
TMS320C55x Hardware Extensions
for Image/Video Applications

Programmer’s Reference

Preliminary

SPRU098
February 2002

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

iiiContents

Preface

Read This First

About This Manual

Welcome to the TMS320C55x Hardware Extensions for Image/Video Applica-
tions Programmer’s Guide. The hardware extensions on the C5510 and
C5509 DSPs strike the perfect balance of fixed-function performance with pro-
grammable flexibility, while achieving low-power consumption, and cost that
traditionally has been difficult to find in the video-processor market.

How to Use This Manual

The information in this document describes the TMS320C55x hardware ex-
tension in several different ways.

� Chapter 1 provides an overview of the hardware extensions.

� Chapter 2 discusses the DCT/IDCT hardware extension.

� Chapter 3 discusses the motion estimation hardware extension.

� Chapter 4 discusses the pixel interpolation hardware extension.

� Appendix A provides the source code for the hardware extension macros
in alphabetic order.

Related Documentation From Texas Instruments

iv

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface.

� The TMS320C55x is also referred to in this reference guide as the C55x.

Related Documentation From Texas Instruments

The following books describe the TMS320C55x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C55x Image/Video Processing Library Programmer’s Reference
(literature number SPRU037) describes a collection of high-level opti-
mized image/video processing functions. These functions include many
C-callable, assembly-optimized, general-purpose image/video process-
ing routines.

TMS320C55x Technical Overview (SPRU393). This overview is an
introduction to the TMS320C55x digital signal processor (DSP). The
TMS320C55x is the latest generation of fixed-point DSPs in the
TMS320C5000 DSP platform. Like the previous generations, this
processor is optimized for high performance and low-power operation.
This book describes the CPU architecture, low-power enhancements,
and embedded emulation features of the TMS320C55x.

TMS320C55x DSP CPU Reference Guide (literature number SPRU371)
describes the architecture, registers, and operation of the CPU for the
TMS320C55x digital signal processors (DSPs).

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the TMS320C55x DSP algebraic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the mnemonic
instruction set.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature
number SPRU374) describes the TMS320C55x DSP mnemonic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the algebraic
instruction set.

Notational Conventions / Related Documentation From Texas InstrumentsRelated Documentation From Texas Instruments

Trademarks

vRead This First

TMS320C55x Programmer’s Guide (literature number SPRU376) describes
ways to optimize C and assembly code for the TMS320C55x DSPs and
explains how to write code that uses special features and instructions of
the DSP.

TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

TMS320C55x Optimizing C Compiler User’s Guide (literature number
SPRU281) describes the TMS320C55x C Compiler. This C compiler
accepts ANSI standard C source code and produces assembly language
source code for TMS320C55x devices.

Trademarks

The Texas Instruments logo and Texas Instruments are registered trademarks
of Texas Instruments Incorporated. Trademarks of Texas Instruments include:
TI, Code Composer Studio, TMS320, TMS320C5000, and TMS320C55x.

Related Documentation From Texas Instruments / TrademarksRelated Documentation From Texas Instruments / Trademarks

Contents

vii

Contents

1 Introduction 1-1.
Provides an introduction to the TMS320C55x hardware extensions, a brief overview of their
features and benefits, and a listing of extension types.

1.1 Introduction to the C55x Hardware Extensions 1-2.
1.2 Features and Benefits 1-3.

2 DCT/IDCT Hardware Extension 2-1.
Describes the Discrete Cosine Transform (DCT) and Inverse Discrete Cosine Transform
(IDCT) hardware extensions, algorithms, and instruction set. Provides sample source code.

2.1 DCT/IDCT Algorithms 2-2.
2.2 DCT/IDCT Hardware Extension Description 2-3.
2.3 DCT/IDCT Hardware Extension Instruction Set 2-5.
2.4 Source Code 2-7.

3 Motion Estimation Hardware Extension 3-1.
Describes the Motion Estimation hardware extension, algorithm, and instruction set. Provides
sample source code.

3.1 Motion Estimation Algorithm 3-2.
3.2 Motion Estimation Hardware Extension Description 3-5.
3.3 Motion Estimation Hardware Extension Instruction Set 3-6.
3.4 Motion Estimation Macros 3-8.

3.4.1 Four Motion Vector (MV) and Pixel-Based Macros 3-8.
3.4.2 One Motion Vector and Pixel-Based Macros 3-11.
3.4.3 One Motion Vector and Half-Pixel-Based 3-14.

4 Pixel Interpolation Hardware Extension 4-1.
Describes the pixel interpolation hardware extension, algorithm, and instruction set. Provides
sample source code.

4.1 Pixel Interpolation Hardware Extension Algorithm 4-2.
4.1.1 Pixel Interpolation for Video Encoding 4-2.
4.1.2 Pixel Interpolation for Video Decoding 4-4.

4.2 Pixel Interpolation Hardware Extension Description 4-5.
4.3 Pixel Interpolation Hardware Extension Instruction Set 4-8.

4.3.1 Initialization Mode 4-9.
4.3.2 Running Mode 4-10.

4.4 Source Code 4-11.

Contents

viii

A Source Code for Hardware Extensions A-1.
Provides the source code for the C55x hardware extension macros.

A.1 HWE_DCT_8x8 A-2.
A.2 HWE_IDCT_8x8 A-4.
A.3 HWE_ME_1 A-6.
A.4 HWE_ME_2 A-7.
A.5 HWE_ME_4 A-8.
A.6 HWE_ME_4MV_even A-9.
A.7 HWE_ME_4MV_odd A-10.
A.8 HWE_ME_8 A-11.
A.9 HWE_ME_half_1 A-12.
A.10 HWE_ME_half_2 A-13.
A.11 HWE_ME_half_3 A-14.
A.12 HWE_ME_half_4 A-15.
A.13 HWE_PI_16x16_0 A-16.
A.14 HWE_PI_16x16_1 A-18.
A.15 HWE_PI_16x16_2 A-20.
A.16 HWE_PI_16x16_3 A-22.

Figures

ixContents

Figures

2–1 Process of 2-D 8x8 DCT 2-4.
2–2 Load-Compute-Store Sequence for 8x8 2-D DCT 2-8.
3–1 Motion Estimation WIth 4-Step Searching 3-3.
3–2 Computing Nine Ads for d[i] 3-4.
3–3 Motion Estimation With Four Motion Vectors 3-8.
3–4 Three Absolute Differences Between Three Blocks 3-12.
4–1 Pixel Interpolation for Video Encoder 4-2.
4–2 Pixel Interpolated Result for 2x2 Original Pixels 4-2.
4–3 Pixel Interpolation Process for the 4x4 Extended Block 4-3.
4–4 Pixel Interpolation for Video Decoder 4-4.
4–5 Pixel Interpolation Result Mixed WIth Original Pixels and Interpolated Pixels 4-5.
4–6 Swapping Pixel 2 and Pixel 3 4-6.
4–7 Pixel Interpolation Result of Separated Original Pixels and Interpolated Pixels 4-7.
4–8 Organization of Pixel Interpolation Instruction Code 4-8.

Tables

x

Tables

2–1 DCT/IDCT Hardware Extension Macros Performance by Memory Type 2-13.
3–1 Specification of Instruction Code in Process Mode 3-7.
3–2 Specification of Instruction Code in Initialization Mode 3-7.
4–1 Five Lower Controls Bits Impact on Registers of the Hardware Extensions 4-10.

Examples

2–1 Load-Compute-Store Sequence for 8x8 2-D DCT 2-9.
2–2 Using Assembly to Call DCT and IDCT Macros 2-13.
3–1 Motion Estimation by 4-Step Search 3-3.
3–2 _HWE_ME_4MV_even Macro 3-9.
3–3 Calling Motion Estimation Macros in Assembly Code 3-11.
3–4 Calling One Motion Vector and Pixel-Based Macros in Assembly Code 3-13.
3–5 Calling HWE_ME_half_1 and HWE_ME_half_2 in Assembly Code 3-15.
3–6 Calling HWE_ME_half_3 and HWE_ME_half_4 in Assembly Code 3-16.
4–1 Calling Pixel Interpolation in Video Encoder 4-11.

1-1

Introduction

This chapter provides an introduction to the TMS320C55x hardware exten-
sions, a brief overview of their features and benefits, and a listing of extension
components.

Topic Page

1.1 Introduction to the C55x Hardware Extensions 1-2.

1.2 Features and Benefits 1-3.

Chapter 1

Introduction to the C55x Hardware Extensions

 1-2

1.1 Introduction to the C55x Hardware Extensions

The TMS320C55x� DSP core was created with an open architecture that
allows the addition of application-specific hardware to boost performance on
specific algorithms. The hardware extensions on the C5510 and C5509 DSPs
strike the perfect balance of fixed function performance with programmable
flexibility, while achieving low-power consumption, and cost that traditionally
has been difficult to find in the video-processor market. The extensions allow
the C5510 and C5509 DSPs to deliver exceptional video codec performance
with more than half its bandwidth available for performing additional functions
such as color space conversion, user-interface operations, security, TCP/IP,
voice recognition and text-to-speech conversion. As a result, a single C5510
or C5509 DSP can power most portable digital video applications with proc-
essing headroom to spare.

Features and Benefits

1-3Introduction

1.2 Features and Benefits

In this document, a set of macros is provided in Appendix A to cover all C55x
hardware extensions. You can use hardware extension macros to implement
discrete cosine transform, motion estimation, or pixel interpolation.

For C programming, equivalent C-callable functions are provided as part of the
TMS320C55x IMGLIB. Refer to TMS320C55x Image/Video Processing Li-
brary Programmer’s Reference for more information.

The hardware extension features include:

� Efficient computation
� Low power consumption
� Availability in the 5509 and 5510 devices

There are three hardware extensions that are carefully tailored for the C55x
DSP generation.

� DCT/IDCT hardware extension
� Pixel interpolation hardware extension
� Motion estimation hardware extension

2-1

DCT/IDCT Hardware Extension

This chapter provides information on the Discrete Cosine Transform (DCT)
and Inverse Discrete Cosine Transform (IDCT) hardware extensions.

Topic Page

2.1 DCT/IDCT Algorithms 2-2.

2.2 DCT/IDCT Hardware Extension Description 2-3.

2.3 DCT/IDCT Hardware Extension Instruction Set 2-5.

2.4 Source Code 2-7.

Chapter 2

DCT/IDCT Algorithms

 2-2

2.1 DCT/IDCT Algorithms

The Discrete Cosine Transform (DCT) is described by the following equation:

I(u, v) �
�(u)�(v)

4

7
�

x � 0

7
�

y � 0
i(x, y) cos�(2x � 1)u�

16
� cos�(2y � 1)v�

16
�

where

z � 0 � �(z) � 1
2�

z � 0 � �(z) � 1

The Inverse Discrete Cosine Transform (IDCT) is described by the following
equation:

i(x, y) �
�(u)�(v)

4

7
�

u � 0

7
�

v � 0
I(u, v) cos�(2x � 1)u�

16
� cos�(2y � 1)v�

16
�

where

z � 0 � �(z) � 1
2�

z � 0 � �(z) � 1

DCT/IDCT Hardware Extension Description

2-3DCT/IDCT Hardware Extension

2.2 DCT/IDCT Hardware Extension Description

Fast DCT/IDCT algorithms have been widely studied and several optimized
versions exist for specific data sizes. These versions generally minimize the
number of chained multiplies in order to avoid the problem of accuracy, while
keeping the multiplier size small. The DCT/IDCT hardware extension
described here is meant to support two image block sizes, 4x4 pixels and 8x8
pixels. It uses a recursive scheme for 1-D 4/8 points DCT/IDCT that is adapted
to support 16-bit signed input data for both DCT and IDCT. Internal datapaths
are defined to maintain the accuracy, following H263 algorithm recommenda-
tions. The basic steps to complete a 2-D 4×4/8×8 DCT/IDCT are as follows:

1) Input data. For the DCT, the macro block (4×4/8×8) is read-in. For the
IDCT, DCT coefficient matrix is read-in.

2) Column DCT/IDCT process. Process is performed column by column
and temporary results are stored in an intermediate memory buffer row by
row. In this way, transposition of the intermediate memory buffer is implicit.

3) Row DCT/IDCT process. Data read from the intermediate buffer is pro-
cessed column by column again.

In order to get the maximum performance, the input block and intermediate
memory must be located in different DARAM banks.

The advantages of this method are to avoid explicit transposition, and to let the
column DCT/IDCT process and the row DCT/IDCT process contain almost the
same operations. The DCT process is illustrated in Figure 2–1 (IDCT is almost
identical to DCT process):

DCT/IDCT Hardware Extension Description

 2-4

Figure 2–1. Process of 2-D 8x8 DCT

p0,0 p0,1...p0,7
p1,0 p1,1...p1,7
...
...
...
p7,0 p7,1...p7,7

Column DCT
process

c7,0 c7,1...c7,7

c1,0 c1,1...c1,7
c0,0 c0,1...c0,7

...

...

...
process

Row DCT

i7,0 i7,1...i7,7

i1,0 i1,1...i1,7
i0,0 i0,1...i0,7

...

...

...

8 x 8 input macro block

8 x 8 output macro block

The sequence of operations to perform a DCT or IDCT is basically a set of calls
to the DCT/IDCT hardware extension instructions.

DCT/IDCT Hardware Extension Instruction Set

2-5DCT/IDCT Hardware Extension

2.3 DCT/IDCT Hardware Extension Instruction Set

All hardware extension instructions are organized into three different function-
al categories:

� load + computation + transfer to accumulators

ACy = copr(k8, ACx, Xmem, Ymem)

� computation + transfer to accumulators + memory write

ACy = copr(k8, ACx, ACy), Lmem=ACz

� Special instructions

ACy = copr(k8, ACx, ACy)

k8 Instruction code

Xmem, Ymem Input values

ACx, ACy Computed and intermediated results

Each column 8x8 (or 4x4) DCT/IDCT transform can be decomposed into 8
cycles numbered 1 to 8. The following gives the k8 values for each cycle of the
different DCT/IDCT transforms.

� The DCT or IDCT column is composed of these cycles and instructions:

Cycle 8x8 DCT 8x8 IDCT 4x4 DCT 4x4 IDCT

1 0x24 0x2d 0x3d 0x3d

2 0x20 0x2f 0x30 0x2f

3 0x21 0x2e 0x21 0x2e

4 0x33 0x3a 0x33 0x3a

5 0x32 0x3b 0x32 0x3b

6 0x26 0x29 0x36 0x39

7 0x27 0x28 0x37 0x38

8 0x25 0x2c 0x35 0x3c

� The DCT or IDCT row instructions are the same as the column DCT or
IDCT instructions for cycles 1 through 7. Cycle 8 differs and contains these
instructions:

Cycle 8x8 DCT 8x8 IDCT 4x4 DCT 4x4 IDCT

8 0x22 0x2a 0x31 0x34

DCT/IDCT Hardware Extension Instruction Set

 2-6

� Two special instructions that execute between row and column DCT/IDCT
processing are:

0x23 for 8x8 DCT

0x2b for 8x8 IDCT

Source Code

2-7DCT/IDCT Hardware Extension

2.4 Source Code

There are two macros to perform 8x8 2-D DCT/IDCT, HWE_DCT_8x8 and
HWE_IDCT_8x8. As an illustration of how to implement the hardware exten-
sion instruction, HWE_dct_8x8 is fully explained in this section. The source
code of HWE_IDCT_8x8 can be found in Appendix A.

In order to simplify the description of HWE_DCT_8x8, the input macro block
is denoted with X={xij}i,j=0..7 and output DCT coefficients with Y={yij}i,j=0..7.
The transposition of Column-DCT coefficients is denoted with T={tij}i,j=0..7. The
input buffer and intermediate buffer are necessary in the macro. The 8x8 input
buffer holds input macro block (MB). The first row (8 words) of the 9x8 inter-
mediate buffer holds temporary results, the remaining 8 rows (8x8=64words)
hold column-DCT coefficients.

A typical load-compute-store sequence, for an 8x8 2-D DCT for instance, is
illustrated in Figure 2–2.

Source Code

 2-8

Figure 2–2. Load-Compute-Store Sequence for 8x8 2-D DCT

Dual_load

Dual_load
Dual_load
Dual_load
Compute
Compute

Compute
Compute

Compute

Compute
Compute

Compute

Long_Store
Long_Store

Long_Store
Long_Store

Dual_load

Long_Store
Long_Store

Long_Store
Long_Store

Compute

Compute

Compute
Compute

Compute

Compute
Compute

Compute

Dual_load
Dual_load

Dual_load

Long_Store
Long_Store

Long_Store
Long_Store

Compute

Dual_load

Compute

Compute
Compute

Compute

Compute
Compute

Compute

Dual_load
Dual_load

Dual_load Compute_i(0) + Load_i+1(0,1)
Compute_i(1) + Store_i–1(0,1)

Compute_i(3) + Store_i–1(4,5)
Compute_i(2) + Store_i–1(2,3)

Compute_i(6) + Load_i+1(4,5)
Compute_i(7) + Load_i+1(6,7)

Compute_i(5) + Load_i+1(2,3)
Compute_i(4) + Store_i–1(6,7)

Iteration i–1

Iteration i

Iteration i+1

The code in Example 2–1 shows the sequence run. The text lines in Helvetica
are comments that have been inserted to help explain the instructions. The
commentary text must be preceded by a semicolon (;) or removed in order to
run the shown code.

Source Code

2-9DCT/IDCT Hardware Extension

Example 2–1. Load-Compute-Store Sequence for 8x8 2-D DCT

_HWE_DCT_8x8 .macro

Load column 0

AC0 = copr(#0x24,AC0,*(AR2+T0),*(AR1+T0))

Load x00, x10, AR1 points to x00, AR2 points to x10

Compute step_1. The computation is not valid because there is not any loaded
column in hardware extension.

AC1 = copr(#0x26,AC0,*(AR2+T0),*(AR1+T0))

Load x20, x30 AR1 points to x20, AR2 points to x30

Compute step_6. The computation is not valid because there is not any loaded
column in hardware extension.

AC0 = copr(#0x27,AC0,*(AR2+T0),*(AR1+T0))

Load x40, x50 AR1 points to x40, AR2 points to x50

Compute step_7. The computation is not valid because there is not any loaded
column in hardware extension.

AC1 = copr(#0x25,AC0,*(AR2–T1),*(AR1–T1))

Load x60, x70 AR1 points to x60, AR2 points to x70

Compute step_8. The computation is not valid because there is not any loaded
column in hardware extension.

AR2–T1 and AR1–T1 in the code line above let AR1 point to x01. AR2 points
to x11 after this instruction .

localrepeat{

See Figure 2–2. Load column i+1, execute column i .

AC0 = copr(#0x24,AC0,*(AR2+T0),*(AR1+T0))

Load x0(i+1), x1(i+1) . AR1 points to x0(i+1), AR2 points to x1(i+1)

Compute step_1 of column i.

AC1 = copr(#0x20,AC0,AC1) , dbl(*AR3+)=AC0 ;

Compute step_2 of column i and store t(i–1)0 and t(i–1)1 to the intermediate
buffer. When i=0, the two DCT coefficients stored to the intermediate buffer
are invalid because there are not any well-done Column-DCT coefficients in
hardware extension. So T00 and T01 are invalid.

Source Code

 2-10

Example 2–1.Load-Compute-Store Sequence for 8x8 2-D DCT (Continued)

AC0 = copr(#0x21,AC1,AC0) , dbl(*AR3+)=AC1

Compute step_3 of column i and store y2(i–1) and y3(i–1) to the intermediate
buffer. When i=0, the two DCT coefficients stored to the intermediate buffer are
invalid because there are not any well-done Column-DCT coefficients in hard-
ware extension. So T02 and T03 are invalid.

AC1 = copr(#0x33,AC0,AC1) , dbl(*AR3+)=AC0

Compute step_4 of column i and store y4(i–1) and y5(i–1) to the intermediate
buffer. When i=0, the two DCT coefficients stored to the intermediate buffer
are invalid because there are not any well-done Column-DCT coefficients in
hardware extension. So T04 and T05 are invalid.

AC0 = copr(#0x32,AC1,AC0) , dbl(*AR3+)=AC1

Compute step_5 of column i and store y6(i–1) and y7(i–1) to the intermediate
buffer. When i=0, the two DCT coefficients stored to the intermediate buffer are
invalid because there are not well-done Column-DCT coefficients in hardware
extension. So T06 and T07 are invalid.

The first row (8 words) in the intermediate buffer is not invalid, the Column-
DCT coefficients of input macro block start at the second row in the intermedi-
ate buffer.

AC1 = copr(#0x26,AC0,*(AR2+T0),*(AR1+T0))

Load x2(i+1), x3(i+1) AR1 points to x2(i+1), AR2 points to x3(i+1).

Compute step_6 of column i.

AC0 = copr(#0x27,AC0,*(AR2+T0),*(AR1+T0))

Load x4(i+1), x5(i+1) AR1 points to x4(i+1), AR2 points to x5(i+1).

Compute step_7 of column i.

AC1 = copr(#0x25,AC0,*(AR2–T1),*(AR1–T1))

Load x6(i+1), x7(i+1) AR1 points to x6(i+1), AR2 points to x7(i+1).

Compute step_8 of column i.

}

Load row 0, execute column 7, store column 6.

AC0 = copr(#0x24,AC0,*(AR5+T0),*(AR4+T0))

Load T00, T10 AR4 points to T00, AR5 points to T10

Compute step_1 of column 7.

Source Code

2-11DCT/IDCT Hardware Extension

Example 2–1.Load-Compute-Store Sequence for 8x8 2-D DCT (Continued)

AC1 = copr(#0x20,AC0,AC1), dbl(*AR3+)=AC0

Compute step_2 of column 7 and store T06 and T16 to the intermediate buffer.

AC0 = copr(#0x21,AC1,AC0), dbl(*AR3+)=AC1

Compute step_3 of column 7 and store T26 and T36 to the intermediate buffer.

AC1 = copr(#0x33,AC0,AC1), dbl(*AR3+)=AC0

Compute step_4 of column 7 and store T46 and T56 to the intermediate buffer.

AC0 = copr(#0x32,AC1,AC0), dbl(*AR3+)=AC1

Compute step_5 of column 7 and store T66 and T76 to the intermediate buffer.

AC1 = copr(#0x26,AC0,*(AR5+T0),*(AR4+T0))

Load T20, T30 AR4 points to T20, AR5 points to T30.

Compute step_6 of column 6.

BRC0 = #7

AC0 = copr(#0x27,AC0,*(AR5+T0),*(AR4+T0))

Load T40, T50 AR4 points to T40, AR5 points to T50.

Compute step_7 of column 6.

AC1 = copr(#0x25,AC0,*(AR5–T1),*(AR4–T1))

Load T60, T70 AR4 points to T60, AR5 points to T70.

Compute step_8 of column 6.

AC1 = copr(#0x23,AC0,AC1)

Special DCT instruction between column-DCT and row-DCT of MB.

Load row 1, execute row 0, store column 7.

AC0 = copr(#0x24,AC0,*(AR5+T0),*(AR4+T0))

Load T01, T11 AR4 points to T01, AR5 points to T11 .

Compute step_1 of row 0.

AC1 = copr(#0x20,AC0,AC1), dbl(*AR3+)=AC0

Compute step_2 of row 0 and store y07 and y17 to the intermediate buffer.

AC0 = copr(#0x21,AC1,AC0), dbl(*AR3+)=AC1

Compute step_3 of row 0 and store y27 and y37 to the intermediate buffer.

Source Code

 2-12

Example 2–1.Load-Compute-Store Sequence for 8x8 2-D DCT (Continued)

AC1 = copr(#0x33,AC0,AC1), dbl(*AR3+)=AC0

Compute step_4 of row 0 and store y47 and y57 to the intermediate buffer.

AC0 = copr(#0x32,AC1,AC0), dbl(*AR3+)=AC1

Compute step_5 of row 0 and store y67 and y77 to the intermediate buffer.

localrepeat {

Load row i+1, execute row i, store row i–1 (i>0) or store column 7 (i=0).

AC1 = copr(#0x26,AC0,*(AR5+T0),*(AR4+T0))

Load T2(i+1), T3(i+1) AR4 points to T20, AR5 points to T30.

Compute step_6 of row i.

AC0 = copr(#0x27,AC0,*(AR5+T0),*(AR4+T0))

Load T4(i+1)_, T5(i+1) AR4 points to T4 (i+1), AR5 points to T5 (i+1) .

Compute step_6 of row i.

AC1 = copr(#0x22,AC0,*(AR5–T1),*(AR4–T1))

Load T6(i+1)_, T7(i+1) AR4 points to T6 (i+1), AR5 points to T7 (i+1).

Compute step_7 of row i.

Load row i+2, execute row i+1, store line i.

AC0 = copr(#0x24,AC0,*(AR5+T0),*(AR4+T0))

Load T0(i+2), T1(i+2) AR4 points to T0(i+2), AR5 points to T1(i+2).

Compute step_1 of row i+1.

AC1 = copr(#0x20,AC0,AC1), dbl(*AR6+)=AC0

Compute step_2 of row i+1 and store y0i and y1i to the output buffer.

AC0 = copr(#0x21,AC1,AC0), dbl(*AR6+)=AC1

Compute step_3 of row i+1 and store y2i and y3i to the output buffer.

AC1 = copr(#0x33,AC0,AC1), dbl(*AR6+)=AC0

Compute step_4 of row i+1 and store y4i and y5i to the output buffer.

AC0 = copr(#0x32,AC1,AC0), dbl(*AR6+)=AC1

Compute step_5 of row i+1 and store y6i and y7i to the output buffer.

}

.endm

Source Code

2-13DCT/IDCT Hardware Extension

The code in Example 2–2 shows how to call the macros in assembly code.
Comments (preceded by ;) have been inserted to provide additional explana-
tion.

Example 2–2. Using Assembly to Call DCT and IDCT Macros
AR6 = #macro_block / AR6 = dct_coefficient

; Pointer to the input data for 2-D DCT/IDCT.

BRC0 = #6

AR1 = AR6

; Pointer to the even row of input data.

T0 = #0x10

; Jump to the next even row for AR1 or jump to the next odd row for AR2

AR2 = AR1 + #8

; Pointer to the odd row of input data

AR3 = #interm

; Pointer to the intermediated buffer holding column DCT/IDCT coefficients

AR4 = AR3 + #8

; Pointer to the even row of column DCT/IDCT result

AR5 = AR4 + #8

; Pointer to the odd row of column DCT/IDCT result

T1 = #0x2f

; Jump to the start point of next column

_HWA_DCT_8 /_HWA_IDCT_8

Implementation Notes

For maximum performance, the input data and output data must be located in
different DARAM banks.

Benchmarks

As shown in Table 2–1, macro performance differs in relation to which memory
type is used for the input data and intermediated buffer.

Table 2–1. DCT/IDCT Hardware Extension Macros Performance by Memory Type

Memory DARAM1 DARAM1 DARAM1 SARAM1

Input data/intermediate
buffer DARAM2 DARAM1 SARAM1 SARAM2

DCT 151 cycles 207 cycles 206 cycles 226 cycles

IDCT 149 cycles 205 cycles 204 cycles 223 cycles

3-1

Motion Estimation Hardware Extension

This chapter describes the motion estimation hardware extension, algorithm,
and instruction set, and provides sample source code.

Topic Page

3.1 Motion Estimation Algorithm 3-2.

3.2 Motion Estimation Hardware Extensions Description 3-5.

3.3 Motion Estimation Hardware Extension Instruction Set 3-6.

3.4 Motion Estimation Macros 3-8.

Chapter 3

Motion Estimation Algorithm

 3-2

3.1 Motion Estimation Algorithm

Motion estimation is the most time-consuming part in video compression algo-
rithms such as MPEG4 and H263. Basically, motion estimation is the tech-
nique to provide the minimum value of absolute difference (MAD) and the cor-
responding location (motion vector) between a 16x16 reference block and
some blocks in a searching window.

Suppose X = {xij}03i , j<16 is the 16x16 reference block and Y = {Yij}0<=i , j<16 is
the 16x16 macro block in the searching window. The macro block is some-
times called the search block. Sum of the absolute difference (SAD), or abso-
lute difference (AD) for short, is defined as �� � ��	���
������ � ����

Suppose that the center of the searching window (48x48 or 32x32) in the
image is ���� ��� and the center of the best-match searching block in the image

is ���� ���. Then, the motion vector is defined as follows:

�	��	�� � ��� ���� �� � ���.

There are several ways to categorize different motion estimation techniques.

First, the motion estimation techniques can be organized into two categories
based on the searching strategy:

� Motion estimation with full searching
� Motion estimation with fast searching

Second, the motion estimation techniques can be organized in two categories
based on the searching pixels:

� Pixel-based motion estimation
� Half-pixel-based motion estimation

Third, the motion estimation techniques can be organized in two categories
based on the number of returned motion vectors:

� One motion vector (1 MV)
� Four motion vectors (4 MV)

The motion estimation with fast searching includes the following strategies:

� 3-step search (distances of 4,2,1)
� 4-step search (distances of 8, 4, 2, 1)
� 4-step search plus half-pixel refinement (distances of 8, 4, 2, 1 and).

Motion estimation with full searching is straight forward. First, all absolute dif-
ferences between the 16x16 reference block and all macro blocks in the
searching window are calculated. Second, MAD and corresponding motion
vector are computed.

Example 3–1 illustrates the motion estimation by the 4-step search method.

Motion Estimation Algorithm

3-3Motion Estimation Hardware Extension

Example 3–1. Motion Estimation by 4-Step Search

(a) Initialization

d={8,4,2,1}

(b) Process:

for(i=0; i<4; i++)

{

Compute three upper absolute differences for d[i].

Compute three central absolute differences for d[i].

Compute three lower absolute differences for d[i].

Compute the minimum value of the 9-AD table (see Figure 3–1)

Start above process around the minimum location for the new dis-
tance d[i+1].

}

Figure 3–1. Motion Estimation With 4-Step Searching

Partial search
Resulting vector

d[i]

d[i]

Center of search block when using d = 8
Center of search block when using d = 4
Center of search block when using d = 2

Motion Estimation Algorithm

 3-4

Figure 3–2. Computing Nine Absolute Differences for d[i]

16 pixels

Offset

d[i]

Block 1
Block 2

Block 3

16 pixels

Block 4
Block 5
Block 6

Block 7
Block 8
Block 9

d[i]

Reference block (16x16 pixels)

16 pixels

Search image

16 pixels

Motion Estimation Hardware Extension Description

3-5Motion Estimation Hardware Extension

3.2 Motion Estimation Hardware Extension Description

In order to compute nine absolute differences for a given distance, three identi-
cal operators are called using a pipelined mode. This means that a full scan
is performed in three passes: the first pass computes the three upper points,
then the second pass computes the three central points, and at last the three
lower points are computed.

Motion Estimation Hardware Extension Instruction Set

 3-6

3.3 Motion Estimation Hardware Extension Instruction Set

The motion estimation hardware extension requires three 16-bit data for pixel
carriage and three 16-bit absolute differences (ADs) that are computed and
accumulated. Thus, the most useful motion estimation hardware extension
operational mode is:

[ACx, ACy] = copr (k8, ACx, ACy, Xmem, Ymem, Coeff)

k8 The five LSB-bits of k8 are instruction code.

Bit4 0 in non-reset mode

Bit3 1 enables AD3 (lower AD3

0 disables AD3

Bit2 1 enables AD2 (middle AD)

0 disables AD2

Bit1 1 enables AD1 (upper AD)

0 disables AD1

Bit0 Process data coming from an odd (1) or even (0)
line of the search window

ACx, ACy Accumulated ADs

Xmem, Ymem Pointer to a set of two adjacent pixels from the following
two rows of the searching window. Xmem carries pixels
from the odd line and Ymem carries pixels from the even
line of the searching window.

Coeff Pointer to two adjacent pixels from the reference window

The specification for the instruction code k8 is described in Table 3–1 and
Table 3–2.

In the initialization mode, all important parameters of motion estimation hard-
ware extension are set up including the searching distance and miscellaneous
absolute difference configuration. After the initialization mode, the instructions
belonging to the process mode are in charge of completing the motion estima-
tion process.

Motion Estimation Hardware Extension Instruction Set

3-7Motion Estimation Hardware Extension

Table 3–1. Specification of Instruction Code k8 in Process Mode

Hex Reset Bit
Bit4

AD3enable
Bit3

AD2 enable
Bit2

AD1 enable
Bit1

Odd or Even
Bit0

Description

00 0 0 0 0 0 All AD off; even line

01 0 0 0 0 1 All AD off; odd line

02 0 0 0 1 0 AD1 on; even line

03 0 0 0 1 1 AD1 on; odd line

06 0 0 1 1 0 AD1 and AD2 on; even line

07 0 0 1 1 1 AD1 and AD2 on; odd line

0E 0 1 1 1 0 All AD on; even line

0F 0 1 1 1 1 All AD off; odd line

0C 0 1 1 0 0 AD2 and AD3 on; even line

0D 0 1 1 0 1 AD2 and AD3 on; odd line

08 0 1 0 0 0 AD3 on; even line

09 0 1 0 0 1 AD3 on; odd line

Table 3–2. Specification of Instruction Code k8 in Initialization Mode

Hex Reset Bit Dist(2) Dist(1) Dist(0) Not Used Description

12 1 0 0 1 0 Set D to 1/2

14 1 0 1 0 0 All AD off; odd line

18 1 1 0 0 0 AD1 on; even line

1A 1 1 0 1 0 AD1 on; odd line

1C 1 1 1 0 0 AD1 and AD2 on; even line

Motion Estimation Macros

 3-8

3.4 Motion Estimation Macros

The different motion estimation techniques described in section 3.1 can be im-
plemented with several macros that use the motion estimation hardware ex-
tension instruction set.

The set of macros shown here can be classified in the following three different
functional categories:

� Four Motion Vector and pixel-based macros
� One Motion Vector and pixel-based macros
� One Motion Vector and half-pixel-based macros

As an illustration of how to implement the motion estimation hardware exten-
sion instructions, the macro types are explained in this section, all other motion
estimation macros can be found in Appendix A.

3.4.1 Four Motion Vector (MV) and Pixel-Based Macros

In the macros, the 16x16 reference block is divided into four 8x8 sub-blocks.
Then, the motion vector and the minimum absolute difference (MAD) for the
best-match 8x8 sub-block in the searching window are calculated (see
Figure 3–3). To calculate the four motion vectors, you need to call the macros
four times.

Figure 3–3. Motion Estimation With Four Motion Vectors

16 pixels

16 pixels

b0 b1

b2 b3

16x16
macro block

8x8
sub block

r1r0

r2 r3

16 pixels

16 pixels 8x8
sub block

search_window

48 x 48 pixels

16x16 reference block

Motion Estimation Macros

3-9Motion Estimation Hardware Extension

Two macros are needed to calculate the absolute difference between an 8x8
sub-block in the reference block and a 8x8 sub-block in the searching window.
For example, in Figure 3–3 r1 is a sub-block in 16x16 reference block and b1
is a sub-block in search_window.

� HWE_ME_4MV_even macro calculates the absolute difference if the first
pixel of the sub-block in the reference block is the first pixel of a 16-bit
word. The result is held by AC0.

� HWE_ME_4MV_even macro calculates the absolute difference if the first
pixel of the sub-block in the reference block is the second pixel of a 16-bit
word. The result is held by AC0.

Note:

The reference block and searching window must be aligned on a 32-bit
boundary. The reference block and searching window must be located in dif-
ferent DARAM banks for optimal cycle performance.

As an illustration of how to implement the Four Motion Vector and Pixel-Based
Macros, the macro HWE_ME_4MV_even is illustrated in Example 3–2.

In order to simplify the description of HWE_DCT_8x8, input sub-block in refer-
ence block is denoted with R={rij}i,j=0..7 and sub-block in the searching window
is denoted with S={sij}i,j=0..7.

The text in Helvetica is comments that have been inserted to help explain the
instructions, which are shown in Courier. The commentary text must be pre-
ceded by a semicolon (;) or removed in order to run the shown code.

Example 3–2. _HWE_ME_4MV_even Macro
BRC0 = #6 ;repeat 7 times

AC0,AC1 = copr(#0x5c,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

Set up the hardware extension, load s00 ,s01, r00 and r01 in the hardware exten-
sion, initialize SAD. AR0 points to s00 and s01. CDP points to r00 and r01.

AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

SAD1 is on, load s02 ,s03, r02 and r03 in the hardware extension, accumulate
SAD, AR0 points to s02and s03. CDP points to r02 and r03.

AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

SAD1 is on, load s04 ,s05, r04 and r05 in the hardware extension, accumulate
SAD, AR0 points to s04and s05. CDP points to r04 and r05.

AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*(CDP+T0)))

SAD1 is on, load s06 ,s07, r06 and r07 in the hardware extension, accumulate
SAD, AR0 points to s06 and s07. CDP points to r06 and r07. After this instruction,
AR0 points to the next row of s01. CDP points to the next row of r1.

Motion Estimation Macros

 3-10

Example 3–2._HWE_ME_4MV_even Macro (Continued)

localrepeat{

AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

SAD1 is on, load si0 ,si1, ri0 and ri1 in the hardware extension, accumulate SAD,
AR0 points to sioand si1. CDP points to ri0 and ri1. After this instruction, AR0
points to the next row of s1. CDP points to the next row of r1.

AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

SAD1 is on, load si2 ,si3, ri2 and ri3 in the hardware extension, accumulate SAD,
AR0 points to si2and si3. CDP points to ri2 and ri3. After this instruction, AR0
points to the next row of s1. CDP points to the next row of r1.

AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

SAD1 is on, load si4 ,si5, ri4 and ri5 in the hardware extension, accumulate SAD,
AR0 points to si4 and si5. CDP points to ri0 and ri1. After this instruction, AR0
points to the next row of s1. CDP points to the next row of r1.

AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*(CDP+T0)))

SAD1 is on, load si6si7 ri6 and ri7 in the hardware extension, accumulate SAD,
AR0 points to si6and si7. CDP points to ri6 and ri7. After this instruction, AR0
points to the next row of s1. CDP points to the next row of r1.

}

AC0,AC1 = copr(#0x43,AC0,AC1,*AR0,*AR1,coef(*CDP))

SAD1 is on. Accumulate SAD1 based on the pixels loaded in previous instruc-
tion.

AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

Reset

 .endm

The code in Example 3–3 shows how to call the macros in assembly code. The
comments provide additional explanation.

Motion Estimation Macros

3-11Motion Estimation Hardware Extension

Example 3–3. Calling Motion Estimation Macros in Assembly Code

AR0=search_window + offset + (8/2) ; Pointer on the 8x8 sub-block b1 of the 16x16
 ; macro block in the searching window.

AR1=AR0+48 ; Pointer on the next even rows of sub-block in
 ; searching window

CDP=ref_block +4 ; Pointer on the 8x8 sub-block r1 of the 16x16
 ; reference block

T0=5 ; Pitch on the reference 16x16 block

T1=44 ; Pitch on the search_window

HWE_ME_4MV_odd /

HWE_ME_4MV_even

Benchmark:

Assuming the reference block and searching window are located in different
DARAM banks:

HWE_ME_4MV_odd 42 cycles

HWE_ME_4MV_even 37 cycles

3.4.2 One Motion Vector and Pixel-Based Macros

Given a distance, these macros return three absolute differences between a
16x16 reference block and the three macro blocks in a searching window (typi-
cally of size 48x48 or 32x32). To compute the nine absolute differences for a
given distance, it is necessary to call the corresponding macro three times as
shown in the TMS320C55x Image/Video Processing Library Programmer’s
Reference.

Figure 3–4 shows how to calculate three absolute differences between three
blocks (block1, block2, and block3) and ref_block using the HWE_ME_8,
HWE_ME_4, HWE_ME_2, and HWE_ME_1 macros. The C55x IMGLIB pro-
vides the function IMG_mad_16x16_4step that calls these macros.

Motion Estimation Macros

 3-12

Figure 3–4. Three Absolute Differences Between Three Blocks

Offset

Block 1
Block 2

Block 3

16 pixels

16 pixels

search_distance

16 pixels

16 pixels

search_window ref_block

48 or
32 pixels

48 or 32 pixels

Here is the description of the macros.

� The HWE_ME_8 macro calculates the three absolute differences be-
tween the reference block and the three macro blocks in one row in the
searching window. The distance between the top-left pixel of adjacent
macro blocks is 8. Low part of AC0 holds AD1; High part of AC0 holds AD2;
Low part of AC1 holds AD3.

� The HWE_ME_4 macro calculates the three absolute differences be-
tween the reference block and the three macro blocks in one row in the
searching window. The distance between the top-left pixel of adjacent
macro blocks is 4. Low part of AC0 holds AD1; High part of AC0 holds AD2;
Low part of AC1 holds AD3.

� The HWE_ME_2 macro calculates the three absolute differences be-
tween the reference block and the three macro blocks in one row in search
window. The distance between the top-left pixel of adjacent macro blocks
is 2. Low part of AC0 holds AD1; High part of AC0 holds AD2; Low part of
AC1 holds AD3.

� The HWE_ME_1 macro calculates the three absolute differences be-
tween the reference block and the macro blocks block in one row in search
window. The distance between the top-left pixel of adjacent macro blocks
is 1. Low part of AC0 holds AD1; High part of AC0 holds AD2; Low part of
AC1 holds AD3.

Motion Estimation Macros

3-13Motion Estimation Hardware Extension

HWE_ME_8, _HWE_ME_4, and _HWE_ME_2 can only compute absolute
differences for the blocks that are the first pixel at the beginning of a word.

HWE_ME_1 can only compute absolute differences for the blocks that are the
second pixel at the beginning of a word.

The reference block and the search_window must be mapped at an even
address if the HWE_PI is directly on the search_window.

The source code can be found in Appendix A. Example 3–4 illustrates how to
call the above macros in assembly code.

Example 3–4. Calling One Motion Vector and Pixel-Based Macros in Assembly Code

BRC0 = #6 ; Set loop for the macro (all the time BRCx = 6)

CDP=#ref_block ; Pointer on the reference block

AR0=#search_window + offset ; Pointer on the first line of the block you have
 ; chosen in the search_window

AR1 = AR0 + #((3*16)/2) ; Pointer to the next line

T0 = #33 ; (search_window width unpacked)– 15

HWE_ME_8

HWE_ME_4

HWE_ME_2

HWE_ME_1

Benchmark:

Assuming the reference block and searching window are located in different
DARAM banks:

HWE_ME_8 159 cycles

HWE_ME_4 154 cycles

HWE_ME_2 150 cycles

HWE_ME_1 152 cycles

Motion Estimation Macros

 3-14

3.4.3 One Motion Vector and Half-Pixel-Based

Half-pixel motion estimation is needed in some video compression applica-
tion. Before half-pixel motion estimation, pixel interpolation is needed. (see
pixel interpolation section).

Here are the descriptions of corresponding macros:

� The HWE_ME_half_1 macro computes two absolute differences be-
tween three 16x16 blocks. One is the reference block packed (128 words)
and the two others are adjacent interpolated 6x16 blocks packed but orga-
nized by the pixel interpolation hardware extension output.

� The HWE_ME_half_2 macro computes the absolute differences between
two 16x16 blocks. One is the reference block packed (128 words) and the
other are interpolated 16x16 blocks packed but organized by the pixel in-
terpolation hardware extension output.

� The HWE_ME_half_3 macro computes two absolute differences be-
tween three 8x8 blocks. One is the reference block packed (128 words)
and the two others are interpolated 8x8 blocks packed but organized by
the pixel interpolation hardware extension output

� The HWE_ME_half_4 macro computes the absolute differences between
three 8x8 blocks. One is the reference block packed (128 words) and the
two adjacent others are interpolated 8x8 blocks packed but organized by
the pixel interpolation hardware extension output.

Example 3–5 and Example 3–6 illustrate how to call the macros in the assem-
bly code. The text in Helvetica is comments that have been inserted to help
explain the instructions, which are shown in Courier. The commentary text
must be preceded by a semicolon (;) or removed in order to run the shown
code.

Motion Estimation Macros

3-15Motion Estimation Hardware Extension

Example 3–5. Calling HWE_ME_half_1 and HWE_ME_half_2 in Assembly Code

Offset from the interpolated_pixels array base address to start on a particular
interpolated macro block.

CDP = #ref_block

Pointer on the reference block.

AR0 = AR0 + #interp_pixels

Pointer on the first line of the block you have chosen among the interpolated
blocks.

AR1 = AR0 + #36

36 is a constant independent of your implementation; it is fixed when using the
pixel interpolation hardware extension.

T0 = #42

42 is a constant independent of your implementation; it is fixed when using the
pixel interpolation hardware extension.

_HWE_ME_half_1 / HWE_ME_half2

Motion Estimation Macros

 3-16

Example 3–6. Calling HWE_ME_half_3 and HWE_ME_half_4 in Assembly Code

BRC0 = #2

 AR2 = AR2 + #ref_block

AR2 is a parameter of the macro it must be equal to CDP .

 CDP = AR2

AR0 = AR0 + #interp_pixels

Pointer in the first pixel of a particular block.

AR1 = AR0 + #36

Pointer to the next line. 36 is a constant independent of your implementation;
it is fixed by the pixel interpolation hardware extension.

 T1 = #2

2 is a constant independent of your implementation; it is fixed by the pixel inter-
polation hardware extension.

 T0 = #64

64 is a constant independent of your implementation; it is fixed by the pixel in-
terpolation hardware extension.

 DR2 = #4

4 is a constant independent of your implementation; it is fixed by the pixel inter-
polation hardware extension.

 HWE_ME_half_3

 HWE_ME_half_4

Benchmark:

HWE_ME_half_1 153 cycles

HWE_ME_half_2 152 cycles

HWE_ME_half_3 87 cycles

HWE_ME_half_4 84 cycles

4-1

Pixel Interpolation Hardware Extension

This chapter describes the pixel interpolation hardware extension, including
the algorithm, description, instruction set and sample source code.

Topic Page

4.1 Pixel Interpolation Hardware Extension Algorithm 4-2.

4.2 Pixel Interpolation Hardware Extension Description 4-5.

4.3 Pixel Interpolation Hardware Extension Instruction Set 4-8.

4.4 Source Code 4-11.

Chapter 4

Pixel Interpolation Hardware Extension Algorithm

 4-2

4.1 Pixel Interpolation Hardware Extension Algorithm
Pixel interpolation is an important part in video compression algorithms such
as MPEG4 and H263. Pixel interpolation can be used in video encoding and
video decoding.

4.1.1 Pixel Interpolation for Video Encoding

The hardware extension implements a half-pixel interpolation algorithm.
Three sub-pixels (U, M, R) belonging to a square of pixels (A, B, C, D) are com-
puted using the following equations:

 � �� �� ��
�

� � �� �� ���� �
 ��
�

� � ���� ��
�

Figure 4–1 illustrates the relationship of the pixels and sub-pixels in pixel inter-
polation for video encoding.

Figure 4–1. Pixel Interpolation for Video Encoder
A B

C D

U

M R

Depending on the controls given to the hardware extension during the init
phase, results can optionally be rounded by addition of 	 LSB (by setting Rnd
to 1), so that pixel resolution is kept.

To obtain a full pixel interpolation on a XxX pixels block, the pixel interpolation
equations have to be applied on the (X+2)x(X+2) corresponding block.
Figure 4–2 illustrates an example for X=2, from an original block of 2x2 pixels:

Figure 4–2. Pixel Interpolated Result for 2x2 Original Pixels

A B

C D

U

M R

Pixel Interpolation Hardware Extension Algorithm

4-3Pixel Interpolation Hardware Extension

In Figure 4–1 through Figure 4–6, the squares are interpolated pixels and the
circles are original pixels.

In order to get the interpolated result of a 2x2 original block (A, B, C, and D)
as shown in Figure 4–2, a 4x4 extended block is needed for the computation.
Figure 4–3 illustrates this 4x4 extended block, which consists of all open
circles.

Figure 4–3. Pixel Interpolation Process for the 4x4 Extended Block

A B

C D

U

M R

M R M R M R

M R M R M

M R MM RR M

U U

U U U

RR

U U U

Pixel interpolation
for 2x2 original block

R

During pixel interpolation of an original 16x16 pixel block, keep these items in
mind:

� The macros do not operate in a 16x16 original macro block, but in a 18x18
extended block called Macro Block Extension (MBE).

� The pixel-interpolated block size is 33x33.

Pixel Interpolation Hardware Extension Algorithm

 4-4

4.1.2 Pixel Interpolation for Video Decoding

In the decoder part of the video algorithm, a half pixel best matching macro
block must be computed. It is built with the best matching macro block at d=1
and a half pixel motion vector, result of the motion estimation at d=1/2. The
hardware extension also has a decoding functionality to reconstruct it. Only
one of the three computations (U, M, or R) is needed. The hardware has
enough resources to process two identical computations in parallel each
cycle. In Figure 4–4, only the M pixels are computed by the hardware exten-
sion. The selection of the M pixels is determined by the motion vector.

Figure 4–4. Pixel Interpolation for Video Decoder

M

A

M
B

M

C

M

D

Pixel Interpolation Hardware Extension Description

4-5Pixel Interpolation Hardware Extension

4.2 Pixel Interpolation Hardware Extension Description

The block does not have to be stored locally. It is directly fetched from the full
image zone. The macro block to interpolate is 16x16 pixels.

The MBE(macro block + pixels extension) that must be fetched in order to in-
terpolate is 18x18 pixels.

Considering that read access in the memory is 32 bits, an 18x20 pixel block
(where 20 is the multiple of 4 that is the nearest to 18) must be fetched. These
conditions lead to four different alignment configurations for the MBE.

The four upper-left pixels of the MBE can be:

� Doubleword aligned: | o o o o |

� One byte right from Doubleword aligned: | o o o | o

� Two bytes right from Doubleword aligned: | o o | o o

� Three bytes right from Doubleword aligned: | o | o o o

To handle these four disalignment cases, a parameter passed to the accelera-
tor during the init phase defines which case is the current one. The correspond-
ing subprogram is executed (so four variants of the interpolation encoding rou-
tine will exist). It is assumed that a full image is organized in memory so the
first pixel of each line has the same alignment. The consequence is that the
first pixel of each line of the MBE also has the same alignment.

In the coding mode of the hardware extension, the interpolated zone is pro-
vided by the hardware extension as illustrated in Figure 4–5.

Figure 4–5. Number of Cycles for Interpolation Operation

A B

C D

U

M R

M R M R M R

M R M R M

M R MM RR M

U U

U U U

RR

RR

U U U

M

U

M

U

M

RR

RR

R

U

Limit of the 16x16 block

Cycle 1 Cycle 3

U

M RR

M RR

M

U

R

U
Cycle 2 Cycle 4

Cycle N+3

Cycle N+2Cycle N

Cycle N+1

Pixel Interpolation Hardware Extension Description

 4-6

Assuming that in Figure 4–5 N is equal to 19, a row of the interpolated block
is 36 (9�4) pixels long. Only the first 33 pixels are useful.

As you can see on the picture, the first line of the interpolated zone is useless.
So from a 36x34 window, only the lower 33x33 part corresponds to the interpo-
lated block you are interested in. The Cycle 1, Cycle 2... values do not take into
account the number of cycles needed to launch internal pipes of the hardware
extension.

In Figure 4–5 the interpolated pixels are mixed with original pixels. This is
problematic because in a video algorithm, a three absolute difference motion
estimation is based on the interpolated block. The first and third absolute differ-
ences are the comparison between the reference and 16x16 macro blocks
made of only M pixels. The second absolute difference is a comparison be-
tween the reference and a 16x16 macro block made of only R pixels. Because
the hardware extension fetches search pixels by words, having interpolated
and original pixels mixed makes the motion estimation impossible. That is why
the pixel interpolation hardware extension has an alternative output pixel orga-
nization where each type of pixels is contiguous: M pixels, R pixels, original
pixels, and U pixels.

This alternate method consists in swapping pixel 2 and pixel 3 of the output
of the hardware extension as shown in Figure 4–6.

Figure 4–6. Swapping Pixel 2 and Pixel 3

M R M RU U

Cycle 1 Cycle 2

Normal: Normal:

Alternate: Alternate:

Cycle 1

U U

Cycle 2

M RM R

With this method the ME can fetch, by 16-bit (two pixels) packets, either only
U pixels, or M pixels, or R pixels, or original pixels. The ME routine for d=1/2
supposes that the search zone is organized this way.

Finally, the alternate output of pixel interpolation for encoder is organized as
shown in Figure 4–7.

Pixel Interpolation Hardware Extension Description

4-7Pixel Interpolation Hardware Extension

Figure 4–7. Pixel Interpolation Result of Separated Original Pixels and Interpolated Pixels

U U

UU

UU

UU

UU

U

U

U

U

U

U

UU

OO

OO

OO

O O

OO

O O

O O

O O

O O

RRMM

MM R R

M

M

M

M

R R

R R

M

M

M

M

M

M

M

M

R R

R

R

R

R

R R

MM R R

OOUU

UU O O

Interpolated U pixels
corresponding to the

first line of original MBE

First line of the
original MBE

first line of original MBE
corresponding to the
Interpolated M pixels Interpolated R pixels

corresponding to the first
line of the original MBE

original MBE
Second line of the

pix_intet_block

Pixel Interpolation Hardware Extension Instruction Set

 4-8

4.3 Pixel Interpolation Hardware Extension Instruction Set

The pixel interpolation extension requires two 16-bit data for pixels carriage
and two 32-bit pixel carriage channels that write back results to internal accu-
mulators. Thus, the data flows used by the accelerator are of the kind:

� Loading pixels and compute

 ACy=copr(k8, ACx,Lmem)

� Loading pixels, compute, and store

 ACy=copr(k8,ACx,Lmem) || Lmem=ACz

k8 Instruction code

Lmem Carry 4 pixels along a line of the image block

ACx Carry the address of any internal register in read or write emula-
tion mode

ACy Interpolated pixels (output)

The instruction code K8 is organized as shown in Figure 4–8:

Figure 4–8. Organization of the Pixel Interpolation Instruction Code (K8)

Init field
(1 bit)

HWE select
(3 bits)

Control field
(4bits)

The upper three bits are used to select the hardware extension that is activated
for the current instruction. In this case, these three bits must be set to 000 so
the pixel interpolation hardware extension is on, while others are off. The five
lower bits allow sending controls to the hardware extension for the current
cycle.

When the Init field is set to 0, the Control field is useless, and the hardware
extension is in Init mode. Only the settings in ACx are useful in Init mode. Every
routine begins with an instruction with the 8 fields set to 0x00 (hardware exten-
sion pixel interpolation activated + Init mode). So before calling such a routine,
you must set ACx to the correct value.

When the Init field is set to 1, the hardware extension is in Running mode
and the K8 Control field sets the internal controls for the current cycle.

Pixel Interpolation Hardware Extension Instruction Set

4-9Pixel Interpolation Hardware Extension

4.3.1 Initialization Mode

The initialization of the pixel interpolation hardware extension sets several
controls inside the device. The main information that should to be set during
this stage is:

� Mode bit. The coder or decoder mode that the device works on.

When this bit is set to 1, the CODER mode is enabled.

When this bit is set to 0, the DECODER mode is enabled.

� Rounding bit. Which rounding is enabled for the computations.

When this bit is set to 1, the rounding method is the addition of a 	 LSB.

When this bit is set to 0, there is no rounding, just truncation of the results.

� Two vector/output bits. The half-pixel vector that is interesting (when de-
coder mode activated).

When these two bits are set to 01, the vector is the number 1. Its coordi-
nates are [–1/2;0]. It corresponds to the calculation of a U pixel.

When these two bits are set to 10, the vector is the number 2. Its coordi-
nates are [–1/2;–1/2]. It corresponds to the calculation of a M pixel.

When these two bits are set to 11, the vector is the number 3. Its coordi-
nates are [0;1/2]. It corresponds to the calculation of a R pixel.

These values are useful only in decoder mode. This field becomes the
Output Mode if Mode bit is set to 1. In this mode:

When these two bits are set to 00, the output management is the normal
one, where interpolated and original pixels are mixed.

When these two bits are set to any other value, the output management is
the alternate one, where both interpolated and original pixels are contigu-
ous.

� Two disalignment bits. The type of disalignment for the pixel interpola-
tion hardware extension.

These two bits describe four different disalignment cases. (See section
4.2 on page 4-5.)

At this time, the controls are updated with the values of the lower 5 bits of
the ACx of the current instruction, as follows:

Mode bit Bit 5 of ACx

Rounding bit Bit 4 of ACx

Vector bits Bits 3–2 of ACx

Disalignment bits Bits 1–0 of ACx

Pixel Interpolation Hardware Extension Instruction Set

 4-10

4.3.2 Running Mode

Running mode is set when the fifth bit of the controls field is set to 1. The
four lower bits are then exported to the hardware extension. These de-
vices are:

� Upper input shift registers
� Lower input shift registers
� Partial results registers
� Complete results registers

The four field bits affect the registers as shown in Table 4–1. These con-
trols combinations are needed in order to implement coder and decoder
pixel interpolation.

Table 4–1. Five Lower Control Bits Impact on Registers of the Hardware Extension

Five Lower
Control Bits of K8

Upper Input Shift
Registers

Lower Input Shift
Registers

Partial Results
Registers

Complete Re-
sults Registers

0x10 Load value, style 1 No Load No Load Load

0x11 No Load Load value, style 1 Load No Load

0x12 No Load No Load No Load Load

0x13 No Load No Load Load No Load

0x14 Load value, style 1 No Load Load No Load

0x15 No Load Load value, style 1 No Load Load

0x16 Load value, style 2 No Load No Load Load

0x17 No Load Load value, style 2 Load No Load

0x18 Load value, style 3 No Load No Load Load

0x19 No Load Load value, style 3 Load No Load

0x1A Load value, style 4 No Load Load No Load

0x1B No Load Load value, style 4 No Load Load

0x1C Load value, style 5 No Load Load No Load

0x1D No Load Load value, style 5 No Load Load

Source Code

4-11Pixel Interpolation Hardware Extension

4.4 Source Code

Only pixel interpolation for the encoder is discussed in this chapter. There are
four variants of the encoding routine. One variant for each possible case of dis-
agreement of the original MBE:

� HWE_PI_16x16_0
� HWE_PI_16x16_1
� HWE_PI_16x16_2
� HWE_PI_16x16_3

These four macros give the you enough options to implement pixel interpola-
tion in video encoder. It is not necessary to develop new pixel interpolation
hardware extension routines for video encoder. So, it is easy for you to skip
the details of these routines. You should focus how to use these routines cor-
rectly and efficiently. Many good examples can be found in TMS320C55x
Image/Video Processing Library Programmer’s Reference. The source code
of other routines can be found in Appendix A.

Example 4–1 shows how to call the listed macros in assembly code.

Example 4–1. Calling Pixel Interpolation in Video Encoder

 AR2 = #offset ; Offset from src buffer base addr

 ; Source

 AR2 = AR2 + #src1 ; First line src address

 T0 = #16 ; Jump of 2 WORDS to the next line

 AR3 = AR2 + #(48/2) ; Second line src address

 ; Destination

 AR0 = #dst ; First line stored value array addr

 AR1 = AR0 + #18 ; Second line stored value addr

 T1 = #0x14 ; Jump between two line of stored values

 AC0 = #0x35 ; Upper Rounding, Disalignment 1

 HWE_PI_16x16_1

 HWE_PI_16x16_2

 HWE_PI_16x16_3

 HWE_PI_16x16_4

A-1

Appendix A

Source Code for Hardware Extensions

This appendix provides the source code for the hardware extension macros
in alphabetic order.

Topic Page

A.1 HWE_DCT_8x8 A-2.

A.2 HWE_IDCT_8x8 A-4.

A.3 HWE_ME_1 A-6.

A.4 HWE_ME_2 A-7.

A.5 HWE_ME_4 A-8.

A.6 HWE_ME_4MV_even A-9.

A.7 HWE_ME_4MV_odd A-10.

A.8 HWE_ME_8 A-11.

A.9 HWE_ME_half_1 A-12.

A.10 HWE_ME_half_2 A-13.

A.11 HWE_ME_half_3 A-14.

A.12 HWE_ME_half_4 A-15.

A.13 HWE_PI_16x16_0 A-16.

A.14 HWE_PI_16x16_1 A-18.

A.15 HWE_PI_16x16_2 A-20.

A.16 HWE_PI_16x16_3 A-22.

Appendix A

HWE_DCT_8x8

 A-2

A.1 HWE_DCT_8x8
_HWE_DCT_8x8 .macro

; load column 0

 AC0 = copr(#0x24,AC0,*(AR2+T0),*(AR1+T0))

 AC1 = copr(#0x26,AC0,*(AR2+T0),*(AR1+T0))

 AC0 = copr(#0x27,AC0,*(AR2+T0),*(AR1+T0))

 AC1 = copr(#0x25,AC0,*(AR2–T1),*(AR1–T1))

 localrepeat{

; load column i+1, execute column i

 AC0 = copr(#0x24,AC0,*(AR2+T0),*(AR1+T0))

 AC1 = copr(#0x20,AC0,AC1) , dbl(*AR3+)=AC0

 AC0 = copr(#0x21,AC1,AC0) , dbl(*AR3+)=AC1

 AC1 = copr(#0x33,AC0,AC1) , dbl(*AR3+)=AC0

 AC0 = copr(#0x32,AC1,AC0) , dbl(*AR3+)=AC1

 AC1 = copr(#0x26,AC0,*(AR2+T0),*(AR1+T0))

 AC0 = copr(#0x27,AC0,*(AR2+T0),*(AR1+T0))

 AC1 = copr(#0x25,AC0,*(AR2–T1),*(AR1–T1))

 }

; load row 0, execute column 7, store column 6

 AC0 = copr(#0x24,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x20,AC0,AC1), dbl(*AR3+)=AC0

 AC0 = copr(#0x21,AC1,AC0), dbl(*AR3+)=AC1

 AC1 = copr(#0x33,AC0,AC1), dbl(*AR3+)=AC0

 AC0 = copr(#0x32,AC1,AC0), dbl(*AR3+)=AC1

 AC1 = copr(#0x26,AC0,*(AR5+T0),*(AR4+T0))

 BRC0 = #7

 AC0 = copr(#0x27,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x25,AC0,*(AR5–T1),*(AR4–T1))

; special DCT mode.

 AC1 = copr(#0x23,AC0,AC1)

; load row 1, execute row 0, store column 7

 AC0 = copr(#0x24,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x20,AC0,AC1), dbl(*AR3+)=AC0

 AC0 = copr(#0x21,AC1,AC0), dbl(*AR3+)=AC1

 AC1 = copr(#0x33,AC0,AC1), dbl(*AR3+)=AC0

HWE_DCT_8x8

A-3Source Code for Hardware Extensions

 AC0 = copr(#0x32,AC1,AC0), dbl(*AR3+)=AC1

 localrepeat {

; load row i+1, execute row i, store row i–1 (i>0) or store column 7 (i=0).

 AC1 = copr(#0x26,AC0,*(AR5+T0),*(AR4+T0))

 AC0 = copr(#0x27,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x22,AC0,*(AR5–T1),*(AR4–T1))

; load row i+2, execute row i+1, store line i.

 AC0 = copr(#0x24,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x20,AC0,AC1), dbl(*AR6+)=AC0

 AC0 = copr(#0x21,AC1,AC0), dbl(*AR6+)=AC1

 AC1 = copr(#0x33,AC0,AC1), dbl(*AR6+)=AC0

 AC0 = copr(#0x32,AC1,AC0), dbl(*AR6+)=AC1

 }

.endm

HWE_IDCT_8x8

 A-4

A.2 HWE_IDCT_8x8
_HWE_iDCT_8 .macro

; IDCT N=8

; load column 0

 AC0 = copr(#0x2d,AC0,*(AR2+T0),*(AR1+T0))

 AC1 = copr(#0x29,AC0,*(AR2+T0),*(AR1+T0))

 AC0 = copr(#0x28,AC0,*(AR2+T0),*(AR1+T0))

 AC1 = copr(#0x2c,AC0,*(AR2–T1),*(AR1–T1))

 localrepeat {

; load column i+1, execute column i

 AC0 = copr(#0x2d,AC0,*(AR2+T0),*(AR1+T0))

 AC1 = copr(#0x2f,AC0,AC1) , dbl(*AR3+)=AC0

 AC0 = copr(#0x2e,AC1,AC0) , dbl(*AR3+)=AC1

 AC1 = copr(#0x3a,AC0,AC1) , dbl(*AR3+)=AC0

 AC0 = copr(#0x3b,AC1,AC0) , dbl(*AR3+)=AC1

 AC1 = copr(#0x29,AC0,*(AR2+T0),*(AR1+T0))

 AC0 = copr(#0x28,AC0,*(AR2+T0),*(AR1+T0))

 AC1 = copr(#0x2c,AC0,*(AR2–T1),*(AR1–T1))

 }

; load line 0, execute column 7, store column 6

 AC0 = copr(#0x2d,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x2f,AC0,AC1), dbl(*AR3+)=AC0

 AC0 = copr(#0x2e,AC1,AC0), dbl(*AR3+)=AC1

 AC1 = copr(#0x3a,AC0,AC1), dbl(*AR3+)=AC0

 AC0 = copr(#0x3b,AC1,AC0), dbl(*AR3+)=AC1

 AC1 = copr(#0x29,AC0,*(AR5+T0),*(AR4+T0))

 BRC0 = #7

 AC0 = copr(#0x28,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x2c,AC0,*(AR5–T1),*(AR4–T1))

; special IDCT mode

 AC1 = copr(#0x2b,AC0,AC1)

; load line 1, execute line 0, store column 7

 AC0 = copr(#0x2d,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x2f,AC0,AC1), dbl(*AR3+)=AC0

 AC0 = copr(#0x2e,AC1,AC0), dbl(*AR3+)=AC1

HWE_IDCT_8x8

A-5Source Code for Hardware Extensions

 AC1 = copr(#0x3a,AC0,AC1), dbl(*AR3+)=AC0

 AC0 = copr(#0x3b,AC1,AC0), dbl(*AR3+)=AC1

 localrepeat {

; load line i+1, execute line i, store line i–1 (i>0) or store column 7 (i=0)

 AC1 = copr(#0x29,AC0,*(AR5+T0),*(AR4+T0))

 AC0 = copr(#0x28,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x2a,AC0,*(AR5–T1),*(AR4–T1))

; load line i+2, execute line i+1, store line i

 AC0 = copr(#0x2d,AC0,*(AR5+T0),*(AR4+T0))

 AC1 = copr(#0x2f,AC0,AC1), dbl(*AR6+)=AC0

 AC0 = copr(#0x2e,AC1,AC0), dbl(*AR6+)=AC1

 AC1 = copr(#0x3a,AC0,AC1), dbl(*AR6+)=AC0

 AC0 = copr(#0x3b,AC1,AC0), dbl(*AR6+)=AC1

 }

 .endm

HWE_ME_1

 A-6

A.3 HWE_ME_1
_HWE_ME_1 .macro

 .noremark 5579

 BRC1 = #6

 AC0,AC1 = copr(#0x54,AC0,AC1,*AR0+,*AR1,coef(*CDP))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

localrepeat {

 repeat(#0x4) ; repeat 5 times

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4e,AC0,AC1,*(AR0+T0),*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 repeat(#0x4) ; repeat 5 times

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*(AR1+T0),coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 }

 repeat(#0x7) ; repeat 8 times

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x49,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 .remark 5579

 .endm

HWE_ME_2

A-7Source Code for Hardware Extensions

A.4 HWE_ME_2
_HWE_ME_2 .macro

 .noremark 5579

 BRC1 = #6

 AC0,AC1 = copr(#0x58,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

localrepeat {

 repeat(#0x5) ; repeat 6 times

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4e,AC0,AC1,*(AR0+T0),*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 repeat(#0x5) ; repeat 6 times

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*(AR1+T0),coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 }

 repeat(#0x7) ; repeat 8 times

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4d,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x49,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 .remark 5579

 .endm

HWE_ME_4

 A-8

A.5 HWE_ME_4
_HWE_ME_4 .macro

 .noremark 5579

;BRC0 = #6

 AC0,AC1 = copr(#0x5a,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

localrepeat {

 repeat(#0x5) ; repeat 6 times

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4e,AC0,AC1,*(AR0+T0),*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 repeat(#0x5) ; repeat 6 times

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*(AR1+T0),coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 }repeat(#0x7) ; repeat 8 times

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4d,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x4d,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x49,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x49,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 .remark 5579

 .endm

HWE_ME_4MV_even

A-9Source Code for Hardware Extensions

A.6 HWE_ME_4MV_even
 BRC0 = #6 ;repeat 7 times

 AC0,AC1 = copr(#0x5c,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*(CDP+T0)))

localrepeat{

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*(CDP+T0)))

 }

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0,*AR1,coef(*CDP))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 ; reset

 .endm

HWE_ME_4MV_odd

 A-10

A.7 HWE_ME_4MV_odd
_HWE_ME_4MV_odd .macro

 BRC0 = #2 ;repeat 3 times

 AC0,AC1 = copr(#0x54,AC0,AC1,*AR0+,*AR1,coef(*CDP)) ;init

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1+,coef(*(CDP+T0)))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0,*AR1+,coef(*CDP+))

 localrepeat{

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0+,*(AR1+T1),coef(*(CDP+T0)))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1+,coef(*(CDP+T0)))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0,*AR1+,coef(*CDP+))

 }

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0+,*(AR1+T1),coef(*CDP))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 .endm

HWE_ME_8

A-11Source Code for Hardware Extensions

A.8 HWE_ME_8
_HWE_ME_8 .macro

 .noremark 5579

;BRC0 = #6 ; repeat 7 times

 AC0,AC1 = copr(#0x5c,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0+,*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 localrepeat {

 repeat(#0x5) ; repeat 6 times

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4e,AC0,AC1,*(AR0+T0),*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 repeat(#0x5) ; repeat 6 times

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*(AR1+T0),coef(*CDP+))

 AC0,AC1 = copr(#0x4f,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 repeat(#0x7) ; repeat 8 times

 AC0,AC1 = copr(#0x4e,AC0,AC1,*AR0+,*AR1+,coef(*CDP+))

 repeat(#0x3) ; repeat 4 times

 AC0,AC1 = copr(#0x4d,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x49,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x49,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x49,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x49,AC0,AC1,*AR0,*AR1+,coef(*CDP))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 .remark 5579

 .endm

HWE_ME_half_1

 A-12

A.9 HWE_ME_half_1
_HWE_ME_half_1 .macro

 T1 = #2

 BRC0 = #6

 AC0,AC1 = copr(#0x52,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 ;repeat(#0x6)

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

localrepeat {

 repeat(#0x4) ; repeat 5 times

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T0),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 repeat(#0x4) ; repeat 5 times

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*(AR1+T0),coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 }repeat(#0x7) ; repeat 8 times

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x45,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 .endm

HWE_ME_half_2

A-13Source Code for Hardware Extensions

A.10 HWE_ME_half_2
_HWE_ME_half_2 .macro

 T1 = #2

 BRC0 = #6

 AC0,AC1 = copr(#0x52,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 repeat(#0x6)

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

localrepeat {

 repeat(#0x4) ; repeat 5 times

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T0),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 repeat(#0x4) ; repeat 5 times

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*(AR1+T0),coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

}

 repeat(#0x7) ; repeat 8 times

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 .endm

HWE_ME_half_3

 A-14

A.11 HWE_ME_half_3
HWE_ME_half_3 .macro

 AC0,AC1 = copr(#0x52,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AR2 = CDP

 AR2 = AR2 + DR2

 CDP = AR2

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

localrepeat {

 AC0,AC1 = copr(#0x46,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T0),*(AR1+T1),coef(*CDP+))

 AR2 = CDP

 AR2 = AR2 + DR2

 CDP = AR2

 AC0,AC1 = copr(#0x46,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x47,AC0,AC1,*(AR0+T1),*(AR1+T0),coef(*CDP+))

 AR2 = CDP

 AR2 = AR2 + DR2

 CDP = AR2

 AC0,AC1 = copr(#0x47,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 }

 AC0,AC1 = copr(#0x46,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x46,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x45,AC0,AC1,*AR0,*AR1,coef(*CDP))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 .endm

HWE_ME_half_4

A-15Source Code for Hardware Extensions

A.12 HWE_ME_half_4
_HWE_ME_half_4 .macro

 AC0,AC1 = copr(#0x52,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AR2 = CDP

 AR2 = AR2 + DR2

 CDP = AR2

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 localrepeat {

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T0),*(AR1+T1),coef(*CDP+))

 AR2 = CDP

 AR2 = AR2 + DR2

 CDP = AR2

 AC0,AC1 = copr(#0x42,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*AR1,coef(*CDP+))

 AC0,AC1 = copr(#0x43,AC0,AC1,*(AR0+T1),*(AR1+T0),coef(*CDP+))

 AR2 = CDP

 AR2 = AR2 + DR2

 CDP = AR2

 AC0,AC1 = copr(#0x43,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 }

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP+))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*(AR1+T1),coef(*CDP))

 AC0,AC1 = copr(#0x42,AC0,AC1,*AR0,*AR1,coef(*CDP))

 AC0,AC1 = copr(#0x40,AC0,AC1,*AR0,*AR1,coef(*CDP))

 .endm

HWE_PI_16x16_0

 A-16

A.13 HWE_PI_16x16_0
_HWE_PI_16x16_0 .macro

 BRC0 = #15 ; repeat 16 times

 AC1 = copr (#0x0 , AC0, dbl(*AR2+));

 AC1 = copr (#0x10, AC0, dbl(*AR3+));

 AC1 = copr (#0x11, AC0, AC1);

 AC1 = copr (#0x12, AC0, AC1);

 AC1 = copr (#0x13, AC0, dbl(*AR2+));

 AC1 = copr (#0x10, AC0, dbl(*AR3+));

 AC1 = copr (#0x11, AC0, AC1);

 AC1 = copr (#0x12, AC0, AC1);

 AC1 = copr (#0x13, AC0, dbl(*AR2+));

 AC1 = copr (#0x10, AC0, dbl(*AR3+));

 AC1 = copr (#0x11, AC0, AC1);

 AC1 = copr (#0x12, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*AR2+)),dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, dbl(*AR3+)),dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1),dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*(AR2+T0))),dbl(*AR1+)=AC1;

blockrepeat {

 AC1 = copr (#0x10, AC0, dbl(*(AR3+T0))),dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, dbl(*AR2+)),dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, dbl(*AR3+)),dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1),dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*AR2+)),dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, dbl(*AR3+)),dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1),dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*AR2+)),dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, dbl(*AR3+)),dbl(*(AR0+T1))=AC1;

 AC1 = copr (#0x11, AC0, AC1),dbl(*(AR1+T1))=AC1;

 AC1 = copr (#0x12, AC0, AC1),dbl(*AR0+)=AC1;

HWE_PI_16x16_0

A-17Source Code for Hardware Extensions

 AC1 = copr (#0x13, AC0, dbl(*AR2+)),dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, dbl(*AR3+)),dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1),dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*(AR2+T0))),dbl(*AR1+)=AC1;

 }

 AC1 = copr (#0x10, AC0, dbl(*(AR3+T0))),dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1),dbl(*AR1+)=AC1

 AC1 = copr (#0x10, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1),dbl(*AR1+)=AC1

 AC1 = copr (#0x12, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1),dbl(*AR1+)=AC1

 AC1 = copr (#0x10, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1),dbl(*AR1+)=AC1

 AC1 = copr (#0x12, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1),dbl(*AR1+)=AC1

 AC1 = copr (#0x10, AC0, AC1),dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1),dbl(*AR1+)=AC1

 .endm

HWE_PI_16x16_1

 A-18

A.14 HWE_PI_16x16_1
_HWE_PI_16x16_1 .macro

 AC1 = copr (#0x00 , AC0, dbl(*AR2+));

 AC1= copr (#0x16, AC0, dbl(*AR3+));

 AC1 = copr (#0x17, AC0, AC1);

 AC1 = copr (#0x12, AC0, dbl(*AR2+));

 AC1 = copr (#0x14, AC0, dbl(*AR3+));

 AC1 = copr (#0x15, AC0, AC1);

 AC1 = copr (#0x13, AC0, AC1);

 AC1 = copr (#0x12, AC0, dbl(*AR2+));

 AC1 = copr (#0x14, AC0, dbl(*AR3+));

 AC1 = copr (#0x15, AC0, AC1);

 AC1 = copr (#0x13, AC0, AC1)

 BRC0 = #15 ; repeat 16 times

blockrepeat {

 AC1 = copr (#0x12, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, dbl(*(AR2+T0))), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, dbl(*(AR3+T0))), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*AR2+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x16, AC0, dbl(*AR3+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x17, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*(AR0+T1))=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*(AR1+T1))=AC1;

 }

 AC1 = copr (#0x12, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

HWE_PI_16x16_1

A-19Source Code for Hardware Extensions

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x16, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x17, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 .endm

HWE_PI_16x16_2

 A-20

A.15 HWE_PI_16x16_2
_HWE_PI_16x16_2 .macro

 AC1 = copr (#0x0 , AC0, dbl(*AR2+));

 AC1 = copr (#0x18, AC0, dbl(*AR3+));

 AC1 = copr (#0x19, AC0, dbl(*AR2+));

 AC1 = copr (#0x10, AC0, dbl(*AR3+));

 AC1 = copr (#0x11, AC0, AC1);

 AC1 = copr (#0x12, AC0, AC1);

 AC1 = copr (#0x13, AC0, dbl(*AR2+));

 AC1 = copr (#0x10, AC0, dbl(*AR3+));

 AC1 = copr (#0x11, AC0, AC1);

 AC1 = copr (#0x12, AC0, AC1);

 AC1 = copr (#0x13, AC0, dbl(*AR2+))

 BRC0 = #15 ; repeat 16 times

 blockrepeat {

 AC1 = copr (#0x10, AC0, dbl(*AR3+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*(AR2+T0))), dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, dbl(*(AR3+T0))), dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*AR2+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x18, AC0, dbl(*AR3+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x19, AC0, dbl(*AR2+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, dbl(*AR3+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*AR2+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, dbl(*AR3+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*(AR0+T1))=AC1;

 AC1 = copr (#0x13, AC0, dbl(*AR2+)), dbl(*(AR1+T1))=AC1;

 }

 AC1 = copr (#0x10, AC0, dbl(*AR3+)), dbl(*AR0+)=AC1;

HWE_PI_16x16_2

A-21Source Code for Hardware Extensions

 AC1 = copr (#0x11, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, dbl(*AR2+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, dbl(*AR3+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x18, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x19, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x10, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x11, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 .endm

HWE_PI_16x16_3

 A-22

A.16 HWE_PI_16x16_3
_HWE_PI_16x16_3 .macro

 AC1 = copr (#0x0 , AC0, dbl(*AR2+))

 AC1 = copr (#0x1a, AC0, dbl(*AR3+))

 AC1 = copr (#0x1b, AC0, dbl(*AR2+))

 AC1 = copr (#0x14, AC0, dbl(*AR3+))

 AC1 = copr (#0x15, AC0, AC1)

 AC1 = copr (#0x13, AC0, AC1)

 AC1 = copr (#0x12, AC0, dbl(*AR2+))

 AC1 = copr (#0x14, AC0, dbl(*AR3+))

 AC1 = copr (#0x15, AC0, AC1)

 AC1 = copr (#0x13, AC0, AC1)

 AC1 = copr (#0x12, AC0, dbl(*AR2+))

 AC1 = copr (#0x14, AC0, dbl(*AR3+))

 BRC0 = #15 ; repeat 16 times

 blockrepeat {

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, dbl(*(AR2+T0))), dbl(*AR0+)=AC1;

 AC1 = copr (#0x1c, AC0, dbl(*(AR3+T0))), dbl(*AR1+)=AC1;

 AC1 = copr (#0x1d, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x1a, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x1b, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, dbl(*AR2+)), dbl(*(AR0+T1))=AC1;

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*(AR1+T1))=AC1;

 }

HWE_PI_16x16_3

A-23Source Code for Hardware Extensions

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x1c, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x1d, AC0, dbl(*AR2+)), dbl(*AR0+)=AC1;

 AC1 = copr (#0x1a, AC0, dbl(*AR3+)), dbl(*AR1+)=AC1;

 AC1 = copr (#0x1b, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x15, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x13, AC0, AC1), dbl(*AR1+)=AC1;

 AC1 = copr (#0x12, AC0, AC1), dbl(*AR0+)=AC1;

 AC1 = copr (#0x14, AC0, AC1), dbl(*AR1+)=AC1;

 .endm

Index

Index-1

Index

A
algorithm

discrete cosine transform 2-2
inverse discrete cosine transform 2-2
motion estimation 3-2
pixel interpolation 4-2 to 4-4

assembly examples
calling DCT and IDCT macros 2-13
calling HWE_ME_half_1 and HWE_ME_half_2

macros 3-15
calling HWE_ME_half_3 and HWE_ME_half_4

macros 3-16
calling pixel interpolation macros 4-11

D
DCT/IDCT hardware extension 2-1 to 2-14

algorithms 2-2
description 2-3
instruction set 2-5 to 2-6
source code 2-7 to 2-13

description of
DCT/IDCT hardware extension 2-3
motion estimation hardware extension 3-5
pixel interpolation hardware extension 4-5 to

4-7

disagreement bits for pixel interpolation 4-9

H
hardware extensions

DCT/IDCT 2-1 to 2-14
features and benefits 1-3
introduction 1-2
motion estimation 3-1 to 3-16
pixel interpolation 4-1 to 4-12

HWE_DCT_8x8
detailed example 2-9
source code A-2

HWE_IDCT_8x8 A-4
HWE_ME_1

description 3-12
source code A-6

HWE_ME_2
description 3-12
source code A-7

HWE_ME_4
description 3-12
source code A-8

HWE_ME_4MV_even
description 3-9
source code A-9

HWE_ME_4MV_odd A-10
HWE_ME_8

description 3-12
source code A-11

HWE_ME_half_1
calling in assembly 3-15
description 3-14
source code A-12

HWE_ME_half_2
calling in assembly 3-15
description 3-14
source code A-13

HWE_ME_half_3
calling in assembly 3-16
description 3-14
source code A-14

HWE_ME_half_4
calling in assembly 3-16
description 3-14
source code A-15

HWE_PI_16x16_0 A-16
HWE_PI_16x16_1 A-18

Index

Index-2

HWE_PI_16x16_2 A-20
HWE_PI_16x16_3 A-22

I
instruction code in initialization mode 3-7
instruction code in process mode 3-7
instruction set

DCT/IDCT 2-5 to 2-6
motion estimation 3-6 to 3-7
pixel interpolation 4-8 to 4-10

M
macros

DCT/IDCT 2-7
four motion vector and pixel-based 3-8 to 3-11
motion estimation 3-8 to 3-16
one motion vector and halg-pixel-based 3-14 to

3-16
one motion vector and pixel-based 3-11 to 3-13

mode bit for pixel interpolation 4-9
motion estimation hardware extension 3-1 to 3-16

algorithms 3-2
description 3-5
four motion vector and pixel-based mac-

ros 3-8 to 3-11
instruction code in initialization mode 3-7
instruction code in process mode 3-7
instruction set 3-6 to 3-7
macros 3-8 to 3-16
one motion vector and half-pixel-based macros

3-14 to 3-16
one motion vector and pixel-based macros

3-11 to 3-13
descriptions 3-12

N
notational conventions iv

P
pixel interpolation hardware extension 4-1 to 4-12

algorithm 4-2 to 4-4
for video decoding 4-4
for video encoding 4-2 to 4-4

description 4-5 to 4-7

pixel interpolation hardware extension (continued)
disagreement bits 4-9
initialization controls 4-9
mode bit 4-9
instruction set 4-8 to 4-10
result mixed with original and interpolated pixels

4-5
result of separated original and interpolated

pixels 4-7
rounding bit 4-9
running mode 4-10
source code 4-11
swapping pixels 4-6
vector/output bits 4-9

R
related documentation from Texas Instruments iv
rounding bit for pixel interpolation 4-9
running mode for pixel interpolation 4-10

S
source code

DCT/IDCT 2-7 to 2-13
hardware extension macros A-1
HWE_DCT_8x8 A-2
HWE_IDCT_8x8 A-4
HWE_ME_1 A-6
HWE_ME_2 A-7
HWE_ME_4 A-8
HWE_ME_4_even A-9
HWE_ME_4_odd A-10
HWE_ME_8 A-11
HWE_ME_half_1 A-12
HWE_ME_half_2 A-13
HWE_ME_half_3 A-14
HWE_ME_half_4 A-15
HWE_PI_16x16_0 A-16
HWE_PI_16x16_1 A-18
HWE_PI_16x16_2 A-20
HWE_PI_16x16_3 A-22
pixel interpolation 4-11

V
vector/output bits for pixel interpolation 4-9
video decoding algorithm 4-4
video encoding algorithm 4-4

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Examples
	Introduction
	Introduction to the C55x Hardware Extensions
	Features and Benefits

	DCT/IDCT Hardware Extension
	DCT/IDCT Algorithms
	DCT/IDCT Hardware Extension Description
	DCT/IDCT Hardware Extension Instruction Set
	Source Code

	Motion Estimation Hardware Extension
	Motion Estimation Algorithm
	Motion Estimation Hardware Extension Description
	Motion Estimation Hardware Extension Instruction Set
	Motion Estimation Macros
	Four Motion Vector (MV) and Pixel-Based Macros
	One Motion Vector and Pixel-Based Macros
	One Motion Vector and Half-Pixel-Based

	Pixel Interpolation Hardware Extension
	Pixel Interpolation Hardware Extension Algorithm
	Pixel Interpolation for Video Encoding
	Pixel Interpolation for Video Decoding

	Pixel Interpolation Hardware Extension Description
	Pixel Interpolation Hardware Extension Instruction Set
	Initialization Mode
	Running Mode

	Source Code

	Source Code for Hardware Extensions
	HWE_DCT_8x8
	HWE_IDCT_8x8
	HWE_ME_1
	HWE_ME_2
	HWE_ME_4
	HWE_ME_4MV_even
	HWE_ME_4MV_odd
	HWE_ME_8
	HWE_ME_half_1
	HWE_ME_half_2
	HWE_ME_half_3
	HWE_ME_half_4
	HWE_PI_16x16_0
	HWE_PI_16x16_1
	HWE_PI_16x16_2
	HWE_PI_16x16_3

	Index

