instruction.

RETE is a branch and call instruction (see Table 6-8).
1
The RETE instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

4 4 4 4+3pT

T The 'C5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

RETE
Before Instruction After Instruction

PC | 96h] PC
STO | xx6xh] STO
Stack | 37h| Stack
| 45h] 75h

| 75h|

I 21h]

| 3Fh| 45h

I a5h]

| en]

| 6Eh| 6Eh

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

Example

RETI
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/1 o 1 1 1 1 1 0 0 0 1 1 1 0 0 0O

(TOS) - PC

Pop stack one level

Affects: Does not affect.
ARB, ARP, AVIS, BRAF, C, CNF, DP, INTM

HM, MP/MC, NDX, OV, OVLY, OVM,
PM, RAM, SXM, TC, TRM, and XF

The contents of the top of the stack (TOS) are copied to the program counter
(PC). The values in the shadow registers (stored when an interrupt was taken)
are returned to their corresponding strategic registers. The following registers
are shadowed: ACC, ACCB, ARCR, INDX, PMST, PREG, STO, ST1, TREGO,
TREG1, and TREG2. The INTM bitin STO and the XF bitin ST1 are not saved
or restored to or from the shadow registers during an interrupt service routine
(ISR).

RETI is a branch and call instruction (see Table 6-8).
1
The RETI instruction is not repeatable.

Cycles for a Single Instruction
ROM DARAM SARAM External Memory

4 4 4 4+3pt

T The'Cc5x performs speculative fetching by reading two additional instruction words. If PC discon-
tinuity is taken, these two instruction words are discarded.

RETI
Before Instruction After Instruction

PC | 96h] PC 37h
Stack | 37h] Stack
I 45h]

| 75h] 21h

| 210|

| 3Fh]

| 45h] 6Eh

| =

| 6EN] 6Eh

6-209

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-210

ROL

None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| 1

1 1 1 1 1 0 O O O O 1 1 0 O

(PC) +1 — PC

C - ACC(0)

(ACC(31)) — C
(ACC(30-0)) - ACC(31-1)

Not affected by: Affects:

SXM

C

The contents of the accumulator (ACC) are rotated left 1 bit. The value of the
C bitis shifted into the LSB of the ACC. The MSB of the original ACC is shifted
into the C bit.

)

E‘—l MsB | ACC [s8]
2

ROL is an accumulator memory reference instruction (see Table 6-4).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p
ROL

Before Instruction After Instruction
acc [o] | BO0O 1234h] ACC
C C

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

Example

ROLB
None

15 14 13 12 11 10

8§ 7 6 5 4 3 2 1 0

[1 0o 1 1 1 1

o o o o 1 o 1 0 O

(PC) +1 - PC
C - ACCB(0)

(ACCB(30-0)) — ACCB(31-1)

(ACCB(31)) - ACC(0)

(ACC(30-0)) - ACC(31-1)

(ACC(31)) - C

Not affected by:
SXM

Affects:
C

The ROLB instruction causes a 65-bit rotation. The contents of both the accu-
mulator (ACC) and accumulator buffer (ACCB) are rotated left 1 bit. The value
of the C bitis shifted into the LSB of the ACCB. The MSB of the original ACCB
is shifted into the LSB of the ACC. The MSB of the original ACC is shifted into

the C bit.

)

| LSB |<—| MSBl ACCB | LSBl

E’<—| MSB | ACC
(3)

@

ROLB is an accumulator memory reference instruction (see Table 6—4).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
ROLB
Before Instruction After Instruction
ACC | 0808 0808h] acc [o]
C C
ACCB | FFFF FFFER] ACCB

6-211

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-212

ROR
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
i1 0o 1 1 1 1 1 0O O O O O 1 1 o0 1

(PC)+1 - PC
C - ACC(31)
(ACC(0)) — C
(ACC(31-1)) - ACC(30-0)

Not affected by: Affects:
SXM C

The contents of the accumulator (ACC) are rotated right 1 bit. The value of the
C bitis shifted into the MSB of the ACC. The LSB of the original ACC is shifted
into the C bit.

Hﬁ MsB | ACC [s8]

@)

ROR is an accumulator memory reference instruction (see Table 6—4).

1

Cycle Timings for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p

Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
ROR

Before Instruction After Instruction
acc [o] | B000 1235h] ACC
C C

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

Example

RORB
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111000010101

(PC)+1 — PC

C - ACC(31)

(ACC(31-1)) — ACC(30-0)
(ACC(0)) — ACCB(31)
(ACCB(31-1)) — ACCB(30-0)
(ACCB(0)) - C

Not affected by: Affects:
SXM C

The RORB instruction causes a 65-bit rotation. The contents of both the accu-
mulator (ACC) and accumulator buffer (ACCB) are rotated right 1 bit. The val-
ue of the C bhitis shifted into the MSB of the ACC. The LSB of the original ACC
is shifted into the MSB of the ACCB. The LSB of the original ACCB is shifted
into the C bit.

@L’l msB | ACC [LsB |L>| msB| ACCB [LsB]

®)
RORB is an accumulator memory reference instruction (see Table 6-4).
1

Cycles for a Single Instruction
ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory
n n n n+p
RORB
Before Instruction After Instruction
ACC | 0808 0808Hh] acc [o] 8404 0404h
C C
ACCB | FFFF FEFEh| ACCB 7FFF FFFFh

6-213

Syntax Direct: RPT dma
Indirect: RPT {ind} [,ARN]
Shortimmediate: RPT #k
Long immediate: RPT #lk

Operands O0<dmac<127
0<sn<7
0<k<255
0 <1k < 65535
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Opcode Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o o o 1 0 1 1]o0| dma |

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 0 0 1 0O See Section 5.2 |

[ERN
[EnY
[EEN

Short immediate addressing
15 14 13 12 11 10 9 8 7v 6 5 4 3 2 1 O

[T 0 1 1 1 o 1 1] 8-Bit Constant |

Long immediate addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 1 4+ —4—4—06 T T 0 0 0 1 0 0
16-Bit Constant

Execution Direct or indirect addressing:
(PC)+1 - PC
(dma) -~ RPTC

Short immediate addressing:
(PC)+1 - PC
k - RPTC

Long immediate addressing:
(PC)+2 - PC
Ik -~ RPTC

Status Bits None affected.

Description The contents of the data memory address (dma), an 8-bit constant, or a 16-bit
constant are loaded into the repeat counter register (RPTC). The instruction
following the RPT instruction is repeated n times, where nis one more than
the initial value of the RPTC.

6-214

Since the RPTC cannot be saved during a context switch, repeat loops are
regarded as multicycle instructions and are not interruptible. However, the
processor can halt a repeat loop in response to an external HOLD signal. The
execution restarts when HOLD/HOLDA are deasserted. The RPTC is cleared
on a device reset.

The RPT instruction is especially useful for block moves, multiply-accumu-
lates, normalization, and other functions. RPT is a control instruction (see
Table 6-10).

Words 1 (Direct, indirect, or short immediate addressing)
2 (Long immediate addressing)

Cycles The RPT instruction is not repeatable.
Cycles for a Single Instruction (direct or indirect addressing)
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,2f 1+p
External 1+d 1+d 1+d 2+d+p
T 1f the operand and the code are in the same SARAM block
Cycles for a Single Instruction (immediate addressing)
ROM DARAM SARAM External Memory
2 2 2 2+2p
Example 1 RPT DAT127 ;(DP = 31)
Before Instruction After Instruction
Data Memory Data Memory
OFFFh | och] OFFFh
RPTC | oh| RPTC 0Ch
Example 2 RPT * AR1
Before Instruction After Instruction
ARP I ol ARP
ARO I 300h] ARO
Data Memory Data Memory
300h | OFFFh 300h
RPTC I oh| RPTC

Example 3

Example 4

6-216

RPT #1 ;Repeat next instruction 2 times.

Before Instruction

RPTC | oh RPTC
RPT #1111h ;Repeat next instruction 4370 times.
Before Instruction
RPTC | on] RPTC

After Instruction

After Instruction

1111h

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

RPTB pma
0 <pma < 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 3 —% 0 T T 0 0 0 1 1 0
16-Bit Constant

1 - BRAF

(PC)+2 - PASR

pma - PAER

Affected by: Affects:
BRAF BRAF

A block of instructions to be repeated a number of times is specified by the
memory-mapped block repeat counter register (BRCR) without any penalty for
looping. The BRCR must be loaded before execution of an RPTB instruction.
When the RPTB instruction is executed, the BRAF bit is set, the block repeat
program address start register (PASR) is loaded with the contents of the pro-
gram counter (PC) + 2, and the block repeat program address end register
(PAER) is loaded with the program memory address (pma). Block repeat can
be deactivated by clearing the BRAF bit. The number of loop iterations is given
as (BRCR) + 1.

The RPTB instruction is interruptible. However, RPTB instructions cannot be
nested unless the BRAF bit is properly set and the BRCR, PAER, and PASR
are appropriately saved and restored. Single-instruction repeat loops (RPT
and RPTZ) can be included as part of RPTB blocks.

Note:

The repeat block must contain at least 3 instruction words for proper
operation.

RPTB is a control instruction (see Table 6—10).

2

6-217

Cycles The RPTB instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

2 2 2 2+2p

Example SPLK #iterations_minus_1,BRCR ;initialize BRCR
RPTB end_block — 1
LACC DAT1
ADD DAT2
SACL DAT1
end_block

6-218

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

RPTZ #lk
0 <1k < 65535

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 —34+—F—0 1 T 0 0 O 1 0 1
16-Bit Constant

0 - ACC
0 - PREG
(PC)+1 - PC
Ik - RPTC

None affected.

The contents of the accumulator (ACC) and product register (PREG) are
cleared. The 16-bit constant, Ik, is loaded into the repeat counter register
(RPTC). The instruction following the RPTZ instruction is repeated /k + 1
times. The RPTZ instruction is equivalent to the following instruction sequence:

MPY #0

PAC

RPT #<lk>

RPTZ is a control instruction (see Table 6-10).

2
The RPTZ instruction is not repeatable.

Cycles for a Single Instruction
ROM DARAM SARAM External Memory

2 2 2 2+2p

RPTZ #7FFh ;Zero product register and accumulator.
MACD pma,*+ ;Repeat MACD 2048 times.

6-219

Syntax SACB

Operands None
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0
Execution (PC)+1 - PC
(ACC) - ACCB
Status Bits None affected.
Description The contents of the accumulator (ACC) are copied to the accumulator buffer

(ACCB). The contents of the ACC are unaffected.

SACB is an accumulator memory reference instruction (see Table 6—4).

Words 1
Cycles Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
Example SACB
Before Instruction After Instruction
ACC | 7C63 8421h| ACC
ACCB | 5h ACCB

6-220

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Direct: SACH dma [,shift2]
Indirect: SACH {ind} [,shift2[,ARn]]

0<dma<127

0<n<7

0 < shift2 < 7 (defaults to 0)

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 o o 1 1| sHFT [o| dma

T See Table 6-1 on page 6-2.

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[1 o o 1 1| sHFT | 1] See Section 5.2
T See Table 6-1 on page 6-2.
(PC)+1 - PC

(ACC) x 2shift2 _, dma
Not affected by: SXM

The contents of the accumulator (ACC) are shifted left from 0 to 7 bits, as
defined by the shift code, and the high-order bits are stored in the data memory
address (dma). During shifting, the high-order bits are lost. The contents of the
ACC are unaffected.

SACH is an accumulator memory reference instruction (see Table 6—4).

1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,21 1+p

External 2+d 2+d 2+d 4+d+p

T1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+2t n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

1 1f the operand and the code are in the same SARAM block

6-221

Example 1 SACH DAT10,1 ;(DP = 4)

Before Instruction

ACC | 0420 8001h]
c
Data Memory
20Ah | oh|

Example 2 SACH *+,0,AR2

Before Instruction

ARP | 1]

AR1 | 300h]

ACC | 0420 8001h]
c

Data Memory
300h | oh|

6-222

After Instruction

AcC
C

Data Memory

20Ah 0841h

After Instruction
ARP
AR1 301h
ACC

C

Data Memory

300h 0420h

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Direct: SACL dma [,shift2]
Indirect: SACL {ind} [,shift2[,ARnN]]

0<dma<127

0<n<7

0 < shift2 < 7 (defaults to 0)

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o 1 o sHFT [o|] dma

T See Table 6-1 on page 6-2.

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 o o 1 o] sHFt | 1] See Section 5.2
T See Table 6-1 on page 6-2.
(PC)+1 - PC

(ACC(15-0)) x 2shiftz . dma
Not affected by: SXM

The contents of the accumulator low byte (ACCL) are shifted left from 0 to 7
bits, as defined by the shift code, and stored in the data memory address
(dma). During shifting, the low-order bits are zero-filled and the high-order bits
are lost. The contents of the ACC are unaffected.

SACL is an accumulator memory reference instruction (see Table 6-4).

1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,21 1+p

External 2+d 2+d 2+d 4+d+p

T1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+2t n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

1 1f the operand and the code are in the same SARAM block

6-223

Example 1 SACL DAT11,1 ;(DP = 4)

Before Instruction

ACC | 7C63 8421h]
c
Data Memory
20Bh | 05h]
Example 2 SACL *,0,AR7
Before Instruction
ARP | 6]
ARG | 300h]
ACC | 0OFF 8421h|
c
Data Memory
300h | 05h]

6-224

After Instruction

ACC
c

Data Memory

20Bh 0842h

After Instruction
ARP
ARG 300h
ACC

C

Data Memory

300h 8421h

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Direct: SAMM dma
Indirect: SAMM {ind} [,LARN]

O0<dmacs127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 8 7
[1 0o 0o 0o 1 0 0 O0]O|] dma |

(e]

Indirect addressing
15 14 13 12 11 10 9

8 6 5 4 3 2 1 0
|10001000|

7
1 | See Section 5.2 |

(PC)+1 -~ PC
(ACC(15-0)) -~ dma(0-7)

None affected.

The contents of the accumulator low byte (ACCL) are copied to the addressed
memory-mapped register. The 9 MSBs of the data memory address are
cleared, regardless of the current value of the data memory page pointer (DP)
bits or the upper 9 bits of the current AR. The SAMM instruction allows the ACC
to be stored to any memory location on data memory page 0 without modifying
the DP bits.

SAMM is an accumulator memory reference instruction (see Table 6-4).

1
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
MMRT 1 1 1 1+p
MMPORT 2+ioggt 2+i0ggt 2+io0ggt 4+iogst

T Add one more cycle if source is a peripheral memory-mapped register access

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
MMR# n n n n+p
MMPORT 2+nioggt 2+nioggt 2+nioggt 2n+2+p+p nioggt

¥ Add n more cycles if source is a peripheral memory-mapped register access

6-225

Example 1 SAMM PRD ;(DP = 6)

Before Instruction

ACC | 8oh|
PRD | 05h|
Data Memory
325h | OFh]
Example 2 SAMM * AR2 ;(BMAR = 1Fh)
Before Instruction
ARP | 7
AR7 | 31Fh]|
ACC | 080h|
BMAR | 0Oh|
Data Memory
31Fh | 11h]

6-226

ACC
PRD

Data Memory
325h

ARP

AR7

ACC
BMAR

Data Memory
31Fh

>
=
©
=
=1
(%]
28
=
c
)
=
S
| |
[=1R(=}
o| =

o
T
=2

31F
080
080

>
=+
@
=
=3
7]
2
=
c
S
=3
o
=]
S EAIEARN

=
[
>

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: SAR ARX, dma
Indirect: SAR ARXx,{ind} [,ARN]

0<dma<127

0<x<7

0<sn<7

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0o o o of ARXT [o] dma

T See Table 6-1 on page 6-2.

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o of ARXT [1] See Section 5.2

T See Table 6-1 on page 6-2.

(PC)+1 - PC
(AR) - dma

Affected by: NDX

The contents of the auxiliary register (AR) are stored in the data memory ad-
dress (dma). When the contents of the current AR are modified in the indirect
addressing mode, the SAR instruction stores the value of the AR contents be-
fore it is incremented, decremented, or indexed by the contents of the index
register (INDX).

You can maintain software compatibility with the 'C2x by clearing the NDX bit.
This causes any 'C2x instruction that loads ARO to load the auxiliary register
compare register (ARCR) and INDX also, maintaining 'C5x object-code com-
patibility with the 'C2x.

The SAR and LAR (load auxiliary register) instructions can be used to store
and load the ARs during subroutine calls and interrupts. If an AR is not being
used for indirect addressing, LAR and SAR enable the register to be used as
an additional storage register, especially for swapping values between data
memory locations without affecting the contents of the accumulator (ACC).

SAR is an auxiliary registers and data memory page pointer instruction (see
Table 6-5).

1

6-227

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 2+d 2+d 2+d 4+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+2t n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

tif the operand and the code are in the same SARAM block

Example 1 SAR ARO0,DAT30 ;(DP = 6)
Before Instruction
ARO | 37h]
Data Memory
31Eh | 18h|
Example 2 SAR ARO,*+
Before Instruction
ARO | 401h|
Data Memory
401h | oh|

6-228

ARO

Data Memory
31Eh

ARO

Data Memory
401h

After Instruction

I
-~
=3

w
~
=2

After Instruction
402

!I

401

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example 1

SATH
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111001011010

(PC)+1 - PC
16 x (TREG1(4)) - count
(ACC) right-shifted by count — ACC

Affected by: Does not affect.
SXM C

The SATH instruction, in conjunction with the SATL instruction, allows for a
2-cycle 0- to 31-bit shift right. The contents of the accumulator (ACC) are bar-
rel-shifted right 16 bits as defined by bit 4 of TREGL1. If bit 4 of TREGL1 is set,
the contents of the ACC are barrel-shifted right by 16 bits. If bit 4 of TREG1
is cleared, the contents of the ACC are unaffected.

If the SXM bit is cleared, the high-order bits are zero-filled; if the SXM bit is set,
the high-order bits of the ACC are filled with copies of ACC bit 31. The C bit
is unaffected.

SATH is an accumulator memory reference instruction (see Table 6-4).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p

SATH ;(SXM = 0)

Before Instruction After Instruction
ACC | FFFF 0000h] ACC
C C
TREG1 | xx1xh| TREG1

6-229

Example 2 SATH ;(SXM = 1)

Before Instruction After Instruction
ACC | FEFF 0000h] ACC
c c
TREG1 | xx1xh| TREG1

6-230

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

Example 1

Example 2

SATL
None
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111001011011

(PC)+1 - PC
(TREG1(3-0)) - count
(ACC) right-shifted by count - ACC

Affected by: Does not affect.
SXM C

The SATL instruction, in conjunction with the SATH instruction, allows for a
2-cycle 0- to 31-bit shift right. The contents of the accumulator (ACC) are bar-
rel-shifted right 0 to 15 bits as defined by the 4 LSBs of TREGL.

Ifthe SXM bitis cleared, the high-order bits are zero-filled; if the SXM bit is set,
the high-order bits of the ACC are filled with copies of ACC bit 31. The C bit
is unaffected.

SATL is an accumulator memory reference instruction (see Table 6-4).
1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory

n n n n+p

SATL ;(SXM = 0)

Before Instruction After Instruction
ACC | FFFF 0000h] ACC
c c
TREG1 | x2h| TREG1

SATL ;(SXM = 1)

Before Instruction After Instruction
ACC | FFFF 0000h] ACC
C C
TREG1 | x2h| TREG1

6-231

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-232

SBB

None

15 14 13 12 11 10 9 8 7

| 1

1 1 1 1 1 0 O

(PC)+1 — PC
(ACC) — (ACCB) - ACC

Affects: C

The contents of the accumulator buffer (ACCB) are subtracted from the con-
tents of the accumulator (ACC). The result is stored in the ACC and the con-
tents of the ACCB are unaffected. The C bitis cleared, if the result of the sub-
traction generates a borrow; otherwise, the C bit is set.

SBB is an accumulator memory reference instruction (see Table 6—4).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory
n n n n+p
SBB

Before Instruction
2000 0000h]

Acc [x] |

1000 0000h]

After Instruction

ACC 1000 0000h
c
ACCB 1000 0000h

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

Example 1

Example 2

SBBB
None
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 12 1. 1. 1 1 0 0 0 0 1 1 0 0 1

(PC)+1 - PC
(ACC) — (ACCB) — (logical inversion of C) - ACC

Affects: C

The contents of the accumulator buffer (ACCB) and the logical inversion of the
C bit are subtracted from the contents of the accumulator (ACC). The result
is stored in the ACC and the contents of the ACCB are unaffected. The C bit
is cleared, if the result of the subtraction generates a borrow; otherwise, the
C bit is set.

SBBB is an accumulator memory reference instruction (see Table 6—4).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p
SBBB
Before Instruction After Instruction
ACC I 2000 0000h] ACC
C C
ACCB | 1000 0000h] ACCB 1000 0000h
SBBB
Before Instruction After Instruction
acc [o] | 0009 8012h] ACC
C C
ACCB | 0009 8010h] ACCB 0009 8010h

6-233

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-234

SBRK #k

0<k<255

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|o 1 1 1 1 1 0 O 8-Bit Constant
(PC)+1 - PC

(current AR) — 8-bit positive constant - current AR
None affected.

The 8-bit immediate value, right-justified, is subtracted from the current auxil-
iary register (AR). The result is stored in the current AR. The subtraction takes
place in the auxiliary register arithmetic unit (ARAU), with the immediate value
treated as a 8-bit positive integer.

SBRK is an auxiliary registers and data memory page pointer instruction (see
Table 6-5).

1
The SBRK instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory
1 1 1 1+p
SBRK #0FFh
Before Instruction After Instruction
ARP | 7] ARP
AR7 | oh| AR7

Syntax
Operands

Opcode

Execution

Status Bits

Description

SETC control bit
control bit : {C, CNF, HM, INTM, OVM, SXM, TC, XF}

SETC OVM (Set overflow mode)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
l1 o 1 1 1 1 1 0 0 1 0 0 0 0 1 1]

SETC SXM (Set sign extension mode)
15 14 13 12 11 10 9 8 7 6
1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1]

(&)
N
w
N
=
o

SETC HM (Set hold mode)
15 14 13 12 11 10 9
l1 o 1 1 1 1 1 0 0 1 0 0 1 0 0 1]

(o]
~
o
(6]
N
w
N
[N
o

SETC TC (Set test/control)
15 14 13 12 11 10 9
[1 o 12 1 1 1 1 0 o 1 0 0 1 0 1 1|

00}
~
o
(&3]
N
w
N
=
o

SETC C (Set carry)
15 14 13 12 11 10 9
[1 o 2 1. 1 1 1 0 o 1 0 0 1 1 1 1|

(o]
~
o
(6)]
N
w
N
[N
o

SETC XF (Set external flag pin)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 2 1 1 1 1 0 o 1 0 0 1 1 0 1|

SETC CNF (Set configuration control)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/1 o 1 1 1 1 1 0 0 1 0 0 0 1 0 1]

SETC INTM (Set interrupt mode)
15 14 13 12 11 10 9 8 7 6
1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1]

(&)
N
w
N
=
o

(PC)+1 - PC
1 - control bit

Affects selected control bit.

The specified control bit is set. The LST instruction can also be used to load
STO and ST1. See Section 4.4, Status and Control Registers, for more in-
formation on each control bit.

SETC is a control instruction (see Table 6-10).

6-235

An IDLE instruction must not follow a SETC INTM instruction;
otherwise, an unmasked interrupt may take the device out of idle
before the INTM bhit is set.

Words 1
Cycles Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p
Example SETC TC ;TCis bit 11 of ST1

Before Instruction After Instruction
sT1 | xLxoch| sT1

6-236

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

SFL
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o 12 1. 1. 1 1 0 0 0 0 0 1 0 0 1

(PC)+1 - PC

(ACC(31)) - C
(ACC(30-0)) — ACC(31-1)
0 - ACC(0)

Not affected by: Affects:
SXM C

The contents of the accumulator (ACC) are shifted left 1 bit. The MSB of the
ACC is shifted into the C bit. The LSB of the ACC is filled with a 0. The SFL
instruction, unlike the SFR instruction, is unaffected by the SXM bit.

<T| msB | ACC [LsB]le—— 0

(@)

SFL is an accumulator memory reference instruction (see Table 6-4).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p
SFL

Before Instruction After Instruction
ACC | BO00O 1234h] ACC
C C

6-237

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-238

SFLB
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000010110

(PC)+1 - PC

0 - ACCB(0)

(ACCB(30-0)) -~ ACCB(31-1)
(ACCB(31)) — ACC(0)
(ACC(30-0)) -~ ACC(31-1)
(ACC(31) — C

Not affected by: Affects.
SXM C

The contents of both the accumulator (ACC) and accumulator buffer (ACCB)
are shifted left 1 bit. The LSB of the ACCB is filled with a 0, and the MSB of the
ACCB is shifted into the LSB of the ACC. The MSB of the ACC is shifted into
the C bit. The SFLB instruction, unlike the SFRB instruction, is unaffected by
the SXM bit.

[¢ l&—{ msB| ACC | LsB j&— msB| ACCB [LsB l¢— 0

(©) @) @)

SFLB is an accumulator memory reference instruction (see Table 6—4).
1

Cycles for a Single Instruction
ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory
n n n n+p
SFLB
Before Instruction After Instruction
ACC | BOO0O 1234h] ACC 6000 2469h
c c
ACCB | B00O 1234h| ACCB 6000 2468h

Syntax
Operands
Opcode

Execution

Status Bits

Description

Words

Cycles

SFR
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/1 o 1 1 1 1 1 0 0 0 0 0 1 0 1 0

(PC)+1 -~ PC

If SXM = 0:
0 - ACC(31)

IfSXM=1
(ACC(31)) - ACC(31)

(ACC(31-1)) - ACC(30-0)
(ACC(0)) - C

Affected by: Affects:
SXM C

The contents of the accumulator (ACC) are shifted right 1 bit. The type of shift
is determined by the SXM bit. If the SXM bitis cleared, the SFR instruction pro-
duces a logic right shift. The MSB of the ACC is filled with a 0. The LSB of the
ACC is shifted into the C bit.

——»fmse ACC LSB |—>n
0 m I I o LS

If the SXM bit is set, the SFR instruction produces an arithmetic right shift. The
MSB (sign bit) of the ACC is unchanged and is copied into ACC bit 30. The LSB
of the ACC is shifted into the C bit.

]
6.| MsB | ACC [LsB

SFR is an accumulator memory reference instruction (see Table 6-4).
1

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

6-239

Example 1

Example 2

6-240

SFR ;(SXM = 0)
Before Instruction
ACC | B000 1234h| ACC
C
SFR ;(SXM = 1)
Before Instruction
ACC | B000 1234h] ACC
C

After Instruction

[0] 5800 091Ah
c

After Instruction

[0] D800 091Ah
c

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

SFRB
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|1011111000010111

(PC)+1 — PC

If SXM=0:
0 - ACC(31)

If SXM=1:
(ACC(31)) - ACC(31)

(ACC(31-1)) — ACC(30-0)
(ACC(0)) — ACCB (31)
(ACCB(31-1)) — ACCB(30-0)
(ACCB(0)) - C

Affected by: Affects:
SXM C

The contents of both the accumulator (ACC) and accumulator buffer (ACCB)
are shifted right 1 bit. The type of shift is determined by the SXM bit. If the SXM
bit is cleared, the SFR instruction produces a logic right shift. The MSB of the
ACC s filled with a 0. The LSB of the ACC is shifted into the MSB of the ACCB.
The LSB of the ACCB is shifted into the C bit.

0——» MSB | ACC | LsB |—2>| msB[Aacce [LsB |E)>| c |

(@) @

If the SXM bit is set, the SFR instruction produces an arithmetic right shift. The
MSB (sign bit) of the ACC is unchanged and is copied into ACC bit 30. The LSB
ofthe ACC s shifted into the MSB of the ACCB. The LSB of the ACCB is shifted
into the C bit.

]
—>| MSBl ACC | LSB |—2>| MSBl ACCB | LSB IE)’l C |

(@) @

SFRB is an accumulator memory reference instruction (see Table 6-4).

1

6-241

Cycles Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Repeat (RPT) Execution

ROM DARAM SARAM External Memory

n n n n+p

Example 1 SFRB ;(SXM = 0)
Before Instruction
ACC | B00O 1235h]
C
ACCB | B00O 1234h| ACCB
Example 2 SFRB ;(SXM =1)

Before Instruction
B0O0O 1234h|

B0O0O 1234h| ACCB

6-242

After Instruction

acc [o] 5800 091Ah
c

D800 091Ah

After Instruction

acc [o] D800 091Ah
c

5800 091Ah

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: SMMR dma, #addr
Indirect: SMMR {ind}, #addr [,ARn]

0 < addr £ 65535

0<dma<127

0<n<7

ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0O 0 0 0 1 0—0—*% I 0 I dma

16-Bit Constant

Indirect addressing
151413121110987|6543210
0O 0 0 0 1 g o—+1T7 See Section 5.2

16-Bit Constant

PFC - MCS

(PC)+2 - PC

lk - PFC

While (repeat counter Z 0):
(src, specified by lower 7 bits of dma) — (dst, addressed by PFC)
(PFC)+1 - PFC
(repeat counter) —1 - repeat counter

MCS - PFC

None affected.

The memory-mapped register value pointed at by the lower 7 bits of the data
memory address (dma) is stored to the data memory location addressed by
the 16-bit source address, #addr. The 9 MSBs of the dma are cleared, regard-
less of the current value of the data memory page pointer (DP) bits or the upper
9 hits of the current AR. The SMMR instruction allows any memory location
on data memory page 0 to be stored anywhere in data memory without modify-
ing the DP bits.

When using the SMMR instruction with the RPT instruction, the destination ad-
dress, #addr, is incremented after every memory-mapped store operation.

SMMR is an I/O and data memory operation instruction (see Table 6-9).

2

6-243

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
Destination: DARAM 2 2 2 2+2Pcode
Source: MMR*

Destination: SARAM 2 2 2,3t 2+2Pcode
Source: MMR*

Destination: External 3+dyst 3+dggt 3+dgst 5+dgst+2Pcode
Source: MMR*

Destination: DARAM 3+i0g/c 3+i0g/c 3+i0gyc 4+i0g7c+2Pcode
Source: MMPORT

Destination: SARAM 3+i0gc 3+i0g¢ 3+i0gye, 4+ioge T 3+i051c+2Pcode

Source: MMPORT

Destination: External
Source: MMPORT

A+i0grc+dgst

A+i0grc+dgst

4+i0grc+dgst

6+i0gc+dgst+2Pcode

T1f the destination operand and the code are in the same SARAM block
* Add one more cycle for peripheral memory-mapped register access.

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
Destination: DARAM 2n 2n 2n 2n+2Pcode

Source: MMRS

Destination: SARAM 2n 2n 2n, 2n+2T 2n+2pcode

Source: MMRS

Destination: External 3n+ndygs 3n+ndggs; 3n+ndgss 3n+3+ndgst+2Pcode
Source: MMRS

Destination: DARAM 2n+niog,c 2n+Ni0g,c 2n+niog,¢ 2n+1+Ni0g;c+2Pcode
Source: MMPORT

Destination: SARAM 2n+niog,¢ 2n+Niog,c 2n+niog,¢, 2n+1+ni0g;c+2Pcode
Source: MMPORT 2n+2+niog.

Destination: External 5n—2+ndyg; 5n—2+ndyst 5n—-2+ndyg; 5n+1+ndgg+niogye
Source: MMPORT +Niogyc +Niogc +Niog,c +2Pcode

1 1f the destination operand and the code are in the same SARAM block
8§ Add n more cycles for peripheral memory-mapped register access.

6-244

Example 1 SMMR CBCR,#307h ;(DP = 6, CBCR = 1Eh)

Before Instruction

Data Memory Data Memory
307h | 1376h| 307h
CBCR | 5555h] CBCR
Example 2 SMMR *#307h,AR6 ;(CBCR = 1Eh)
Before Instruction
ARP | 6] ARP
ARG | FO1Eh] ARG
Data Memory Data Memory
307h | 1376h| 307h
CBCR | 5555h] CBCR

After Instruction

5555h
5555h

After Instruction

FO1E

5555
5555

6-245

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-246

SPAC
None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1011111000000101

(PC)+1 — PC
(ACC) — (shifted PREG) — ACC

Affected by: Not affected by: Affects:
OVM and PM SXM C and OV

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and subtracted from the contents of the accumulator (ACC). The result
is stored inthe ACC. The C hitis cleared, if the result of the subtraction gener-
ates a borrow; otherwise, the C bit is set. The SPAC instruction is not affected
by the SXM bit and the PREG is always sign extended.

The SPAC instruction is a subset of the LTS, MPYS, and SQRS instructions.
SPAC is a TREGO, PREG, and multiply instruction (see Table 6-7).

1
Cycles for a Single Instruction
ROM DARAM SARAM External Memory
1 1 1 1+p
Cycles for a Repeat (RPT) Execution
ROM DARAM SARAM External Memory
n n n n+p

SPAC ;(PM = 0)

Before Instruction After Instruction
PREG | 1000 0000h] PREG 1000 0000h
ACC | 7000 0000h] ACC 6000 0000h
c C

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Direct: SPH dma
Indirect: SPH {ind} [,ARn]

0<dmac<127
0<sn<7
ind: {* ** * *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8
[1 o o 0o 1 1 0 1

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 1 1 o0 1]1]

(PC)+1 - PC
(PREG shifter output (31-16)) —» dma

Affected by: PM

The contents of the product register (PREG) high byte are shifted, as defined
by the PM bits, and stored in the data memory address (dma). The contents
of the PREG and the accumulator (ACC) are unaffected. When the right-shift-
by-6 mode (PM is set to 115) is selected, high-order bits are sign extended.
When left shifts are selected, low-order bits are filled from the PREG low byte.

SPH is a TREGO, PREG, and multiply instruction (see Table 6-7).
1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 2+d 2+d 2+d 4+d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+2t n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

1 1f the operand and the code are in the same SARAM block

6-247

Example 1 SPH DAT3 ;(DP = 4, PM = 0)

Before Instruction

PREG | FEO7 9844h]
203h | 4567h|
Example 2 SPH * AR7 ;(PM = 2)
Before Instruction
ARP | 6l
ARG | 203h]
PREG | FEO7 9844h]
Data Memory
203h | 4567h|

6-248

PREG
203h

ARP
ARG
PREG

Data Memory
203h

FEQ7 9844h
FEO7

>
=
9]
=
=1
7]
23
=
c
)
o
o
=]
=

After Instruction

203
FEQ7 9844h

EQ79

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Direct: SPL dma
Indirect: SPL {ind} [,ARnN]

0<dmac<127
0<sn<7
ind: {* * *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8
[1 o 0o o 1 1 0 O

Indirect addressing
15 14 13 12 11 10 9 8
[1 o o o 1 1 0 o]

7 6 5 4 3 2 1 0
1 | See Section 5.2 |

(PC)+1 - PC
(PREG shifter output (15-0)) —» dma

Affected by: PM

The contents of the product register (PREG) low byte are shifted, as defined
by the PM bits, and stored in the data memory address (dma). The contents
of the PREG and the accumulator (ACC) are unaffected. When the right-shift-
by-6 mode (PM is set to 115) is selected, high-order bits are filled from the
PREG high byte. When left shifts are selected, low-order bits are zero-filled.

SPL is a TREGO, PREG, and multiply instruction (see Table 6-7).
1

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 2+d 2+d 2+d 4+d+p

T 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+2t n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

1 1f the operand and the code are in the same SARAM block

6-249

Example 1 SPL DAT5 ;(DP = 1, PM = 2)

Before Instruction

After Instruction
PREG | FEO7 9844h| PREG
Data Memory Data Memory
205h | 4567h| 205h
Example 2 SPL *,AR3 ;(PM = 0)
Before Instruction After Instruction
ARP | 2] ARP
AR2 | 205h] AR2
PREG | FEO7 9844h] PREG
Data Memory Data Memory
205h | 4567h| 205h

6-250

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words
Cycles

Example 1

Example 2

Direct: SPLK #lk, dma
Indirect: SPLK #lk, {ind} [,LARN]
0<dmac<127

0<sn<7

Ik: 16-bit constant
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 18 12 11 10 9 8 7 6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 1 36161 dma
16-Bit Constant
Indirect addressing
5 4 3 2 1 0

1 0 1 0 1 1 3 —61+

See Section 5.2

16-Bit Constant

(PC)+2 - PC
Ik -~ dma

None affected.

The 16-bit constant is stored into the data memory address (dma). The parallel
logic unit (PLU) supports this bit manipulation independently of the arithmetic
logic unit (ALU), so the contents of the accumulator (ACC) are unaffected.

SPLK is a parallel logic unit (PLU) instruction (see Table 6—6).

2
The SPLK instruction is not repeatable.

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 2 2 2 2+2p

SARAM 2 2 2,3t 2+2p

External 3+d 3+d 3+d 5+d+2p

1 1f the operand and the code are in the same SARAM block

SPLK #7FFFh,DAT3 ;(DP = 6)
Before Instruction

Data Memory
303h |

FEO7h]

SPLK #1111h,*+,AR4

ARP
ARO

303h

Data Memory

300h

After Instruction

7FFFh

Data Memory

Before Instruction

| o] ARP
| 300h] ARO
Data Memor

| 07h] 6-251 300nh

Syntax
Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Example

6-252

SPM constant
0 <constant< 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 o 1 1 1 1 1 1 0 0 0 0 0 o] pmf

t See Table 6-1 on page 6-2.

(PCO)+1 - PC
Constant - PM

Not affected by: Affects:
SXM PM

The two low-order bits of the instruction word are copied into the product shift
mode (PM) bits of ST1. The PM bits control the product register (PREG) output
p-scaler shifter. The p-scaler shifter can shift the PREG output either 1 or 4 bits
to the left or 6 bits to the right. The PM bit combinations and their meanings
are shown below:

PM Field Action

00 Output is not shifted

01 Output is left-shifted 1 bit and LSB is zero filled

10 Output is left-shifted 4 bits and 4 LSBs are zero filled

11 Output is right-shifted 6 bits, sign extended and 6 LSBs are lost

The left shifts allow the product to be justified for fractional arithmetic. The right
shift by 6 accommodates up to 128 multiply-accumulate processes without
overflow occurring. The PM bits may also be loaded by an LST #1 instruction
(page 6-135).

SPMis a TREGO, PREG, and multiply instruction (see Table 6-7).
1
The SPM instruction is not repeatable.

Cycles for a Single Instruction

ROM DARAM SARAM External Memory

1 1 1 1+p

SPM 3 ;Product register shift mode 3 is selected, causing
;all subsequent transfers from the product register
;to the ALU to be shifted to the right six places.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: SQRA dma
Indirect: SQRA {ind} [,ARN]

0<dmac<127
0<n<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8
l[o 1 0o 1 0o 0 1 0]

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 1 0 1 0 0 1 0|1| See Section 5.2

(PC)+1 - PC
(ACC) + (shifted PREG) - ACC
(dma) -~ TREGO

(dma) x (dma) - PREG

If TRM = 0:
(dma) - TREG1
(dma) - TREG2

Affected by: Affects:
OVM, PM, and TRM C and OV

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and added to the contents of the accumulator (ACC). The result is stored
in the ACC. The contents of the data memory address (dma) are loaded into
TREGO and squared. The resultis stored in PREG. The C bitis set, if the result
of the addition generates a carry; otherwise, the C bit is cleared.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREG1 has only 5 bits, and TREG2 has only
4 bits.

SQRA is a TREGO, PREG, and multiply instruction (see Table 6-7).

1

6-253

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

1 1f the operand and the code are in the same SARAM block

Example 1

Data Memory
31Eh

TREGO
PREG
ACC

c

Example 2 SQRA *,AR4 ;(PM = 0)
ARP
AR3

Data Memory
31Eh

TREGO
PREG
ACC

6-254

SQRA DAT30 ;(DP = 6, PM = 0)

Before Instruction

| OFh]
| 3h|
I
I

12Ch|
1F4h]

Before Instruction
| 3]
| 31Eh|

| OFh]
| 3h]
| 12Ch|
| 1F4h]

Data Memory
31Eh

TREGO
PREG
ACC

ARP
AR3

Data Memory
31Eh

TREGO
PREG
ACC

[o]
c

o[q]

>
=+
D
o
=
w0
=
c
(o]
[=24
o
S

o
T
=2

OE1l

>

=

@D

o

=3

w0

Z

c

O

=

w S w

o = N o
T m S il
> > I >0 > >

o
T
=2

OE1

w
N
o
o>l |=

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: SQRS dma
Indirect: SQRS {ind} [,ARN]

O0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8
[o 1 0o 1 0 0 1 1

Indirect addressing
15 14 13 12 11 10 9 8
[o 1 0 1 0 0 1 1

7 6 5 4 3 2 1 0
1 | See Section 5.2 |

(PC)+1 - PC
(ACC) — (shifted PREG) - ACC
(dma) - TREGO

(dma) x (dma) - PREG

If TRM = 0:
(dma) - TREG1
(dma) - TREG2

Affected by: Affects:
OVM, PM, and TRM C and OV

The contents of the product register (PREG) are shifted, as defined by the PM
bits, and subtracted from the contents of the accumulator (ACC). The result
is stored in the ACC. The contents of the data memory address (dma) are
loaded into TREGO and squared. The result is stored in PREG. The C bit is
cleared, if the result of the subtraction generates a borrow; otherwise, the C
bit is set.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS,
maintaining 'C5x object-code compatibility with the 'C2x. The TREGs are
memory-mapped registers and can be read and written with any instruction
that accesses data memory. TREGL1 has only 5 bits, and TREG2 has only
4 bits.

SQRS is a TREGO, PREG, and multiply instruction (see Table 6-7).

1

6-255

Cycles

Example 1

Example 2

6-256

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

SQRS DAT9 ;(DP =6, PM = 0)

Before Instruction
Data Memory

Data Memory

309h | 08h]| 309h
TREGO | 1124h | TREGO
PREG | 190h]| PREG

ACC | 1450h | ACC

C

SQRS * AR5 ;(PM = 0)

Before Instruction

ARP | 3] ARP
AR3 | 309h] AR3
Data Memory Data Memory
309h | 0sh| 309h
TREGO | 1124h| TREGO
PREG | 190h| PREG
ACC | 1450h| ACC

C

o [+

>
=
@
=
=1
0
a
=
c
o
=3
o

w =

o

©

S| (o

0[]

0
0
40h
12C0h

>
=
@
=
=1
7]
[
=
c
]
=3
o
=]
®
==

[e5)

of |1©
oo oo
o> |=

N
(=)
>l |=

12C0|

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: SST #m, dma
Indirect: SST #m, {ind} [,ARN]

0<dmac<127

m=0or1l

0<n<7

ind: {* * *~ *0+ *0- *BRO+ *BRO-}

Direct addressing for SST#0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0o o o 1 1 1 o]fo0] dma

Indirect addressing for SST#0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0o 0o 0o 1 1 1 of1] See Section 5.2

Direct addressing for SST#1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 o o o 1 1 1 1]o0] dma |

Indirect addressing for SST#1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 o o o 1 1 1 1] 1] See Section 5.2 |
(PC)+1 - PC
(STm) - dma

None affected.

The contents of the status register STm are stored in the data memory address
(dma). In the direct addressing mode, status register STm is always stored in
data memory page 0, regardless of the value of the data memory page pointer
(DP) bits. The processor automatically forces the data memory page to 0, and
the specific location within that data page is defined by the instruction. The DP
bits are not physically modified. This allows storage of the DP bits in the data
memory on interrupts, etc., in the direct addressing mode without having to
change the DP. In the indirect addressing mode, the dma is obtained from the
selected auxiliary register (see the LST instruction, page 6-135, for more in-
formation). In the indirect addressing mode, any page in data memory may be
accessed.

SST is a control instruction (see Table 6—10). Status registers STO and ST1
are defined in Section 4.4, Status and Control Registers.

1

6-257

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 2+d 2+d 2+d 4+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p
SARAM n n n, n+2t n+p
External 2n+nd 2n+nd 2n+nd 2n+2+nd+p
tif the operand and the code are in the same SARAM block
Example 1 SST #0,DAT96 ;(DP = 6)
Before Instruction After Instruction
STO | A408h] STO A408h
Data Memory Data Memory
60h | 0Ah] 60h A408h
Example 2 SST #1,*, AR7
Before Instruction After Instruction
ARP | ol ARP
ARO | 300h] ARO 300h
ST1 | 2580h] ST1 2580h
Data Memory Data Memory
300h | 0Oh| 300h 2580h

6-258

Syntax

Operands

Opcode

Execution

Direct: SUB dma [,shift]
Indirect: SUB {ind} [,shift [,LARN]]
Short immediate: SUB #k

Long immediate: SUB #lk [,shift]

0<dma=<127

0 < shift < 16 (defaults to 0)

0<n<7

0<k<255

-32768 < |k £ 32767

ind: {* ** *~ *0+ *0- *BRO+ *BRO-}

Direct addressing with shift
15 14 13 12 11 10 9 8 7 6

o o 1 1| SHFT T | o |

T See Table 6-1 on page 6-2.

Indirect addressing with shift
15 14 13 12 11 10 9 8 7 6

5 4 3 2 1 O

0 0 1 1 SHFT 1 | 1|

See Section 5.2

T See Table 6-1 on page 6-2.

Direct addressing with shift of 16
15 14 13 12 11 10 9 8

~
(o)}

[o 1 1 0o 0o 1 0 1|

o

Indirect addressing with shift of 16
15 14 13 12 11 10 9 8 7 6

01100101|

[ERY

See Section 5.2

Short immediate addressing
15 14 13 12 11 10 9 8 7 6

5 4 3 2 1 0

|10111010

8-Bit Constant |

Long immediate addressing with shift
15 14 13 12 11 10 9 8 7 6

1 0 1 1 1 —3+—3+—3F— 1T 0

T 0 | SHET t

16-Bit Constant

T See Table 6-1 on page 6-2.

Direct or indirect addressing:
(PC)+1 - PC
(ACC) — ((dma) x 2shifty _, AcCC

6-259

Status Bits

Description

Words

6-260

Short immediate addressing:
(PC)+1 - PC
(ACC)-k - ACC

Long immediate addressing:
(PC)+2 - PC
(ACC) — (lk x 2shifty . AccC

Affected by: Affects.

OVM and SXM C and OV Direct or indirect addressing
OVM C and OV Short immediate addressing
OVM and SXM C and OV Long immediate addressing

If direct, indirect, or long immediate addressing is used, the contents of the
data memory address (dma) or a 16-bit constant are shifted left, as defined by
the shift code, and subtracted from the contents of the accumulator (ACC).
The result is stored in the ACC. During shifting, the accumulator low byte
(ACCL) is zero-filled. If the SXM bit is cleared, the high-order bits of the ACC
are zero-filled; if the SXM bit is set, the high-order bits of the ACC are sign-
extended.

Note that when the auxiliary register pointer (ARP) is updated during indirect
addressing, you must specify a shift operand. If you don’t want a shift, you must
enter a O for this operand. For example:

SUB*+,0,AR0

If short immediate addressing is used, an 8-bit positive constant is subtracted
from the contents of the ACC. The result is stored in the ACC. In this mode,
no shift value may be specified and the subtraction is unaffected by the SXM
bit.

The C bit is cleared, if the result of the subtraction generates a borrow; other-
wise, the C bit is set. If a 16-bit shift is specified with the SUB instruction, the
C bit is cleared only if the result of the subtraction generates a borrow; other-
wise, the C bit is unaffected.

SUB is an accumulator memory reference instruction (see Table 6—4).

1 (Direct, indirect, or short immediate)

2 (Long immediate)

Cycles For the short and long immediate addressing modes, the SUB instruction is
not repeatable.

Cycles for a Single Instruction (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1, 2t 1+p

External 1+d 1+d 1+d 2+d+p

Tifthe operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution (direct or indirect addressing)

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

T if the operand and the code are in the same SARAM block

Cycles for a Single Instruction (short immediate addressing)

ROM DARAM SARAM External Memory

1 1 1 1+p

Cycles for a Single Instruction (long immediate addressing)

ROM DARAM SARAM External Memory
2 2 2 2+2p
Example 1 SUB DATS80 ;(DP = 8, SXM=0)
Before Instruction After Instruction
Data Memory Data Memory
450h | 11h] 450h
ACC I 24| ACC
C C

@
Ny
o
H

Example 2

Example 3

Example 4

6-262

SUB *—,1,AR0 ;(SXM = 0)

Before Instruction

ARP | 7
Data Memory
AR7 | 301h]
301h | 04h|
ACC | 09h|
c

SUB #8h ;(SXM = 1)

Before Instruction

ACC | o7h]

SUB #0FFFh,4 ;(SXM = 0)

Before Instruction

ACC | FFFFh|

C

ARP

Data Memory
AR7

301h
ACC

ACC

ACC

After Instruction

300

o
o| =

0[]
2
=

After Instruction
FFFF FFFFh

o [e]
>
=
[0}
o
=3
wn
=
c
(o]
=
o
>

>

OF

o [=]

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Cycles

Direct: SUBB dma
Indirect: SUBB {ind} [,ARn]

0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7
[o 1 1 0 0o 1 0 O0]o] dma |

Indirect addressing
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 1 1 0 0o 1 0o of1] See Section 5.2 |
(PC)+1 - PC

(ACC) — (dma) — (logical inversion of C) —» ACC

Affected by: Not affected by: Affects:

OVM SXM C and OV

The contents of the data memory address (dma) and the logical inversion of
the C bit are subtracted from the contents of the accumulator (ACC) with sign
extension suppressed. The result is stored in the ACC. The C bit is cleared,
if the result of the subtraction generates a borrow; otherwise, the C bit is set.

The SUBB instruction can be used in performing multiple-precision arithmetic.
SUBB is an accumulator memory reference instruction (see Table 6-4).

1
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

6-263

Example 1

Example 2

6-264

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

1 1f the operand and the code are in the same SARAM block

SUBB DAT5 ;(DP = 8)

Before Instruction After Instruction
Data Memory Data Memory
405h | 06h] 405h
acc [o] | o6h] acc [o]
C C
SUBB *
Before Instruction After Instruction
ARP | 6l ARP [¢
AR6 | 301h] ARG
301h | 02h] 301h 02h
ACC | 04h] ACC 02h
C C

In Example 1, the C bit is O from the result of a previous subtract instruction
that performed a borrow. The operation performed was 6 —6 — (1) =—1, gener-
ating another borrow (C = 0) in the process. In Example 2, no borrow was pre-
viously generated (C = 1), and the result from the subtract instruction does not
generate a borrow.

Syntax

Operands

Opcode

Execution

Status Bits

Description

Direct: SUBC dma
Indirect: SUBC {ind} [,ARN]

O0<dmac=<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8
[0 o 0o 0o 1 0 1 0O

Indirect addressing
15 14 13 12 11 10 9 8
[o o o 0o 1 0 1 O

7 6 5 4 3 2 1 0
1 | See Section 5.2 |

(PC)+1 - PC
(ACC) — ((dma) x 215) - ALU output

If ALU output = 0:
(ALU output) x 2+1 - ACC

Else:

(ACC) x 2 - ACC
Not affected by: Affects:
OVM (no saturation) and SXM C and OV

The SUBC instruction performs conditional subtraction, which may be used for
division. The 16-bit dividend is stored in the accumulator low byte (ACCL) and
the accumulator high byte (ACCH) is zero-filled. The divisor is in data memory.
The SUBC instruction is executed 16 times for 16-bit division. After completion
of the last SUBC instruction, the quotient of the division is in the ACCL and the
remainder is in the ACCH. The SUBC instruction assumes that the divisor and
the dividend are both positive. The divisor is not sign extended. The dividend,
in the ACCL, must initially be positive (bit 31 must be 0) and must remain posi-
tive following the ACC shift, which occurs in the first portion of the SUBC
execution.

If the 16-bit dividend contains fewer than 16 significant bits, the dividend may
be placed in the ACC and shifted left by the number of leading nonsignificant
zeroes. The number of SUBC executions is reduced from 16 by that number.
One leading zero is always significant.

The SUBC instruction affects the OV bit, but is not affected by the OVM bit, and
therefore the ACC does not saturate upon positive or negative overflows when
executing this instruction. The C bit is cleared, if the result of the subtraction
generates a borrow; otherwise, the C bit is set.

SUBC is an accumulator memory reference instruction (see Table 6—4).

6-265

Words

Cycles

Example 1

Example 2

6-266

1
Cycles for a Single Instruction
Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p
SARAM 1 1 1,2t 1+p
External 1+d 1+d 1+d 2+d+p

tif the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

1 1f the operand and the code are in the same SARAM block

SUBC DAT2 ;(DP = 6)

Data Memory

Before Instruction
Data Memory

302h | 01h]| 302h
ACC | 04h|
C
RPT #15
SUBC *
Before Instruction
ARP | 3] ARP
AR3 | 1000h] AR3
Data Memory Data Memory
1000h | o7hl 1000h
ACC | 41
C

After Instruction

acc [o] [oen]
C

After Instruction

1000h

ACC
C

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: SUBS dma
Indirect: SUBS {ind} [,LARN]

0<dmac<127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7
[o 1 1 0 0 1 1 0]O0] dma |

Indirect addressing
15 14 13 12 11 10 9 8
[o 1 1 0 0o 1 1 o]

| See Section 5.2 |

(PC)+1 - PC
(ACC) — (dma) - ACC
(dma) is an unsigned16-bit number

Affected by: Not affected by: Affects:
OVM SXM C and OV

The contents of the data memory address (dma) are subtracted from the con-
tents of the accumulator (ACC) with sign extension suppressed. The result is
stored inthe ACC. The datais treated as a 16-bit unsigned number, regardless
of the SXM bit. The contents of the ACC are treated as a signed number. The
C bitis cleared, if the result of the subtraction generates a borrow; otherwise,
the C bit is set.

The SUBS instruction produces the same results as a SUB instruction (page
6-259) with the SXM bit cleared and a shift count of 0. SUBS is an accumulator
memory reference instruction (see Table 6—4).

1

6-267

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

Example 1

Data Memory

Example 2

Data Memory

6-268

SUBS DAT2 ;(DP =16, SXM = 1)

Before Instruction After Instruction

Data Memory

| F003h 802h
| F105h] ACC
C C

SUBS *;(SXM = 1)

Before Instruction After Instruction

| o ARP [o
| 310h] ARO
Data Memory
| FOO3h]| 310h
| OFFF F105h] ACC
c c

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: SUBT dma

Indirect: SUBT {ind} [,ARnN]
0<dma=<127
0sn<7

ind: {* *+ * *0+ *0- *BRO+

Direct addressing
15 14 13 12 11 10 9 8

[o 1 1 0o 0 1 1 1

Indirect addressing
15 14 13 12 11 10 9 8

[0 1 1 0 0o 1 1 1]1] See Section5.2 |
(PC)+1 - PC
(ACC) — ((dma) x 2TREG1(3-0)) _, (ACC)
If SXM = 1:
(dma) is sign-extended
If SXM = 0:
(dma) is not sign-extended
Affected by: Affects:
OVM, SXM, and TRM C and OV

The contents of the data memory address (dma) are shifted left from 0 to 15
bits, as defined by the 4 LSBs of TREG1, and subtracted from the contents of
the accumulator (ACC). The result is stored in the ACC. Sign extension on the
dma value is controlled by the SXM bit. The C bit is cleared, if the result of the
subtraction generates a borrow; otherwise, the C bit is set.

You can maintain software compatibility with the 'C2x by clearing the TRM bit.
This causes any 'C2x instruction that loads TREGO to write to all three TREGS.
Subsequent calls to the SUBT instruction will shift the value by the TREG1 val-
ue (which is the same as TREGO0), maintaining 'C5x object-code compatibility

with the 'C2x.

SUBT is an accumulator memory reference instruction (see Table 6-4).

1

6-269

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
DARAM 1 1 1 1+p

SARAM 1 1 1,2t 1+p

External 1+d 1+d 1+d 2+d+p

1 1f the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
DARAM n n n n+p

SARAM n n n, n+1t n+p

External n+nd n+nd n+nd n+1+p+nd

tif the operand and the code are in the same SARAM block

Example 1 SUBT DAT127 ;(DP = 4)
Before Instruction
Data Memory
2FFh | 06h|
TREGL | oshl
ACC | FDA5h|
C
Example 2 SUBT *
Before Instruction
ARP | 1]
AR1 | 800h|
Data Memory
800h | 01h|
TREG1 | 08h]
ACC oh|

|
c

6-270

Data Memory
2FFh

TREG1
ACC

ARP
AR1

Data Memory
800h

TREG1
ACC

c

o[q]

>
=
@
=
=1
7]
[
=
c
]
=3
o
=]

F7A5

>
=
@
=
=1
7]
[
=
c
]
o
=

ol |1

@ | |©

S|~ EiREARES

800

(o}) =]
[N
= i =3

FFFF FFOOh

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

Direct: TBLR dma
Indirect: TBLR {ind} [,ARN]

O0<dmacs127
0<sn<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing

15 14 13 12 11 10 9 8 7 6 3 2 1 0
[1 o 1 0o 0o 1 1 o]fo0] dma |
Indirect addressing

15 14 13 12 11 10 9 8 7 6 3 2 1 0

|10100110|1|

See Section 5.2

(PC)+1 - PC
(PFC) - MCS
(ACC(15-0)) -~ PFC

If (repeat counter) # 0:
(pma, addressed by PFC) - dma
Modify current AR and ARP as specified
(PFC)+1 - PFC
(repeat counter) -1 - repeat counter

Else:
(pma, addressed by PFC) - dma
Modify current AR and ARP as specified
(MCS) - PFC

None affected.

The contents of the program memory address (pma) are transferred to the
data memory address (dma). The pma is specified by the contents of the accu-
mulator low byte (ACCL) and the dma is specified by the instruction. A read
from program memory is followed by a write to data memory to complete the
instruction. When used with the RPT instruction, the TBLR instruction be-
comes asingle-cycle instruction, once the RPT pipeline is started, and the pro-
gram counter (PC) that contains the contents of the ACCL is incremented once

each cycle.

TBLR is an I/0 and data memory operation instruction (see Table 6-9).

1

6-271

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
Source: DARAM/ROM 3 3 3 3+Pcode
Destination: DARAM

Source: SARAM 3 3 3 3+Pcode
Destination: DARAM

Source: External 3+Psrc 3+Psrc 3+Psrc 3+PsrctPeode
Destination: DARAM

Source: DARAM/ROM 3 3 3,41 3+Pcode
Destination: SARAM

Source: SARAM 3 3 3,41 3+Pcode
Destination: SARAM

Source: External 3+Psrc 3+Psrc 3+Psrc, 4+PsrcT 3+PsrctPeode
Destination: SARAM

Source: DARAM/ROM 4+dyst 4+dgst 4+dyst 6+dgst+Peode
Destination: External

Source: SARAM 4+dygt 4+dggt A+dygt 6+dyst*tPcode
Destination: External

Source: External A+pgrctdyst A+pgrctdyst 4+Pgretdgst 6+Psrctdgst+Peode

Destination: External

1 1f the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution

Operand ROM DARAM SARAM External Memory
Source: DARAM/ROM n+2 n+2 n+2 N+2+Pcode
Destination: DARAM

Source: SARAM n+2 n+2 n+2 N+2+Peode
Destination: DARAM

Source: External N+2+NPgyc N+2+NPsrc N+2+NPgyc N+2+NPsrc+Peode
Destination: DARAM

Source: DARAM/ROM n+2 n+2 n+2, n+4t N+2+Pcode

Destination: SARAM

T1f the destination operand and the code are in the same SARAM block

% 1f both the source and the destination operands are in the same SARAM block

8 f both operands and the code are in the same SARAM block

6-272

Cycles for a Repeat (RPT) Execution (Continued)

Operand

External Memory

Source: SARAM
Destination: SARAM

Source: External
Destination: SARAM

Source: DARAM/ROM
Destination: External

Source: SARAM
Destination: External

Source: External
Destination: External

ROM DARAM SARAM

n+2, 2n¥ n+2, 2n¥ n+2, 2n¥,
2n+28

N+2+npsc N+2+NPgyc N+2+NPgyc,
n+4+npgyc

2n+2+ndgst 2n+2+ndggt 2n+2+ndyg;

2n+2+ndgg; 2n+2+ndgg; 2n+2+ndyg;

An+npgetndgsy AN+Npgetndys; 4An+Npgretndgsy

N+2+Peodes 2n#
N+2+NPs;c*Peode
2n+4+ndyst*Peode
2n+4+ndgst*Peode

4n+2+nPgyctNdys
*Pcode

1 If the destination operand and the code are in the same SARAM block
% 1f both the source and the destination operands are in the same SARAM block
8 |f both operands and the code are in the same SARAM block

Example 1

Example 2

TBLR DAT6 ;(DP = 4)

ACC

Program Memory
23h

Data Memory
206h

TBLR *,AR7

ARP
ARO
ACC

Program Memory
24h

Data Memory
300h

Before Instruction
| 23h|

ACC
Program Memory
| 306h| 23h
Data Memory
| 75h] 206h
Before Instruction
| ol ARP
| 300h] ARO
| 24h| ACC
Program Memory
| 307h]| 24h
Data Memory
| 75h| 300h

306

300

307

> >

= =

® ®

= =

=] =)

[%2] [%2]

= =

c c

(] (e}

= =

] o

w

N > o N |2
~ o) w
=2 > iR EAE R > =3 =2

307

6-273

Syntax

Operands

Opcode

Execution

Status Bits

Description

Words

6-274

Direct: TBLW dma
Indirect: TBLW {ind} [,LARN]

O0<dmac<127
0<n<7
ind: {* *+ *~ *0+ *0- *BRO+ *BRO-}

Direct addressing
15 14 13 12 11 10 9 8 7 6

| 1 0 1 0 0 1 1

A
o

Indirect addressing
15 14 13 12 11 10 9 8 7 6

3 2 1
dma
3 2 1

| 1 0 1 0 0 1 1 1| 1|

See Section 5.2

(PC)+1 — PC
(PFC) - MCS
(ACC(15-0)) — PFC

If (repeat counter) # 0:
(dma, addressed by PFC) - pma
Modify current AR and ARP as specified
(PFC)+1 - PFC
(repeat counter) -1 - repeat counter

Else:

(dma, addressed by PFC) - pma

Modify current AR and ARP as specified
(MCS) - PFC

None affected.

The contents of the data memory address (dma) are transferred to the pro-
gram memory address (pma). The dma is specified by the instruction and the
pma is specified by the contents of the accumulator low byte (ACCL). A read
from data memory is followed by a write to program memory to complete the
instruction. When used with the RPT instruction, the TBLW instruction be-
comes asingle-cycle instruction, once the RPT pipeline is started, and the pro-
gram counter (PC) that contains the contents of the ACCL isincremented once

each cycle.

TBLW is an I/O and data memory operation instruction (see Table 6-9).

1

Cycles

Cycles for a Single Instruction

Operand ROM DARAM SARAM External Memory
Source: DARAM 3 3 3 3+Pcode
Destination: DARAM

Source: SARAM 3 3 3 3+Pcode
Destination: DARAM

Source: External 3+dgre 3+dgre 3+dgre 3+dgretPeode
Destination: DARAM

Source: DARAM 3 3 3,4t 3+Pcode
Destination: SARAM

Source: SARAM 3 3 3,41 3+Pcode
Destination: SARAM

Source: External 3+dgyc 3+dgre 3+dgyc, 4+dseT 3+dsrctPeode
Destination: SARAM

Source: DARAM 4+pygst 4+pyst 4+Pgst 5+PgsttPeode
Destination: External

Source: SARAM 4+pyst 4+pyst 4+pyst 5+PgsttPcode
Destination: External

Source: External A+dgrc+Pyst 4+dgrc+Pgst A+dgrc+Pgst 5+dgrc+PysttPeode

D