
TMS320C54x
Optimizing C/C++ Compiler

User’s Guide

Literature Number: SPRU103G
October 2002

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2002, Texas Instruments Incorporated

vRead This First

Preface

Read This First

About This Manual

The TMS320C54x Optimizing C/C++ Compiler User’s Guide explains how to
use these compiler tools:

� Compiler
� Optimizer
� Library-build utility
� C++ name demangler

The TMS320C54x C/C++ compiler accepts C and C++ code conforming to
the International Organization for Standardization (ISO) standards for these
languages, and produces assembly language source code for the
TMS320C55x device. The compiler supports the 1989 version of the C lan-
guage.

This user’s guide discusses the characteristics of the C/C++ compiler. It
assumes that you already know how to write C programs. The C Programming
Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie,
describes C based on the ISO C standard. You can use the Kernighan and
Ritchie (hereafter referred to as K&R) book as a supplement to this manual.
References to K&R C (as opposed to ISO C) in this manual refer to the C lan-
guage as defined in the first edition of Kernighan and Ritchie’s The C Program-
ming Language.

Before you use the information about the C/C++ compiler in this user’s guide,
you should install the C/C++ compiler tools.

Notational Conventions

vi

Notational Conventions

This document uses the following conventions:

� The TMS320C54x device is referred to as C54x.

� Program listings, program examples, and interactive displays are shown
in a special typeface. Examples use a bold version of the
special typeface for emphasis; interactive displays use a bold version
of the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error mes-
sages, etc.).

Here is a sample of C code:

#ifdef NDEBUG
#define assert(ignore) ((void)0)
#else
#define assert(expr) ((void)((_expr) ? 0 : \

(printf(”Assertion failed, (”#_expr”), file %s, \
line %d\n, __FILE__, __LINE__), \
abort ())))

#endif

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface and parameters are in italics. Portions of a syntax that are in bold
face must be entered as shown; portions of a syntax that are in italics
describe the type of information that should be entered. Syntax that is en-
tered on a command line is centered in a bounded box:

cl500 [options] [filenames] [-z [link_options] [object files]]

Syntax used in a text file is left justified in a bounded box:

inline return-type function-name (parameter declarations) { function }

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. This is an example of a command
that has an optional parameter:

cl500 [options] [filenames] [-z [link_options] [object files]]

The cl500 command has several optional parameters.

� Braces ({ and }) indicate that you must choose one of the parameters
within the braces; you don’t enter the braces themselves. This is an exam-
ple of a command with braces that are not included in the actual syntax
but indicate that you must specify either the -c or -cr option:

lnk500 {-c | -cr} filenames [-o name.out] -l libraryname

Related Documentation From Texas Instruments

viiRead This First

Related Documentation From Texas Instruments

The following books describe the TMS320C54x and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments Litera-
ture Response Center at (800) 477-8924. When ordering, please identify the
book by its title and literature number (located on the title page).

TMS320C54x DSP Reference Set, Volume 1: CPU (literature number
SPRU131) describes the TMS320C54x 16-bit fixed-point
general-purpose digital signal processors. Covered are its architecture,
internal register structure, data and program addressing, and the
instruction pipeline. Also includes development support information,
parts lists, and design considerations for using the XDS510 emulator.

TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction Set
(literature number SPRU172) describes the TMS320C54x digital
signal processor mnemonic instructions individually. Also includes a
summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction Set
(literature number SPRU179) describes the TMS320C54x digital
signal processor algebraic instructions individually. Also includes a
summary of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 4: Applications Guide
(literature number SPRU173) describes software and hardware
applications for the TMS320C54x digital signal processor. Also
includes development support information, parts lists, and design
considerations for using the XDS510 emulator.

TMS320C54x DSP Reference Set, Volume 5: Enhanced Peripherals
(literature number SPRU302) describes the enhanced peripherals
available on the TMS320C54x digital signal processors. Includes the
multichannel buffered serial ports (McBSPs), direct memory access
(DMA) controller, interprocessor communications, and the HPI-8 and
HPI-16 host port interfaces.

TMS320C54x Assembly Language Tools User’s Guide (literature number
SPRU102) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler di-
rectives, macros, common object file format, and symbolic debugging di-
rectives for the TMS320C54x generation of devices.

Code Composer User’s Guide (literature number SPRU328) explains how to
use the Code Composer development environment to build and debug
embedded real-time DSP applications.

Related Documentation

viii

Related Documentation

You can use the following books to supplement this user’s guide:

ISO/IEC 9899:1999, International Standard - Programming Languages -
C (The C Standard), International Organization for Standardization

ISO/IEC 9899:1989, International Standard - Programming Languages -
C (The 1989 C Standard), International Organization for Standardiza-
tion

ANSI X3.159-1989, Programming Language - C (Alternate version of the
1989 C Standard), American National Standards Institute

ISO/IEC 14882-1998, International Standard - Programming Languages
- C++ (The C++ Standard), International Organization for Standardiza-
tion

C: A Reference Manual (fourth edition), by Samuel P. Harbison, and Guy L.
Steele Jr., published by Prentice-Hall, Englewood Cliffs, New Jersey,
1988.

The C Programming Language (second edition), by Brian W. Kernighan and
Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Strous-
tup, published by Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1990

The C++ Programming Language (second edition), Bjarne Stroustrup, pub-
lished by Addison-Wesley Publishing Company, Reading, Massachu-
setts, 1990

Trademarks

Code Composer Studio, TMS320C54x, and C54x are trademarks of Texas In-
struments.

Contents

ix

Contents

1 Introduction 1-1.
Provides an overview of the TMS320C54x software development tools specifically the
compiler.

1.1 Software Development Tools Overview 1-2.
1.2 C/C++ Compiler Overview 1-5.

1.2.1 ISO Standard 1-5.
1.2.2 Output Files 1-6.
1.2.3 Compiler Interface 1-6.
1.2.4 Compiler Operation 1-7.
1.2.5 Utilities 1-7.

1.3 The Compiler and Code Composer Studio 1-8.

2 Using the C/C++ Compiler 2-1.
Describes how to operate the compiler. Contains instructions for invoking the compiler, which
compiles, assembles, and links a source file. Discusses the interlist feature, compiler options,
and compiler errors.

2.1 About the Compiler 2-2.
2.2 Invoking the C/C++ Compiler 2-4.
2.3 Changing the Compiler’s Behavior With Options 2-5.

2.3.1 Frequently Used Options 2-14.
2.3.2 Specifying Filenames 2-17.
2.3.3 Changing How the Compiler Interprets Filenames

(-fa, -fc, -fg, -fo, and -fp Options) 2-18.
2.3.4 Changing How the Compiler Program Interprets

and Names Extensions (-e Options) 2-19.
2.3.5 Specifying Directories 2-20.
2.3.6 Options That Control the Assembler 2-21.

2.4 Using Environment Variables 2-23.
2.4.1 Specifying Directories (C_DIR and C54X_C_DIR) 2-23.
2.4.2 Setting Default Compiler Options

(C_OPTION and C54X_C_OPTION) 2-23.
2.5 Controlling the Preprocessor 2-25.

2.5.1 Predefined Macro Names 2-25.
2.5.2 The Search Path for #include Files 2-26.
2.5.3 Generating a Preprocessed Listing File (-ppo Option) 2-27.
2.5.4 Continuing Compilation After Preprocessing (-ppa Option) 2-27.

Contents

x

2.5.5 Generating a Preprocessed Listing File With Comments
(-ppc Option) 2-27.

2.5.6 Generating a Preprocessed Listing File With
Line-Control Information (-ppl Option) 2-28.

2.5.7 Generating Preprocessed Output for a Make Utility
(-ppd Option) 2-28.

2.5.8 Generating a List of Files Included With
the #include Directive (-ppi Option) 2-28.

2.6 Understanding Diagnostic Messages 2-29.
2.6.1 Controlling Diagnostics 2-31.
2.6.2 How You Can Use Diagnostic Suppression Options 2-32.
2.6.3 Other Messages 2-33.

2.7 Generating Cross-Reference Listing Information (-px Option) 2-34.
2.8 Generating a Raw Listing File (-pl Option) 2-35.
2.9 Using Inline Function Expansion 2-37.

2.9.1 Inlining Intrinsic Operators 2-37.
2.9.2 Automatic Inlining 2-37.
2.9.3 Unguarded Definition-Controlled Inlining 2-38.
2.9.4 Guarded Inlining and the _INLINE Preprocessor Symbol 2-39.
2.9.5 Inlining Restrictions 2-41.

2.10 Using Interlist 2-42.

3 Optimizing Your Code 3-1.
Describes how to optimize your C/C++ code, including such features as inlining and loop unroll-
ing. Also describes the types of optimizations that are performed when you use the optimizer.

3.1 Using the Optimizer 3-2.
3.2 Performing File-Level Optimization (-O3 Option) 3-4.

3.2.1 Controlling File-Level Optimization (-Ol Option) 3-4.
3.2.2 Creating an Optimization Information File (-on Option) 3-5.

3.3 Performing Program-Level Optimization (-pm and -O3 Options) 3-6.
3.3.1 Controlling Program-Level Optimization (-op Option) 3-6.
3.3.2 Optimization Considerations When Mixing C and Assembly 3-8.

3.4 Use Caution With asm Statements in Optimized Code 3-10.
3.5 Accessing Aliased Variables in Optimized Code 3-11.
3.6 Automatic Inline Expansion (-oi Option) 3-12.
3.7 Using Interlist With the Optimizer 3-13.
3.8 Debugging Optimized Code 3-15.

3.8.1 Debugging Optimized Code (-g, -gw, and -o Options) 3-15.
3.8.2 Profiling Optimized Code (-gp and -o Options) 3-16.

3.9 What Kind of Optimization Is Being Performed? 3-17.
3.9.1 Cost-Based Register Allocation 3-18.
3.9.2 Alias Disambiguation 3-18.
3.9.3 Branch Optimizations and Control-Flow Simplification 3-18.
3.9.4 Data Flow Optimizations 3-20.
3.9.5 Expression Simplification 3-20.

Contents

xiContents

3.9.6 Inline Expansion of Functions 3-22.
3.9.7 Induction Variables and Strength Reduction 3-23.
3.9.8 Loop-Invariant Code Motion 3-23.
3.9.9 Loop Rotation 3-23.
3.9.10 Tail Merging 3-23.
3.9.11 Autoincrement Addressing 3-25.
3.9.12 Repeat Blocks 3-26.
3.9.13 Delays, Branches, Calls, and Returns 3-26.
3.9.14 Algebraic Reordering/Symbolic Simplification/Constant Folding 3-28.

4 Linking C/C++ Code 4-1.
Describes how to link as a stand-alone program or with the compiler and how to meet the spe-
cial requirements of linking C/C++ code.

4.1 Invoking the Linker (-z Option) 4-2.
4.1.1 Invoking the Linker As a Separate Step 4-2.
4.1.2 Invoking the Linker As Part of the Compile Step 4-3.

4.2 Disabling the Linker (-c Compiler Option) 4-4.
4.3 Linker Options 4-5.
4.4 Controlling the Linking Process 4-7.

4.4.1 Linking With Runtime-Support Libraries 4-7.
4.4.2 Runtime Initialization 4-7.
4.4.3 Global Object Constructors 4-8.
4.4.4 Specifying the Type of Initialization 4-9.
4.4.5 Specifying Where to Allocate Sections in Memory 4-10.
4.4.6 A Sample Linker Command File 4-11.

5 TMS320C54x C/C++ Language 5-1.
Discusses the specific characteristics of the compiler as they relate to the ISO C specification.

5.1 Characteristics of TMS320C54x C 5-2.
5.1.1 Identifiers and Constants 5-2.
5.1.2 Data Types 5-3.
5.1.3 Conversions 5-3.
5.1.4 Expressions 5-3.
5.1.5 Declaration 5-3.
5.1.6 Preprocessor 5-4.

5.2 Characteristics of TMS320C54x C++ 5-5.
5.3 Data Types 5-6.
5.4 Keywords 5-7.

5.4.1 The const Keyword 5-7.
5.4.2 The ioport Keyword 5-8.
5.4.3 The interrupt Keyword 5-9.
5.4.4 The near and far Keywords 5-10.
5.4.5 The volatile Keyword 5-11.

5.5 Register Variables 5-12.

Contents

xii

5.6 Global Register Variables 5-13.
5.7 The asm Statement 5-15.
5.8 Pragma Directives 5-16.

5.8.1 The CODE_SECTION Pragma 5-16.
5.8.2 The DATA_SECTION Pragma 5-18.
5.8.3 The FUNC_CANNOT_INLINE Pragma 5-19.
5.8.4 The FUNC_EXT_CALLED Pragma 5-19.
5.8.5 The FUNC_IS_PURE Pragma 5-20.
5.8.6 The FUNC_IS_SYSTEM Pragma 5-21.
5.8.7 The FUNC_NEVER_RETURNS Pragma 5-21.
5.8.8 The FUNC_NO_GLOBAL_ASG Pragma 5-22.
5.8.9 The FUNC_NO_IND_ASG Pragma 5-22.
5.8.10 The IDENT Pragma 5-23.
5.8.11 The INTERRUPT Pragma 5-23.
5.8.12 The NO_INTERRUPT Pragma 5-24.

5.9 Generating Linknames 5-25.
5.10 Initializing Static and Global Variables 5-26.

5.10.1 Initializing Static and Global Variables With
the Const Type Qualifier 5-27.

5.11 Changing the ISO C Language Mode (-pk, -pr, and -ps Options) 5-28.
5.11.1 Compatibility With K&R C (-pk Option) 5-28.
5.11.2 Enabling Strict ISO Mode and Relaxed ISO Mode

(-ps and -pr Options) 5-30.
5.11.3 Enabling Embedded C++ Mode (-pe Option) 5-30.

5.12 Compiler Limits 5-31.

6 Run-Time Environment 6-1.
Contains technical information on how the compiler uses the C54x architecture. Discusses
memory, register, and function calling conventions, and system initialization. Provides the infor-
mation needed for interfacing assembly language to C/C++ programs.

6.1 Memory Model 6-2.
6.1.1 Sections 6-2.
6.1.2 C/C++ System Stack 6-4.
6.1.3 Allocating .const to Program Memory 6-4.
6.1.4 Dynamic Memory Allocation 6-6.
6.1.5 Initialization of Variables 6-6.
6.1.6 Allocating Memory for Static and Global Variables 6-7.
6.1.7 Field/Structure Alignment 6-7.

6.2 Character String Constants 6-8.
6.3 Register Conventions 6-9.

6.3.1 Status Registers 6-10.
6.3.2 Register Variables 6-11.

6.4 Function Structure and Calling Conventions 6-12.
6.4.1 How a Function Makes a Call 6-13.

Contents

xiiiContents

6.4.2 How a Called Function Responds 6-13.
6.4.3 Accessing Arguments and Locals 6-15.
6.4.4 Allocating the Frame and Using the 32-bit Memory

Read Instructions 6-15.
6.5 Interfacing C/C++ With Assembly Language 6-16.

6.5.1 Using Assembly Language Modules with C/C++ Code 6-16.
6.5.2 Accessing Assembly Language Variables From C/C++ 6-18.
6.5.3 Using Inline Assembly Language 6-21.
6.5.4 Using Intrinsics to Access Assembly Language Statements 6-22.

6.6 Interrupt Handling 6-28.
6.6.1 General Points About Interrupts 6-28.
6.6.2 Using C/C++ Interrupt Routines 6-29.
6.6.3 Saving Context on Interrupt Entry 6-29.

6.7 Integer Expression Analysis 6-30.
6.7.1 Arithmetic Overflow and Underflow 6-30.
6.7.2 Operations Evaluated With RTS Calls 6-30.
6.7.3 C Code Access to the Upper 16 Bits of 16-Bit Multiply 6-31.

6.8 Floating-Point Expression Analysis 6-32.
6.9 System Initialization 6-33.

6.9.1 Automatic Initialization of Variables 6-34.
6.9.2 Global Constructors 6-34.
6.9.3 Initialization Tables 6-34.
6.9.4 Autoinitialization of Variables at Run Time 6-37.
6.9.5 Autoinitialization of Variables at Load Time 6-38.

7 Run-Time-Support Functions 7-37.
Describes the libraries and header files included with theC/C++ compiler, as well as the macros,
functions, and types that they declare. Summarizes the run-time-support functions according
to category (header) and provides an alphabetical summary of the run-time-support functions.

7.1 Libraries 7-2.
7.1.1 Nonstandard Header Files in rts.src 7-2.
7.1.2 Modifying a Library Function 7-3.
7.1.3 Building a Library With Different Options 7-3.

7.2 The C I/O Functions 7-4.
7.2.1 Overview Of Low-Level I/O Implementation 7-5.
7.2.2 Adding a Device For C I/O 7-6.

7.3 Header Files 7-15.
7.3.1 Diagnostic Messages (assert.h/cassert) 7-16.
7.3.2 Character-Typing and Conversion (ctype.h/cctype) 7-16.
7.3.3 Error Reporting (errno.h/cerrno) 7-17.
7.3.4 Extended Addressing Functions (extaddr.h) 7-17.
7.3.5 Low-Level Input/Output Functions (file.h) 7-17.
7.3.6 Limits (float.h/cfloat and limits.h/climits) 7-18.
7.3.7 Floating-Point Math (math.h/cmath) 7-20.

Contents

xiv

7.3.8 Nonlocal Jumps (setjmp.h/csetjmp) 7-20.
7.3.9 Variable Arguments (stdarg.h/cstdarg) 7-20.
7.3.10 Standard Definitions (stddef.h/cstddef) 7-21.
7.3.11 Input/Output Functions (stdio.h/cstdio) 7-21.
7.3.12 General Utilities (stdlib.h/cstdlib) 7-22.
7.3.13 String Functions (string.h/cstring) 7-23.
7.3.14 Time Functions (time.h/ctime) 7-23.
7.3.15 Exception Handling (exception and stdexcept) 7-25.
7.3.16 Dynamic Memory Management (new) 7-25.
7.3.17 Run-Time Type Information (typeinfo) 7-25.

7.4 Summary of Run-Time-Support Functions and Macros 7-26.
7.5 Description of Run-Time-Support Functions and Macros 7-37.

8 Library-Build Utility 8-1.
Describes the utility that custom-makes run-time-support libraries for the options used to com-
pile code. You can use this utility to install header files in a directory and to create custom li-
braries from source archives.

8.1 Invoking the Library-Build Utility 8-2.
8.2 Library-Build Utility Options 8-3.
8.3 Options Summary 8-4.

9 C++ Name Demangler 9-1.
Describes the C++ name demangler and tells you how to invoke and use it.

9.1 Invoking the C++ Name Demangler 9-2.
9.2 C++ Name Demangler Options 9-2.
9.3 Sample Usage of the C++ Name Demangler 9-3.
9.4 9-5.

A Glossary A-1.
Defines terms and acronyms in this book.

Figures

xvContents

Figures

1-1 TMS320C54x Software Development Flow 1-2.
2-1 Overview of the C/C++ Compiler 2-3.
3-1 Compiling a C Program With the Optimizer 3-2.
6-1 Use of the Stack During a Function Call 6-12.
6-2 Intrinsics Header File, intrindefs.h 6-27.
6-3 Format of Initialization Records in the .cinit Section 6-35.
6-4 Format of Initialization Records in the .pinit Section 6-36.
6-5 Autoinitialization at Run Time 6-37.
6-6 Autoinitialization at Load Time 6-38.
7-1 Interaction of Data Structures in I/O Functions 7-5.
7-2 The First Three Streams in the Stream Table 7-6.

Tables

xvi

Tables

2-1 Compiler Options Summary 2-6.
2-2 Predefined Macro Names 2-25.
2-3 Raw Listing File Identifiers 2-35.
2-4 Raw Listing File Diagnostic Identifiers 2-35.
3-1 Options That You Can Use With -O3 3-4.
3-2 Selecting a Level for the -Ol Option 3-4.
3-3 Selecting a Level for the -on Option 3-5.
3-4 Selecting a Level for the -op Option 3-7.
3-5 Special Considerations When Using the -op Option 3-7.
4-1 Sections Created by the Compiler 4-10.
5-1 TMS320C54x C/C++ Data Types 5-6.
6-1 Summary of Sections and Memory Placement 6-3.
6-2 Register Use and Preservation Conventions 6-9.
6-3 Status Register Fields 6-10.
6-4 TMS320C54x C/C++ Compiler Intrinsics 6-22.
6-5 ETSI Support Functions 6-26.
7-1 Macros That Supply Integer Type Range Limits (limits.h) 7-18.
7-2 Macros That Supply Floating-Point Range Limits (float.h) 7-19.
7-3 Summary of Run-Time-Support Functions and Macros 7-27.
8-1 Summary of Options and Their Effects 8-4.

Examples

xviiContents

Examples

2-1 Using the inline Keyword 2-38.
2-2 How the Run-Time-Support Library Uses the _INLINE Preprocessor Symbol 2-40.
2-3 An Interlisted Assembly Language File 2-42.
3-1 The Function From Example 2-3 Compiled With the -O2 and -os Options 3-13.
3-2 The Function From Example 2-3 Compiled With the -O2, -os, and -ss

Options 3-14.
3-3 Control-Flow Simplification and Copy Propagation 3-19.
3-4 Data Flow Optimizations and Expression Simplification 3-21.
3-5 Inline Function Expansion 3-22.
3-6 Tail Merging 3-24.
3-7 Autoincrement Addressing, Loop Invariant Code Motion, and Strength

Reduction 3-25.
3-8 Delayed Branch, Call, and Return Instructions 3-26.
4-1 Linker Command File 4-12.
5-1 Using the CODE_SECTION Pragma 5-17.
5-2 Using the DATA_SECTION Pragma 5-18.
6-1 Calling an Assembly Language Function From C 6-18.
6-2 Accessing a Variable From C 6-19.
6-3 Accessing from C a Variable Not Defined in .bss 6-19.
6-4 Accessing an Assembly Language Constant From C 6-20.
6-5 Initialization Variables and Initialization Table 6-35.
9-1 Name Mangling 9-3.
9-2 Result After Running the C++ Name Demangler 9-4.

Notes

xviii

Notes

Function Inlining Can Greatly Increase Code Size 2-37.
-O3 Optimization and Inlining 3-12.
Inlining and Code Size 3-12.
The -g or -gw Option Causes Performance and Code Size Degradations 3-15.
Profile Points 3-16.
Finer Grained Profiling 3-16.
The _c_int00 Symbol 4-8.
Boot Loader 4-10.
C54x Byte Is 16 Bits 5-6.
Avoid Disrupting the C/C++ Environment With asm Statements 5-15.
The Linker Defines the Memory Map 6-2.
The compiler assumes that the OVM bit is clear unless intrinsics are used 6-11.
Using the asm Statement 6-21.
Danger of Complicated Expressions 6-31.
Initializing Variables 6-34.
Use Unique Function Names 7-6.
Writing Your Own Clock Function 7-24.
Writing Your Own Clock Function 7-44.
No Previously Allocated Objects are Available After minit 7-67.
The time Function Is Target-System Specific 7-92.

1-1

Introduction

The TMS320C54x� is supported by a set of software development tools,
which includes an optimizing C/C++ compiler, an assembler, a linker, and
assorted utilities.

This chapter provides an overview of these tools and introduces the features
of the optimizing C/C++ compiler. The assembler and linker are discussed in
detail in the TMS320C54x Assembly Language Tools User’s Guide.

Topic Page

1.1 Software Development Tools Overview 1-2.

1.2 C/C++ Compiler Overview 1-5.

1.3 The Compiler and Code Composer Studio 1-8.

Chapter 1

Software Development Tools Overview

 1-2

1.1 Software Development Tools Overview

Figure 1-1 illustrates the C54x software development flow. The shaded
portion of the figure highlights the most common path of software development
for C/C++ language programs. The other portions are peripheral functions that
enhance the development process.

Figure 1-1. TMS320C54x Software Development Flow

Assembler

Linker

Macro

library

Library of

object

files

Hex conversion

utility

EPROM

programmer

Assembler

source

COFF

object files

Archiver

Archiver

C/C++
source

files

C54x

Executable

COFF

file

C/C++ compiler

Library-build

utility

Cross-reference

lister
Absolute lister

Debugging

tools

Runtime-

support

library

Macro
source

files

Translation
Utility

Assembler

source

Software Development Tools Overview

1-3Introduction

The following list describes the tools that are shown in Figure 1-1:

� The C/C++ compiler accepts C/C++ source code and produces C54x
assembly language source code. An optimizer and an interlist feature
are parts of the compiler:

� The optimizer modifies code to improve the efficiency of
C/C++ programs.

� The interlist feature interweaves C/C++ source statements with as-
sembly language output.

See Chapter 2, Using the C/C++ Compiler, for information about how to
invoke the C compiler, the optimizer, and the interlist feature.

� The assembler translates assembly language source files into machine
language object files. The machine language is based on common object
file format (COFF). The TMS320C54x Assembly Language Tools User’s
Guide explains how to use the assembler.

� The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files and
object libraries as input. See Chapter 4, Linking C/C++ Code, for informa-
tion about invoking the linker. See the TMS320C54x Assembly Language
Tools User’s Guide for a complete description of the linker.

� The archiver allows you to collect a group of files into a single archive file,
called a library. Additionally, the archiver allows you to modify a library by
deleting, replacing, extracting, or adding members. One of the most useful
applications of the archiver is building a library of object modules. The
TMS320C54x Assembly Language Tools User’s Guide explains how to
use the archiver.

� The mnemonic-to-algebraic translator utility converts assembly lan-
guage source files. The utility accepts an assembly language source file
containing mnemonic instructions. It converts the mnemonic instructions
to algebraic instructions, producing an assembly language source file con-
taining algebraic instructions.

Software Development Tools Overview

 1-4

� You can use the library-build utility to build your own customized
runtime-support library (see Chapter 8, Library-Build Utility). Standard
runtime-support library functions are provided as source code in rts.src.

The runtime-support libraries contain the ISO standard runtime-support
functions, compiler-utility functions, floating-point arithmetic functions,
and C I/O functions that are supported by the C54x compiler. See Chapter
7, Run-time-Support Functions, for more information.

� The C54x debugger accepts executable COFF files as input, but most
EPROM programmers do not. The hex conversion utility converts a
COFF object file into TI-Tagged, ASCII-hex, Intel, Motorola-S, or Tektronix
object format. The converted file can be downloaded to an EPROM pro-
grammer. The TMS320C54x Assembly Language Tools User’s Guide
explains how to use the hex conversion utility.

� The absolute lister accepts linked object files as input and creates .abs
files as output. You can assemble these .abs files to produce a listing that
contains absolute, rather than relative, addresses. Without the absolute
lister, producing such a listing would be tedious and would require many
manual operations. The TMS320C54x Assembly Language Tools User’s
Guide explains how to use the absolute lister.

� The cross-reference lister uses object files to produce a cross-reference
listing showing symbols, their definitions, and their references in the linked
source files. The TMS320C54x Assembly Language Tools User’s Guide
explains how to use the cross-reference lister.

� The main product of this development process is a module that can be
executed in a TMS320C54x device. You can use one of several debugging
tools to refine and correct your code. Available products include:

� An instruction-accurate software simulator
� An extended development system (XDS510) emulator
� An evaluation module (EVM)

These tools are accessed within Code Composer Studio. For more
information, see the Code Composer Studio User’s Guide.

C/C++ Compiler Overview

1-5Introduction

1.2 C/C++ Compiler Overview

The C54x C/C++ compiler is a full-featured optimizing compiler that translates
standard ISO C/C++ programs into C54x assembly language source. The
following subsections describe the key features of the compiler.

1.2.1 ISO Standard

The following features pertain to ISO standards:

� ISO-standard C

The C54x C/C++ compiler fully conforms to the ISO C standard as defined
by the ISO specification and described in the second edition of Kernighan
and Ritchie’s The C Programming Language (K&R). The ISO C standard
supercedes and is the same as the ANSI C standard.

� C++

The C54x C/C++ compiler supports C++ as defined by the ISO C++ Stan-
dard and described in Ellis and Stroustrup’s The Annotated C++ Refer-
ence Manual (ARM). The compiler also supports embedded C++.

� ISO-standard runtime support

The compiler tools come with a complete runtime library. All library
functions conform to the ISO C library standard. The library includes
functions for standard input and output, string manipulation, dynamic
memory allocation, data conversion, time-keeping, trigonometry, and
exponential and hyperbolic functions. Functions for signal handling are
not included, because these are target-system specific.

The C++ library includes the ISO C subset as well as those components
necessary for language support.

For more information, see Chapter 7, Run-Time-Support Functions.

C/C++ Compiler Overview

 1-6

1.2.2 Output Files

The following features pertain to output files created by the compiler:

� Assembly source output

The compiler generates assembly language source files that you can
inspect easily, enabling you to see the code generated from the C/C++
source files.

� COFF object files

Common object file format (COFF) allows you to define your system’s
memory map at link time. This maximizes performance by enabling you to
link C/C++ code and data objects into specific memory areas. COFF also
supports source-level debugging.

� EPROM programmer data files

For stand-alone embedded applications, the compiler has the ability to
place all code and initialization data into ROM, allowing C/C++ code to run
from reset. The COFF files output by the compiler can be converted to
EPROM programmer data files by using the hex conversion utility, de-
scribed in the TMS320C55x Assembly Language Tools User’s Guide.

1.2.3 Compiler Interface

The following features pertain to interfacing with the compiler:

� Compiler

The compiler tools allow you to compile, assemble, and link programs in a
single step. For more information, see section 2.1, About the Compiler, on
page 2-2.

� Flexible assembly language interface

The compiler has straightforward calling conventions, so you can write
assembly and C functions that call each other. For more information, see
Chapter 6, Runtime Environment.

C/C++ Compiler Overview

1-7Introduction

1.2.4 Compiler Operation

The following features pertain to the operation of the compiler:

� Integrated preprocessor

The C/C++ preprocessor is integrated with the parser, allowing for faster
compilation. Standalone preprocessing or preprocessed listing is also
available. For more information, see section 2.5, Controlling the Prepro-
cessor, on page 2-25.

� Optimization

The compiler uses a sophisticated optimization pass that employs several
advanced techniques for generating efficient, compact code from
C/C++ source. General optimizations can be applied to any C/C++ code,
and C54x specific optimizations take advantage of the features specific to
the C54x architecture. For more information about the C/C++ compiler’s
optimization techniques, see Chapter 3, Optimizing Your Code.

1.2.5 Utilities

The library-build utility is a significant feature of the compiler utilities. The li-
brary-build utility lets you custom-build object libraries from source for any
combination of runtime models or target CPUs. For more information, see
Chapter 8, Library-Build Utility.

The Compiler and Code Composer Studio

 1-8

1.3 The Compiler and Code Composer Studio

Code Composer Studio provides a graphical interface for using the code
generation tools.

A Code Composer Studio project keeps track of all information needed to build
a target program or library. A project records:

� Filenames of source code and object libraries
� Compiler, assembler, and linker options
� Include file dependencies

When you build a project with Code Composer Studio, the appropriate code
generation tools are invoked to compile, assemble, and/or link your program.

Compiler, assembler, and linker options can be specified within Code
Composer Studio’s Build Options dialog. Nearly all command line options are
represented within this dialog. Options that are not represented can be speci-
fied by typing the option directly into the editable text box that appears at the
top of the dialog.

The information in this book describes how to use the code generation tools
from the command line interface. For information on using Code Composer
Studio, see the Code Composer Studio User’s Guide. For information on set-
ting code generation tool options within Code Composer Studio, see the Code
Generation Tools online help.

2-1

Using�the�C/C++ Compiler

The compiler translates your source program into code that the
TMS320C54x� can execute. Source code must be compiled, assembled, and
linked to create an executable object file. All of these steps are executed at
once by using the compiler, cl500. This chapter provides a complete descrip-
tion of how to use cl500 to compile, assemble, and link your programs.

This chapter also describes the preprocessor, optimizer, inline function
expansion features, and interlist.

Topic Page

2.1 About the Compiler 2-2.

2.2 Invoking the C/C++ Compiler 2-4.

2.3 Changing the Compiler’s Behavior With Options 2-5.

2.4 Using Environment Variables 2-23.

2.5 Controlling the Preprocessor 2-25.

2.6 Understanding Diagnostic Messages 2-29.

2.7 Generating Cross-Reference Listing Information
(-px Option) 2-34.

2.8 Generating a Raw Listing File (-pl Option) 2-35.

2.9 Using Inline Function Expansion 2-37.

2.10 Using Interlist 2-42.

Chapter 2

About the Compiler

 2-2

2.1 About the Compiler

The compiler, cl500, lets you compile, assemble, and optionally link in one
step. The compiler performs the following steps on one or more source mod-
ules:

� The code generator, which includes the parser and the optimizer, accepts
C/C++ source code and produces C54x assembly language source code.

You can compile C and C++ files in a single command—the compiler uses
the conventions for filename extensions to distinguish between them (see
section 2.3.2, Specifying Filenames, for more information).

� The assembler generates a COFF object file.

� The linker combines your object files to create an executable object file.
The link step is optional so you can compile and assemble many modules
independently and link them later. See Chapter 4, Linking C/C++ Code,
for information about linking files.

By default, the compiler does not perform the link step. You can invoke the link-
er by using the -z compiler option. Figure 2-1 illustrates the path the compiler
takes with and without using the linker.

About the Compiler

2-3Using the C/C++ Compiler

Figure 2-1. Overview of the C/C++ Compiler

Assembler

With the -z option

Linker

C/C++
source

files

Executable
COFF file

C/C++ compiler

Parser

Optimizer
(optional)

Code
generator

Assembler
source

COFF
object
files

For a complete description of the assembler and the linker, see the
TMS320C54x Assembly Language Tools User’s Guide.

Invoking the C/C++ Compiler

 2-4

2.2 Invoking the C/C++ Compiler

To invoke the compilerl, enter:

cl500 [options] [filenames] [-z [link_options] [object files]]

cl500 Command that runs the compiler and the assembler

options Options that affect the way the shell processes input files
(the options are listed in Table 2-1 on page 2-6)

filenames One or more C/C++ source files, assembly source files, or
object files.

-z Option that invokes the linker. See Chapter 4, Linking
C/C++ Code, for more information about invoking the
linker.

link_options Options that control the linking process

object files Name of the additional object files for the linking process

The arguments to cl500 are of three types:

� Compiler options
� Linker options
� Files

The -z linker option is the signal that linking is to be performed. If the -z linker
option is used, compiler options must precede the -z linker options, and other
linker options must follow the -z linker option. Source code filenames must be
placed before the -z linker option. Additional object file filenames may be
placed after the -z linker option. Otherwise, options and filenames may be
placed in any order.

For example, to compile two files named symtab.c and file.c, assemble a third
file named seek.asm, and link to create an executable file, you enter:

cl500 symtab.c file.c seek.asm -z -llnk.cmd -lrts500.lib

Entering this command produces the following output:

[g.c]
[f.cpp]
<Linking>

Changing the Compiler’s Behavior With Options

2-5Using the C/C++ Compiler

2.3 Changing the Compiler’s Behavior With Options

Options control the operation of both the shell and the programs it runs. This
section provides a description of option conventions and an option summary
table. It also provides detailed descriptions of the most frequently used
options, including options used for type-checking and assembling.

The following apply to the compiler options:

� Options are either single letters or sequences of letters.

� Options are preceded by a hyphen.

� An option with a required parameter can be specified with or without a
space separating the parameter from the option. For example, the option
to undefine a name can be specified as -U name or -Uname.

� An option with an optional parameter must be specified with the parameter
immediately after the option (no space between the option and parame-
ter). For example, the option to specify the maximum amount of optimiza-
tion must be specified as -O3, not -O 3.

� Files and options can occur in any order except the -z option. The -z
option must follow all other compiler options and precede any linker
options.

The following features are deprecated:

� Most options are case insensitive.

� Single-letter options without parameters can be combined. For example,
-sgq is equivalent to -s -g -q.

� Two-letter pair options that have the same first letter can be combined. For
example, -pi, -pk, and -pl can be combined as -pikl.

You can define default options for the compiler by using the C_OPTION or
C54X_C_OPTION environment variable. For more information on the
C_OPTION environment variable, see subsection 2.4.2, Setting Default Com-
piler Options (C_OPTION and C54X_C_OPTION), on page 2-23.

Table 2-1 summarizes all options (including linker options). Use the page
references in the table for more complete descriptions of the options.

For an online summary of the options, enter cl500 with no parameters on the
command line.

Changing the Compiler’s Behavior With Options

 2-6

Table 2-1. Compiler Options Summary

(a) Options that control the compiler

Option Effect Page(s)

-@ filename Interprets contents of a file as an extension to the
command line

2-14

-c Disables linking (negate -z) 2-14,
4-4

-call= value Forces compatiblity with the original (c55_compat)
or the new (c55_new) C55x calling conventions

2-14

-D name[=def] Predefines name 2-14

-g Enables symbolic debugging 2-14,
3-15

-gn Disables all symbolic debugging 2-15

-gp Allows function-level profiling of optimized code 2-15,
3-16

-gt Enables symbolic debugging using the alternate
STABS debugging format

2-15,
3-15

-gw Enables symbolic debugging, using the DWARF
debug format in the object file. Compile with this
option if your application contains C++ source files.

2-14,
3-15

- Idirectory Defines #include search path 2-15,
2-26

-k Keeps .asm file 2-15

-n Compiles only 2-16

-q Suppresses progress messages (quiet) 2-16

-r register Reserves global register 2-16

-s Interlists optimizer comments (if available) and
assembly statements; otherwise interlists C/C++
source and assembly statements

2-16

-ss Interlists C/C++ source and assembly statements 2-16,
3-13

-U name Undefines name 2-16

Changing the Compiler’s Behavior With Options

2-7Using the C/C++ Compiler

Option Page(s)Effect

-v value Determines the processor for which instructions are
built

2-16

-z Enables linking 2-16

Changing the Compiler’s Behavior With Options

 2-8

Table 2-1. Compiler Options Summary (Continued)

(b) Options that change the default file extensions when creating a file

Option Effect Page

- ea[.]newextension Sets default extension for assembly files 2-19

- ec[.]newextension Sets default extension for C source files 2-19

- eo[.]newextension Sets default extension for object files 2-19

- ep[.]newextension Sets default extension for C++ source files 2-19

- es[.]newextension Sets default extension for assembly listing files 2-19

(c) Options that specify file and directory names

Option Effect Page

-fa filename Identifies filename as an assembly source file, re-
gardless of its extension. By default, the compiler
treats .asm files as assembly source files.

2-18

-fc filename Identifies filename as a C source file, regardless of
its extension. By default, the compiler treats .c files
as C source files.

2-18

-fg filename Processes a C filename as a C++ file. 2-18

-fo filename Identifies filename as an object code file, regardless
of its extension. By default, the compiler and linker
treat .obj files as object code files.

2-18

-fp filename Identifies filename as a C++ file, regardless of its
extension. By default, the compiler treats .C, .cpp,
.cc, or .cxx files as C++ files.

2-18

(d) Options that specify directories

Option Effect Page

-fb directory Specifies absolute listing file directory 2-20

-f fdirectory
Specifies an assembly listing and cross-reference
listing file directory 2-20

-fr directory Specifies object file directory 2-20

-fs directory Specifies assembly file directory 2-20

-ft directory Specifies temporary file directory 2-20

Changing the Compiler’s Behavior With Options

2-9Using the C/C++ Compiler

Table 2-1. Compiler Options Summary (Continued)

(e) Options that control parsing

Option Effect Page

-pe Enables embedded C++ mode 5-30

-pi Disables definition-controlled inlining (but -o3 opti-
mizations still perform automatic inlining)

2-38

-pk Allows K&R compatibility 5-28

-pl Generates a raw listing file 2-35

-pm Combines source files to perform program-level
optimization

3-6

-pr Enables relaxed mode; ignores strict ISO
violations

5-30

-ps Enables strict ISO mode (for C/C++, not K&R C) 5-30

-px Generates a cross-reference listing file 2-34

-rtti Enables run-time type information (RTTI). RTTI
allows the type of an object to be determined at run
time.

5-5

(f) Parser options that control preprocessing

Option Effect Page

-ppa Continues compilation after preprocessing 2-27

-ppc Performs preprocessing only. Writes preprocessed
output, keeping the comments, to a file with the
same name as the input but with a .pp extension

2-27

-ppd Performs preprocessing only, but instead of writing
preprocessed output, writes a list of dependency
lines suitable for input to a standard make utility

2-28

-ppi Performs preprocessing only, but instead of writing
preprocessed output, writes a list of files included
with the #include directive

2-28

-ppl Performs preprocessing only. Writes preprocessed
output with line-control information (#line directives)
to a file with the same name as the input but with a
.pp extension

2-27

-ppo Performs preprocessing only. Writes preprocessed
output to a file with the same name as the input but
with a .pp extension

2-27

Changing the Compiler’s Behavior With Options

 2-10

Table 2-1. Compiler Options Summary (Continued)

(g) Parser options that control diagnostics

Option Effect Page

-pdel num Sets the error limit to num. The compiler abandons
compiling after this number of errors. (The default is
100.)

2-31

-pden Displays a diagnostic’s identifiers along with its text 2-31

-pdf Generates a diagnostics information file 2-31

-pdr Issues remarks (nonserious warnings) 2-31

-pds num Suppresses the diagnostic identified by num 2-31

-pdse num Categorizes the diagnostic identified by num as an
error

2-31

-pdsr num Categorizes the diagnostic identified by num as a
remark

2-31

-pdsw num Categorizes the diagnostic identified by num as a
warning

2-31

-pdv Provides verbose diagnostics that display the
original source with line-wrap

2-32

-pdw Suppresses warning diagnostics (errors are still
issued)

2-32

(h) Options that are C54x-specific

Option Effect Page

-ma Indicates that a specific aliasing technique is used 3-11

-me Suppresses C environment code in interrupt rou-
tines

2-15

-mf All calls are far calls and all returns are far returns 2-15

-ml Suppresses the use of delayed branches 2-15

-mn Enables optimizations disabled by -g 3-15

-mo Disable back-end optimizer 2-16

-mr Disable RPT instruction 2-16

-ms Optimize for minimum code space 2-16

Changing the Compiler’s Behavior With Options

2-11Using the C/C++ Compiler

Table 2-1. Compiler Options Summary (Continued)

(i) Options that control optimization

Option Effect Page

-O0 Optimizes register usage 3-2

-O1 Uses -O0 optimizations and optimizes locally 3-2

-O2 or -o Uses -O1 optimizations and optimizes globally 3-3

-O3 Uses -O2 optimizations and optimizes file 3-3

-oi size Sets automatic inlining size (-o3 only) 3-12

-ol0 (-oL0) Informs the optimizer that your file alters a standard
library function

3-4

-ol1 (-oL1) Informs the optimizer that your file declares a stan-
dard library function

3-4

-ol2 (-oL2) Informs the optimizer that your file does not declare
or alter library functions. Overrides the -ol0 and -ol1
options

3-4

-on0 Disables optimizer information file 3-5

-on1 Produces optimizer information file 3-5

-on2 Produces verbose optimizer information file 3-5

-op0 Specifies that the module contains functions and
variables that are called or modified from outside the
source code provided to the compiler

3-6

-op1 Specifies that the module contains variables modi-
fied from outside the source code provided to the
compiler but does not use functions called from out-
side the source code

3-6

-op2 Specifies that the module contains no functions or
variables that are called or modified from outside the
source code provided to the compiler (default)

3-6

-op3 Specifies that the module contains functions that
are called from outside the source code provided to
the compiler but does not use variables modified
from outside the source code

3-6

-os Interlists optimizer comments with assembly state-
ments

3-13

Changing the Compiler’s Behavior With Options

 2-12

Table 2-1. Compiler Options Summary (Continued)
(j) Options that control the assembler

Option Effect Page

-aa Enables absolute listing 2-21

-ac Makes case significant in assembly source files 2-21

-ad name Sets the name symbol 2-21

-ahc filename Copies the specified file for the assembly module 2-21

-ahi filename Includes the file for the assembly module 2-21

-al Generates an assembly listing file 2-21

-amg Specifies that the assembly file contains algebraic
instructions

2-21

-apd Performs preprocessing only, but instead of writing
preprocessed output, writes a list of dependency lines
suitable for input to a standard make utility

2-21

-api Performs preprocessing only, but instead of writing
preprocessed output, writes a list of files included with
the #include directive

2-21

-ar num Suppresses the assembler remark identified by num 2-21

-as Puts labels in the symbol table 2-22

-aw Enables pipeline conflict warnings 2-22

-au name Undefines the predefined constant name 2-22

-ax Generates the cross-reference file 2-22

Changing the Compiler’s Behavior With Options

2-13Using the C/C++ Compiler

Table 2-1. Compiler Options Summary (Continued)

(k) Options that control the linker

Options Effect Page

-a Generates absolute output 4-5

-abs Produces an absolute listing file. Use this option
only after specifying the -z option.

2-14

-ar Generates relocatable output 4-5

-b Disables merge of symbolic debugging informa-
tion

4-5

-c Autoinitializes variables at run time 4-5

-cr Autoinitializes variables at reset 4-5

-e global_symbol Defines entry point 4-5

-f fill_value Defines fill value 4-5

-g global_symbol Keeps a global_symbol global (overrides -h) 4-5

-h Makes global symbols static 4-5

-heap size Sets heap size (words) 4-5

-i directory Defines library search path 4-5

-j Disables conditional linking 4-5

-l filename Supplies library name 4-5

-m filename Names the map file 4-5

-o filename Names the output file 4-6

-q Suppresses progress messages (quiet) 4-6

-r Generates relocatable output 4-6

-s Strips symbol table 4-6

-stack size Sets primary stack size (words) 4-6

-u symbol Undefines symbol 4-6

-v n Specify the output COFF format. The default for-
mat is COFF2.

4-6

-w Displays a message when an undefined output sec-
tion is created

4-6

-x Forces rereading of libraries 4-6

Changing the Compiler’s Behavior With Options

 2-14

2.3.1 Frequently Used Options

Following are detailed descriptions of options that you will probably use fre-
quently:

-@ filename Appends the contents of a file to the command line. You can
use this option to avoid limitations on command line length
imposed by the host operating system. Use a # or ; at the
beginning of a line in the command file to embed comments.

Within the command file, filenames or option parameters
containing embedded spaces or hyphens must be sur-
rounded by quotation marks. For example: “this-file.obj”

-c Suppresses the linker and overrides the -z option, which
specifies linking. Use this option when you have -z specified
in the C_OPTION or C54X_C_OPTION environment vari-
able and you don’t want to link. For more information, see
section 4.2, Disabling the Linker, (-c Linker Option), on page
4-4.

-call= value Forces compiler compatibility with the original (c55_compat)
or the new (c55_new) calling conventions. Early versions of
the C55x C/C++ compiler used a calling convention that was
later viewed as having a number of inefficiences. A new call-
ing convention was introduced to address these ineffici-
ences. The -call option supports compatibility with existing
code which either calls or is called by assembly code using
the original convention. Using -call=c55_compat forces the
compiler to generate code that is compatible with the original
calling convention. Using -call=c55_new forces the compil-
er to use the new calling convention.

The compiler uses the new convention by default, except
when compiling for P2 reserved mode, which sets the de-
fault to the original convention. Within a single executable,
only one calling convention can be used. The linker enforces
this rule.

-D name[=def] Predefines the constant name for the preprocessor. This is
equivalent to inserting #define name def at the top of each
C/C++ source file. If the optional [=def] is omitted, the name
is set to 1.

-g Generates symbolic debugging directives that are used by
the C/C++ source-level debuggers and enables assembly
source debugging in the assembler.

-gn Disbles all symbolic debugging output. This option is not rec-
ommended; it prevents debugging and most performance
analysis capabilities.

Changing the Compiler’s Behavior With Options

2-15Using the C/C++ Compiler

-gp Allows function-level profiling of optimized code. Profiling re-
quires certain debugging directives to be included in the ob-
ject file. Normally, either -g or -gw is used to produce debug-
ging directives, but these options can severely limit the opti-
mization of the generated code and thus degrade perfor-
mance. Using -gp in conjunction with an optimization option
(-O0 through -O3), allows funciton level profiling without
hindering optimization.

-gt Enables symbolic debugging using the alternate STABS de-
bugging format. This may be necessary to allow debugging
with older debuggers or custom tools, which do not read the
DWARF format. For more information on the DWARF debug
format, see the DWARF Debugging Information Format
Specification, 1992-1993, UNIX International, Inc.

-gw Generates DWARF symbolic debugging directives that are
used by the C/C++ source-level debugger and enables as-
sembly source debugging in the assembler. Use this option
to generate debug information when your application con-
tains C++ source files. For more information on the DWARF
debug format, see the DWARF Debugging Information
Format Specification, 1992-1993, UNIX International, Inc.

- Idirectory Adds directory to the list of directories that the compiler
searches for #include files. You can use this option a maxi-
mum of 32 times to define several directories; be sure to
separate -i options with spaces. If you don’t specify a direc-
tory name, the preprocessor ignores the -i option. For more
information, see subsection 2.5.2.1, Changing the #include
File Search Path With the -i Option, on page 2-26.

-k Keeps the assembly language output of the compiler.
Normally, the shell deletes the output assembly language
file after assembly is complete.

-me suppresses certain prolog and epilog code generated by the
compiler for interrupts. By default, the compiler emits code
to explicitly set up a C/C++ environment for interrupts. The
code sets the CPL bit and clears the OVM, SMUL, and SST
bits. Use the -me option if you have no need for this code.

-mf interprets all call instructions as far calls, and interprets all
return instructions as far returns. A far call calls a function
outside the 16-bit range, and a far return returns a value from
outside the 16-bit range. Note that the compiler does not
support far mode for C++.

-ml suppresses the use of delayed branches.

Changing the Compiler’s Behavior With Options

 2-16

-mo disables the back-end optimizer.

-mr disables the uninterruptible RPT instruction.

-ms Optimizes for code space instead of for speed.

-n Compiles only. The specified source files are compiled, but
not assembled or linked. This option overrides -z. The
output is assembly language output from the compiler.

-q Suppresses banners and progress information from all the
tools. Only source filenames and error messages are output.

-r register Reserves the register globally so that the code generator
and optimizer cannot use it.

-s Invokes the interlist utility, which interweaves optimizer
comments or C/C++ source with assembly source. If the
optimizer is invoked (-on option), optimizer comments are
interlisted with the assembly language output of the
compiler. If the optimizer is not invoked, C/C++ source state-
ments are interlisted with the assembly language output of
the compiler, which allows you to inspect the code generated
for each C/C++ statement. When the optimizer is invoked
(-o n option) along with this option, your code might be
reorganized substantially. The -s option implies the -k op-
tion. For more information about using the interlist utility with
the optimizer, see Section 3.7, Using Interlist With the
Optimizer, on page 3-13.

-ss Invokes the interlist feature, which interweaves original
C/C++ source with compiler-generated assembly language.
If the optimizer is invoked (-on option) along with this option,
your code might be reorganized substantially. For more
information, see Section 2.10, Using Interlist, on page 2-42.

-U name Undefines the predefined constant name. This option over-
rides any -d options for the specified constant.

-v value determines the processor for which instructions are built.
Use one of the following for value: 541, 542, 543, 545, 545lp,
546lp, 548, 549

-z Run the linker on the specified object files. The -z option and
its parameters follow all other options on the command line.
All arguments that follow -z are passed to the linker. For
more information, see Section 4.1.1, Invoking the Linker as
an Individual Program, on page 4-2.

Changing the Compiler’s Behavior With Options

2-17Using the C/C++ Compiler

2.3.2 Specifying Filenames

The input files that you specify on the command line can be C/C++ source files,
assembly source files, or object files. The compiler uses filename extensions
to determine the file type.

Extension File Type

.c C source

.C, .cpp, .cxx, or .cc† C++ source

.asm, .abs, or .s* (extension begins with s) Assembly source

.obj Object

† Case sensitivity in filename extensions is determined by your operating system. If your operating
system is not case sensitive, .C is interpreted as a C file.

All source files require an extension. The conventions for filename extensions
allow you to compile C/C++ files and assemble assembly files with a single
command.

For information about how you can alter the way that the compiler interprets
individual filenames, see Section 2.3.3 on page 2-18. For information about
how you can alter the way that the shell interprets and names the extensions
of assembly source and object files, see Section 2.3.4 on page 2-19.

You can use wildcard characters to compile or assemble multiple files. Wild-
card specifications vary by system; use the appropriate form listed in your
operating system manual. For example, to compile all of the C files in a
directory, enter the following:

cl500 *.c

Changing the Compiler’s Behavior With Options

 2-18

2.3.3 Changing How the Compiler Interprets Filenames (-fa, -fc, -fg, -fo,
and -fp Options)

You can use options to change how the compiler interprets your filenames. If
the extensions that you use are different from those recognized by the compil-
er, you can use the -fx options to specify the type of file. You can insert an
optional space between the option and the filename. Select the appropriate
option for the type of file you want to specify:

-fa filename for an assembly language source file

-fc filename for a C source file

-fo filename for an object file

-fp filename for a C++ source file

For example, if you have a C source file called file.s and an assembly language
source file called asmbly, use the -fa and -fc options to force the correct
interpretation:

cl500 -fc file.s -fa asmbly

You cannot use the -f options with wildcard specifications.

The -fg option causes the compiler to process C files as C++ files. By default,
the compiler treats files with a .c extension as C files. See section 2.3.2, Speci-
fying Filenames, on page 2-17, for more information about filename extension
conventions.

Changing the Compiler’s Behavior With Options

2-19Using the C/C++ Compiler

2.3.4 Changing How the Compiler Program Interprets and Names Extensions
(-e Options)

You can use options to change how the compiler interprets filename exten-
sions and names the extensions of the files that it creates. On the command
line, the -ex options must precede any filenames to which they apply. You can
use wildcard specifications with these options.

Select the appropriate option for the type of extension you want to specify:

-ea[.] new extension for an assembly source file

-eo[.] new extension for an object file

-ec[.] new extension for a C source file

-ep[.] new extension for a C++ source file

-es[.] new extension for an assembly listing file

An extension can be up to nine characters in length.

The following example assembles the file fit.rrr and creates an object file
named fit.o:

cl500 -ea .rrr -eo .o fit.rrr

The period (.) in the extension and the space between the option and the
extension are optional. The example above could be written as:

cl500 -earrr -eoo fit.rrr

Changing the Compiler’s Behavior With Options

 2-20

2.3.5 Specifying Directories

By default, the compiler places the object, assembly, and temporary files that
it creates into the current directory. If you want the compiler to place these files
in different directories, use the following options:

-fb directory Specifies the destination directory for absolute listing files.
The default is to use the same directory as the object file. To
specify a listing file directory, type the directory’s pathname
on the command line after the -fb option:

cl500 -fb d:\object ...

-ff directory Specifies the destination directory for assembly listing and
cross-reference listing files. The default is to use the same
directory as the object file directory. Using this option without
the assembly listing (-al) option or cross-reference listing
(-ax) option will cause the compiler to act as if the -al option
was specified. To specify a listing file directory, type the
directory’s pathname on the command line after the -ff
option:

cl500 -ff d:\object ...

-fr directory Specifies a directory for object files. To specify an object file
directory, type the directory’s pathname on the command
line after the -fr option:

cl500 -fr d:\object ...

-fs directory Specifies a directory for assembly files. To specify an
assembly file directory, type the directory’s pathname on the
command line after the -fs option:

cl500 -fs d:\assembly ...

-ft directory Specifies a directory for temporary intermediate files. To
specify a temporary directory, insert the directory’s path-
name on the command line after the -ft option:

cl500 -ft d:\temp ...

Changing the Compiler’s Behavior With Options

2-21Using the C/C++ Compiler

2.3.6 Options That Control the Assembler

Following are assembler options that you can use with the compiler:

-aa Invokes the assembler with the -a assembler option,
which creates an absolute listing. An absolute listing
shows the absolute addresses of the object code.

-ac Makes case insignificant in the assembly language source
files. For example, -c makes the symbols ABC and abc
equivalent. If you do not use this option, case is significant
(this is the default).

-ad name -ad name [=value] sets the name symbol. This is equiva-
lent to inserting name .set [value] at the beginning of the
assembly file. If value is omitted, the symbol is set to 1.

-ahc filename Invokes the assembler with the -hc option, which causes
the assembler to copy the specified file for the assembly
module. The file is inserted before source file statements.
The copied file appears in the assembly listing files.

-ahi filename Invokes the assembler with the -hi option, which causes
the assembler to include the specified file for the assembly
module. The file is included before source file statements.
The included file does not appear in the assembly listing
files.

-al (lowercase L) Invokes the assembler with the -l assembler
option to produce an assembly listing file.

-apd The -apd option performs preprocessing only for algebraic
assembly files, but instead of writing preprocessed output,
writes a list of dependency lines suitable for input to a stan-
dard make utility. The list is written to a file with the same
name as the source file but with a .ppa extension.

-api The -api option performs preprocessing only for algebraic
assemlby files, but instead of writing preprocessed output,
writes a list of files included with the #include directive. The
list is written to a file with the same name as the source file
but with a .ppa extension.

-amg Specifies that the assembly source file contains algebraic
instructions.

-ar num Suppresses the assembler remark identified by num. A
remark is an informational assembler message that is less
severe than a warning. If you do not specify a value for
num, all remarks will be suppressed.

Changing the Compiler’s Behavior With Options

 2-22

-as Invokes the assembler with the -s assembler option to put
labels in the symbol table. Label definitions are written to
the COFF symbol table for use with symbolic debugging.

-au name Undefines the predefined constant name, which overrides
any -ad options for the specified constant.

-aw Generates warnings for some assembly code pipeline
conflicts. The assembler cannot detect all pipeline con-
flicts. Pipeline conflicts are detected in straight-line code
only. Upon detecting a pipeline conflict, the assembler
prints a warning and reports the latency slots (words) that
need to be filled (by NOPs or other instructions) in order to
resolve the conflict.

-ax Invokes the assembler with the -x assembler option to
produce a symbolic cross-reference in the listing file.

For more information about the assembler, see the TMS320C54x Assembly
Language Tools User’s Guide.

Using Environment Variables

2-23Using the C/C++ Compiler

2.4 Using Environment Variables

You can define environment variables that set certain software tool
parameters you normally use. An environment variable is a special system
symbol that you define and associate to a string in your system initialization
file. The compiler uses this symbol to find or obtain certain types of information.

When you use environment variables, default values are set, making each
individual invocation of the compiler simpler because these parameters are
automatically specified. When you invoke a tool, you can use command-line
options to override many of the defaults that are set with environment vari-
ables.

2.4.1 Specifying Directories (C_DIR and C54X_C_DIR)

The compiler uses the C54X_C_DIR and C_DIR environment variables to
name alternate directories that contain #include files. The shell looks for the
C54X_C_DIR environment variable first and then reads and processes it. If it
does not find this variable, it reads the C_DIR environment variable and pro-
cesses it. To specify directories for #include files, set C_DIR with one of these
commands:

Operating System Enter

Windows� set C_DIR=directory1[;directory2 ...]

UNIX setenv C_DIR ”directory1 [directory2 ...]”

The environment variable remains set until you reboot the system or reset the
variable.

2.4.2 Setting Default Compiler Options (C_OPTION and C54X_C_OPTION)

You might find it useful to set the compiler, assembler, and linker default
options using the C54X_C_OPTION or C_OPTION environment variable. If
you do this, the shell uses the default options and/or input filenames that you
name with C_OPTION every time you run the compiler.

Setting the default options with the C_OPTION environment variable is useful
when you want to run the compiler consecutive times with the same set of
options and/or input files. After the compiler reads the command line and the
input filenames, it looks for the C54X_C_OPTION environment variable first
and then reads and processes it. If it does not find the C54X_C_OPTION, it
reads the C_OPTION environment variable and processes it.

Using Environment Variables

 2-24

The table below shows how to set C_OPTION the environment variable.
Select the command for your operating system:

Operating System Enter

UNIX with C shell setenv C_OPTION ”option1 [option2 . . .]”

Windows� set C_OPTION=option1 [;option2 . . .]

Environment variable options are specified in the same way and have the
same meaning as they do on the command line. For example, if you want to
always run quietly (the -q option), enable C/C++ source interlisting (the -s
option), and link (the -z option) for Windows, set up the C_OPTION environ-
ment variable as follows:

set C_OPTION=-qs -z

In the following examples, each time you run the compiler, it runs the linker.
Any options following -z on the command line or in C_OPTION are passed to
the linker. This enables you to use the C_OPTION environment variable to
specify default compiler and linker options and then specify additional
compiler and linker options on the compiler command line. If you have set -z
in the environment variable and want to compile only, use the -c option of the
shell. These additional examples assume C_OPTION is set as shown above:

cl500 *.c ;compiles and links
cl500 -c *.c ;only compiles
cl500 *.c -z lnk.cmd ;compiles/links using .cmd file
cl500 -c *.c -z lnk.cmd ;only compiles (-c overrides -z)

For more information about compiler options, see Section 2.3, Changing the
Compiler’s Behavior With Options, on page 2-5. For more information about
linker options, see section 4.3, Linker Options, on page 4-5.

Controlling the Preprocessor

2-25Using the C/C++ Compiler

2.5 Controlling the Preprocessor

This section describes specific features that control the C54x preprocessor,
which is part of the parser. A general description of C preprocessing is in Sec-
tion A12 of K&R. The C54x C/C++ compiler includes standard C/C++ prepro-
cessing functions, which are built into the first pass of the compiler. The prepro-
cessor handles:

� Macro definitions and expansions

� #include files

� Conditional compilation

� Various other preprocessor directives (specified in the source file as lines
beginning with the # character)

The preprocessor produces self-explanatory error messages. The line
number and the filename where the error occurred are printed along with a
diagnostic message.

2.5.1 Predefined Macro Names

The compiler maintains and recognizes the predefined macro names listed in
Table 2-2.

Table 2-2. Predefined Macro Names

Macro Name Description

_TMS320C5XX Expands to 1 (identifies the ’C54x processor).

__LINE__† Expands to the current line number

__FILE__† Expands to the current source filename

__DATE__† Expands to the compilation date in the form mm dd
yyyy

__TIME__† Expands to the compilation time in the form
hh:mm:ss

_INLINE Expands to 1 if optimization is used; undefined
otherwise. Regardless of any optimization, always
undefined when -pi is used.

_C_MODE Specifies that all calls and branches are within the
normal 16-bit address range (default operation).

_FAR_MODE Specifies that all calls and branches are to an ex-
tended address space (used for the extended ad-
dressing ability of the ’C548).

† Specified by the ISO standard

Controlling the Preprocessor

 2-26

You can use the names listed in Table 2-2 in the same manner as any other
defined name. For example,

printf (”%s %s” , __TIME__ , __DATE__);

translates to a line such as:

printf (”%s %s” , ”13:58:17”, ”Jan 14 1999”);

2.5.2 The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source
statements from another file. When specifying the file, you can enclose the file-
name in double quotes or in angle brackets. The filename can be a complete
pathname, partial path information, or a filename with no path information.

� If you enclose the filename in double quotes (“ ”), the compiler searches
for the file in the following directories in this order:

1) The directory that contains the current source file. The current source
file refers to the file that is being compiled when the compiler
encounters the #include directive.

2) Directories named with the -i option

3) Directories set with the C54X_C_DIR or C_DIR environment vari-
ables

� If you enclose the filename in angle brackets (< >), the compiler searches
for the file in the following directories in this order:

1) Directories named with the -i option
2) Directories set with the C54X_C_DIR or C_DIR environment vari-

ables

See section 2.5.2.1, Changing the #include File Search Path With the -i
Option, for information on using the -i option. For information on how to use
the C_DIR environment variable, see section 2.4.1, Specifying Directories
(C_DIR and C54X._C_DIR).

2.5.2.1 Changing the #include File Search Path With the -i Option

The -i option names an alternate directory that contains #include files. The for-
mat of the -i option is:

- i directory1 [-i directory2 ...]

Each -i option names one directory. In C/C++ source, you can use the #include
directive without specifying any directory information for the file; instead, you
can specify the directory information with the -i option. For example, assume
that a file called source.c is in the current directory. The file source.c contains
the following directive statement:

#include ”alt.h”

Controlling the Preprocessor

2-27Using the C/C++ Compiler

Assume that the complete pathname for alt.h is:

Windows c:\tools\files\alt.h

UNIX /tools/files/alt.h

The table below shows how to invoke the compiler. Select the command for
your operating system:

Operating System Enter

Windows cl500 -ic:\tools\files source.c

UNIX cl500 -i/tools/files source.c

2.5.3 Generating a Preprocessed Listing File (-ppo Option)

The -ppo option allows you to generate a preprocessed version of your source
file. The preprocessed file has the same name as the source file but with a .pp
extension. The compiler’s preprocessing functions perform the following
operations on the source file:

� Each source line ending in a backslash (\) is joined with the following line.

� Trigraph sequences are expanded.

� Comments are removed.

� #include files are copied into the file.

� Macro definitions are processed.

� All macros are expanded.

� All other preprocessing directives, including #line directives and
conditional compilation, are expanded.

2.5.4 Continuing Compilation After Preprocessing (-ppa Option)

If you are preprocessing, the preprocessor performs preprocessing only. By
default, it does not compile your source code. If you want to override this fea-
ture and continue to compile after your source code is preprocessed, use the
-ppa option along with the other preprocessing options. For example, use
-ppa with -ppo to perform preprocessing, write preprocessed output to a file
with a .pp extension, and then compile your source code.

2.5.5 Generating a Preprocessed Listing File With Comments (-ppc Option)

The -ppc option performs all of the preprocessing functions except removing
comments and generates a preprocessed version of your source file with a .pp
extension. Use the -ppc option instead of the -ppo option if you want to keep
the comments.

Controlling the Preprocessor

 2-28

2.5.6 Generating a Preprocessed Listing File With Line-Control Information
(-ppl Option)

By default, the preprocessed output file contains no preprocessor directives.
If you want to include the #line directives, use the -ppl option. The -ppl option
performs preprocessing only and writes preprocessed output with line-control
information (#line directives) to a file with the same name as the source file but
with a .pp extension.

2.5.7 Generating Preprocessed Output for a Make Utility (-ppd Option)

The -ppd option performs preprocessing only, but instead of writing prepro-
cessed output, writes a list of dependency lines suitable for input to a standard
make utility. The list is written to a file with the same name as the source file
but with a .pp extension.

2.5.8 Generating a List of Files Included With the #include Directive (-ppi Option)

The -ppi option performs preprocessing only, but instead of writing prepro-
cessed output, writes a list of files included with the #include directive. The list
is written to a file with the same name as the source file but with a .pp extension.

Understanding Diagnostic Messages

2-29Using the C/C++ Compiler

2.6 Understanding Diagnostic Messages

One of the compiler’s primary functions is to report diagnostics for the source
program. When the compiler detects a suspect condition, it displays a mes-
sage in the following format:

”file.c”, line n: diagnostic severity: diagnostic message

”file.c” The name of the file involved

line n: The line number where the diagnostic applies

diagnostic severity The severity of the diagnostic message (a description
of each severity category follows)

diagnostic message The text that describes the problem

Diagnostic messages have an associated severity, as follows:

� A fatal error indicates a problem of such severity that the compilation
cannot continue. Examples of problems that can cause a fatal error
include command-line errors, internal errors, and missing include files. If
multiple source files are being compiled, any source files after the current
one will not be compiled.

� An error indicates a violation of the syntax or semantic rules of the C/C++
language. Compilation continues, but object code is not generated.

� A warning indicates something that is valid but questionable. Compilation
continues and object code is generated (if no errors are detected).

� A remark is less serious than a warning. It indicates something that is valid
and probably intended, but may need to be checked. Compilation contin-
ues and object code is generated (if no errors are detected). By default,
remarks are not issued. Use the -pdr compiler option to enable remarks.

Diagnostics are written to standard error with a form like the following example:

”test.c”, line 5: error: a break statement may only be used
within a loop or switch

break;
^

By default, the source line is omitted. Use the -pdv compiler option to enable
the display of the source line and the error position. The above example makes
use of this option.

The message identifies the file and line involved in the diagnostic, and the
source line itself (with the position indicated by the ^ symbol) follows the mes-
sage. If several diagnostics apply to one source line, each diagnostic has the
form shown; the text of the source line is displayed several times, with an
appropriate position indicated each time.

Understanding Diagnostic Messages

 2-30

Long messages are wrapped to additional lines, when necessary.

You can use a command-line option (-pden) to request that the diagnostic’s
numeric identifier be included in the diagnostic message. When displayed, the
diagnostic identifier also indicates whether the diagnostic can have its severity
overridden on the command line. If the severity can be overridden, the diag-
nostic identifier includes the suffix -D (for discretionary); otherwise, no suffix
is present. For example:

”Test_name.c”,line 7: error #64-D: declaration does not
declare anything

struct {};
^

”Test_name.c”,line 9: error #77: this declaration has no
storage class or type specifier

xxxxx;
^

Because an error is determined to be discretionary based on the error severity
associated with a specific context, an error can be discretionary in some cases
and not in others. All warnings and remarks are discretionary.

For some messages, a list of entities (functions, local variables, source files,
etc.) is useful; the entities are listed following the initial error message:

”test.c”, line 4: error: more than one instance of overloaded
function ”f” matches the argument list:

function ”f(int)”
function ”f(float)”
argument types are: (double)

f(1.5);
^

In some cases, additional context information is provided. Specifically, the
context information is useful when the front end issues a diagnostic while doing
a template instantiation or while generating a constructor, destructor, or
assignment operator function. For example:

”test.c”, line 7: error: “A::A()” is inaccessible
B x;
^

detected during implicit generation of “B::B()” at
line 7

Without the context information, it is difficult to determine what the error refers
to.

Understanding Diagnostic Messages

2-31Using the C/C++ Compiler

2.6.1 Controlling Diagnostics

The compiler provides diagnostic options that allow you to modify how the
parser interprets your code. You can use these options to control diagnostics:

-pdel num Sets the error limit to num, which can be any decimal value.
The compiler abandons compiling after this number of errors.
(The default is 100.)

-pden Displays a diagnostic’s numeric identifier along with its text.
Use this option in determining which arguments you need to
supply to the diagnostic suppression options (-pds, -pdse,
-pdsr , and -pdsw).

This option also indicates whether a diagnostic is discretion-
ary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D;
otherwise, no suffix is present. See section 2.6, Understand-
ing Diagnostic Messages, for more information.

-pdf Produces diagnostics information file with the same name as
the corresponding source file but with an .err extension.

-pdr Issues remarks (nonserious warnings), which are suppressed
by default.

-pds num Suppresses the diagnostic identified by num. To determine the
numeric identifier of a diagnostic message, use the -pden
option first in a separate compile. Then use -pdsnum to sup-
press the diagnostic. You can suppress only discretionary
diagnostics.

-pdse num Categorizes the diagnostic identified by num as an error. To
determine the numeric identifier of a diagnostic message, use
the -pden option first in a separate compile. Then use
-pdse num to recategorize the diagnostic as an error. You can
alter the severity of discretionary diagnostics only.

-pdsr num Categorizes the diagnostic identified by num as a remark. To
determine the numeric identifier of a diagnostic message, use
the -pden option first in a separate compile. Then use
-pdsr num to recategorize the diagnostic as a remark. You can
alter the severity of discretionary diagnostics only.

-pdsw num Categorizes the diagnostic identified by num as a warning. To
determine the numeric identifier of a diagnostic message, use
the -pden option first in a separate compile. Then use
-pdsw num to recategorize the diagnostic as a warning. You
can alter the severity of discretionary diagnostics only.

Understanding Diagnostic Messages

 2-32

-pdv Provides verbose diagnostics that display the original source
with line-wrap and indicate the position of the error in the
source line.

-pdw Suppresses warning diagnostics (errors are still issued).

2.6.2 How You Can Use Diagnostic Suppression Options

The following example demonstrates how you can control diagnostic mes-
sages issued by the compiler.

Consider the following code segment:

int one();
int i;
int main()
{

switch (i){
case 1:

return one ();
break;

default:
return 0;
break;

}
}

If you invoke the compiler with the -q option, this is the result:

”err.c”, line 9: warning: statement is unreachable
”err.c”, line 12: warning: statement is unreachable

Because it is standard programming practice to include break statements at
the end of each case arm to avoid the fall-through condition, these warnings
can be ignored. Using the -pden option, you can find out the diagnostic
identifier for these warnings. Here is the result:

[err.c]
”err.c”, line 9: warning #112-D: statement is unreachable
”err.c”, line 12: warning #112-D: statement is unreachable

Next, you can use the diagnostic identifier of 112 as the argument to the -pdsr
option to treat this warning as a remark. This compilation now produces no
diagnostic messages (because remarks are disabled by default).

Although this type of control is useful, it can also be extremely dangerous. The
compiler often emits messages that indicate a less than obvious problem. Be
careful to analyze all diagnostics emitted before using the suppression
options.

Understanding Diagnostic Messages

2-33Using the C/C++ Compiler

2.6.3 Other Messages

Other error messages that are unrelated to the source, such as incorrect com-
mand-line syntax or inability to find specified files, are usually fatal. They are
identified by the symbol >> preceding the message.

For example:

cl500 -j
>> invalid option -j (ignored)
>> no source files

Generating Cross-Reference Listing Information (-px Option)

 2-34

2.7 Generating Cross-Reference Listing Information (-px Option)

The -px compiler option generates a cross-reference listing file (.crl) that con-
tains reference information for each identifier in the source file. (The -px option
is separate from -ax, which is an assembler rather than a compiler option.) The
information in the cross-reference listing file is displayed in the following
format:

sym-id name X filename line number column number

sym-id An integer uniquely assigned to each identifier

name The identifier name

X One of the following values:

X Value Meaning

D Definition

d Declaration (not a definition)

M Modification

A Address taken

U Used

C Changed (used and modified in a single
operation)

R Any other kind of reference

E Error; reference is indeterminate

filename The source file

line number The line number in the source file

column number The column number in the source file

Generating a Raw Listing File (-pl Option)

2-35Using the C/C++ Compiler

2.8 Generating a Raw Listing File (-pl Option)

The -pl option generates a raw listing file (.rl) that can help you understand
how the compiler is preprocessing your source file. Whereas the
preprocessed listing file (generated with the -ppo, -ppc, and -ppl
preprocessor options) shows a preprocessed version of your source file, a raw
listing file provides a comparison between the original source line and the pre-
processed output. The raw listing file contains the following information:

� Each original source line

� Transitions into and out of include files

� Diagnostics

� Preprocessed source line if nontrivial processing was performed (com-
ment removal is considered trivial; other preprocessing is nontrivial)

Each source line in the raw listing file begins with one of the identifiers listed
in Table 2-3.

Table 2-3. Raw Listing File Identifiers

Identifier Definition

N Normal line of source

X Expanded line of source. It appears immediately following the normal line
of source if nontrivial preprocessing occurs.

S Skipped source line (false #if clause)

L Change in source position, given in the following format:

L line number filename key

Where line number is the line number in the source file. The key is present
only when the change is due to entry/exit of an include file. Possible values
of key are as follows:

1 = entry into an include file
2 = exit from an include file

The -pl option also includes diagnostic identifiers as defined in Table 2-4.

Table 2-4. Raw Listing File Diagnostic Identifiers

Diagnostic
identifier Definition

E Error

F Fatal

R Remark

W Warning

Generating a Raw Listing File (-pl Option)

 2-36

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S One of the identifiers in Table 2-4 that indicates the se-
verity of the diagnostic

filename The source file

line number The line number in the source file

column number The column number in the source file

diagnostic The message text for the diagnostic

Diagnostics after the end of file are indicated as the last line of the file with a
column number of 0. When diagnostic message text requires more than one
line, each subsequent line contains the same file, line, and column information
but uses a lowercase version of the diagnostic identifier. For more information
about diagnostic messages, see section 2.6, Understanding Diagnostic
Messages.

Using Inline Function Expansion

2-37Using the C/C++ Compiler

2.9 Using Inline Function Expansion

When an inline function is called, the C source code for the function is inserted
at the point of the call. This is known as inline function expansion. Inline
function expansion is advantageous in short functions for the following
reasons:

� It saves the overhead of a function call.

� Once inlined, the optimizer is free to optimize the function in context with
the surrounding code.

There are several types of inline function expansion:

� Inlining with intrinsic operators (intrinsics are always inlined)

� Automatic inlining

� Definition-controlled inlining with the unguarded inline keyword

� Definition-controlled inlining with the guarded inline keyword

Note: Function Inlining Can Greatly Increase Code Size

Expanding functions inline expands code size, especially inlining a function
that is called in a number of places. Function inlining is optimal for functions
that are called only from a small number of places and for small functions.

2.9.1 Inlining Intrinsic Operators

There are many intrinsic operators for the C54x. The compiler replaces intrin-
sic operators with efficient code (usually one instruction). This “inlining” hap-
pens automatically whether or not you use the optimizer.

For details about intrinsics, and a list of the intrinsics, see section 6.5.4, Using
Intrinsics to Access Assembly Language Statements, on page 6-22.

Additional functions that may be expanded inline are:

� abs
� labs
� fabs
� _assert
� _nassert
� memcpy

2.9.2 Automatic Inlining

When compiling C/C++ source code with the -o3 option, inline function
expansion is performed on small functions. For more information, see section
3.6, Automatic Inline Expansion (-oi Option), on page 3-12.

Using Inline Function Expansion

 2-38

2.9.3 Unguarded Definition-Controlled Inlining

The inline keyword specifies that a function is expanded inline at the point at
which it is called rather than by using standard calling procedures. The com-
piler performs inline expansion of functions declared with the inline keyword.

You must invoke the optimizer with any -o option (-O0, -O1, -O2, or -O3) to
turn on definition-controlled inlining. Automatic inlining is also turned on when
using -O3.

The following example shows usage of the inline keyword, where the function
call is replaced by the code in the called function.

Example 2-1. Using the inline Keyword

inline int volume_sphere(float r)
{
 return 4.0/3.0 * PI * r * r * r;
}
int foo(...)
{
 ...
 volume = volume_sphere(radius);
 ...
}

The -pi option turns off definition-controlled inlining. This option is useful when
you need a certain level of optimization but do not want definition-controlled
inlining.

Using Inline Function Expansion

2-39Using the C/C++ Compiler

2.9.4 Guarded Inlining and the _INLINE Preprocessor Symbol

When declaring a function in a header file as static inline, additional
procedures should be followed to avoid a potential code size increase when
inlining is turned off with -pi or the optimizer is not run.

In order to prevent a static inline function in a header file from causing an
increase in code size when inlining gets turned off, use the following
procedure. This allows external-linkage when inlining is turned off; thus, only
one function definition will exist throughout the object files.

� Prototype a static inline version of the function. Then, prototype an alterna-
tive, nonstatic, externally-linked version of the function. Conditionally
preprocess these two prototypes with the _INLINE preprocessor symbol,
as shown in Example 2-2.

� Create an identical version of the function definition in a .c or .cpp file, as
shown in Example 2-2.

� Create an identical version of the function definition in a .c file, as shown
in Example 2-2.

In Example 2-2 there are two definitions of the strlen function. The first, in the
header file, is an inline definition. This definition is enabled and the prototype
is declared as static inline only if _INLINE is true (_INLINE is automatically
defined for you when the optimizer is used and -pi is not specified).

The second definition, for the library, ensures that the callable version of strlen
exists when inlining is disabled. Since this is not an inline function, the _INLINE
preprocessor symbol is undefined (#undef) before string.h is included to
generate a noninline version of strlen’s prototype.

Using Inline Function Expansion

 2-40

Example 2-2. How the Run-Time-Support Library Uses the _INLINE Preprocessor Symbol

(a) string.h

/* string.h v x.xx */
/* Copyright (c) 2002 Texas Instruments Incorporated */

; . . .
#ifndef _SIZE_T
#define _SIZE_T
typedef unsigned size_t;
#endif

#ifdef _INLINE
#define __INLINE static inline
#else
#define __INLINE
#endif

; . . .
__INLINE size_t strlen(const char *s);
; . . .

#ifdef _INLINE

/**/
/* strlen */
/**/
static inline size_t strlen(const char *s)
{
 register const char *rstr = string;
 register size_t n = 0;
 while (*rstr++) ++n;
 return (n);
}
; . . .

#endif
#undef __INLINE
#endif

Using Inline Function Expansion

2-41Using the C/C++ Compiler

Example 2-2.How the Run-Time-Support Library Uses the _INLINE Preprocessor Symbol
(Continued)

(b) strlen.c

/* strlen v x.xx */
/* Copyright (c) 2002 Texas Instruments Incorporated */
#undef _INLINE
#include <string.h>

size_t strlen(const char *string)
{
 register const char *rstr = string;
 register size_t n = 0;

 while (*rstr++) ++n;
 return (n);
}

2.9.5 Inlining Restrictions

There are several restrictions on what functions can be inlined for both auto-
matic inlining and definition-controlled inlining. Functions with local static
variables or a variable number of arguments are not inlined, with the exception
of functions declared as static inline. In functions declared as static inline,
expansion occurs despite the presence of local static variables. In addition, a
limit is placed on the depth of inlining for recursive or nonleaf functions. Fur-
thermore, inlining should be used for small functions or functions that are
called in a few places (though the compiler does not enforce this).

A function may be disqualified from inlining if it:

� Returns a struct or union
� Has a struct or union parameter
� Has a volatile parameter
� Has a variable length argument list
� Declares a struct, union, or enum type
� Contains a static variable
� Contains a volatile variable
� Is recursive
� Contains a pragma
� Has too large of a stack (too many local variables)

Using Interlist

 2-42

2.10 Using Interlist

The compiler tools include a feature that interlists C/C++ source statements
into the assembly language output of the compiler. The interlist feature
enables you to inspect the assembly code generated for each C/C++ state-
ment. The interlist behaves differently, depending on whether or not the opti-
mizer is used, and depending on which options you specify.

The easiest way to invoke the interlist feature is to use the -ss option. To com-
pile and run interlist on a program called function.c, enter:

cl500 -ss function

The -ss option prevents the compiler from deleting the interlisted assembly
language output file. The output assembly file, function.asm, is assembled
normally.

When you invoke the interlist feature without the optimizer, the interlist runs as
a separate pass between the code generator and the assembler. It reads both
the assembly and C/C++ source files, merges them, and writes the C/C++
statements into the assembly file as comments.

Example 2-3 shows a typical interlisted assembly file. For more information
about using the interlist feature with the optimizer, see Section 3.7, Using In-
terlist With the Optimizer, on page 3-13.

Example 2-3. An Interlisted Assembly Language File

.global _main
;---
; 3 | void main (void)
;---
;**
;* FUNCTION NAME: _main *
;**
_main:

FRAME #-3
NOP

;--
; 5 | printf(”Hello World\n”);
;--

ST #SL1,*SP(0)
CALL #_printf
; call occurs [#_printf] ;
FRAME #3
RET

; return occurs

3-1

Optimizing Your Code

The compiler tools include an optimization program that improves the
execution speed and reduces the size of C/C++ programs by performing such
tasks as simplifying loops, rearranging statements and expressions, and allo-
cating variables into registers.

This chapter describes how to invoke the optimizer and describes which opti-
mizations are performed when you use it. This chapter also describes how you
can use the interlist feature with the optimizer and how you can profile or debug
optimized code.

Topic Page

3.1 Using the Optimizer 3-2.

3.2 Performing File-Level Optimization (-O3 Option) 3-4.

3.3 Performing Program-Level Optimization
(-pm and -O3 Options) 3-6.

3.4 Use Caution With asm Statements in Optimized Code 3-10.

3.5 Accessing Aliased Variables in Optimized Code 3-11.

3.6 Automatic Inline Expansion (-oi Option) 3-12.

3.7 Using Interlist With the Optimizer 3-13.

3.8 Debugging Optimized Code 3-15.

3.9 What Kind of Optimization Is Being Performed? 3-17.

Chapter 3

Using the Optimizer

 3-2

3.1 Using the Optimizer

The C/C++ compiler is able to perform various optimizations. High-level opti-
mizations are performed in the optimizer, which must be used to achieve opti-
mal code.

The high-level optimizer runs as a separate pass between the parser and the
code generator. Figure 3-1 illustrates the execution flow of the compiler with
standalone optimization.

Figure 3-1. Compiling a C Program With the Optimizer

C source
file (.c)

Code
generator

Parser Optimizer

.asm file

The easiest way to invoke the optimizer is to use the cl500 compiler, specifying
the -On option on the cl500 command line. The n denotes the level of optimiza-
tion (0, 1, 2, and 3), which controls the type and degree of optimization:

� -O0

� Performs control-flow-graph simplification
� Allocates variables to registers
� Performs loop rotation
� Eliminates unused code
� Simplifies expressions and statements
� Expands calls to functions declared inline

� -O1

Performs all -O0 optimizations, plus:

� Performs local copy/constant propagation
� Removes unused assignments
� Eliminates local common expressions

Using the Optimizer

3-3Optimizing Your Code

� -O2

Performs all -O1 optimizations, plus:

� Performs loop optimizations
� Eliminates global common subexpressions
� Eliminates global unused assignments
� Performs loop unrolling

The optimizer uses -O2 as the default if you use -O without an optimiza-
tion level.

� -O3

Performs all -O2 optimizations, plus:

� Removes all functions that are never called
� Simplifies functions with return values that are never used
� Inlines calls to small functions
� Reorders function declarations so that the attributes of called

functions are known when the caller is optimized
� Identifies file-level variable characteristics

If you use -O3, see section 3.2, Using the -O3 Option, on page 3-4 for
more information.

The levels of optimization described above are performed by the stand-alone
optimization pass. The code generator performs several additional
optimizations, particularly processor-specific optimizations; it does so regard-
less of whether you invoke the optimizer. These optimizations are always
enabled although they are much more effective when the oprimizer is used.

Performing File-Level Optimization (-O3 Option)

 3-4

3.2 Performing File-Level Optimization (-O3 Option)

The -O3 option instructs the compiler to perform file-level optimization. You
can use the -O3 option alone to perform general file-level optimization, or you
can combine it with other options to perform more specific optimization. The
options listed in Table 3-1 work with -O3 to perform the indicated optimization:

Table 3-1. Options That You Can Use With -O3

If you ... Use this option Page

Have files that redeclare standard library functions -ol n 3-4

Want to create an optimization information file -on n 3-5

Want to compile multiple source files -pm 3-6

3.2.1 Controlling File-Level Optimization (-Ol Option)

When you invoke the optimizer with the -O3 option, some of the optimizations
use known properties of the standard library functions. If your file redeclares
any of these standard library functions, these optimizations become
ineffective. The -ol option (lowercase L) controls file-level optimizations. The
number following -ol denotes the level (0, 1, or 2). Use Table 3-2 to select the
appropriate level to append to the -ol option.

Table 3-2. Selecting a Level for the -Ol Option

If your source file … Use this option

Declares a function with the same name as a standard library
function and alters it

-ol0

Contains definitions of library functions that are identical to the
standard library functions; does not alter functions declared in
the standard library

-ol1

Does not alter standard library functions, but you used the -ol0
or the -ol1 option in a command file or an environment variable.
The -ol2 option restores the default behavior of the optimizer.

-ol2

Performing File-Level Optimization (-O3 Option)

3-5Optimizing Your Code

3.2.2 Creating an Optimization Information File (-on Option)

When you invoke the optimizer with the -O3 option, you can use the -on option
to create an optimization information file that you can read. The number
following the -on denotes the level (0, 1, or 2). The resulting file has an .nfo
extension. Use Table 3-3 to select the appropriate level to append to the -on
option.

Table 3-3. Selecting a Level for the -on Option

If you … Use this option

Do not want to produce an information file, but you used the -on1
or -on2 option in a command file or an environment variable. The
-on0 option restores the default behavior of the optimizer.

-on0

Want to produce an optimization information file -on1

Want to produce a verbose optimization information file -on2

Performing Program-Level Optimization (-pm and -O3 Options)

 3-6

3.3 Performing Program-Level Optimization (-pm and -O3 Options)

You can specify program-level optimization by using the -pm option with the
-O3 option. With program-level optimization, all of your source files are
compiled into one intermediate file called a module. The module moves to the
optimization and code generation passes of the compiler. Because the com-
piler can see the entire program, it performs several optimizations that are
rarely applied during file-level optimization:

� If a particular argument in a function always has the same value, the com-
piler replaces the argument with the value and passes the value instead
of the argument.

� If a return value of a function is never used, the compiler deletes the return
code in the function.

� If a function is not called directly or indirectly by main, the compiler
removes the function.

To see which program-level optimizations the compiler is applying, use the
-on2 option to generate an information file. See section 3.2.2, Creating an
Optimization Information File (-onn Option), on page 3-5 for more informa-
tion.

3.3.1 Controlling Program-Level Optimization (-op Option)

You can control program-level optimization, which you invoke with -pm -O3,
by using the -op option. Specifically, the -op option indicates if functions in
other modules can call a module’s external functions or modify the module’s
external variables. The number following -op indicates the level you set for the
module that you are allowing to be called or modified. The -O3 option
combines this information with its own file-level analysis to decide whether to
treat this module’s external function and variable definitions as if they had been
declared static. Use Table 3-4 to select the appropriate level to append to the
-op option.

Performing Program-Level Optimization (-pm and -O3 Options)

3-7Optimizing Your Code

Table 3-4. Selecting a Level for the -op Option

If your module … Use this option

Has functions that are called from other modules and global vari-
ables that are modified other modules

-op0

Does not have functions that are called by other modules but has
global variables that are modified in other modules

-op1

Does not have functions that are called by other modules or
global variables that are in other modules

-op2

Has functions that are called from other modules but does not
have global variables that are modified in other modules

-op3

In certain circumstances, the compiler reverts to a different -op level from the
one you specified, or it might disable program-level optimization altogether.
Table 3-5 lists the combinations of -op levels and conditions that cause the
compiler to revert to other -op levels.

Table 3-5. Special Considerations When Using the -op Option

If your -op is ... Under these conditions Then the -op level

Not specified The -O3 optimization level was speci-
fied.

Defaults to -op2

Not specified The compiler sees calls to outside func-
tions under the -O3 optimization level.

Reverts to -op0

Not specified Main is not defined. Reverts to -op0

-op1 or -op2 No function has main defined as an entry
point.

Reverts to -op0

-op1 or -op2 No interrupt function is defined. Reverts to -op0

-op1 or -op2 No functions are identified by the
FUNC_EXT_CALLED pragma.

Reverts to -op0

-op3 Any condition Remains -op3

In some situations when you use -pm and -O3, you must use an -op options
or the FUNC_EXT_CALLED pragma. See section 3.3.2, Optimization Consid-
erations When Mixing C and Assembly, on page 3-8 for information about
these situations.

Performing Program-Level Optimization (-pm and -O3 Options)

 3-8

3.3.2 Optimization Considerations When Mixing C and Assembly

If you have any assembly functions in your program, you need to exercise
caution when using the -pm option. The compiler recognizes only the C/C++
source code and not any assembly code that might be present. Because the
compiler does not recognize the assembly code calls and variable modifica-
tions to C/C++ functions, the -pm option optimizes out those C/C++ functions.
To keep these functions, place the FUNC_EXT_CALLED pragma (see section
5.8.4, The FUNC_EXT_CALLED Pragma, on page 5-19) before any declara-
tion or reference to a function that you want to keep.

Another approach you can take when you use assembly functions in your
program is to use the -op option with the -pm and-O3 options (see section
3.3.1, Controlling Program-Level Optimization, on page 3-6).

In general, you achieve the best results through judicious use of the
FUNC_EXT_CALLED pragma in combination with -pm -O3 and -op1 or
-op2.

If any of the following situations apply to your application, use the suggested
solution:

Situation Your application consists of C/C++ source code that calls
assembly functions. Those assembly functions do not call
any C/C++ functions or modify any C/C++ variables.

Solution Compile with -pm -O3 -op2 to tell the compiler that outside
functions do not call C/C++ functions or modify C/C++ vari-
ables. See section 3.3.1 for information about the -op2
option.

If you compile with the -pm -O3 options only, the compiler
reverts from the default optimization level (-op2) to -op0. The
compiler uses -op0, because it presumes that the calls to the
assembly language functions that have a definition in C/C++
may call other C/C++ functions or modify C/C++ variables.

Performing Program-Level Optimization (-pm and -O3 Options)

3-9Optimizing Your Code

Situation Your application consists of C/C++ source code that calls
assembly functions. The assembly language functions do not
call C/C++ functions, but they modify C/C++ variables.

Solution Try both of these solutions and choose the one that works
best with your code:

� Compile with -pm -O3 -op1

� Add the volatile keyword to those variables that may be
modified by the assembly functions and compile with
-pm -O3 -op2. (See section 5.4.5, The volatile Keyword,
page 5-11, for more information.)

See section 3.3.1 for information about the -op option.

Situation Your application consists of C source code and assembly
source code. The assembly functions are interrupt service
routines that call C functions; the C functions that the
assembly functions call are never called from C. These C
functions act like main: they function as entry points into C.

Solution Add the volatile keyword to the C variables that may be modi-
fied by the interrupts. Then, you can optimize your code in one
of these ways:

� You achieve the best optimization by applying the
FUNC_EXT_CALLED pragma to all of the entry-point
functions called from the assembly language interrupts,
and then compiling with -pm -O3 -op2. Ensure that you
use the pragma with all of the entry-point functions. If you
do not, the compiler removes the entry-point functions
that are not preceded by the FUNC_EXT_CALL pragma.

� Compile with -pm -O3 -op3. Because you do not use the
FUNC_EXT_CALL pragma, you must use the -op3
option, which is less aggressive than the -op2 option, and
your optimization may not be as effective.

Keep in mind that if you use -pm -O3 without additional
options, the compiler removes the C functions that the
assembly functions call. Use the FUNC_EXT_CALLED
pragma to keep these functions.

See section 5.8.4, on page 5-19, for information about the
FUNC_EXT_CALLED pragma and section 3.3.1 for informa-
tion about the -op option.

Use Caution With asm Statements in Optimized Code

 3-10

3.4 Use Caution With asm Statements in Optimized Code

You must be extremely careful when using asm (inline assembly) statements
in optimized code. The optimizer rearranges code segments, uses registers
freely, and may completely remove variables or expressions. Although the
compiler never optimizes out an asm statement (except when it is totally
unreachable), the surrounding environment where the assembly code is
inserted can differ significantly from the original C/C++ source code. It is
usually safe to use asm statements to manipulate hardware controls such as
interrupt masks, but asm statements that attempt to interface with the C/C++
environment or access C/C++ variables can have unexpected results. After
compilation, check the assembly output to make sure your asm statements are
correct and maintain the integrity of the program.

Accessing Aliased Variables in Optimized Code

3-11Optimizing Your Code

3.5 Accessing Aliased Variables in Optimized Code

Aliasing occurs when a single object can be accessed in more than one way,
such as when two pointers point to the same object or when a pointer points
to a named object. Aliasing can disrupt optimization, because any indirect
reference can refer to another object. The optimizer analyzes the code to
determine where aliasing can and cannot occur, then optimizes as much as
possible while still preserving the correctness of the program. The optimizer
behaves conservatively. If there is a chance that two pointers are pointing at
the same object, then the optimizer assumes that the pointers do point to the
same object.

The optimizer assumes that any variable whose address is passed as an argu-
ment to a function is not subsequently modified by an alias set up in the called
function. Examples include:

� Returning the address from a function
� Assigning the address to a global variable

If you use aliases like this, you must use the -ma compiler option when you
are optimizing your code. For example, if your code is similar to this, use the
-ma option:

int *glob_ptr;

g()
{
 int x = 1;
 int *p = f(&x);

 p = 5; / p aliases x */
 glob_ptr = 10; / glob_ptr aliases x */

 h(x);
}

int *f(int *arg)
{
 glob_ptr = arg;
 return arg;
}

Automatic Inline Expansion (-oi Option)

 3-12

3.6 Automatic Inline Expansion (-oi Option)

The optimizer automatically inlines small functions when it is invoked with the
-O3 option. A command-line option, -oisize, specifies the size threshold. Any
function larger than the size threshold will not be automatically inlined. You can
use the -oisize option in the following ways:

� If you set the size parameter to 0 (-oi0), automatic inline expansion is
disabled.

� If you set the size parameter to a nonzero integer, the compiler uses the
size threshold as a limit to the size of the functions it automatically inlines.
The optimizer multiplies the number of times the function is inlined (plus
1 if the function is externally visible and its declaration cannot be safely
removed) by the size of the function.

The compiler inlines the function only if the result is less than the size param-
eter. The compiler measures the size of a function in arbitrary units; however,
the optimizer information file (created with the -on1 or -on2 option) reports the
size of each function in the same units that the -oi option uses.

The -oisize option controls only the inlining of functions that are not explicitly
declared as inline. If you do not use the -oi option, the optimizer inlines very
small functions.

Note: -O3 Optimization and Inlining

In order to turn on automatic inlining, you must use the -O3 option. The -O3
option turns on other optimizations. If you desire the -O3 optimizations, but
not automatic inlining, use -oi0 with the -O3 option.

Note: Inlining and Code Size

Expanding functions inline increases code size, especially inlining a function
that is called in a number of places. Function inlining is optimal for functions
that are called only from a small number of places and for small functions.
In order to prevent increases in code size because of inlining, use the -oi0
and -pi options. These options cause the compiler to inline intrinsics only.

Using Interlist With the Optimizer

3-13Optimizing Your Code

3.7 Using Interlist With the Optimizer

You control the output of the interlist feature when running the optimizer (the
-O n option) with the -os and -ss options.

� The -os option interlists optimizer comments with assembly source state-
ments.

� The -ss and -os options together interlist the optimizer comments and the
original C/C++ source with the assembly code.

When you use the -os option with the optimizer, the interlist does not run as
a separate pass. Instead, the optimizer inserts comments into the code, indi-
cating how the optimizer has rearranged and optimized the code. These
comments appear in the assembly language file as comments starting with ;**.
The C/C++ source code is not interlisted unless you use the -ss option also.

The interlist feature can affect optimized code because it might prevent some
optimization from crossing C/C++ statement boundaries. Optimization makes
normal source interlisting impractical, because the optimizer extensively
rearranges your program. Therefore, when you use the -os option, the
optimizer writes reconstructed C/C++ statements. These statements may not
reflect the exact C/C++ syntax of the operation being performed.

Example 3-1 shows the function from Example 2-3 on page 2-42 compiled
with the optimizer (-O2) and the -os option. Note that the assembly file
contains optimizer comments interlisted with assembly code.

Example 3-1. The Function From Example 2-3 Compiled With the -O2 and -os Options

_main:
;** 5 -------------------- printf((char*)”Hello world\n”);
;** -------------------- return;

FRAME #-3
NOP
ST #SL1,*SP(0)
CALL #_printf
;call occurs [#_printf]
FRAME #3
RET
;return occurs

Using Interlist With the Optimizer

 3-14

When you use the -ss and -os options with the optimizer, the optimizer inserts
its comments and the interlist feature runs between the code generator and
the assembler, merging the original C/C++ source into the assembly file.

Example 3-2 shows the function from Example 2-3 on page 2-42 compiled
with the optimizer (-O2) and the -ss and -os options. Note that the assembly
file contains optimizer comments and C source interlisted with assembly code.

Example 3-2. The Function From Example 2-3 Compiled With the -O2, -os,
and -ss Options

_main:
;** 5 -------------------- printf((char*)”Hello world\n”);
;** -------------------- return;

FRAME #-3
NOP

;--
; 5 | printf(”Hello World\n”);
;--

ST #SL1,*SP(0)
CALL #_printf
;call occurs [#_printf]
FRAME #3
RET
;return occurs

Debugging Optimized Code

3-15Optimizing Your Code

3.8 Debugging Optimized Code

Debugging fully optimized code is not recommended, because the optimizer’s
extensive rearrangement of code and the many-to-many allocation of vari-
ables to registers often make it difficult to correlate source code with object
code. Profiling code that has been built with the -g option (full debug) is also
not recommended, because the -g option causes significant performance
degradation. To remedy these problems, you can use the options described
in the following sections to optimize your code in such a way that you can still
debug or profile it.

3.8.1 Debugging Optimized Code (-g, -gw, and -o Options)

To debug optimized code, use the -o option in conjunction with one of the sym-
bolic debugging options (-g or -gw). The symbolic debugging options gener-
ate directives that are used by the C/C++ source-level debugger, but they dis-
able many code generator optimizations. When you use the -o option (which
invokes the optimizer) with the -g option or the -gw option, you turn on the
maximum amount of optimization that is compatible with debugging.

Note: The -g or -gw Option Causes Performance and Code Size Deg-
radations

Using the -g or -gw option can cause a significant performance and code
size degradation of your code. Use these options for debugging only. Using
-g or -gw when profiling is not recommended.

Debugging Optimized Code

 3-16

3.8.2 Profiling Optimized Code (-gp and -o Options)

To profile optimized code, use the -gp option with optimization (-O0 through
-O3). The -gp option allows you to profile optimized code at the granularity
of functions. When you combine the -g or -gw option and the -o option with
the -gp option, all of the line directives are removed except for the first one and
the last one.

Note: Profile Points

In Code Composer Studio, when -gp is used, profile points can only be set
at the beginning and end of functions.

Note: Finer Grained Profiling

If you need to profile code at a finer grain that the function level in Code Com-
poser Studio, you can use the -g or -gw option instead of the -gp option,
although this is not recommended. You might see a significant performance
degradation because the compiler cannot use all optimizations with -g. It is
recommended that outside of Code Composer Studio, you use the clock()
function.

What Kind of Optimization Is Being Performed?

3-17Optimizing Your Code

3.9 What Kind of Optimization Is Being Performed?

The TMS320C54x� C/C++ compiler uses a variety of optimization techniques
to improve the execution speed of your C/C++ programs and to reduce their
size. Optimization occurs at various levels throughout the compiler.

Most of the optimizations described here are performed by the separate
optimizer pass that you enable and control with the -o compiler options (see
Section 3.1 on page 3-2). However, the code generator performs some
optimizations that you cannot selectively enable or disable.

Following are the optimizations performed by the compiler.

Optimization Page

Cost-based register allocation 3-18

Alias disambiguation 3-18

Branch optimizations and control-flow simplification 3-18

Data flow optimizations
� Copy propagation
� Common subexpression elimination
� Redundant assignment elimination

3-20

Expression simplification 3-20

Inline expansion of run-time-support library functions 3-22

Induction variable optimizations and strength reduction 3-23

Loop-invariant code motion 3-23

Loop rotation 3-23

Tail merging 3-23

Autoincrement addressing 3-25

Repeat blocks 3-26

Delays, branches, calls, and returns 3-26

Algebraic reordering, symbolic simplification, constant folding 3-28

What Kind of Optimization Is Being Performed?

 3-18

3.9.1 Cost-Based Register Allocation

The optimizer, when enabled, allocates registers to user variables and
compiler temporary values according to their type, use, and frequency. Vari-
ables used within loops are weighted to have priority over others, and those
variables whose uses don’t overlap can be allocated to the same register.

3.9.2 Alias Disambiguation

C/C++ programs generally use many pointer variables. Frequently, compilers
are unable to determine whether or not two or more symbols, pointer refer-
ences, or structure references refer to the same memory location. This
aliasing of memory locations often prevents the compiler from retaining values
in registers because it cannot be sure that the register and memory continue
to hold the same values over time.

Alias disambiguation is a technique that determines when two pointer
expressions cannot point to the same location, allowing the compiler to freely
optimize such expressions.

3.9.3 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges
the linear sequences of operations (basic blocks) to remove branches or
redundant conditions. Unreachable code is deleted, branches to branches are
bypassed, and conditional branches over unconditional branches are simpli-
fied to a single conditional branch.

When the value of a condition is determined at compile time (through copy
propagation or other data flow analysis), the compiler can delete a conditional
branch. Switch case lists are analyzed in the same way as conditional
branches and are sometimes eliminated entirely. Some simple control flow
constructs can be reduced to conditional instructions, totally eliminating the
need for a branch.

What Kind of Optimization Is Being Performed?

3-19Optimizing Your Code

In Example 3-3, the switch statement and the state variable from this simple
finite state machine example are optimized completely away, leaving a
streamlined series of conditional branches.

Example 3-3. Control-Flow Simplification and Copy Propagation

(a) C source

fsm()
{

enum { ALPHA, BETA, GAMMA, OMEGA } state = ALPHA;
int *input;

while (state != OMEGA)
switch (state)
{

case ALPHA: state = (*input++ == 0) ? BETA: GAMMA; break;
case BETA : state = (*input++ == 0) ? GAMMA: ALPHA; break;
case GAMMA: state = (*input++ == 0) ? GAMMA: OMEGA; break;

}
}

(b) C compiler output

; opt500 -o3 control.if control.opt

_fsm:
PSHM AR1
LD *AR1+,A
BC L2,ANEQ
;branch occurs

L1:
LD *AR1+,A
BC L2,AEQ
;branch occurs
LD *AR1+,A
BC L1,AEQ
;branch occurs

L2:
LD *AR1+,A
BC L2,AEQ
;branch occurs
POPM AR1
RET
;return occurs

What Kind of Optimization Is Being Performed?

 3-20

3.9.4 Data Flow Optimizations

Collectively, the following data flow optimizations replace expressions with
less costly ones, detect and remove unnecessary assignments, and avoid
operations that produce values that are already computed. The optimizer per-
forms these data flow optimizations both locally (within basic blocks) and glob-
ally (across entire functions).

� Copy propagation

Following an assignment to a variable, the compiler replaces references to
the variable with its value. The value can be another variable, a constant,
or a common subexpression. This can result in increased opportunities for
constant folding, common subexpression elimination, or even total elimi-
nation of the variable. See Example 3-3 on page 3-19 and Example 3-4
on page 3-21.

� Common subexpression elimination

When two or more expressions produce the same value, the compiler
computes the value once, saves it, and reuses it.

� Redundant assignment elimination

Often, copy propagation and common subexpression elimination opti-
mizations result in unnecessary assignments to variables (variables with
no subsequent reference before another assignment or before the end of
the function). The optimizer removes these dead assignments (see
Example 3-4).

3.9.5 Expression Simplification

For optimal evaluation, the compiler simplifies expressions into equivalent
forms, requiring fewer instructions or registers. Operations between constants
are folded into single constants. For example, a = (b + 4) - (c + 1) becomes
a = b - c + 3.

In Example 3-4, the constant 3, assigned to a, is copy propagated to all uses
of a; a becomes a dead variable and is eliminated. The sum of multiplying j by
3 plus multiplying j by 2 is simplified into b = j * 5. The assignments to a and
b are eliminated.

What Kind of Optimization Is Being Performed?

3-21Optimizing Your Code

Example 3-4. Data Flow Optimizations and Expression Simplification

(a) C source

char simplify(char j)
{

char a = 3;
char b = (j*a) + (j*2);
return b;

}

(b) C compiler output

; opt500 -o2 data.if data.opt

_simplify:
STLM A,T
RETD
MPY #5,A
; return occurs

What Kind of Optimization Is Being Performed?

 3-22

3.9.6 Inline Expansion of Functions

The compiler replaces calls to small functions with inline code, saving the over-
head associated with a function call as well as providing increased opportuni-
ties to apply other optimizations (see Example 3-5).

In Example 3-5, the compiler finds the code for the C function plus() and
replaces the call with the code.

Example 3-5. Inline Function Expansion

(a) C source

int plus (int x, int y)
{

return x + y;
}
main ()
{

int a = 3;
int b = 4;
int c = 5;

return plus (a, plus (b, c));
}

(b) C compiler output

; opt500 -o3 inline.if inline.opt
.sect “.text”
.global _plus

;**
;* FUNCTION NAME: _plus *
;**
_plus:

LD *SP(1), B
ADD *(BL), A
RET

.sect “.text”

.global _main
;**
;* FUNCTION NAME: _main *
;**
_main:
; >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ENTERING plus()
; <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< LEAVING plus()
; >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ENTERING plus()
; <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< LEAVING plus()

RETD
LD #12,A
NOP
;return occurs

What Kind of Optimization Is Being Performed?

3-23Optimizing Your Code

3.9.7 Induction Variables and Strength Reduction

Induction variables are variables whose value within a loop is directly related
to the number of executions of the loop. Array indices and control variables of
for loops are very often induction variables.

Strength reduction is the process of replacing inefficient expressions involving
induction variables with more efficient expressions. For example, code that
indexes into a sequence of array elements is replaced with code that incre-
ments a pointer through the array.

Loops controlled by incrementing a counter are written as repeat blocks or by
using efficient decrement-and-branch instructions. Induction variable analysis
and strength reduction together often remove all references to your loop con-
trol variable, allowing it to be eliminated entirely.

3.9.8 Loop-Invariant Code Motion

This optimization identifies expressions within loops that always compute the
same value. The computation is moved in front of the loop, and each occur-
rence of the expression in the loop is replaced by a reference to the precom-
puted value.

3.9.9 Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving an
extra branch out of the loop. In many cases, the initial entry conditional check
and the branch are optimized out.

3.9.10 Tail Merging

If optimizing for code size, tail merging can be very effective for some func-
tions. Tail merging finds basic blocks that end in an identical sequence of
instructions and have a common destination. If such a set of blocks is found,
the sequence of identical instructions is made into its own block. These instruc-
tions are then removed from the set of blocks and replaced with branches to
the newly created block. Thus, there is only one copy of the sequence of
instructions, rather than one for each block in the set.

In Example 3-6, the addition to a at the end of all three cases is merged into
one block. Also, the multiplication by 3 in the first two cases is merged into
another block. This results in a reduction of three instructions. In some cases,
this optimization adversely affects execution speed by introducing extra
branches.

What Kind of Optimization Is Being Performed?

 3-24

Example 3-6. Tail Merging

(a) C code

int main(int a)
{
 if (a < 0)
 {
 a = -a;
 a += f(a)*3;
 }
 else if (a == 0)
 {
 a = g(a);
 a += f(a)*3;
 }
 else
 a += f(a);

 return a;
}

(b) C compiler output

_main:
push(DR2)
DR2 = AR1
if (DR2>=#0) goto L3
AC0 = DR2
AC0 = -AC0
goto L6

L3:
if (DR2==#0) goto L5
AR1 = DR2
call #_f
AR1 = AC0
DR2 = DR2 + AR1
goto L7

L5:
AR1 = DR2
call #_g

L6:
DR2 = AC0
AR1 = DR2
call #_f
DR1 = AC0
AC0 = DR2
AC0 = AC0 + (DR1 * #3)
DR2 = AC0

L7:
AC0 = DR2
DR2 = pop()
return

What Kind of Optimization Is Being Performed?

3-25Optimizing Your Code

3.9.11 Autoincrement Addressing

For pointer expressions of the form *p++, the compiler uses efficient C54x
autoincrement addressing modes. In many cases, where code steps through
an array in a loop such as:

for (i = 0; i < N; ++i) a[i]...

the loop optimizations convert the array references to indirect references
through autoincremented register variable pointers. See Example 3-7.

This optimization is designed especially for the C54x architecture. It does not
apply to general C code since it works on the sections of code that apply only
to the device.

Example 3-7. Autoincrement Addressing, Loop Invariant Code Motion, and
Strength Reduction

(a) C source

int a[10], b[10];
scale(int k)
{
 int i;
 for (i = 0; i < 10; ++i)
 a[i] = b[i] * k;

...
}

(b) C compiler output

;***
;* FUNCTION NAME: _scale *
;***
_scale:

SP = SP + #-1
DR1 = AR1
AR2 = #b
AR3 = #a ; Unsigned Load into AR3
AR1 = #10

L2:
AR2 = AR2 + #2
AC0 = uns(DR1 * *AR2(#-2))
AR4 = AC0
AR3 = AR3 + #2
*AR3(#-2) = AR4
AR1 = AR1 - #1
if (AR1!=#0) goto L2
SP = SP + #1
return

What Kind of Optimization Is Being Performed?

 3-26

3.9.12 Repeat Blocks

The C54x supports zero-overhead loops with the RPTB (repeat block)
instruction. With the optimizer, the compiler can detect loops controlled by
counters and generate them using the efficient repeat forms. The iteration
count can be either a constant or an expression.

Induction variable elimination and loop test replacement allow the compiler to
recognize the loop as a simple counting loop and then generate a repeat block.
Strength reduction turns the array references into efficient pointer autoincre-
ments.

3.9.13 Delays, Branches, Calls, and Returns

The C54x provides a number of delayed branch, call, and return instructions.
Three of these are used by the compiler: branch unconditional (BD), call to a
named function (CALLD), and simple return (RETD). These instructions
execute in two fewer cycles than their nondelayed counterparts. They execute
two instruction words after they enter the instruction stream. Sometimes it is
necessary to insert a NOP instruction after a delayed instruction to ensure
proper operation of the sequence. This is one word of code longer than a
nondelayed sequence, but it is still one cycle faster. Note that the compiler in-
serts a comment in the instruction sequence where the delayed instruction
executes. See Example 3-8.

Example 3-8. Delayed Branch, Call, and Return Instructions

(a) C source

main()
{

int i0, i1;
while(input(&i0) && input (&i1))

process(i0, i1);
}

What Kind of Optimization Is Being Performed?

3-27Optimizing Your Code

Example 3-8. Delayed Branch, Call, and Return Instructions (Continued)

(b) C compiler output

; opt500 -o2 delay.if delay.opt
_main:

BD L2
PSHM AR1
FRAME #-4
;branch occurs

L1:
LD *SP(3),A
STL A,*SP(0)
LD *SP(2),A
CALL #_process
;call occurs [#_process]

L2:
LDM SP,A
CALLD #_input
ADD #2,A
;call occurs [#_input]
LD *(AL),A
BC L3,AEQ
;branch occurs
LDM SP,A
CALLD #_input
ADD #3,A
;call occurs [#_input]
STLM A,AR1
NOP
NOP
BANZ L1,*AR1
;branch occurs

L3:
FRAME #4
POPM AR1
RETD
LD #0,A
NOP
;return occurs

What Kind of Optimization Is Being Performed?

 3-28

3.9.14 Algebraic Reordering/Symbolic Simplification/Constant Folding

For optimal evaluation, the compiler simplifies expressions into equivalent
forms requiring fewer instructions or registers. For example, the expression
(a + b) - (c + d) takes six instructions to evaluate; it can be optimized to ((a + b)
- c) - d, which takes only four instructions. Operations between constants are
folded into single constants. For example, a = (b + 4) - (c + 1) becomes a = b
- c + 3. See Example 3-4 on page 3-21.

4-1

Linking�C/C++�Code

The TMS320C54x� C/C++ compiler and assembly language tools provide
two methods for linking your programs:

� You can compile individual modules and then link them together. This
method is especially useful when you have multiple source files.

� You can compile and link in one step by using cl500. This method is useful
when you have a single source module.

This chapter describes how to invoke the linker with each method. It also
discusses special requirements of linking C/C++ code, including the runtime-
support libraries, specifying the initialization model, and allocating the
program into memory. For a complete description of the linker, see the
TMS320C54x Assembly Language Tools User’s Guide.

Topic Page

4.1 Invoking the Linker (-z Option) 4-2.

4.2 Disabling the Linker (-c Compiler Option) 4-4.

4.3 Linker Options 4-5.

4.4 Controlling the Linking Process 4-7.

Chapter 4

Invoking the Linker (-z Option)

 4-2

4.1 Invoking the Linker (-z Option)

The examples in this section show how to invoke the linker through the compil-
er. For information on how to invoke the linker directly, see the TMS320C54x
Assembly Language Tools User’s Guide.

4.1.1 Invoking the Linker As a Separate Step

This is the general syntax for linking C/C++ programs as a separate step:

cl500 -z {-c |-cr } filenames [options] [-o name.out] -l library [lnk.cmd]

cl500 -z The command that invokes the linker

-c | -cr Options that tell the linker to use special conventions
defined by the C/C++ environment. When you use
lnk500, you must use -c or -cr. The -c option uses auto-
matic variable initialization at runtime; the -cr option
uses automatic variable initialization at reset.

filenames Names of object files, linker command files, or archive
libraries. The default extension for all input files is .obj;
any other extension must be explicitly specified. The
linker can determine whether the input file is an object or
ASCII file that contains linker commands. The default
output filename is a.out, unless you use the -o option to
name the output file.

options Options affect how the linker handles your object files.
Linker options can only appear after the -z option on the
command line but may otherwise be in any order. (Op-
tions are discussed in Section 4.3, Linker Options.)

-o name.out The -o option names the output file.

-l libraryname (lowercase L) Identifies the appropriate archive library
containing C/C++ runtime-support and floating-point
math functions. (The -l option tells the linker that a file is
an archive library.) You can use the libraries included with
the compiler, or you can create your own runtime-sup-
port library. If you have specified a runtime-support li-
brary in a linker command file, you do not need this pa-
rameter.

lnk.cmd Contains options, filenames, directives, or commands
for the linker.

Invoking the Linker (-z Option)

4-3Linking C/C++ Code

When you specify a library as linker input, the linker includes and links only
those library members that resolve undefined references. The linker uses a
default allocation algorithm to allocate your program into memory. You can use
the MEMORY and SECTIONS directives in the linker command file to custom-
ize the allocation process. For more information, see the TMS320C54x As-
sembly Language Tools User’s Guide.

You can link a C/C++ program consisting of modules prog1.obj, prog2.obj, and
prog3.obj with an executable filename of prog.out with the following command:

cl500 -z -c prog1 prog2 prog3 -o prog.out -l rts500.lib

4.1.2 Invoking the Linker As Part of the Compile Step

This is the general syntax for linking C/C++ programs as part of the compile
step:

cl500 -z {-c |-cr } filenames [options] [-o name.out] -l library [lnk.cmd]

The -z option divides the command line into compiler options (the options be-
fore -z) and the linker options (the options following -z). The -z option must
follow all source files and compiler options on the command line.

All arguments that follow -z on the command line are passed to the linker.
These arguments can be linker command files, additional object files, linker
options, or libraries. These arguments are the same as described in Section
4.1.1, Invoking the Linker As a Separate Step.

All arguments that precede -z on the command line are compiler arguments
compiler. These arguments can be C/C++ source files, assembly files, or com-
piler options. These arguments are described in Section 2.2, Invoking the
C/C++ Compiler.

You can compile and link a C/C++ program consisting of modules prog1.c,
prog2.c, and prog3.c, with an executable filename of prog.out with the follow-
ing command:

cl500 prog1.c prog2.c prog3.c -z -c -o prog.out -l rts500.lib

Disabling the Linker (-c Compiler Option)

 4-4

4.2 Disabling the Linker (-c Compiler Option)

You can override the -z option by using the -c option. The -c option is
especially helpful if you specify the -z option in the C_OPTION or
C54X_C_OPTION environment variable and want to selectively disable link-
ing with the -c option on the command line.

The -c linker option has a different function than, and is independent of, the
-c option. By default, the compiler uses the -c linker option when you use the
-z option. This tells the linker to use C/C++ linking conventions
(autoinitialization of variables at runtime). If you want to autoinitialize variables
at reset, use the -cr linker option following the -z option.

Linker Options

4-5Linking C/C++ Code

4.3 Linker Options

All command-line input following the -z option is passed to the linker as
parameters and options. Following are the options that control the linker, along
with detailed descriptions of their effects:

-a Produces an absolute, executable module. This is the
default; if neither -a nor -r is specified, the linker acts
as if -a is specified.

-ar Produces a relocatable, executable object module

-b Disables merge of symbolic debugging information

-c Autoinitializes variables at runtime

-cr Autoinitializes variables at reset

-e global_symbol Defines a global_symbol that specifies the primary
entry point for the output module

-f fill_value Sets the default fill value for holes within output
sections; fill_value is a 16-bit constant

-g global_symbol Defines a global_symbol as global even if the global
symbol has been made static with the -h linker option

-h Makes all global symbols static

-heap size Sets heap size (for the dynamic memory allocation) to
size words and defines a global symbol that specifies
the heap size. The default is 1K words.

-i directory Alters the library-search algorithm to look in directory
before looking in the default location. This option must
appear before the -l linker option. The directory must
follow operating system conventions.

-j Disables conditional linking

-k Ignore alignment flags in input sections

-l filename (lowercase L) Names an archive library file as linker
input; filename is an archive library name and must
follow operating system conventions.

-m filename Produces a map or listing of the input and output
sections, including holes, and places the listing in
filename. The filename must follow operating system
conventions.

Linker Options

 4-6

-o filename Names the executable output module. The filename
must follow operating system conventions. If the -o
option is not used, the default filename is a.out.

-priority Always searches libraries in the order in which they are
specified when attempting to resolve symbol refer-
ences.

-q Requests a quiet run (suppresses the banner)

-r Retains relocation entries in the output module

-s Strips symbol table information and line number
entries from the output module

-stack size Sets the C system stack size to size words and defines
a global symbol that specifies the stack size. The
default is 1K words.

-u symbol Places the unresolved external symbol symbol into the
output module’s symbol table

-v n Specify the output COFF format, where n is 0, 1, or 2.
The default format is COFF2.

-w Displays a message when an undefined output section
is created

-x Forces rereading of libraries. Resolves back
references.

For more information on linker options, see the Linker Description chapter of
the TMS320C54x Assembly Language Tools User’s Guide.

Controlling the Linking Process

4-7Linking C/C++ Code

4.4 Controlling the Linking Process

Regardless of the method you choose for invoking the linker, special
requirements apply when linking C/C++ programs. You must:

� Include the compiler’s runtime-support library
� Specify the initialization model
� Determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an
example of the standard default linker command file.

For more information about how to operate the linker, see the Linker
Description chapter of the TMS320C54x Assembly Language Tools User’s
Guide.

4.4.1 Linking With Runtime-Support Libraries

You must link all C/C++ programs with a runtime-support library. The library
contains standard C/C++ functions as well as functions used by the compiler
to manage the C/C++ environment. You must use the -l linker option to specify
the runtime-support library to use. The -l option also tells the linker to look at
the -i options and then the C_DIR environment variable to find an archive path
or object file.

To use the -l option, type on the command line:

lnk500 {- c | -cr } filenames - l libraryname

Generally, the libraries should be specified as the last filenames on the
command line because the linker searches libraries for unresolved references
in the order that files are specified on the command line. If any object files fol-
low a library, references from those object files to that library are not resolved.
You can use the -x linker option to force the linker to reread all libraries until
references are resolved. Wherever you specify a library as linker input, the
linker includes and links only those library members that resolve undefined ref-
erences.

4.4.2 Runtime Initialization

You must link all C/C++ programs with code to initialize and execute the pro-
gram called a bootstrap routine. The bootstrap routine is responsible for the
following tasks:

� Set up status and configuration registers

� Set up the stack and secondary system stack

Controlling the Linking Process

 4-8

� Process the .cinit runtime initialization table and autoinitialize global
variables (when using the -c option)

� Call all global object constructors (.pinit)

� Call main

� Call exit when main returns

A sample bootstrap routine is _c_int00, provided in boot.obj in rts500.lib. The
 entry point is usually set to the starting address of the bootstrap routine.

Chapter 7, Run-Time-Support Functions, describes additional runtime-sup-
port functions that are included in the library. These functions include ISO C
standard runtime support.

Note: The _c_int00 Symbol

If you use the -c or -cr linker option, _c_int00 is automatically defined as the
entry point for the program.

4.4.3 Global Object Constructors

Global C++ variables having constructors and destructors require their
constructors to be called during program initialization and their destructors to
be called during program termination. The C/C++ compiler produces a table
of constructors to be called at startup.

The table is contained in a named section called .pinit. The constructors are
invoked in the order that they occur in the table.

Global constructors are called after initialization of other global variables and
before main() is called. Global destructors are invoked during exit(), like func-
tions registered through atexit().

Section 6.9.3, Initialization Tables, on page 6-34 discusses the format of the
.pinit table.

Controlling the Linking Process

4-9Linking C/C++ Code

4.4.4 Specifying the Type of Initialization

The C/C++ compiler produces data tables for autoinitializing global variables.
Subsection 6.9.3, Initialization Tables, on page 6-34 discusses the format of
these tables. These tables are in a named section called .cinit. The
initialization tables are used in one of the following ways:

� Autoinitializing variables at runtime. Global variables are initialized at run-
time. Use the -c linker option (see subsection 6.9.4, Autoinitialization of
Variables at Runtime, on page 6-37).

� Autoinitializing variables at load time. Global variables are initialized at
load time. Use the -cr linker option (see section 6.9.5, Autoinitialization of
Variables at Reset, on page 6-38).

When you link a C/C++ program, you must use either the -c or the -cr option.
These options tell the linker to select autoinitialization at runtime or reset.
When you compile and link programs, the -c linker option is the default; if
used, the -c linker option must follow the -z option (see Section 4.1.2, Invoking
the Linker As Part of the Compile Step, on page 4-3). The following list out-
lines the linking conventions used with -c or -cr:

� The symbol _c_int00 is defined as the program entry point; it identifies the
beginning of the C/C++ boot routine in boot.obj. When you use -c or -cr,
_c_int00 is automatically referenced; this ensures that boot.obj is auto-
matically linked in from the runtime-support library.

� The .cinit output section is padded with a termination record so that the
loader (reset initialization) or the boot routine (runtime initialization) knows
when to stop reading the initialization tables.

� When autoinitializing at load time (the -cr linker option), the following
occur:

� The linker sets the symbol cinit to -1. This indicates that the
initialization tables are not in memory, so no initialization is performed
at runtime.

� The STYP_COPY flag is set in the .cinit section header. STYP_COPY
is the special attribute that tells the loader to perform autoinitialization
directly and not to load the .cinit section into memory. The linker does
not allocate space in memory for the .cinit section.

Controlling the Linking Process

 4-10

� When autoinitializing at run time (-c option), the linker defines the symbol
cinit as the starting address of the .cinit section. The boot routine uses this
symbol as the starting point for autoinitialization.

Note: Boot Loader

Note that a loader is not included as part of the C/C++ compiler tools. Use
the C54x simulator or emulator with the source debugger as a loader.

4.4.5 Specifying Where to Allocate Sections in Memory

The compiler produces relocatable blocks of code and data. These blocks,
called sections, can be allocated into memory in a variety of ways to conform
to a variety of system configurations.

The compiler creates two basic kinds of sections: initialized and uninitialized.
Table 4-1 summarizes the sections.

Table 4-1. Sections Created by the Compiler

(a) Initialized sections

Name Contents Memory Type Page

.cinit Tables for explicitly initialized global
and static variables

ROM or RAM 0

.const Global and static const variables that
are explicitly initialized and string liter-
als

ROM or RAM 1

.pinit Tables for global object constructors

.text Executable code and constants ROM or RAM 0

.switch Switch statement tables ROM or RAM 0

(b) Uninitialized sections

Name Contents Memory Type Page

.bss Global and static variables RAM 1

.stack Stack RAM 1

.sysmem Memory for malloc functions RAM 1

When you link your program, you must specify where to allocate the sections
in memory.

Controlling the Linking Process

4-11Linking C/C++ Code

In general, initialized sections are linked into ROM or RAM; uninitialized sec-
tions are linked into RAM. See section 6.1.1, Sections, on page 6-2 for a com-
plete description of how the compiler uses these sections. The linker provides
MEMORY and SECTIONS directives for allocating sections. For more infor-
mation about allocating sections into memory, see the Linker Description
chapter of the TMS320C54x Assembly Language Tools User’s Guide.

4.4.6 A Sample Linker Command File

Example 4-1 shows a typical linker command file that links a C/C++ program.
The command file in this example is named lnk.cmd and lists several linker
options. To link the program, enter:

First, the command file in Example 4-1 lists several linker options:

- c tells the linker to use the ROM model of autoinitialization.

- m tells the linker to create a map file; the map file in this example is
named example.map.

- o tells the linker to create an executable object module; the module in
this example is named example.out.

Next, the command file lists all the object files to be linked. This C program con-
sists of two C modules, main.c and sub.c, which were compiled and
assembled to create two object files called main.obj and sub.obj. This example
also links in an assembly language module called asm.obj.

One of these files must define the symbol main, because boot.obj calls main
as the start of your C program. All of these single object files are linked.

Finally, the command file lists all the object libraries that the linker must search.
(The libraries are specified with the -l linker option.) Because this is a C pro-
gram, the runtime-support library, rts.lib, must be included. Note that only the
library members that resolve undefined references are linked.

lnk500 lnk.cmd

The MEMORY and possibly the SECTIONS directive might require modifica-
tion to work with your system. See the Linker Description chapter of the
TMS320C54x Assembly Language Tools User’s Guide for information on
these directives.

Controlling the Linking Process

 4-12

Example 4-1. Linker Command File

/**/
/ Linker command file lnk.cmd
/**/

-c /* ROM autoinitialization model */
-m example.map /* Create a map file */
-o example.out /* Output file name */

main.obj /* First C module */
sub.obj /* Second C module */
asm.obj /* Assembly language module */
-l rts.lib /* Runtime-support library */
-l matrix.lib /* Object library */

MEMORY
{
 PAGE 0 : PROG: origin = 30h, length = 0EFD0h
 PAGE 1 : DATA: origin = 800h length = 0E800h
}
SECTIONS
{
 .text > PROG PAGE 0
 .cinit > PROG PAGE 0
 .switch > PROG PAGE 0
 .bss > DATA PAGE 1
 .const > DATA PAGE 1
 .sysmem > DATA PAGE 1
 .stack > DATA PAGE 1
}

5-1

TMS320C54x C/C++ Language

The TMS320C54x� C/C++ compiler supports the C/C++ language standard
that was developed by a committee of the International Organization for Stan-
dardization (ISO) to standardize the C programming language.

The C++ language supported by the C54x is defined in The Annotated C++
Reference Manual (ARM). In addition, many of the extensions from the ISO/
IEC 14882-1998 C++ standard are implemented.

Topic Page

5.1 Characteristics of TMS320C54x C 5-2.

5.2 Characteristics of TMS320C54x C++ 5-5.

5.3 Data Types 5-6.

5.4 Keywords 5-7.

5.5 Register Variables 5-12.

5.6 Global Register Variables 5-13.

5.7 The asm Statement 5-15.

5.8 Pragma Directives 5-16.

5.9 Generating Linknames 5-25.

5.10 Initializing Static and Global Variables 5-26.

5.11 Changing the ISO C Language Mode
 (-pk, -pr, and -ps Options) 5-28.

5.12 Compiler Limits 5-31.

Chapter 5

Characteristics of TMS320C54x C

 5-2

5.1 Characteristics of TMS320C54x C

ISO C supersedes the de facto C standard that is described in the first edition
of The C Programming Language, by Kernighan and Ritchie. The ISO
standard is described in the International Standard ISO/IEC 9899 (1999)—
Programming languages—C (The C Standard).

The ISO standard identifies certain features of the C language that are affected
by characteristics of the target processor, run-time environment, or host envi-
ronment. For reasons of efficiency or practicality, this set of features can differ
among standard compilers. This section describes how these features are
implemented for the C54x C/C++ compiler.

The following list identifies all such cases and describes the behavior of the
C54x C/C++ compiler in each case. Each description also includes a reference
to more information. Many of the references are to the formal ISO standard for
C or to the second edition of The C Programming Language by Kernighan and
Ritchie (K&R).

5.1.1 Identifiers and Constants

� All characters of all identifiers are significant. Case is significant; upper-
case and lowercase characters are distinct for identifiers. These charac-
teristics apply to all identifiers, internal and external.

(ISO 3.1.2, K&R A2.3)

� The source (host) and execution (target) character sets are assumed to
be ASCII. There are no multibyte characters.

 (ISO 2.2.1, K&R A12.1)

� Hex or octal escape sequences in character or string constants may have
values up to 32 bits. (ISO 3.1.3.4, K&R A2.5.2)

� Character constants with multiple characters are encoded as the last
character in the sequence. For example,

’abc’ == ’c’ (ISO 3.1.3.4, K&R A2.5.2)

Characteristics of TMS320C54x C

5-3TMS320C54x C/C++ Language

5.1.2 Data Types

� For information about the representation of data types, see Section 5.3.
(ISO 3.1.2.5, K&R A4.2)

� The type size_t, which is the result of the sizeof operator, is unsigned int.
(ISO 3.3.3.4, K&R A7.4.8)

� The type ptrdiff_t, which is the result of pointer subtraction, is int.
(ISO 3.3.6, K&R A7.7)

5.1.3 Conversions

� Float-to-integer conversions truncate toward 0.
(ISO 3.2.1.3, K&R A6.3)

� Pointers and integers can be freely converted, as long as the result type
is large enough to hold the original value.

(ISO 3.3.4, K&R A6.6)

5.1.4 Expressions

� When two signed integers are divided and either is negative, the
quotient is negative, and the sign of the remainder is the same as the sign
of the numerator. The slash mark (/) is used to find the quotient and the
percent symbol (%) is used to find the remainder. For example,

10 / -3 == -3, -10 / 3 == -3

10 % -3 == 1, -10 % 3 == -1 (ISO 3.3.5, K&R A7.6)

A signed modulus operation takes the sign of the dividend (the first
operand).

� A right shift of a signed value is an arithmetic shift; that is, the sign is
preserved. (ISO 3.3.7, K&R A7.8)

5.1.5 Declaration

� The register storage class is effective for all chars, shorts, ints, and pointer
types. (ISO 3.5.1, K&R A2.1)

� Structure members are not packed into words (with the exception of bit
fields). Each member is aligned on a 16-bit word boundary.

(ISO 3.5.2.1, K&R A8.3)

� A bit field of type integer is signed. Bit fields are packed into words
beginning at the high-order bits, and do not cross word boundaries.

(ISO 3.5.2.1, K&R A8.3)

Characteristics of TMS320C54x C

 5-4

� The interrupt keyword can be applied only to void functions that have no
arguments. For more information, see subsection 5.4.3 on page 5-9.

(TI C extension)

5.1.6 Preprocessor

� The preprocessor ignores any unsupported #pragma directive.
 (ISO 3.8.6, K&R A12.8)

The following pragmas are supported.

� CODE_SECTION
� DATA_SECTION
� FUNC_CANNOT_INLINE
� FUNC_EXT_CALLED
� FUNC_IS_PURE
� FUNC_IS_SYSTEM
� FUNC_NEVER_RETURNS
� FUNC_NO_GLOBAL_ASG
� FUNC_NO_IND_ASG
� IDENT
� INTERRUPT
� NO_INTERRUPT

For more information on pragmas, see Section 5.8 on page 5-16.

Characteristics of TMS320C54x C++

5-5TMS320C54x C/C++ Language

5.2 Characteristics of TMS320C54x C++

The C54x compiler supports C++ as defined in Ellis and Stroustrup’s The
Annotated C++ Reference Manual (ARM). In addition, many of the features of
the ISO/IEC 14882-1998 C++ standard are accepted. The exceptions to the
standard are as follows:

� Complete C++ standard library support is not included. In particular, the
iostream library is not supported. C subset and basic language support is
included.

� Exception handling is not supported.

� Run-time type information (RTTI) is disabled by default. RTTI allows the
type of an object to be determined at run time. It can be enabled with the
-rtti compiler option.

� The only C++ standard library header files included are <typeinfo> and
<new>. Support for bad_cast or bad_type_id is not included in the typeinfo
header.

Data Types

 5-6

5.3 Data Types

Table 5-1 lists the size, representation, and range of each scalar data type or
the C54x compiler. Many of the range values are available as standard macros
in the header file limits.h. For more information, see subsection 7.3.6, Limits
(float.h and limits.h), on page 7-18.

Table 5-1. TMS320C54x C/C++ Data Types

Type Size Representation Minimum Value Maximum Value

signed char 16 bits ASCII -32 768 32 767

char, unsigned char 16 bits ASCII 0 65 535

short, signed short 16 bits 2s complement -32 768 32 767

unsigned short 16 bits Binary 0 65 535

int, signed int 16 bits 2s complement -32 768 32 767

unsigned int 16 bits Binary 0 65 535

long, signed long 32 bits 2s complement -2 147 483 648 2 147 483 647

unsigned long 32 bits Binary 0 4 294 967 295

enum 16 bits 2s complement -32 768 32 767

float 32 bits IEEE 32-bit 1.175 494e-38 3.40 282 346e+38

double 32 bits IEEE 32-bit 1.175 494e-38 3.40 282 346e+38

long double 32 bits IEEE 32-bit 1.175 494e-38 3.40 282 346e+38

pointers 16 bits Binary 0 0xFFFF

Note: C54x Byte Is 16 Bits

By ISO C definition, the sizeof operator yields the number of bytes required
to store an object. ISO further stipulates that when sizeof is applied to char,
the result is 1. Since the C54x char is 16 bits (to make it separately address-
able), a byte is also 16 bits. This yields results you may not expect; for
example, sizeof (int) = = 1 (not 2). C54x bytes and words are equivalent (16
bits).

Keywords

5-7TMS320C54x C/C++ Language

5.4 Keywords

The C54x C compiler supports the standard const and volatile keywords. In
addition, the C54x C compiler extends the C language through the support of
the interrupt, ioport, near, and far keywords.

5.4.1 The const Keyword

The C54x C/C++ compiler supports the ISO standard keyword const. This key-
word gives you greater control over allocation of storage for certain data
objects. You can apply the const qualifier to the definition of any variable or
array to ensure that their values are not altered.

If you define an object as const, the const section allocates storage for the
object. The const data storage allocation rule has two exceptions:

� If the keyword volatile is also specified in the definition of an object (for
example, volatile const int x). Volatile keywords are assumed to be allo-
cated to RAM. (The program does not modify a const volatile object, but
something external to the program might.)

� If the object is auto (function scope).

In both cases, the storage for the object is the same as if the const keyword
were not used.

The placement of the const keyword within a definition is important. For
example, the first statement below defines a constant pointer p to a variable
int. The second statement defines a variable pointer q to a constant int:

int * const p = &x;

const int * q = &x;

Using the const keyword, you can define large constant tables and allocate
them into system ROM. For example, to allocate a ROM table, you could use
the following definition:

const int digits [] = {0,1,2,3,4,5,6,7,8,9};

Keywords

 5-8

5.4.2 The ioport Keyword

The ioport keyword enables access to the I/O port space of the C54x devices.
The keyword has the form:

ioport type porthex_num

ioport is the keyword that indicates this is a port variable.

type must be char, short, int, or unsigned.

porthex_num refers to the port number. The hex_num argument is a hex-
adecimal number.

All declarations of port variables must be done at the file level. Port variables
declared at the function level are not supported. Do not use the ioport keyword
in a function prototype.

For example, the following code declares the I/O port as unsigned port 10h,
writes a to port 10h, then reads port 10h into b:

ioport unsigned port10; /* variable to access I/O port 10h */

int func ()
{
 ...

 port10 = a; /* write a to port 10h */
 ...

 b = port10; /* read port 10h into b */
 ...
}

The use of port variables is not limited to assignments. Port variables can be
used in expressions like any other variable. For example:

a = port10 + b; /* read port 10h, add b, assign to a */

port10 += a; /* read port 10h, add a, write to port 10h */

In calls, port variables are passed by value, not be reference:

call(port10); /* read port 10h, pass (by value) to call */

call(&port10); /* invalid pass by reference! */

Keywords

5-9TMS320C54x C/C++ Language

5.4.3 The interrupt Keyword

The C54x compiler extends the C/C++ language by adding the interrupt key-
word to specify that a function is to be treated as an interrupt function.

Functions that handle interrupts require special register saving rules and a
special return sequence. When C/C++ code is interrupted, the interrupt routine
must preserve the contents of all machine registers that are used by the routine
or by any function called by the routine. When you use the interrupt keyword
with the definition of the function, the compiler generates register saves based
on the rules for interrupt functions and the special return sequence for inter-
rupts.

You can use the interrupt keyword with a function that is defined to return void
and that has no parameters. The body of the interrupt function can have local
variables and is free to use the stack. For example:

interrupt void int_handler()
{
 unsigned int flags;

 ...
}

The name c_int00 is the C/C++ entry point. This name is reserved for the sys-
tem reset interrupt. This special interrupt routine initializes the system and
calls the function main. Because it has no caller, c_int00 does not save any
registers.

Use the alternate keyword, __interrupt, if you are writing code for strict ISO
mode (using the -ps compiler option).

Keywords

 5-10

5.4.4 The near and far Keywords

The C54x C/C++ compiler extends the C language with the near and far key-
words to specify how functions may be called.

Syntactically, the near and far keywords are treated as storage class modifiers.
They can appear before, after, or in between the storage class specifiers and
types. Two storage class modifiers cannot be used together in a single decla-
ration. Correct examples are shown below:

far int func1();
static far int func1();
near func1();

When the near keyword is used, the compiler will use the CALL instruction to
generate the call. When the far keyword is used, the compiler will use the
FCALL instruction to generate the call.

By default, the compiler will generate all far calls when the -mf compiler option
is used. It will generate all near calls when the -mf option is not used.

Note that the near and far keywords only affect the call instruction used on the
function. Pointers to functions are not affected. By default, all pointers are 16
bits. When the -mf option is used, pointers are 24 bits and are able to point
to extended memory.

Keywords

5-11TMS320C54x C/C++ Language

5.4.5 The volatile Keyword

The optimizer analyzes data flow to avoid memory accesses whenever
possible. If you have code that depends on memory accesses exactly as
written in the C/C++ code, you must use the volatile keyword to identify these
accesses. The compiler won’t optimize out any references to volatile
variables.

In the following example, the loop waits for a location to be read as 0xFF:

unsigned int *ctrl;
while (*ctrl !=0xFF);

In this example, *ctrl is a loop-invariant expression, so the loop is optimized
down to a single-memory read. To correct this, declare ctrl as:

volatile unsigned int *ctrl

Register Variables

 5-12

5.5 Register Variables

The C/C++ compiler uses up to two register variables within a function. You
must declare the register variables in the argument list or in the first block of
the function. Register declarations in nested blocks are treated as normal
variables.

The compiler uses AR1 and AR6 for register variables:

� AR1 is assigned to the first register variable.
� AR6 is assigned to the second variable.

The address of the variable is placed into the allocated register to simplify
access. Thus, 16-bit types (char, short, int, and pointers) may be used as
register variables.

Setting up a register variable at runtime requires approximately four
instructions per register variable. To use this feature efficiently, use register
variables only if the variable is accessed more than twice.

Global Register Variables

5-13TMS320C54x C/C++ Language

5.6 Global Register Variables

The C54x compiler extends the C language by adding a special convention to
the register storage class specifier to allow the allocation of global registers.
This special global declaration has the form:

register type regid

where regid can be AR1 or AR6.

The two registers AR1 and AR6 are normally save-on-entry registers; type
cannot be float or long.

register struct data_struct *AR6
#define data_pointer (AR6)

data_pointer->element;

data_pointer++;

There are two reasons that you would be likely to use a global register variable:

� You are using a global variable throughout your program, and it would
significantly reduce code size and execution speed to assign this variable
to a register permanently.

� You are using an interrupt service routine that is called so frequently that
it would significantly reduce execution speed if the routine did not have to
save and restore the register(s) it uses every time it is called.

You need to consider very carefully the implications of reserving a global
register variable. Registers are a precious resource to the compiler, and using
this feature indiscriminately may result in poorer code.

You also need to consider carefully how code with a globally declared register
variable interacts with other code, including library functions, that does not
recognize the restriction placed on the register.

Because the registers that can be global register variables are save-on-entry
registers, a normal function call and return does not affect the value in the
register and neither does a normal interrupt. However, when you mix code that
has a globally declared register variable with code that does not have the
register reserved, it is still possible for the value in the register to become
corrupted. To avoid the possibility of corruption, you must follow these rules:

� Functions that alter global register variables cannot be called by functions
that are not aware of the global register. Use the -r compiler option to re-
serve the register in code that is not aware of the global register declara-
tion. You must be careful if you pass a pointer to a function as an argument.
If the passed function alters the global register variable and the called
function saves the register, the value in the register will be corrupted.

Global Register Variables

 5-14

� You cannot access a global register variable in an interrupt service routine
unless you recompile all code, including all libraries, to reserve the regis-
ter. This is because the interrupt routine can be called from any point in the
program.

� The longjump () function restores global register variables to the values
they had at the setjump () location. If this presents a problem in your code,
you must alter the code for the function and recompile rts.src.

� Save the global register on entry into a module that uses it, and restore the
register at exit.

The -r register option for the cl500 shell allows you to prevent the compiler
from using the named register. This lets you reserve the named register in
modules that do not have the global register variable declaration, such as the
runtime-support libraries, if you need to compile the modules to prevent some
of the above occurrences.

You can disable the compiler’s use of AR1 and AR6 completely so that you can
use AR1 and/or AR6 in your interrupt functions without preserving them. If you
disable the compiler from using AR1 and AR6, you must compile all code with
the -r option(s) and rebuild the runtime-support library. For example, the
following command rebuilds the rts.lib library to not use AR1 and AR6:

mk500 -rAR1 -rAR6 -o rts.src -l rts.lib

The asm Statement

5-15TMS320C54x C/C++ Language

5.7 The asm Statement

The TMS320C54x C/C++ compiler can embed C54x assembly language
instructions or directives directly into the assembly language output of the
compiler. This capability is an extension to the C/C++ language—the asm
statement. The asm statement provides access to hardware features that
C/C++ cannot provide. The asm statement is syntactically like a call to a func-
tion named asm, with one string-constant argument:

asm(”assembler text”);

The compiler copies the argument string directly into your output file. The
assembler text must be enclosed in double quotes. All the usual character
string escape codes retain their definitions. For example, you can insert a
.string directive that contains quotes as follows:

asm(”STR: .string \”abc\””);

The inserted code must be a legal assembly language statement. Like all
assembly language statements, the line of code inside the quotes must begin
with a label, a blank, a tab, or a comment (asterisk or semicolon). The compiler
performs no checking on the string; if there is an error, the assembler detects
it. For more information about assembly language statements, see the
TMS320C54x Assembly Language Tools User’s Guide.

The asm statements do not follow the syntactic restrictions of normal C/C++
statements. Each can appear as a statement or a declaration, even outside
of blocks. This is useful for inserting directives at the very beginning of a
compiled module.

Note: Avoid Disrupting the C/C++ Environment With asm Statements

Be careful not to disrupt the C/C++ environment with asm statements. The
compiler does not check the inserted instructions. Inserting jumps and labels
into C/C++ code can cause unpredictable results in variables manipulated
in or around the inserted code. Directives that change sections or otherwise
affect the assembly environment can also be troublesome.

Be especially careful when you use the optimizer with asm statements.
Although the optimizer cannot remove asm statements, it can significantly
rearrange the code order near them, possibly causing undesired results.

Pragma Directives

 5-16

5.8 Pragma Directives

Pragma directives tell the compiler’s preprocessor how to treat functions. The
C54x C/C++ compiler supports the following pragmas:

� CODE_SECTION
� DATA_SECTION
� FUNC_CANNOT_INLINE
� FUNC_EXT_CALLED
� FUNC_IS_PURE
� FUNC_IS_SYSTEM
� FUNC_NEVER_RETURNS
� FUNC_NO_GLOBAL_ASG
� FUNC_NO_IND_ASG
� IDENT
� INTERRUPT
� NO_INTERRUPT

The arguments func and symbol cannot be defined or declared inside the body
of a function. You must specify the pragma outside the body of a function, and
it must occur before any declaration, definition, or reference to the func or
symbol argument. If you do not follow these rules, the compiler issues a warn-
ing.

For pragmas that apply to functions or symbols, the syntax for the pragmas
differs between C and C++. In C, you must supply, as the first argument, the
name of the object or function to which you are applying the pragma. In C++,
the name is omitted; the pragma applies to the declaration of the object or func-
tion that follows it.

When you mark a function with a pragma, you assert to the compiler that the
function meets the pragma’s specifications in every circumstance. If the func-
tion does not meet these specifications at all times, the compiler’s behavior will
be unpredictable.

5.8.1 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in a section
named section name.

The syntax of the pragma in C is:

#pragma CODE_SECTION (symbol, ”section name”) [;]

Pragma Directives

5-17TMS320C54x C/C++ Language

The syntax of the pragma in C++ is:

#pragma CODE_SECTION (”section name”) [;]

The CODE_SECTION pragma is useful if you have code objects that you want
to link into an area separate from the .text section.

Example 5-1 demonstrates the use of the CODE_SECTION pragma.

Example 5-1. Using the CODE_SECTION Pragma

(a) C source file

#pragma CODE_SECTION(funcA, ”codeA”)
int funcA(int a)

{
int i;
return (i = a);

}

(b) Assembly source file

.sect ”codeA”

.global _funcA

;**
;* FUNCTION DEF: _funcA *
;**
_main:

FRAME #-2
nop
STL A,*SP(0)
STL A,*SP(1)
FRAME #2
RET
;return occurs

Pragma Directives

 5-18

5.8.2 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in a section
named section name. This is useful if you have data objects that you want to
link into an area separate from the .bss section.

The syntax for the pragma in C is:

#pragma DATA_SECTION (symbol, “section name”) [;]

The syntax for the pragma in C++ is:

#pragma DATA_SECTION (“section name”) [;]

Example 5-2 demonstrates the use of the DATA_SECTION pragma.

Example 5-2. Using the DATA_SECTION Pragma

(a) C source file

#pragma DATA_SECTION(bufferB, ”my_sect”)
char bufferA[512];
char bufferB[512];

(b) C++ source file

char bufferA[512];
#pragma DATA_SECTION(”my_sect”)
char bufferB[512];

(c) Assembly source file

 .global _bufferA
 .bss _bufferA,512,0,0
 .global _bufferB
_bufferB: .usect ”my_sect”,512,0,0

Pragma Directives

5-19TMS320C54x C/C++ Language

5.8.3 The FUNC_CANNOT_INLINE Pragma

The FUNC_CANNOT_INLINE pragma instructs the compiler that the named
function cannot be expanded inline. Any function named with this pragma
overrides any inlining designated in any other way, such as by using the inline
keyword.

The pragma must appear before any declaration or reference to the function.

The syntax of the pragma in C is:

#pragma FUNC_CANNOT_INLINE (func) [;]

The syntax for the pragma in C++ is:

#pragma FUNC_CANNOT_INLINE [;]

The argument func is the name of the C function that cannot be inlined. For
more information, see Section 2.9, Function Inlining, on page 2-37.

In C, the argument func is the name of the function that cannot be inlined. In
C++, the pragma applies to the next function declared. For more information,
see Section 2.9, Using Inline Function Expansion, on page 2-37.

5.8.4 The FUNC_EXT_CALLED Pragma

When you use the -pm option, the compiler uses program-level optimization.
When you use this type of optimization, the compiler removes any function that
is not called, directly or indirectly, by main. You might have C/C++ functions
that are called by hand-coded assembly instead of main.

The FUNC_EXT_CALLED pragma specifies to the optimizer to keep these
C/C++ functions or any other functions called by these C/C++ functions. These
functions act as entry points into C/C++.

The pragma must appear before any declaration or reference to the function.

The syntax of the pragma in C is:

#pragma FUNC_EXT_CALLED (func) [;]

The syntax of the pragma in C++ is:

#pragma FUNC_EXT_CALLED [;]

Pragma Directives

 5-20

The argument func is the name of the C function that is called by hand-coded
assembly.

In C, the argument func is the name of the function that you do not want to be
removed. In C++, the pragma applies to the next function declared.

Except for _c_int00, which is the name reserved for the system reset interrupt
for C/C++ programs, the name of the func argument does not need to conform
to a naming convention.

When you use program-level optimization, you may need to use the
FUNC_EXT_CALLED pragma with certain options. See subsection 3.3.2,
Optimization Considerations When Using Mixing C and Assembly, on
page 3-8.

5.8.5 The FUNC_IS_PURE Pragma

The FUNC_IS_PURE pragma specifies to the optimizer that the named func-
tion has no side effects. This allows the optimizer to do the following:

� Delete the call to the function if the function’s value is not needed
� Delete duplicate functions

The pragma must appear before any declaration or reference to the function.

If you use this pragma on a function that does have side effects, the optimizer
could delete these side effects.

The syntax of the pragma in C is:

#pragma FUNC_IS_PURE (func) [;]

The syntax of the pragma in C++ is:

#pragma FUNC_IS_PURE [;]

The argument func is the name of a C function.

In C, the argument func is the name of a function. In C++, the pragma applies
to the next function declared.

Pragma Directives

5-21TMS320C54x C/C++ Language

5.8.6 The FUNC_IS_SYSTEM Pragma

The FUNC_IS_SYSTEM pragma specifies to the optimizer that the named
function has the behavior defined by the ISO standard for a function with that
name.

This pragma can only be used with a function described in the ISO standard
(such as strcmp or memcpy). It allows the compiler to assume that you haven’t
modified the ISO implementation of the function. The compiler can then make
assumptions about the implementation. For example, it can make assump-
tions about the registers used by the function.

Do not use this pragma with an ISO function that you have modified.

The pragma must appear before any declaration or reference to the function.

The syntax of the pragma in C is:

#pragma FUNC_IS_SYSTEM (func) [;]

The syntax of the pragma in C++ is:

#pragma FUNC_IS_SYSTEM [;]

The argument func is the name of the C function to treat as an ISO standard
function.

In C, the argument func is the name of the function to treat as an ISO standard
function. In C++, the pragma applies to the next function declared.

5.8.7 The FUNC_NEVER_RETURNS Pragma

The FUNC_NEVER_RETURNS pragma specifies to the optimizer that, in all
circumstances, the function never returns to its caller. For example, a function
that loops infinitely, calls exit(), or halts the processor will never return to its
caller. When a function is marked by this pragma, the compiler will not genera-
te a function epilog (to unwind the stack, etc.) for the function.

The pragma must appear before any declaration or reference to the function.

The syntax of the pragma in C is:

#pragma FUNC_NEVER_RETURNS (func) [;]

The syntax of the pragma in C++ is:

#pragma FUNC_NEVER_RETURNS [;]

Pragma Directives

 5-22

The argument func is the name of the C function that does not return.

In C, the argument func is the name of the function that does not return. In C++,
the pragma applies to the next function declared.

5.8.8 The FUNC_NO_GLOBAL_ASG Pragma

The FUNC_NO_GLOBAL_ASG pragma specifies to the optimizer that the
function makes no assignments to named global variables and contains no
asm statements.

The pragma must appear before any declaration or reference to the function.

The syntax of the pragma in C is:

#pragma FUNC_NO_GLOBAL_ASG (func) [;]

The syntax of the pragma in C++ is:

#pragma FUNC_NO_GLOBAL_ASG [;]

The argument func is the name of the C function that makes no assignments.

In C, the argument func is the name of the function that makes no assignments.
In C++, the pragma applies to the next function declared.

5.8.9 The FUNC_NO_IND_ASG Pragma

The FUNC_NO_IND_ASG pragma specifies to the optimizer that the function
makes no assignments through pointers and contains no asm statements.

The pragma must appear before any declaration or reference to the function.

The syntax of the pragma in C is:

#pragma FUNC_NO_IND_ASG (func) [;]

The syntax of the pragma in C++ is:

#pragma FUNC_NO_IND_ASG [;]

The argument func is the name of the C function that makes no assignments.

In C, the argument func is the name of the function that makes no assignments.
In C++, the pragma applies to the next function declared.

Pragma Directives

5-23TMS320C54x C/C++ Language

5.8.10 The IDENT Pragma

The IDENT pragma enables you to insert a comment into object code. The
argument string is the text string of the comment. The string is inserted into a
.comment section in the COFF file; the .comment section, considered a COPY
section by the linker, will not be downloaded to the processor. This pragma is
useful for inserting an identifying string (such as a revision number) into the
object code.

The syntax of the pragma is:

#pragma IDENT (string) [;]

For more information on COPY sections, see the Linker Description chapter
in the TMS320C54x Assembly Language Tools User’s Guide.

5.8.11 The INTERRUPT Pragma

The INTERRUPT pragma enables you to handle interrupts directly with C
code.

The syntax of the pragma in C is:

#pragma INTERRUPT (func) [;]

The syntax of the pragma in C++ is:

#pragma INTERRUPT [;]

In C, the argument func is the name of a function. In C++, the pragma applies
to the next function declared.

Except for _c_int00, which is the name reserved for the system reset interrupt
for C programs, the name of the interrupt (the func argument) does not need
to conform to a naming convention.

Pragma Directives

 5-24

5.8.12 The NO_INTERRUPT Pragma

The NO_INTERRUPT pragma informs the compiler that a particular interrupt
service routine will not enable interrupts. Because the specified routine will not
enable interrupts, it cannot be interrupted.

The syntax of the pragma in C is:

#pragma NO_INTERRUPT (func) [;]

The syntax of the pragma in C++ is:

#pragma NO_INTERRUPT [;]

If the interrupt service routine makes no calls, the routine will return via a RETF
instruction rather than the default RETE instruction. The RETF instruction is
two cycles faster than RETE.

Generating Linknames

5-25TMS320C54x C/C++ Language

5.9 Generating Linknames

The compiler transforms the names of externally visible identifiers when
creating their linknames. The algorithm used depends on the scope within
which the identifier is declared. For objects and C functions, an underscore (_)
is prefixed to the identifier name. C++ functions are prefixed with an under-
score also, but the function name is modified further.

Mangling is the process of embedding a function’s signature (the number and
type of its parameters) into its name. Mangling occurs only in C++ code. The
mangling algorithm used closely follows that described in The Annotated
Reference Manual (ARM). Mangling allows function overloading, operator
overloading, and type-safe linking.

For example, the general form of a C++ linkname for a function named func
is:

__func__Fparmcodes

where parmcodes is a sequence of letters that encodes the parameter types
of func.

For this simple C++ source file:

int foo(int i); //global C++ function

the resulting assembly code is:

__foo_Fi;

The linkname of foo is __foo__Fi, indicating that foo is a function that takes a
single argument of type int. To aid inspection and debugging, a name
demangling utility is provided that demangles names into those found in the
original C++ source. See Chapter 9, C++ Name Demangler, for more informa-
tion.

Initializing Static and Global Variables

 5-26

5.10 Initializing Static and Global Variables

The ISO C standard specifies that static and global (extern) variables without
explicit initializations must be initialized to 0 before the program begins run-
ning. This task is typically performed when the program is loaded. Because the
loading process is heavily dependent on the specific environment of the target
application system, the compiler itself makes no provision for preinitializing
variables at run time. It is up to your application to fulfill this requirement.

If your loader does not preinitialize variables, you can use the linker to
preinitialize the variables to 0 in the object file. For example, in the linker
command file, use a fill value of 0 in the .bss section:

SECTIONS
{

...

.bss: fill = 0x00;

...
}

Because the linker writes a complete load image of the zeroed .bss section into
the output COFF file, this method can have the unwanted effect of significantly
increasing the size of the output file (but not the program).

If you burn your application into ROM, you should explicitly initialize variables
that require initialization. The method demonstrated above initializes .bss to
0 only at load time, not at system reset or power up. To make these variables
0 at run time, explicitly define them in your code.

For more information about linker command files and the SECTIONS
directive, see the linker description information in the TMS320C54x Assembly
Language Tools User’s Guide.

Initializing Static and Global Variables

5-27TMS320C54x C/C++ Language

5.10.1 Initializing Static and Global Variables With the Const Type Qualifier

Static and global variables of type const without explicit initializations are simi-
lar to other static and global variables because they might not be preinitialized
to 0 (for the same reasons discussed in Section 5.10, Initializing Static and
Global Variables). For example:

const int zero; /* may not be initialized to 0 */

However, the initialization of const global and static variables is different be-
cause these variables are declared and initialized in a section called .const.
For example:

const int zero = 0 /* guaranteed to be 0 */

corresponds to an entry in the .const section:

.sect .const
_zero

.word 0

The feature is particularly useful for declaring a large table of constants,
because neither time nor space is wasted at system startup to initialize the
table. Additionally, the linker can be used to place the .const section in ROM.

Changing the ISO C Language Mode (-pk, -pr, and -ps Options)

 5-28

5.11 Changing the ISO C Language Mode (-pk, -pr, and -ps Options)

The -pk, -pr, and -ps options let you specify how the C/C++ compiler inter-
prets your source code. You can compile your source code in the following
modes:

� Normal ISO mode
� K&R C mode
� Relaxed ISO mode
� Strict ISO mode

The default is normal ISO mode. Under normal ISO mode, most ISO violations
are emitted as errors. Strict ISO violations (those idioms and allowances com-
monly accepted by C/C++ compilers, although violations with a strict inter-
pretation of ISO), however, are emitted as warnings. Language extensions,
even those that conflict with ISO C, are enabled.

For C++ code, ISO mode designates the latest supported working paper. K&R
C mode does not apply to C++ code.

5.11.1 Compatibility With K&R C (-pk Option)

The ISO C language is basically a superset of the de facto C standard defined
in Kernighan and Ritchie’s The C Programming Language. Most programs
written for other non-ISO compilers correctly compile and run without
modification.

There are subtle changes, however, in the language that can affect existing
code. Appendix C in The C Programming Language (second edition, referred
to in this manual as K&R) summarizes the differences between ISO C and the
first edition’s previous C standard (the first edition is referred to in this manual
as K&R C).

To simplify the process of compiling existing C programs with the C54x ISO
C/C++ compiler, the compiler has a K&R option (-pk) that modifies some
semantic rules of the language for compatibility with older code. In general, the
-pk option relaxes requirements that are stricter for ISO C than for K&R C. The
-pk option does not disable any new features of the language such as function
prototypes, enumerations, initializations, or preprocessor constructs. Instead,
-pk simply liberalizes the ISO rules without revoking any of the features.

Changing the ISO C Language Mode (-pk, -pr, and -ps Options)

5-29TMS320C54x C/C++ Language

The specific differences between the ISO version of C and the K&R version
of C are as follows:

� The integral promotion rules have changed regarding promoting an un-
signed type to a wider signed type. Under K&R C, the result type was an
unsigned version of the wider type; under ISO, the result type is a signed
version of the wider type. This affects operations that perform differently
when applied to signed or unsigned operands; namely, comparisons, divi-
sion (and mod), and right shift:

unsigned short u;
int i;
if (u < i) ... /* SIGNED comparison, unless -pk used */

� ISO prohibits combining two pointers to different types in an operation. In
most K&R compilers, this situation produces only a warning. Such cases
are still diagnosed when -pk is used, but with less severity:

int *p;
char *q = p; /* error without -pk, warning with -pk */

� External declarations with no type or storage class (only an identifier) are
illegal in ISO but legal in K&R:

a; /* illegal unless -pk used */

� ISO interprets file scope definitions that have no initializers as tentative
definitions: in a single module, multiple definitions of this form are fused
together into a single definition. Under K&R, each definition is treated as
a separate definition, resulting in multiple definitions of the same object
and usually an error. For example:

int a;
int a; /* illegal if -pk used, OK if not */

Under ISO, the result of these two definitions is a single definition for the
object a. For most K&R compilers, this sequence is illegal, because int a is
defined twice.

� ISO prohibits, but K&R allows, objects with external linkage to be
redeclared as static:

extern int a;
static int a; /* illegal unless -pk used */

� Unrecognized escape sequences in string and character constants are
explicitly illegal under ISO but ignored under K&R:

char c = ’\q’; /* same as ’q’ if -pk used, error
 if not */

Changing the ISO C Language Mode (-pk, -pr, and -ps Options)

 5-30

� ISO specifies that bit fields must be of type int or unsigned. With -pk, bit
fields can be legally declared with any integral type. For example:

struct s
{

short f : 2; /* illegal unless -pk used */
};

� K&R syntax allows a trailing comma in enumerator lists:

enum { a, b, c, }; /* illegal unless -pk used */

� K&R syntax allows trailing tokens on preprocessor directives:

#endif NAME /* illegal unless -pk used */

5.11.2 Enabling Strict ISO Mode and Relaxed ISO Mode (-ps and -pr Options)

Use the -ps option when you want to compile under strict ISO mode. In this
mode, error messages are provided when non-ISO features are used, and lan-
guage extensions that could invalidate a strictly conforming program are dis-
abled. Examples of such extensions are the inline and asm keywords.

Use the -pr option when you want the compiler to ignore strict ISO violations
rather than emit a warning (as occurs in normal ISO mode) or an error
message (as occurs in strict ISO mode). In relaxed ISO mode, the compiler
accepts extensions to the ISO C standard, even when they conflict with ISO
C.

5.11.3 Enabling Embedded C++ Mode (-pe Option)

The compiler supports the compilation of embedded C++. In this mode, some
features of C++ are removed that are of less value or too expensive to support
in an embedded system. Embedded C++ omits these C++ features:

� Templates
� Exception handling
� Run-time type information
� The new cast syntax
� The keyword /mutable/
� Multiple inheritance
� Virtual inheritance

In the standard definition of embedded C++, namespaces and using-
declarations are not supported. The C54x compiler nevertheless allows these
features under embedded C++ because the C++ run-time support library
makes use of them. Furthermore, these features impose no run-time penalty.

Compiler Limits

5-31TMS320C54x C/C++ Language

5.12 Compiler Limits

Due to the variety of host systems supported by the C54x C compiler and the
limitations of some of these systems, the compiler may not be able to
successfully compile source files that are excessively large or complex. In
general, exceeding such a system limit prevents continued compilation, so the
compiler aborts immediately after printing the error message. Simplify the pro-
gram to avoid exceeding a system limit.

Some systems do not allow filenames longer than 500 characters. Make sure
your filenames are shorter than 500.

The compiler has no arbitrary limits but is limited by the amount of memory
available on the host system. On smaller host systems such as PCs, the opti-
mizer may run out of memory. If this occurs, the optimizer terminates and the
shell continues compiling the file with the code generator. This results in a file
compiled with no optimization. The optimizer compiles one function at a time,
so the most likely cause of this is a large or extremely complex function in your
source module. To correct the problem, your options are:

� Don’t optimize the module in question.

� Identify the function that caused the problem and break it down into
smaller functions.

� Extract the function from the module and place it in a separate module that
can be compiled without optimization so that the remaining functions can
be optimized.

6-1

Run−Time Environment

This chapter describes the TMS320C54x� C/C++ run-time environment. To
ensure successful execution of C/C++ programs, it is critical that all run-time
code maintain this environment. It is also important to follow the guidelines in
this chapter if you write assembly language functions that interface with C/C++
code.

Topic Page

6.1 Memory Model 6-2.

6.2 Character String Constants 6-8.

6.3 Register Conventions 6-9.

6.4 Function Structure and Calling Conventions 6-12.

6.5 Interfacing C/C++ With Assembly Language 6-16.

6.6 Interrupt Handling 6-28.

6.7 Integer Expression Analysis 6-30.

6.8 Floating-Point Expression Analysis 6-32.

6.9 System Initialization 6-33.

Chapter 6

Memory Model

 6-2

6.1 Memory Model
The C54x treats memory as two linear blocks of program memory and data
memory:

� Program memory contains executable code.
� Data memory contains external variables, static variables, and the

system stack.

Blocks of code or data generated by a C program are placed into contiguous
blocks in the appropriate memory space.

Note: The Linker Defines the Memory Map

The linker, not the compiler, defines the memory map and allocates code and
data into target memory. The compiler assumes nothing about the types of
memory available, about any locations not available for code or data (holes),
or about any locations reserved for I/O or control purposes. The compiler
produces relocatable code that allows the linker to allocate code and data
into the appropriate memory spaces.

For example, you can use the linker to allocate global variables into fast
internal RAM or to allocate executable code into external ROM. You can allo-
cate each block of code or data individually into memory, but this is not a
general practice (an exception to this is memory-mapped I/O, although you
can access physical memory locations with C/C++ pointer types).

6.1.1 Sections

The compiler produces relocatable blocks of code and data. These blocks are
called sections. These sections are allocated into memory in a variety of ways
to conform to a variety of system configurations. For more information about
COFF sections, see the Introduction to Common Object File Format chapter
in the TMS320C54x Assembly Language Tools User’s Guide.

There are two basic types of sections:

� Initialized sections contain data or executable code. The C/C++ compil-
er creates the following initialized sections:

� The .cinit section contains tables for initializing variables and
constants.

� The .pinit section contains the table for calling global object
constructors at run time.

� The .const section contains string constants and data defined with
the C/C++ qualifier const (provided the constant is not also defined as
volatile).

� The .switch section contains tables for switch statements.

Memory Model

6-3Run-Time Environment

� The .text section contains all the executable code as well as string
literals and compiler-generated constants.

� Uninitialized sections reserve space in memory (usually RAM). A
program can use this space at run time for creating and storing variables.
The compiler creates the following uninitialized sections:

� The .bss section reserves space for global and static variables. At
boot or load time, the C boot routine or the loader copies data out of the
.cinit section (which may be in ROM) and uses it for initializing
variables in .bss.

� The .stack section allocates memory for the system stack. This
memory passes variables and is used for local storage.

� The .sysmem section reserves space for dynamic memory
allocation. This space is used by the malloc, calloc, and realloc
functions. If a C/C++ program does not use these these functions, the
compiler does not create the .sysmem section.

Note that the assembler creates an additional section called .data; the C/C++
compiler does not use this section.

The linker takes the individual sections from different modules and combines
sections that have the same name. The resulting eight output sections and the
appropriate placement in memory for each section are listed in Table 6-1. You
can place these output sections anywhere in the address space, as needed
to meet system requirements.

The .text, .cinit, and .switch sections are usually linked into either ROM or
RAM, and must be in program memory (page 0). The .const section can also
be linked into either ROM or RAM but must be in data memory (page 1). The
.bss, .stack, and .sysmem sections must be linked into RAM and must be in
data memory.

Table 6-1. Summary of Sections and Memory Placement

Section Type of Memory Page Section Type of Memory Page

.bss RAM 1 .text ROM or RAM 0

.cinit/.pinit ROM or RAM 0 .stack RAM 1

.const ROM or RAM 1 .switch ROM or RAM 0

.data ROM or RAM 1 .sysmem RAM 1

For more information about allocating sections into memory, see the
Introduction to Common Object File Format chapter, in the TMS320C54x
Assembly Language Tools User’s Guide.

Memory Model

 6-4

6.1.2 C/C++ System Stack

The C/C++ compiler uses a stack to:

� Allocate local variables
� Pass arguments to functions
� Save the processor status

The run-time stack is allocated in a single continuous block of memory and
grows down from high addresses to lower addresses. The compiler uses the
hardware stack pointer (SP) to manage the stack.

The code doesn’t check to see if the run-time stack overflows. Stack overflow
occurs when the stack grows beyond the limits of the memory space that was
allocated for it. Be sure to allocate adequate memory for the stack.

The stack size is set by the linker. The linker also creates a global symbol,
__STACK_SIZE, and assigns it a value equal to the size of the stack in words.
The default stack size is 1K words. You can change the size of the stack at link
time by using the -stack option on the linker command line and specifying the
size of the stack as a constant immediately after the option.

6.1.3 Allocating .const to Program Memory

If your system configuration does not support allocating an initialized section
such as .const to data memory, then you have to allocate the .const section
to load in program memory and run in data memory. Then at boot time, copy
the .const section from program to data memory. The following sequence
shows how you can perform this task:

Modify the boot routine:

1) Extract boot.asm from the source library:

ar500 -x rts.src boot.asm

2) Edit boot.asm and change the CONST_COPY flag to 1:

CONST_COPY .set 1

3) Assemble boot.asm:

asm500 boot.asm

4) Archive the boot routine into the object library:

ar500 -r rts.lib boot.obj

Memory Model

6-5Run-Time Environment

Link with a linker command file that contains the following entries:

MEMORY
{
 PAGE 0 : PROG : ...
 PAGE 1 : DATA : ...
}

SECTIONS
{
 ...
 .const : load = PROG PAGE 1, run = DATA PAGE 1
 {
 /* GET RUN ADDRESS */
 __const_run = .;
 /* MARK LOAD ADDRESS */
 *(.c_mark)
 /* ALLOCATE .const */
 *(.const)
 /* COMPUTE LENGTH */
 __const_length = .- __const_run;
 }
 ...
}

In your linker command file, you can substitute the name PROG with the name
of a memory area on page 0 and DATA with the name of a memory area on
page 1. The rest of the command file must use the names as above. The code
in boot.asm that is enabled when you change CONST_COPY to 1 depends
on the linker command file using these names in this manner. To change any
of the names, you must edit boot.asm and change the names in the same way.

Memory Model

 6-6

6.1.4 Dynamic Memory Allocation

The run-time-support library supplied with the compiler contains several
functions (such as malloc, calloc, and realloc) that allow you to dynamically
allocate memory for variables at run time. Dynamic allocation is provided by
standard run-time-support functions.

Memory is allocated from a global pool or heap that is defined in the .sysmem
section. You can set the size of the .sysmem section by using the -heap size
option with the linker command. The linker also creates a global symbol,
__SYSMEM_SIZE, and assigns it as a value equal to the size of the heap in
words. The default size is 1K words. For more information on the -heap option,
see Section 4.3, Linker Options, on page 4-5.

Dynamically allocated objects are not addressed directly (they are always
accessed with pointers), and the memory pool is in a separate section
(.sysmem); therefore, the dynamic memory pool can have a size limited only
by the amount of available memory in your heap. To conserve space in the .bss
section, you can allocate large arrays from the heap instead of defining them
as global or static. For example, instead of a definition such as:

struct big table [100];

You can use a pointer and call the malloc function:

struct big *table;

table = (struct big *)malloc(100*sizeof (struct big));

6.1.5 Initialization of Variables

The C/C++ compiler produces code that is suitable for use as firmware in a
ROM-based system. In such a system, the initialization tables in the .cinit
section are stored in ROM. At system initialization time, the C/C++ boot routine
copies data from these tables (in ROM) to the initialized variables in .bss
(RAM).

In situations where a program is loaded directly from an object file into memory
and run, you can avoid having the .cinit section occupy space in memory. A
loader can read the initialization tables directly from the object file (instead of
from ROM) and perform the initialization directly at load time instead of at run
time. You can specify this to the linker by using the -cr linker option. For more
information, see Section 6.9, System Initialization, on page 6-33.

Memory Model

6-7Run-Time Environment

6.1.6 Allocating Memory for Static and Global Variables

A unique, contiguous space is allocated for all external or static variables
declared in a C/C++ program. The linker determines the address of the space.
The compiler ensures that space for these variables is allocated in multiples
of words so that each variable is aligned on a word boundary.

The C/C++ compiler expects global variables to be allocated into data
memory. (It reserves space for them in .bss.) Variables declared in the same
module are allocated into a single, contiguous block of memory.

6.1.7 Field/Structure Alignment

When the compiler allocates space for a structure, it allocates as many words
as are needed to hold all of the structure’s members.

When a structure contains a 32-bit (long) member, the long is aligned to a
2-word (32-bit) boundary. This may require padding before, inside, or at the
end of the structure to ensure that the long is aligned accordingly and that the
sizeof value for the structure is an even value.

All non-field types are aligned on word boundaries. Fields are allocated as
many bits as requested. Adjacent fields are packed into adjacent bits of a word,
but they do not overlap words; if a field would overlap into the next word, the
entire field is placed into the next word. Fields are packed as they are encoun-
tered; the most significant bits of the structure word are filled first.

Character String Constants

 6-8

6.2 Character String Constants

In C, a character string constant can be used in one of the following ways:

� To initialize an array of characters. For example:

char s[] = ”abc”;

When a string is used as an initializer, it is simply treated as an initialized
array; each character is a separate initializer. For more information about
initialization, see Section 6.9, System Initialization, on page 6-33.

� In an expression. For example:

strcpy (s, ”abc”);

When a string is used in an expression, the string itself is defined in the
.const section with the .string assembler directive, along with a unique
label that points to the string; the terminating 0 byte is included. The follow-
ing example defines the string abc, along with the terminating byte; the
label SL5 points to the string:

.const
SL5: .string ”abc”, 0

String labels have the form SLn, where n is a number assigned by the com-
piler to make the label unique. The number begins with 1 and is increased
by 1 for each string defined. All strings used in a source module are defined
at the end of the compiled assembly language module.

The label SLn represents the address of the string constant. The compiler
uses this label to reference the string in the expression.

If the same string is used more than once within a source module, the
compiler attempts to minimize the number of definitions of the string by
placing definitions in memory such that multiple uses of the string are in
range of a single definition.

Because strings are stored in .const (possibly in ROM) and are potentially
shared, it is bad practice for a program to modify a string constant. The
following code is an example of incorrect string use:

char *a = ”abc”;
a[1] = ’x’; /* Incorrect! */

Register Conventions

6-9Run-Time Environment

6.3 Register Conventions

Strict conventions associate specific registers with specific operations in the
C/C++ environment. If you plan to interface an assembly language routine to
a C/C++ program, you must understand and follow these register conventions.

The register conventions dictate how the compiler uses registers and how
values are preserved across calls. There are two types of register variable
registers, save on entry and save on call. The distinction between these two
types of registers is the method by which they are preserved across calls. It
is the called function’s responsibility to preserve save-on-entry registers, and
the calling function’s responsibility to preserve save-on-call registers if you
need to preserve that register’s value.

Table 6-2 summarizes how the compiler uses the C54x registers and shows
which registers are defined to be preserved across function calls.

Table 6-2. Register Use and Preservation Conventions

Register(s) Usage Save on Entry Save on Call

AR0 Pointers and expressions No Yes

AR1 Pointers and expressions Yes No

AR2 - AR5 Pointers and expressions No Yes

AR6 Pointers and expressions Yes No

AR7 Pointers, expressions, frame
pointer (when needed)

Yes No

A Expressions, passes first argu-
ment to functions, returns result
from functions

No Yes

B Expressions No Yes

SP Stack pointer † †

T Multiply and shift expressions No Yes

ST0, ST1 Status registers See Section 6.3.1 on page 6-10

BRC Block repeat counter No Yes

† The SP is preserved by the convention that everything pushed on the stack is popped off before
returning.

Register Conventions

 6-10

6.3.1 Status Registers

Table 6-3 shows the status register fields.

The Presumed Value column contains the value that:

� the compiler expects in that field upon entry to, or return from, a function.
� an assembly function can expect when the function is called from C/C++

code.
� an assembly function must set upon returning to, or making a call into,

C/C++ code. If this is not possible, the assembly function cannot be used
with C/C++ functions.

A dash (-) in this column indicates the compiler does not expect a particular
value.

The Modified column indicates whether code generated by the compiler ever
modifies this field.

All other fields are not used and do not affect code generated by the compiler.

Table 6-3. Status Register Fields

Field Name Presumed Value Modified

ARP Auxiliary register pointer 0 Yes

ASM Accumulator shift mode - Yes

BRAF Block repeat active bit - No

C Carry bit - Yes

C16 Dual 16-bit math bit 0 No

CMPT Compatibility mode bit 0 No

CPL Compiler mode bit 1 No

FRCT Fractional mode bit 0 No

OVA Overflow flag for A - Yes

OVB Overflow flag for B - Yes

OVM Overflow mode 0 Only with
intrinsics

SXM Sign extension mode - Yes

SMUL Saturate-multiply bit 0 Only with
intrinsics

SST Saturate-store bit 0 No

TC Test control bit - Yes

Register Conventions

6-11Run-Time Environment

Note: The compiler assumes that the OVM bit is clear unless
intrinsics are used.

By default, the compiler always assumes that the OVM bit in status register
ST1, which is cleared upon hardware reset, is indeed clear. If you set the
OVM bit in assembly code, you must reset it before returning to the C
environment.

If intrinsics that saturate results are used, the compiler will ensure that the
OVM bit is set or reset properly in any function that includes saturated intrin-
sics.

6.3.2 Register Variables

The compiler allocates registers for up to two variables declared with the
register keyword. The first variable must be declared as AR1; the second
variable must be declared as AR6. The variables must be declared globally.

You must declare the variables in the argument list or in the first block of the
function. Register declarations in nested blocks are treated as normal
variables.

The compiler uses AR1 and AR6 for these register variables. AR1 is allocated
to the first variable, and AR6 is allocated to the second.

Function Structure and Calling Conventions

 6-12

6.4 Function Structure and Calling Conventions

The C/C++ compiler imposes a strict set of rules on function calls. Except for
special run-time-support functions, any function that calls or is called by a C
function must follow these rules. Failure to adhere to these rules can disrupt
the C/C++ environment and cause a program to fail.

Figure 6-1 illustrates a typical function call. In this example, parameters are
passed to the function, and the function uses local variables and calls another
function. Note that the first parameter is passed in accumulator A. This
example also shows allocation of a local frame and argument block for the
called function. Functions that have no local variables and do not require an
argument block do not allocate a local frame.

The term argument block refers to the part of the local frame used to pass
arguments to other functions. Parameters are passed to a function by moving
them into the argument block rather than pushing them on the stack. The local
frame and argument block are allocated at the same time.

Figure 6-1. Use of the Stack During a Function Call

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉ

Before call

Caller’s
local vars

Move parameters to argu-
ment block. Call function.

SP

High

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Local
frame

Caller’s
argument

block

Caller’s
 local vars

Argument 2...
argument n

High

Return address

ÉÉÉÉÉ
ÉÉÉÉÉ

Argument 1

Accumulator A

ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ

Caller’s
local vars

Return address

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Local
argument-

block

High

ÉÉÉÉÉ
ÉÉÉÉÉ

Argument 1

Accumulator A

Low Low Low

Allocate new frame
and argument block.

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Argument 2...
argument n

SP

SP

Function Structure and Calling Conventions

6-13Run-Time Environment

6.4.1 How a Function Makes a Call

A function (parent function) performs the following tasks when it calls another
function.

1) The caller places the first (left-most) argument in accumulator A. The
caller moves the remaining arguments to the argument block in reverse
order, the leftmost remaining argument at the lowest address. Thus this
argument is at the top of the stack when the function is called.

Declaring a function with an ellipsis indicates that it can be called with a
variable number of arguments. When a function is declared with an ellipsis
and only one argument is explicitly declared, the convention requires the
caller to pass this argument on the stack, not in accumulator A. This is so
that the argument’s stack address can act as a reference for accessing the
undeclared arguments. For example:

int vararg(int first, ...); /* ’first’ is passed */
 /* on the stack */

2) If the function returns a structure, the caller allocates space for the struc-
ture and then passes the address of the return space to the called function
in accumulator A.

3) The caller calls the function.

6.4.2 How a Called Function Responds

A called function performs the following tasks:

1) If the called function modifies AR1, AR6, or AR7, it pushes them on the
stack.

2) The called function allocates memory for the local variables and argument
block by subtracting a constant from the SP. This constant is computed
with the formula:

size of local variables + max + padding

The max value is the size of the parameters placed in the argument block
for each call. The padding value is one word that may be required to
ensure that the SP is aligned on an even boundary.

3) The called function executes the code for the function.

4) If the function returns a value, the called function places the value in
accumulator A.

Function Structure and Calling Conventions

 6-14

If the function returns a structure, the called function copies the structure to
the memory block that accumulator A points to. If the caller does not use
the return value, A is set to 0. This directs the called function not to copy the
return structure.

In this way, the caller can be smart about telling the called function where
to return the structure. For example, in the statement:

s = f()

where s is a structure and f is a function that returns a structure, the caller
can simply place the address of s in A and call f. Function f then copies the
return structure directly into s, performing the assignment automatically.

You must properly declare functions that return structures, both at the
point at which they are called (so the caller properly sets up A) and at the
point at which they are defined (so the function knows to copy the result).

5) The called function deallocates the frame and argument block by adding
the constant computed in step 2.

6) The called function restores all saved registers.

7) The called function executes a return.

For example:

callee: ; entry point to the function
 PSHM AR6 ; save AR6
 PSHM AR7 ; save AR7
 FRAME #-15 ; allocate frame and
 ; argument block

 ... ; body of the function

 FRAME #15 ; deallocate the frame and
 ; argument block
 POPM AR7 ; restore AR7
 POPM AR6 ; restore AR6
 RET ; return

Function Structure and Calling Conventions

6-15Run-Time Environment

6.4.3 Accessing Arguments and Locals

The compiler uses the compiler mode (selected when the CPL bit in status
register ST1_55 is set to 1) for accessing arguments and locals. When this bit
is set, the direct addressing mode computes the data address by adding the
constant in the dma field of the instruction to the SP. For example:

ADD *SP(4), A ; A += *(SP+4)

The largest offset available with this addressing mode is 127. So, if an object
is too far away from the SP to use this mode of access, the compiler copies
the SP to AR0 in the function prolog, then uses long offset addressing to
access the data. For example:

MVMM SP, AR0 ; AR0 = SP (in prolog)
...
ADD *AR0(129),A ; A += *(AR0 + 129)

6.4.4 Allocating the Frame and Using the 32-bit Memory Read Instructions

Some C54x instructions read and write 32 bits of memory at once (DLD,
DADD, etc.). For more information on how these instructions access memory,
see the TMS320C54x DSP Reference Set. As a result, the compiler must
ensure that all 32-bit objects reside at even word boundaries. To ensure that
this occurs, the compiler takes these steps:

1) It initializes the SP to an even boundary.

2) Because a CALL instruction subtracts 1 from the SP, it assumes that the
SP is odd at function entry. Note that FCALL subtracts 2 from the SP; in
this case, SP is assumed to be even.

3) By default, the compiler makes sure that the number of PSHM instructions
plus the number of words allocated with the FRAME instruction totals an
odd number, so that the SP points to an even address. In this case, the
return address pushed onto the stack is 1 word, which makes the SP an
odd number. Therefore, it is necessary to adjust with an odd number to
make the SP an even address.

However, in far mode (using -mf), the number of words allocated by
FRAME and PSHM must be even, so that the SP points to an even ad-
dress. In this case, the return address pushed onto the stack is 2 words,
which makes the SP an even number. Therefore, it is necessary to adjust
with an even number to keep the SP as an even address.

4) It makes sure that 32-bit objects are allocated to even addresses, relative
to the known even address in the SP.

5) Because interrupts cannot assume that the SP is odd or even, it aligns the
SP to an even address.

Interfacing C/C++ With Assembly Language

 6-16

6.5 Interfacing C/C++ With Assembly Language

The following are ways to use assembly language in conjunction with C code:

� Use separate modules of assembled code and link them with compiled
C/C++ modules (see subsection 6.5.1). This is the most versatile method.

� Use assembly language variables and constants in C/C++ source (see
section 6.5.2 on page 6-18).

� Use inline assembly language embedded directly in the C/C++ source
(see section 6.5.3 on page 6-21).

� Use intrinsics in C/C++ source to directly call an assembly language state-
ment (see section 6.5.4 on page 6-22).

6.5.1 Using Assembly Language Modules with C/C++ Code

Interfacing C/C++ with assembly language functions is straightforward if you
follow the register conventions defined in Section 6.3, Register Conventions,
and the calling conventions defined in section 6.4, Function Structure and Call-
ing Conventions. C/C++ code can access variables and call functions defined
in assembly language, and assembly code can access C/C++ variables and
call C/C++ functions.

Follow these guidelines to interface assembly language and C:

� You must preserve any dedicated registers modified by a function.
Dedicated registers include:

� AR1, AR6, AR7
� Stack pointer (SP)

If the SP is used normally, it does not need to be explicitly preserved. In
other words, the assembly function is free to use the stack as long as
anything that is pushed onto the stack is popped back off before the func-
tion returns (thus preserving SP).

Any register that is not dedicated can be used freely without first being
saved.

� Interrupt routines must save all the registers they use. For more
information, see Section 6.6, Interrupt Handling, on page 6-28.

� When calling a C function from assembly language, the first (leftmost)
argument must be placed in accumulator A. The remaining arguments
should be placed on the stack in reverse order. That is, the rightmost
argument at the highest (deeper in the stack) address. You can do this by
either directly moving the arguments to an argument block on the stack
like the compiler does, or you can push them.

Interfacing C/C++ With Assembly Language

6-17Run-Time Environment

When accessing arguments passed in from a C function, these same
conventions apply.

If the function you are calling accepts one defined argument and an
undefined number of additional arguments, all the arguments must go on
the stack. The first one does not go in accumulator A. See subsection
6.4.1, How a Function Makes a Call, on page 6-13.

� When calling C/C++ functions, remember that only the dedicated registers
are preserved. C/C++ functions can change the contents of any other
register.

� In an array of structures, each structure begins on a word boundary, un-
less it contains long members. Structures containing longs are aligned to
2-word boundaries. This may require holes before, inside, or at the end of
the structure to ensure that the longs are aligned accordingly and that the
sizeof value for the structure is even.

� Longs and floats are stored in memory with the most significant word at
the lower address.

� Functions must return values as described in subsection 6.4.2, How a
Called Function Responds, on page 6-13.

� No assembly language module should use the .cinit section for any
purpose other than autoinitialization of global variables. The C/C++
startup routine in boot.asm assumes that the .cinit section consists entirely
of initialization tables. Disrupting the tables by putting other information in
.cinit causes unpredictable results.

� The compiler places an underscore (_) at the beginning of all identifiers.
This name space is reserved by the compiler. Prefix the names of vari-
ables and functions that are accessible from C/C++ with _. For example,
a C/C++ variable called x is called _x in assembly language.

For identifiers that are to be used only in an assembly language module or
modules, the identifier should not begin with an underscore.

� Any object or function declared in assembly language that is to be
accessed or called from C/C++ must be declared with the .global directive
in the assembler. This defines the symbol as external and allows the linker
to resolve references to it.

Likewise, to access a C/C++ function or object from assembly language,
declare the C/C++ object with .global. This creates an undefined external
reference that the linker resolves.

� Because compiled code runs with the CPL (compiler mode) bit set to 1,
the only way to access directly addressed objects is with indirect absolute
mode. For example:

Interfacing C/C++ With Assembly Language

 6-18

LD *(global_var), A ; works with CPL == 1
LD global_var, A ; doesn’t work with CPL == 1

If you set the CPL bit to 0 in your assembly language function, you must set
it back to 1 before returning to compiled code.

Example 6-1. Calling an Assembly Language Function From C
(a) C program

/* declare external asm function */
extern int asmfunc(int, int *);
int gvar; /* define global variable */

main()
{
 int i;
 i = asmfunc(i, &gvar); /* call function normally */
}

(b) Assembly language program

_asmfunc:

 ADD *(_gvar),A ; add gvar to A => i is in A
 STL A, *(_gvar) ; return result in A
 RETD ; start return

In the assembly language code in Example 6-1, note the underscore on the
C/C++ symbol name used in the assembly code.

The parameter i is passed in accumulator A. Also note the use of indirect
absolute mode to access gvar. Because the CPL bit is set to 1, direct
addressing mode adds the dma field to the SP. Thus, direct addressing mode
cannot be used to access globals.

6.5.2 Accessing Assembly Language Variables From C/C++

It is sometimes useful for a C/C++ program to access variables defined in
assembly language. There are three methods that you can use to accomplish
this, depending on where and how the item is defined: a variable defined in the
.bss section, a variable not defined in the .bss section, or a constant.

6.5.2.1 Accessing Assembly Language Global Variables

Accessing uninitialized variables from the .bss section or a section named with
.usect is straightforward:

1) Use the .bss or .usect directive to define the variable.
2) Use the .global directive to make the definition external.
3) Precede the name with an underscore in assembly language.
4) In C/C++, declare the variable as extern and access it normally.

Interfacing C/C++ With Assembly Language

6-19Run-Time Environment

Example 6-2 shows how you can access a variable defined in .bss from C.

Example 6-2. Accessing a Variable From C

(a) Assembly language program

* Note the use of underscores in the following lines

.bss _var,1 ; Define the variable

.global _var ; Declare it as external

(b) C program

extern int var; /* External variable */
var = 1; /* Use the variable */

You may not always want a variable to be in the .bss section. For example, a
common situation is a lookup table defined in assembly language that you
don’t want to put in RAM. In this case, you must define a pointer to the object
and access it indirectly from C/C++.

The first step is to define the object; it is helpful (but not necessary) to put it in
its own initialized section. Declare a global label that points to the beginning
of the object, and then the object can be linked anywhere into the memory
space. To access it in C/C++, you must declare the object as extern and not
precede it with an underscore. Then you can access the object normally.

Example 6-3 shows an example that accesses a variable that is not defined
in .bss.

Example 6-3. Accessing from C a Variable Not Defined in .bss

(a) C Program

extern float sine[]; /* This is the object */
float *sine_p = sine; /* Declare pointer to point to it */
f = sine_p[4]; /* Access sine as normal array */

(b) Assembly Language Program

 .global _sine ; Declare variable as external
 .sect ”sine_tab” ; Make a separate section
_sine: ; The table starts here
 .float 0.0
 .float 0.015987
 .float 0.022145

Interfacing C/C++ With Assembly Language

 6-20

6.5.2.2 Accessing Assembly Language Constants

You can define global constants in assembly language by using the .set and
.global directives, or you can define them in a linker command file using a linker
assignment statement. These constants are accessible from C/C++ only with
the use of special operators.

For normal variables defined in C/C++ or assembly language, the symbol table
contains the address of the value of the variable. For assembler constants,
however, the symbol table contains the value of the constant. The compiler
cannot tell which items in the symbol table are values and which are
addresses.

If you try to access an assembler (or linker) constant by name, the compiler
attempts to fetch a value from the address represented in the symbol table. To
prevent this unwanted fetch, you must use the & (address of) operator to get
the value. In other words, if x is an assembly language constant, its value in
C/C++ is &x.

You can use casts and #defines to ease the use of these symbols in your
program, as in Example 6-4.

Example 6-4. Accessing an Assembly Language Constant From C

(a) Assembly language program

_table_size .set 10000 ; define the constant
.global _table_size ; make it global

(b) C program

extern int table_size; /*external ref */

#define TABLE_SIZE ((int) (&table_size))

. /* use cast to hide address-of */

.

.

for (i-0; i<TABLE_SIZE; ++i)

/* use like normal symbol */

Since you are referencing only the symbol’s value as stored in the symbol
table, the symbol’s declared type is unimportant. In Example 6-4, int is used.
You can reference linker-defined symbols in a similar manner.

Interfacing C/C++ With Assembly Language

6-21Run-Time Environment

6.5.3 Using Inline Assembly Language

Within a C/C++ program, you can use the asm statement to insert a single line
of assembly language into the assembly language file created by the compiler.
A series of asm statements places sequential lines of assembly language into
the compiler output with no intervening code. For more information, see
Section 5.7, The asm Statement, on page 5-15.

The asm statement is useful for inserting comments in the compiler output.
Simply start the assembly code string with a semicolon (;) as shown below:

asm(”;*** this is an assembly language comment”);

Note: Using the asm Statement

Keep the following in mind when using the asm statement:

� Be extremely careful not to disrupt the C/C++ environment. The compiler
does not check or analyze the inserted instructions.

� Inserting jumps or labels into C/C++ code can produce unpredictable re-
sults by confusing the register-tracking algorithms that the code genera-
tor uses.

� Do not change the value of a C/C++ variable when using an asm state-
ment.

� Do not use the asm statement to insert assembler directives that change
the assembly environment.

Interfacing C/C++ With Assembly Language

 6-22

6.5.4 Using Intrinsics to Access Assembly Language Statements

The compiler recognizes a number of intrinsic operators. Intrinsics are used
like functions and produce assembly language statements that would other-
wise be inexpressible in C/C++. You can use C/C++ variables with these intrin-
sics, just as you would with any normal function. The intrinsics are specified
with a leading underscore, and are accessed by calling them as you do a func-
tion. For example:

int x1, x2, y;
y = _sadd(x1, x2);

The intrinsics listed in Table 6-4 are included. They correspond to the
indicated C54x assembly language instruction. Use intrindefs.h, the header
file shown in Figure 6-2 on page 6-27, to map the intrinsics onto European
Telecommunications Standards Institute (ETSI) functions. Additional support
for ETSI functions is described in Section 6.5.4.1 on page 6-26. For more infor-
mation on the OVM and FRCT status register bits, see TMS320C54x DSP
Reference Set, Volume 1: CPU.

Table 6-4. TMS320C54x C/C++ Compiler Intrinsics

Compiler Intrinsic Assembly
Instruction

Description

short _abs(short src); ABS Creates a 16-bit absolute value.

long _labs(long src); ABS Creates a 32-bit absolute value.

short _abss(short src); ABS Creates a saturated 16-bit absolute value.
_abss(0x8000) => 0x7FFF (OVM set)

long _labss(long src); ABS Creates a saturated 32-bit absolute value.
_labss(0x8000000) => 0x7FFFFFFF
(OVM set)

short _addc(short src1, short src2); ADDC Adds src1, src2, and Carry bit and produces a
16-bit result.

long _laddc(long src1, short src2); ADDC Adds src1, src2, and Carry bit and produces a
32-bit result.

short _norm(short src); EXP Produces the number of left shifts needed to
normalize src.

short _lnorm(long src); EXP Produces the number of left shifts needed to
normalize src.

Interfacing C/C++ With Assembly Language

6-23Run-Time Environment

Table 6-4. TMS320C54x C/C++ Compiler Intrinsics (Continued)

Compiler Intrinsic Assembly
Instruction

Description

short _rnd(long src); RND or
ADD

Rounds src by adding 215. Produces a 16-bit
saturated result. (OVM set)

short _sadd(short src1, short src2); ADD Adds two 16-bit integers, producing a
saturated 16-bit result.
(OVM set)

long _lsadd(long src1, long src2); ADD Adds two 32-bit integers, producing a
saturated 32-bit result.
(OVM set)

long _smac(long src, short op1, short op2); MAC Multiplies op1 and op2, shifts the result left by
1, and adds it to src. Produces a saturated
32-bit result.
(OVM and FRCT set)

short _smacr(long src, short op1, short op2); MACAR Multiplies op1 and op2, shifts the result left by
1, adds the result to src, and then rounds the
result by adding 215.

(OVM and FRCT set)

long _smas(long src, short op1, short op2); MAS Multiplies op1 and op2, shifts the result left by
1, and subtracts it from src. Produces a 32-bit
result.
(OVM and FRCT set)

short _smasr(long src, short op1, short op2); MASAR Multiplies op1 and op2, shifts the result left by
1, subtracts the result from src, and then
rounds the result by adding 215.
(OVM and FRCT set)

short _smpy(short src1, short src2); MPYA Multiplies src1 and src2, and shifts the result
left by 1. Produces a saturated 16-bit result.
(OVM and FRCT set)

long _lsmpy(short src1, short src2); MPY Multiplies src1 and src2, and shifts the result
left by 1. Produces a saturated 32-bit result.
(OVM and FRCT set)

short _smpyr(short src1, short src2); MPYR Multiplies src1 and src2, shifts the result left
by 1, and rounds by adding 215 to the result.
(OVM and FRCT set)

Interfacing C/C++ With Assembly Language

 6-24

Table 6-4. TMS320C54x C/C++ Compiler Intrinsics (Continued)

Compiler Intrinsic Assembly
Instruction

Description

short _sneg(short src); NEG Negates the 16-bit value with saturation.
_sneg(0xffff8000) => 0x00007FFF

long _lsneg(long src); NEG Negates the 32-bit value with saturation.
_lsneg(0x80000000) => 0x7FFFFFFF

short _sshl(short src1, short src2); SFTA Shifts src1 left by src2 and produces a 16-bit
result. The result is saturated if src2 is less
than or equal to 8. (OVM set)

long _lsshl(long src1, short src2); SFTA Shifts src1 left by src2 and produces a 32-bit
result. The result is saturated if src2 is less
than or equal to 8. (OVM set)

short _ssub(short src1, short src2); SUB Subtracts src2 from src1 with OVM set, pro-
ducing a saturated 16-bit result.

long _lssub(long src1, long src2); DSUB Subtracts src2 from src1 with OVM set, pro-
ducing a saturated 32-bit result.

short _subc(long src1, short src2); SUBB Subtracts src2 and logical inverse of sign bit
from src1, and produces a 16-bit result.

long _lsubc(long src1, short src2); SUBB Subtracts src2 and logical inverse of sign bit
from src1, and produces a 32-bit result.

long long _llsadd(long long src1, long long
src2);
long long _a_llsadd(long long src1, long long
src2);

Adds two 40-bit integers, with OVM set, pro-
ducing a saturated 40-bit result.

long long _llabs(long long src) Creates a 40-bit absolute value

long long _llssub(long long src1, long long
src2)

Subtracts src2 from src1 with OVM set, pro-
ducing a saturated 40-bit result.

long long _llsneg(long long src); Negates the 40-bit value with saturation.

long _lsat(long long src); Converts a 40-bit long long to a 32-bit long
and saturates if necessary.

short _max(short src, short dst, auto boolean
*carry);

long _lmax(long src, long dst, auto boolean

Returns the larger value of the pair. If the val-
ue of src is the larger value, carry is 0; other-
wise, carry is 1.

*carry);

long long _llmax(long long src, long long dst,
auto boolean *carry);

Interfacing C/C++ With Assembly Language

6-25Run-Time Environment

Compiler Intrinsic Assembly
Instruction

Description

short _min(short src, short dst, auto bool-
ean *carry);

long _lmin(long src, long dst, auto boolean
*carry);

Returns the smaller value of the pair. If the
value of src is the larger value, carry is 0;
otherwise, carry is 1.

*carry);

long long _llmin(long long src, long long
dst, auto boolean *carry);

short _rtl(short src1, auto boolean *out,
auto boolean in);

long _lrtl(long src1, auto boolean *out,
auto boolean in);

long long _llrtl(long long src1, auto bool-
ean *out, auto boolean in);

Performs bitwise rotation to the MSBs.

short _rtr(short src1, auto boolean *out,
auto boolean in);

long _lrtr(long src1, auto boolean *out,
auto boolean in);

long long _llrtr(long long src1, auto bool-
ean *out, auto boolean in);

Performs bitwise rotation to the LSBs.

short _srnd(long src); Rounds src by adding 215. Produces a
16-bit saturated result. (OVM set)

short _rndn(long src); Rounds src toward nearest. Produces a
16-bit result.

short _srndn(long src); Rounds src toward nearest. Produces a
16-bit saturated result. (OVM set)

long _max_diff_dbl(long src1, long src2,
auto short *trn);

long _min_diff_dbl(long src1, long src2,
auto short *trn);

void _max_diff(long src1, long src2, short
*src3, short *src4, auto short *trn1, auto
short *trn2);

void _min_diff(long src1, long src2, short
*src3, short *src4, auto short *trn1, auto
short *trn2);

Interfacing C/C++ With Assembly Language

 6-26

6.5.4.1 Intrinsics and ETSI functions

The functions in Table 6-5 provide additional ETSI support for the intrinsics
functions. The functions in the table are runtime functions. Figure 6-2 shows
the intrinsics header file, intrindefs.h.

Table 6-5. ETSI Support Functions

Compiler Intrinsic Description

long L_add_c(long src1, long src2); Adds src1, src2, and Carry bit. This function does not
map to a single assembly instruction, but to an inline
function.

long L_sub_c(long src1, long src2); Subtracts src2 and logical inverse of sign bit from
src1. This function does not map to a single assem-
bly instruction, but to an inline function.

long L_sat(long src1); Saturates any result after L_add_c or L_sub_c if
Overflow is set.

int clshft(int x, int y); Shifts x left by y, guaranteeing saturation of the re-
sult.

int crshft(int x, int y); Shifts x right by y, guaranteeing saturation of the re-
sult.

long l_clshft(long x, int y); Shifts x left by y (32 bits), guaranteeing saturation of
the result.

long l_crshft(long x, int y); Shifts x right by y (32 bits), guaranteeing saturation of
the result.

int crshft_r(int x, int y); Shifts x right by y, rounding the result with saturation.

long L_crshft_r(long x, int y); Shifts x right by y, rounding the result with saturation.

int divs(int x, int y); Divides x by y with saturation.

Interfacing C/C++ With Assembly Language

6-27Run-Time Environment

Figure 6-2. Intrinsics Header File, intrindefs.h

#define MAX_16 0x7fff
#define MIN_16 -32768
#define MAX_32 0x7fffffff
#define MIN_32 0x80000000

#define L_add(a,b) (_lsadd((a),(b)))
#define L_sub(a,b) (_lssub((a),(b)))
#define L_negate(a) (_lsneg(a))
#define L_deposit_h(a) ((long)a<<16)
#define L_deposit_l(a) (a)
#define L_abs(a) (_labss((a)))
#define L_mult(a,b) (_lsmpy((a),(b)))
#define L_mac(a,b,c) (_smac((a),(b),(c)))
#define L_macNs(a,b,c) (L_add_c((a),L_mult((b),(c))))
#define L_msu(a,b,c) (_smas((a),(b),(c)))
#define L_msuNs(a,b,c) (L_sub_c((a),L_mult((b),(c))))
#define L_shl(a,b) ((b) < 0 ? L_crshft((a),(-b)) : \
 (b) < 9 ? _lsshl((a),(b)) : \
 L_clshft((a),(b)))
#define L_shr(a,b) (L_crshft((a),(b)))
#define L_shr_r(a,b) (L_crshft_r((a),(b)))
#define abs_s(a) (_abss((a)))
#define add(a,b) (_sadd((a),(b)))
#define sub(a,b) (_ssub((a),(b)))
#define extract_h(a) ((unsigned)((a)>>16))
#define extract_l(a) ((int)a)
#define round(a) (_rnd(a))
#define mac_r(a,b,c) (_smacr((a),(b),(c)))
#define msu_r(a,b,c) (_smasr((a),(b),(c)))
#define mult(a,b) (_smpy((a),(b)))
#define mult_r(a,b) (_smpyr((a),(b)))
#define norm_s(a) (_norm(a))
#define norm_l(a) (_lnorm(a))
#define negate(a) (_sneg(a))
#define shl(a,b) (clshft((a),(b)))
#define shr(a,b) (crshft((a),(b)))
#define shr_r(a,b) (crshft_r((a),(b)))
#define div_s(a,b) (divs(a,b))

Interrupt Handling

 6-28

6.6 Interrupt Handling

As long as you follow the guidelines in this section, C/C++ code can be inter-
rupted and returned to without disrupting the C/C++ environment. When the
C/C++ environment is initialized, the startup routine does not enable or disable
interrupts. (If the system is initialized via a hardware reset, interrupts are
disabled.) If your system uses interrupts, it is your responsibility to handle any
required enabling or masking of interrupts. Such operations have no effect on
the C/C++ environment and can be easily implemented with asm statements.

6.6.1 General Points About Interrupts

An interrupt routine may perform any task performed by any other function,
including accessing global variables, allocating local variables, and calling
other functions.

When you write interrupt routines, keep the following points in mind:

� It is your responsibility to handle any special masking of interrupts (via the
IMR register). You can use inline assembly to enable or disable the
interrupts and modify the IMR register without corrupting the C/C++ envi-
ronment or C/C++ pointer.

� An interrupt handling routine cannot have arguments. If any are declared,
they are ignored.

� An interrupt handling routine cannot be called by normal C/C++ code.

� In order to return, an interrupt routine written in C/C++ will perform a RETE
instruction, which pops one word off the stack into the PC. If this C/C++
routine is compiled for a C54x extended memory processor (C548 and
higher), the return instruction, FRETE, will pop one word from the stack
into the PC and another word from the stack into the XPC. If the C/C++
interrupt routine is entered from assembly code rather than C/C++ code,
you should ensure that the stack is in the appropriate state for the return
from the C/C++ routine.

� The compiler emits code in the prolog and epilog sections of interrupt rou-
tines to explicitly set up a C/C++ environment. The CPL bit is set, and the
OVM, SMUL, and SST bits are cleared. If you do not want this extra code
to appear in your C/C++ interrupt routines, use the -me compiler option.

� An interrupt handling routine can handle a single interrupt or multiple
interrupts. The compiler does not generate code that is specific to a certain
interrupt, except for c_int00, which is the system reset interrupt. When you
enter c_int00, you cannot assume that the run-time stack is set up; there-
fore, you cannot allocate local variables, and you cannot save any
information on the run-time stack.

Interrupt Handling

6-29Run-Time Environment

� To associate an interrupt routine with an interrupt, a branch must be placed
in the appropriate interrupt vector. You can use the assembler and linker
to do this by creating a simple table of branch instructions using the .sect
assembler directive.

� In assembly language, remember to precede the symbol name with an
underscore. For example, refer to c_int00 as _c_int00.

� Align the stack to an even (long-aligned) address.

6.6.2 Using C/C++ Interrupt Routines

Interrupts can be handled directly with C/C++ functions by using the interrupt
keyword. For example:

interrupt void isr()
{
 ...
}

Adding the interrupt keyword defines an interrupt routine. When the compiler
encounters one of these routines, it generates code that allows the function
to be activated from an interrupt trap. This method provides more functionality
than the standard C/C++ signal mechanism. This does not prevent imple-
mentation of the signal function, but it does allow these functions to be written
entirely in C/C++.

6.6.3 Saving Context on Interrupt Entry
All registers that the interrupt routine uses, including the status registers, must
be preserved. If the interrupt routine calls other functions, all of the registers
in Table 6-2 on page 6-9 must be preserved.

Some C54x instructions access 32 bits of memory at once (DLD, DADD, etc.).
As a result, the compiler must take steps to ensure that the stack pointer
always contains an even value. These steps are detailed in subsection 6.4.4,
Allocating the Frame and Using the 32-bit Memory Read Instructions, on page
6-15. (For more information on how these instructions access memory, refer
to the TMS320C54x DSP Reference Set.)

Interrupt routines do not know whether the stack pointer is even or odd. There-
fore, the compiler issues these instructions to save the registers and align the
stack pointer.

PSHM ST0 ; first save off all other registers
. . .
PSHM SP ; push the SP
ANDM #0FFFEH,*(SP) ; align to even boundary

The compiler generates code to save the SP on the stack before aligning the
SP to an even address. It restores the SP from the stack at the end of the inter-
rupt routine.

Integer Expression Analysis

 6-30

6.7 Integer Expression Analysis

This section describes some special considerations to keep in mind when
evaluating integer expressions.

6.7.1 Arithmetic Overflow and Underflow

The C54x produces a 40-bit result even when 16-bit or 32-bit values are used
as data operands; thus, arithmetic overflow and underflow cannot be handled
in a predictable manner. If your code depends on a particular type of overflow/
underflow handling, there is no guarantee that this code will execute correctly.

6.7.2 Operations Evaluated With RTS Calls

The C54x does not directly support some C/C++ operations. Evaluating these
operations is done with calls to runtime-support routines. These routines are
hard-coded in assembly language. They are members of the object and
source RTS libraries (rts.lib and rts.src) in the toolset.

The conventions for calling these routines are modeled on the standard C/C++
calling conventions. For binary routines (divide, etc.), the left operand is
passed in accumulator A and the right operand is passed on the stack. The
result is returned in accumulator A. For unary routines, the argument is passed
and the result returned in accumulator A.

Operation Type Operations Evaluated with RTS Calls

16-bit int Divide

Modulus

32-bit long Divide

Modulus

Multiply

Shift left

Shift right

Integer Expression Analysis

6-31Run-Time Environment

6.7.3 C Code Access to the Upper 16 Bits of 16-Bit Multiply

The following methods provide access to the upper 16 bits of a 16-bit multiply
in C language:

� Signed-results method:

int m1, m2;
int result;

result = ((long) m1 * (long) m2) >> 16;

� Unsigned-results method:

unsigned m1, m2;
unsigned result;

result = ((unsigned long) m1 * (unsigned long) m2) >> 16;

Both result statements are implemented by the compiler without making a
function call to the 32-bit multiply routine.

Note: Danger of Complicated Expressions

The compiler must recognize the structure of the expression in order for it to
return the expected results. Avoid complicated expressions such as the
following:

((long)((unsigned)((a*b)+c)<5)*(long)(z*sin(w)>6))>>16

Floating-Point Expression Analysis

 6-32

6.8 Floating-Point Expression Analysis

The C54x C/C++ compiler represents floating-point values as IEEE single-
precision numbers. Both single-precision and double-precision floating-point
numbers are represented as 32-bit values; there is no difference between the
two formats.

The C54x runtime-support library, rts.lib, contains a custom-coded set of
floating-point math functions that support:

� Addition, subtraction, multiplication, and division

� Comparisons (>, <, >=, <=, ==, !=)

� Conversions from integer or long to floating-point and floating-point to
integer or long, both signed and unsigned

� Standard error handling

The conventions for calling these routines are the same as the conventions
used to call the integer operation routines. Conversions are unary operations.

System Initialization

6-33Run-Time Environment

6.9 System Initialization

Before you can run a C/C++ program, the C/C++ run-time environment must
be created. This task is performed by the C/C++ boot routine, which is a func-
tion called _c_int00. The run-time-support source library (rts.src) contains the
source to this routine in a module called boot.asm.

To begin running the system, the _c_int00 function can be called by reset hard-
ware. You must link the _c_int00 function with the other object modules. This
occurs automatically when you use the -c or -cr linker function option and
include rts.src as one of the linker input files.

When C/C++ programs are linked, the linker sets the entry point value in the
executable output module to the symbol _c_int00. The _c_int00 function per-
forms the following tasks to initialize the C/C++ environment:

1) Reserves space in .bss for the runtime stack, and sets up the initial value
of the stack pointer (SP).

2) Initializes global variables by copying the data from the initialization tables
in the .cinit and .pinit sections to the storage allocated for the variables in
the .bss section. If initializing variables at load time (-cr option), a loader
performs this step before the program runs (it is not performed by the boot
routine). For information, see subsection 6.9.1, Automatic Initialization of
Variables.

3) Calls the function main to begin running the C/C++ program.

You can replace or modify the boot routine to meet your system requirements.
However, the boot routine must perform the operations listed above to
correctly initialize the C/C++ environment.

System Initialization

 6-34

6.9.1 Automatic Initialization of Variables

Any global variables declared as preinitialized must have initial values
assigned to them before a C/C++ program starts running. The process of re-
trieving these variables’ data and initializing the variables with the data is
called autoinitialization.

The compiler builds tables that contain data for initializing global and static
variables in a .cinit section in each file. Each compiled module contains these
initialization tables. The linker combines them into a single table (a single .cinit
section). The boot routine or loader uses this table to initialize all the system
variables.

Note: Initializing Variables

In ISO C, global and static variables that are not explicitly initialized must be
set to 0 before program execution. The C/C++ compiler does not perform any
preinitialization of uninitialized variables. You must explicitly initialize any
variable that must have an initial value of 0.

The easiest method is to have the stand-alone simulator using the -o option
clear the .bss section before the program starts running. Another method is
to set a fill value of 0 in the linker control map for the .bss section.

You cannot use these methods with code that is burned into ROM.

6.9.2 Global Constructors

All global C++ variables that have constructors must have their constructor
called before main(). The compiler builds a table of global constructor
addresses that must be called, in order, before main() in a section called .pinit.
The linker combines the .pinit section from each input file to form a single table
in the .pinit section. The boot routine uses this table to execute the construc-
tors.

6.9.3 Initialization Tables

The tables in the .cinit section consist of variable-size initialization records.
Each variable that must be autoinitialized has a record in the .cinit section.
Figure 6-3 shows the format of the .cinit section and the initialization records.

System Initialization

6-35Run-Time Environment

Figure 6-3. Format of Initialization Records in the .cinit Section

Initialization record 2

Initialization record 1

Initialization record n

Initialization record 3

.cinit section

Size in
words

Pointer to
variable
 in .bss

Initialization
data

Initialization record

•
•
•

An initialization record contains the following information:

� The first field (word 0) contains the size in words of the initialization data.

� The second field (word 1) contains the starting address of the area in the
.bss section where the initialization data must be copied.

� The third field (words 2 through n) contains the data that is copied to initial-
ize the variable.

The .cinit section contains an initialization record for each variable that is initial-
ized. Example 6-5 (a) shows initialized variables defined in C/C++.
Example 6-5 (b) shows the corresponding initialization table.

Example 6-5. Initialization Variables and Initialization Table

(a) Initialized variables defined in C

int i = 23;
int a[5] = { 1, 2, 3, 4, 5 };

System Initialization

 6-36

(b) Initialized information for variables defined in (a)

.sect ”.cinit” ; Initialization section
* Initialization record for variable i

.word 1 ; length of data (1 word)

.word _i ; address in .bss

.word 23 ; data to initialize i

* Initialization record for variable a
.word 5 ; length of data (5 words)
.word _a ; address in .bss
.word 1,2,3,4,5 ; data to initialize a

The .cinit section must contain only initialization tables in this format. If you
interface assembly language modules to your C/C++ programs, do not use the
.cinit section for any other purpose.

When you use the -c or -cr option, the linker combines the .cinit sections from
all the C modules and appends a null word to the end of the composite .cinit
section. This terminating record appears as a record with a size field of 0 and
marks the end of the initialization tables.

Figure 6-4. Format of Initialization Records in the .pinit Section

Address of constructor 1

Address of constructor n

.pinit section

•
•
•

Address of constructor 3

Address of constructor 2

Likewise, the -c or -cr linker option causes the linker to combine all of the .pinit
sections from all the C/C++ modules and appends a null word to the end of the
composite .pinit section. The boot routine knows the end of the global
constructor table when it encounters a null constructor address.

Note that const-qualified variables are initialized differently; see subsection
5.10.1, Initializing Static and Global Variables with the Const Type Qualifier,
on page 5-27.

System Initialization

6-37Run-Time Environment

6.9.4 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default model for autoinitialization.
To use this method, invoke the linker with the -c option.

Using this method, the .cinit section is loaded into memory (possibly ROM)
along with all the other initialized sections, and global variables are initialized
at run time. The linker defines a special symbol called cinit that points to the
beginning of the initialization tables in memory. When the program begins run-
ning, the C/C++ boot routine copies data from the tables (pointed to by cinit)
into the specified variables in the .bss section. This allows initialization data to
be stored in ROM and copied to RAM each time the program starts.

Figure 6-5 illustrates autoinitialization at run time. Use this method in any sys-
tem where your application runs from code burned into ROM.

Figure 6-5. Autoinitialization at Run Time

Boot
routine

Object file Memory

.bss
section
(RAM)

Initialization
tables
(ROM)

.cinit
section Loader

cinit

System Initialization

 6-38

6.9.5 Autoinitialization of Variables at Load Time

Autoinitialization of variables at load time enhances performance by reducing
boot time and by saving the memory used by the initialization tables. To use
this method, invoke the linker with the -cr option.

When you use the -cr linker option, the linker sets the STYP_COPY bit in the
.cinit section’s header. This tells the loader not to load the .cinit section into
memory. (The .cinit section occupies no space in the memory map.) The linker
also sets the cinit symbol to -1 (normally, cinit points to the beginning of the
initialization tables). This indicates to the boot routine that the initialization
tables are not present in memory; accordingly, no run-time initialization is per-
formed at boot time.

A loader (which is not part of the compiler package) must be able to perform
the following tasks to use autoinitialization at load time:

� Detect the presence of the .cinit section in the object file

� Determine that STYP_COPY is set in the .cinit section header, so that it
knows not to copy the .cinit section into memory

� Understand the format of the initialization tables

Figure 6-6 illustrates the RAM model of autoinitialization.

Figure 6-6. Autoinitialization at Load Time

Object file Memory

.bss
section

.cinit
section

Loader

7-1

Run−Time−Support Functions

Some of the tasks that a C/C++ program performs (such as I/O, dynamic
memory allocation, string operations, and string searches) are not part of the
C/C++ language itself. The run-time-support functions, which are included
with the C/C++ compiler, are standard ISO functions that perform these tasks.

The run-time-support library, rts.src, contains the source for these functions
as well as for other functions and routines. All of the ISO functions except those
that require an underlying operating system (such as signals) are provided.

A library-build utility is included with the code generation tools that lets you
create customized run-time-support libraries. For information about using the
library-build utility, see Chapter 8, Library-Build Utility.

Topic Page

7.1 Libraries 7-2.

7.2 The C I/O Functions 7-4.

7.3 Header Files 7-15.

7.4 Summary of Run-Time-Support Functions and Macros 7-26.

7.5 Description of Run-Time-Support Functions and Macros 7-37.

Chapter 7

Libraries

 7-2

7.1 Libraries

The following libraries are included with the TMS320C54x C/C++ compiler:

� rts.lib contains the ISO run-time-support object library
� rts.src contains the source for the ISO run-time-support routines

The object library includes the standard C/C++ run-time-support functions
described in this chapter, the floating-point routines, and the system startup
routine, _c_int00. The object library is built from the C/C++ and assembly
source contained in rts.src.

When you link your program, you must specify an object library as one of the
linker input files so that references to the I/O and run-time-support functions
can be resolved.

You should specify libraries last on the linker command line because the linker
searches a library for unresolved references when it encounters the library on
the command line. You can also use the -x linker option to force repeated
searches of each library until the linker can resolve no more issues.

When a library is linked, the linker includes only those library members
required to resolve undefined references. For more information about linking,
see the linker description chapter of the TMS320C54x Assembly Language
Tools User’s Guide.

7.1.1 Nonstandard Header Files in rts.src

The rts.src file contains these non-ISO include files that are used to build the
library:

� The values.h file contains the definitions necessary for recompiling the
trigonometric and transcendental math functions. If necessary, you can
customize the functions in values.h.

� The file.h file includes macros and definitions used for low-level I/O func-
tions.

� The format.h file includes structures and macros used in printf and scanf.

� The trgcio.h file includes low-level, target-specific C I/O macro definitions.
If necessary, you can customize trgcio.h.

Libraries

7-3Run-Time-Support Functions

7.1.2 Modifying a Library Function

You can inspect or modify library functions by using the archiver to extract the
appropriate source file or files from rts.src. For example, the following
command extracts two source files:

 ar500 x rts.src atoi.c strcpy.c

To modify a function, extract the source as in the previous example. Make the
required changes to the code, recompile, and reinstall the new object file(s)
into the library:

cl500 -options atoi.c strcpy.c ;recompile
ar500 -r rts.src atoi.c strcpy.c ;rebuild library

You can also build a new library this way, rather than rebuilding into rts.lib. For
more information about the archiver, see the archiver description chapter of
the TMS320C54x Assembly Language Tools User’s Guide.

7.1.3 Building a Library With Different Options

You can create a new library from rts.src by using the library-build utility,
mk500. For example, use this command to build an optimized run-time-sup-
port library:

mk500 --u -o2 rts.src -l rts.lib

The --u option tells the mk500 utility to use the header files in the current
directory, rather than extracting them from the source archive. The use of the
optimizer (-o2) option does not affect compatibility with code compiled without
this option. For more information about building libraries, see Chapter 8, Li-
brary-Build Utility.

The C I/O Functions

 7-4

7.2 The C I/O Functions

The C I/O functions make it possible to access the host’s operating system to
perform I/O (using the debugger). For example, printf statements executed in
a C54x program appear in the debugger command window. When used in con-
junction with the debugging tools, the capability to perform I/O on the host
gives you more options when debugging and testing code.

To use the I/O functions in C mode, include the header file stdio.h for each
module that references a function.

To use the I/O functions in C++ mode, include the header file stdio.h, or cstdio
for C++ code, for each module that references a function.

For example, given the following program in a file named main.c:

#include <stdio.h>

main()
{
 FILE *fid;

 fid = fopen(”myfile”,”w”);
 fprintf(fid,”Hello, world\n”);
 fclose(fid);

 printf(”Hello again, world\n”);
}

Issuing the following compiler command compiles, links, and creates the file
main.out:

cl500 main.c -z -heap 400 -l rts.lib -o main.out

Executing main.out under the C54x debugger on a SPARC host accomplishes
the following:

1) Opens the file myfile in the directory where the debugger was invoked
2) Prints the string Hello, world into that file
3) Closes the file
4) Prints the string Hello again, world in the debugger command window

With properly written device drivers, the functions also offer facilities to perform
I/O on a user-specified device.

If there is not enough space on the heap for a C I/O buffer, buffered operations
on the file will fail. If a call to printf() mysteriously fails, this may be the reason.
Check the size of the heap. To set the heap size, use the -heap option when
linking.

The C I/O Functions

7-5Run-Time-Support Functions

7.2.1 Overview Of Low-Level I/O Implementation

The code that implements I/O is logically divided into three layers: high-level,
low-level, and device-level.

The high-level functions are the standard C library of stream I/O routines
(printf, scanf, fopen, getchar, etc.). These routines map an I/O request to one
or more of the I/O commands that are handled by the low-level shell.

The low-level functions are comprised of basic I/O functions: open, read, write,
close, lseek, rename, and unlink. These low-level functions provide the inter-
face between the high-level functions and the device-level drivers that actually
perform the I/O command on the specified device.

The low-level functions also define and maintain a stream table that
associates a file descriptor with a device. The stream table interacts with the
device table to ensure that an I/O command performed on a stream executes
the correct device-level routine.

The data structures interact as shown in Figure 7-1.

Figure 7-1. Interaction of Data Structures in I/O Functions

Device tableStream table

read

open

read

open

file_descriptor2

file_descriptor1

The C I/O Functions

 7-6

The first three streams in the stream table are predefined to be stdin, stdout,
and stderr, and they point to the host device and associated device drivers.

Figure 7-2. The First Three Streams in the Stream Table

file_descriptor3

Device table

read

open

read

open

file_descriptor2

file_descriptor1

Host

Stream table

stderr

stdout

stdin

At the next level are the user-definable device-level drivers. They map directly
to the low-level I/O functions. The C I/O library includes the device drivers nec-
essary to perform C I/O on the host on which the debugger is running.

The specifications for writing device-level routines so that they interface with
the low-level routines are described on pages 7-11 through 7-14. You should
write each function to set up and maintain its own data structures as needed.
Some function definitions perform no action and should just return.

7.2.2 Adding a Device For C I/O

The low-level functions provide facilities that allow you to add and use a device
for I/O at run time. The procedure for using these facilities is:

1) Define the device-level functions as described in subsection 7.2.1 on
page 7-5.

Note: Use Unique Function Names

The function names open(), close(), read(), etc. have been used by the low-
level routines. Use other names for the device-level functions that you write.

2) Use the low-level function add_device() to add your device to the
device_table. The device table is a statically defined array that supports
n devices, where n is defined by the macro _NDEVICE found in stdio.h.
The structure representing a device is also defined in stdio.h and is com-
posed of the following fields:

The C I/O Functions

7-7Run-Time-Support Functions

name String for device name

flags Specifies whether device supports multiple
streams or not

function pointers Pointers to the device-level functions:

� close
� lseek
� open
� read
� rename
� write
� unlink

The first entry in the device table is predefined to be the host device on
which the debugger is running. The low-level routine add_device() finds
the first empty position in the device table and initializes the device fields
with the passed in arguments. For a complete description of the
add_device function, see page 7-9.

3) Once the device is added, call fopen() to open a stream and associate it
with that device. Use devicename:filename as the first argument to
fopen().

The following program illustrates adding and using a device for C I/O:

#include <stdio.h>

/**/
/* Declarations of the user-defined device drivers */
/**/
extern int my_open(char *path, unsigned flags, int fno);
extern int my_close(int fno);
extern int my_read(int fno, char *buffer, unsigned count);
extern int my_write(int fno, char *buffer, unsigned count);
extern int my_lseek(int fno, long offset, int origin);
extern int my_unlink(char *path);
extern int my_rename(char *old_name, char *new_name);

main()
{
 FILE *fid;

 add_device(”mydevice”, _MSA, my_open, my_close, my_read, my_write, my_lseek,
 my_unlink, my_rename);

 fid = fopen(”mydevice:test”,”w”);

 fprintf(fid,”Hello, world\n”);

 fclose(fid);
}

 Description of Runtime-Support Functions and Macros acos, add_device

7-9 Runtime-Support Functions

Add Device to Device Tableadd_device

Syntax #include <stdio.h>
int add_device(char *name,

unsigned flags,
int (*dopen)(),
int (*dclose)(),
int (*dread)(),
int (*dwrite)(),
fpos_t (*dlseek)(),
int (*dunlink)(),
int (*drename)());

Syntax for C++ #include <cstdio>

int std::add_device(char *name,
unsigned flags,
int (*dopen)(),
int (*dclose)(),
int (*dread)(),
int (*dwrite)(),
fpos_t (*dlseek)(),
int (*dunlink)(),
int (*drename)());

Defined in lowlev.c in rts.src

Description The add_device function adds a device record to the device table allowing that
device to be used for input/output from C. The first entry in the device table is
predefined to be the host device on which the debugger is running. The func-
tion add_device() finds the first empty position in the device table and initializes
the fields of the structure that represent a device.

To open a stream on a newly-added device, use fopen() with a string of the for-
mat devicename:filename as the first argument.

� The name is a character string denoting the device name.

� The flags are device characteristics. The flags are as follows:

_SSA Denotes that the device supports only one open stream at a time

_MSA Denotes that the device supports multiple open streams

More flags can be added by defining them in stdio.h.

� The dopen, dclose, dread, dwrite, dlseek, dunlink, drename specifiers are
function pointers to the device drivers that are called by the low-level

add_device Description of Runtime-Support Functions and Macros

7-10

functions to perform I/O on the specified device. You must declare these
functions with the interface specified in subsection 7.2.1, Overview of
Low-Level I/O Implementation, on page 7-5. The device drivers for the
host that the debugger is run on are included in the C I/O library.

Return Value The function returns one of the following values:

0 if successful
-1 if fails

Example This example does the following:

� Adds the device mydevice to the device table
� Opens a file named test on that device and associates it with the file *fid
� Prints the string Hello, world into the file
� Closes the file

#include <stdio.h>

/**/
/* Declarations of the user-defined device drivers */
/**/
extern int my_open(const char *path, unsigned flags, int fno);
extern int my_close(int fno);
extern int my_read(int fno, char *buffer, unsigned count);
extern int my_write(int fno, const char *buffer, unsigned count);
extern int my_lseek(int fno, long offset, int origin);
extern int my_unlink(const char *path);
extern int my_rename(const char *old_name, const char *new_name);

main()
{

 FILE *fid;
 add_device(”mydevice”, _MSA, my_open, my_close, my_read, my_write, my_lseek,
 my_unlink, my_rename);

 fid = fopen(”mydevice:test”,”w”);

 fprintf(fid,”Hello, world\n”);

 fclose(fid);
}

 The C I/O Functions close

7-11 Runtime-Support Functions

Close File or Device For I/Oclose

Syntax #include<stdio.h>
#include <file.h>
int close(int file_descriptor);

Syntax for C++ #include<cstdio.h>
#include <file.h>
int std::close(int file_descriptor);

Description The close function closes the device or file associated with file_descriptor.

The file_descriptor is the stream number assigned by the low-level routines
that is associated with the opened device or file.

Return Value The return value is one of the following:

0 if successful
-1 if fails

Set File Position Indicatorlseek

Syntax #include<stdio.h>
#include <file.h>
long lseek(int file_descriptor, long offset, int origin);

Syntax for C++ #include<cstdio.h>
#include <file.h>
long std::lseek(int file_descriptor, long offset, int origin);

Description The lseek function sets the file position indicator for the given file to
origin + offset. The file position indicator measures the position in characters
from the beginning of the file.

� The file_descriptor is the stream number assigned by the low-level rou-
tines that the device-level driver must associate with the opened file or
device.

� The offset indicates the relative offset from the origin in characters.

� The origin is used to indicate which of the base locations the offset is mea-
sured from. The origin must be a value returned by one of the following
macros:

SEEK_SET (0x0000) Beginning of file

SEEK_CUR (0x0001) Current value of the file position indicator

SEEK_END (0x0002) End of file

open The C I/O Functions

7-12

Return Value The return function is one of the following:

new value of the file-position indicator if successful

EOF if fails

Open File or Device For I/Oopen

Syntax #include<stdio.h>
#include <file.h>
int open(const char *path, unsigned flags, int mode);

Syntax for C++ #include<cstdio.h>
#include <file.h>
int std::open(const char *path, unsigned flags, int mode);

Description The open function opens the device or file specified by path and prepares it
for I/O.

� The path is the filename of the file to be opened, including path informa-
tion.

� The flags are attributes that specify how the device or file is manipulated.
The flags are specified using the following symbols:

O_RDONLY (0x0000) /* open for reading */
O_WRONLY (0x0001) /* open for writing */
O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O_CREAT (0x0100) /* open with file create */
O_TRUNC (0x0200) /* open with truncation */
O_BINARY (0x8000) /* open in binary mode */

These parameters can be ignored in some cases, depending on how data
is interpreted by the device. Note, however, that the high-level I/O calls
look at how the file was opened in an fopen statement and prevent certain
actions, depending on the open attributes.

� The mode is required by ignored.

Return Value The function returns one of the following values:

stream number assigned by the low-level routines that the device-lev-
el driver associates with the opened file or device if successful

< 0 if fails

 The C I/O Functions read, rename

7-13 Runtime-Support Functions

Read Characters From Bufferread

Syntax #include<stdio.h>
#include <file.h>
int read(int file_descriptor, char *buffer, unsigned count);

Syntax for C++ #include<cstdio.h>
#include <file.h>
int std::read(int file_descriptor, char *buffer, unsigned count);

Description The read function reads the number of characters specified by count to the
buffer from the device or file associated with file_descriptor.

� The file_descriptor is the stream number assigned by the low-level rou-
tines that is associated with the opened file or device.

� The buffer is the location of the buffer where the read characters are
placed.

� The count is the number of characters to read from the device or file.

Return Value The function returns one of the following values:

0 if EOF was encountered before the read was complete

number of characters read in every other instance
-1 if fails

Rename Filerename

Syntax #include<stdio.h>
#include <file.h>
int rename(const char *old_name, const char *new_name);

Syntax for C++ #include<cstdio.h>
#include <file.h>
int std::rename(const char *old_name, const char *new_name);

Description The rename function changes the name of a file.

� The old_name is the current name of the file.
� The new_name is the new name for the file.

Return Value The function returns one of the following values:

0 if the rename is successful

Nonzero if fails

unlink, write The C I/O Functions

7-14

Delete Fileunlink

Syntax #include<stdio.h>
#include <file.h>
int unlink(const char *path);

Syntax for C++ #include<cstdio.h>
#include <file.h>
int std::unlink(const char *path);

Description The unlink function deletes the file specified by path.

The path is the filename of the file to be deleted, including path information.

Return Value The function returns one of the following values:

0 if successful

-1 if fails

Write Characters to Bufferwrite

Syntax #include<stdio.h>
#include <file.h>
int write(int file_descriptor, const char *buffer, unsigned count);

Syntax for C++ #include<cstdio.h>
#include <file.h>
int std::write(int file_descriptor, const char *buffer, unsigned count);

Description The write function writes the number of characters specified by count from the
buffer to the device or file associated with file_descriptor.

� The file_descriptor is the stream number assigned by the low-level rou-
tines that is associated with the opened file or device.

� The buffer is the location of the buffer where the write characters are
placed.

� The count is the number of characters to write to the device or file.

Return Value The function returns one of the following values:

number of characters written if successful

-1 if fails

Header Files

7-15Run-Time-Support Functions

7.3 Header Files

Each run-time-support function is declared in a header file. Each header file
declares the following:

� A set of related functions (or macros)
� Any types that you need to use the functions
� Any macros that you need to use the functions

These are the header files that declare the ISO C run-time-support functions:

assert.h float.h stdarg.h string.h
ctype.h limits.h stddef.h time.h
errno.h math.h stdio.h
file.h setjmp.h stdlib.h

In addition to the ISO C header files, the following C++ header files are
included:

cassert cmath cstdlib rtti.h
cctype csetjmp cstring stdexcept
cerrno cstdarg ctime typeinfo
cfloat cstddef exception
climits cstdio new

To use a run-time-support function, you must first use the #include
preprocessor directive to include the header file that declares the function. For
example, the isdigit function is declared by the ctype.h header. Before you can
use the isdigit function, you must first include ctype.h:

#include <ctype.h>
.
.
.
val = isdigit(num);

You can include headers in any order. You must, however, include a header
before you reference any of the functions or objects that it declares.

Sections 7.3.1 through 7.3.8 describe the header files that are included with
the C/C++ compiler.

Header Files

 7-16

7.3.1 Diagnostic Messages (assert.h/cassert)

The assert.h/cassert header defines the assert macro, which inserts
diagnostic failure messages into programs at run time. The assert macro tests
a run time expression.

� If the expression is true (nonzero), the program continues running.

� If the expression is false, the macro outputs a message that contains the
expression, the source file name, and the line number of the statement
that contains the expression; then, the program terminates (using the
abort function).

The assert.h/cassert header refers to another macro named NDEBUG
(assert.h/cassert does not define NDEBUG). If you have defined NDEBUG as
a macro name when you include assert.h/cassert, assert is turned off and does
nothing. If NDEBUG is not defined, assert is enabled.

The assert.h header refers to another macro named NASSERT (assert.h does
not define NASSERT). If you have defined NASSERT as a macro name when
you include assert.h, assert acts like _nassert. The _nassert intrinsic
generates no code and tells the optimizer that the expression declared with
assert is true. This gives a hint to the optimizer as to what optimizations might
be valid. If NASSERT is not defined, assert is enabled normally.

The assert function is listed in Table 7-3 (a) on page 7-27.

7.3.2 Character-Typing and Conversion (ctype.h/cctype)

The ctype.h/cctype header declares functions that test (type) and convert
characters.

The character-typing functions test a character to determine whether it is a
letter, a printing character, a hexadecimal digit, etc. These functions return a
value of true (a nonzero value) or false (0). The character conversion functions
convert characters to lower case, upper case, or ASCII, and return the
converted character. Character-typing functions have names in the form isxxx
(for example, isdigit). Character-conversion functions have names in the form
toxxx (for example, toupper).

Header Files

7-17Run-Time-Support Functions

The ctype.h/cctype header also contains macro definitions that perform these
same operations. The macros run faster than the corresponding functions.
Use the function version if an argument passed to one of these macros has
side effects. The typing macros expand to a lookup operation in an array of
flags (this array is defined in ctype.c). The macros have the same name as the
corresponding functions, but each macro is prefixed with an underscore (for
example, _isdigit).

The character typing and conversion functions are listed in Table 7-3 (b) on
page 7-27.

7.3.3 Error Reporting (errno.h/cerrno)

The errno.h/cerrno header declares the errno variable. The errno variable
declares errors in the math functions. Errors can occur in a math function if
invalid parameter values are passed to the function or if the function returns
a result that is outside the defined range for the type of the result. When this
happens, a variable named errno is set to the value of one of the following
macros:

� EDOM for domain errors (invalid parameter)
� ERANGE for range errors (invalid result)
� ENOENT for path errors (path does not exist)
� EFPOS for seek errors (file position error)

C code that calls a math function can read the value of errno to check for error
conditions. The errno variable is declared in errno.h/cerrno and defined in
errno.c.

C code that calls a math function can read the value of errno to check for error
conditions. The errno variable is declared in errno.h/cerrno and defined in
errno.c/errno.cpp.

7.3.4 Extended Addressing Functions (extaddr.h)

The extaddr.h header declares functions that support reading and writing of
data in the full C55x address space. Extended memory addresses are
represented by values of the integer type FARPTR (unsigned long).

The extended addressing functions are listed in Table 7-3 (c) on page 7-28.

7.3.5 Low-Level Input/Output Functions (file.h)

The file.h header declares the low-level I/O functions used to implement input
and output operations. Section 7.2, The C I/O Functions, describes how to
implement I/O for C55x.

Header Files

 7-18

7.3.6 Limits (float.h/cfloat and limits.h/climits)

The float.h/cfloat and limits.h/climits headers define macros that expand to
useful limits and parameters of the processor’s numeric representations.
Table 7-1 and Table 7-2 list these macros and their associated limits.

Table 7-1. Macros That Supply Integer Type Range Limits (limits.h)

Macro Value Description

CHAR_BIT 16 Number of bits in type char

SCHAR_MIN -32 768 Minimum value for a signed char

SCHAR_MAX 32 767 Maximum value for a signed char

UCHAR_MAX 65 535 Maximum value for an unsigned char

CHAR_MIN -32 768 Minimum value for a char

CHAR_MAX 32 767 Maximum value for a char

SHRT_MIN -32 768 Minimum value for a short int

SHRT_MAX 32 767 Maximum value for a short int

USHRT_MAX 65 535 Maximum value for an unsigned short int

INT_MIN -32 768 Minimum value for an int

INT_MAX 32 767 Maximum value for an int

UINT_MAX 65 535 Maximum value for an unsigned int

LONG_MIN -2 147 483 648 Minimum value for a long int

LONG_MAX 2 147 483 647 Maximum value for a long int

ULONG_MAX 4 294 967 295 Maximum value for an unsigned long int

MB_LEN_MAX 1 Maximum number of bytes in multi-byte

Note: Negative values in this table are defined as expressions in the actual header file so that
their type is correct.

Header Files

7-19Run-Time-Support Functions

Table 7-2. Macros That Supply Floating-Point Range Limits (float.h)

Macro Value Description

FLT_RADIX 2 Base or radix of exponent representation

FLT_ROUNDS 1 Rounding mode for floating-point addition

FLT_DIG
DBL_DIG
LDBL_DIG

6
6
6

Number of decimal digits of precision for a float, double, or long
double

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

24
24
24

Number of base-FLT_RADIX digits in the mantissa of a float,
double, or long double

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

-125
-125
-125

Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized float, double, or long double

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

128
128
128

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite float, double, or long
double

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

1.19209290e-07
1.19209290e-07
1.19209290e-07

Minimum positive float, double, or long double number x such
that 1.0 + x ≠ 1.0

FLT_MIN
DBL_MIN
LDBL_MIN

1.17549435e-38
1.17549435e-38
1.17549435e-38

Minimum positive float, double, or long double

FLT_MAX
DBL_MAX
LDBL_MAX

3.40282347e+38
3.40282347e+38
3.40282347e+38

Maximum float, double, or long double

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

-37
-37
-37

Minimum negative integers such that 10 raised to that power is
in the range of normalized floats, doubles, or long doubles

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

38
38
38

Maximum positive integers such that 10 raised to that power is
in the range of representable finite floats, doubles, or long
doubles

Legend: FLT_ applies to type float.
DBL_ applies to type double.
LDBL_ applies to type long double.

Note: The precision of some of the values in this table has been reduced for readability. See the float.h header file supplied
with the compiler for the full precision carried by the processor.

Header Files

 7-20

7.3.7 Floating-Point Math (math.h/cmath)

The math.h/cmath header defines several trigonometric, exponential, and
hyperbolic math functions. These math functions expect double-precision
floating-point arguments and return double-precision floating-point values.

The math.h/cmath header also defines one macro named HUGE_VAL; the
math functions use this macro to represent out-of-range values. When a
function produces a floating-point return value that is too large to be
represented, it returns HUGE_VAL instead.

7.3.8 Nonlocal Jumps (setjmp.h/csetjmp)

The setjmp.h/csetjmp header defines a type, a macro, and a function for
bypassing the normal function call and return discipline. These include:

� jmp_buf, an array type suitable for holding the information needed to
restore a calling environment

� setjmp, a macro that saves its calling environment in its jmp_buf argument
for later use by the longjmp function

� longjmp, a function that uses its jmp_buf argument to restore the program
environment. The nonlocal jmp macro and function are listed in Table 7-3
(e) on page 7-30.

7.3.9 Variable Arguments (stdarg.h/cstdarg)

Some functions can have a variable number of arguments whose types can
differ; such a function is called a variable-argument function. The stdarg.h/
cstdarg header declares three macros and a type that help you to use variable-
argument functions.

The three macros are va_start, va_arg, and va_end. These macros are used
when the number and type of arguments may vary each time a function is
called.

The type, va_list, is a pointer type that can hold information for va_start,
va_end, and va_arg.

A variable-argument function can use the macros declared by stdarg.h to step
through its argument list at run time when the function that is using the macro
knows the number and types of arguments actually passed to it. You must
ensure that a call to a variable-argument function has visibility to a prototype
for the function in order for the arguments to be handled correctly. The variable
argument functions are listed in Table 7-3 (f) page 7-30.

Header Files

7-21Run-Time-Support Functions

7.3.10 Standard Definitions (stddef.h/cstddef)

The stddef.h/cstddef header defines two types and two macros. The types
include:

� The ptrdiff_t type, a signed integer type that is the data type resulting from
the subtraction of two pointers

� The size_t type, an unsigned integer type that is the data type of the sizeof
operator.

The macros include:

� The NULL macro, which expands to a null pointer constant (0)

� The offsetof(type, identifier) macro, which expands to an integer that has
type size_t. The result is the value of an offset in bytes to a structure
member (identifier) from the beginning of its structure (type).

These types and macros are used by several of the run-time-support
functions.

7.3.11 Input/Output Functions (stdio.h/cstdio)

The stdio.h/cstdio header defines seven macros, two types, a structure, and
a number of functions. The types and structure include:

� The size_t type, an unsigned integer type that is the data type of the sizeof
operator. The original declaration is in stddef.h/cstddef.

� The fpos_t type, an unsigned long type that can uniquely specify every
position within a file.

� The FILE structure that records all the information necessary to control a
stream.

The macros include:

� The NULL macro, which expands to a null pointer constant(0). The original
declaration is in stddef.h. It will not be redefined if it has already been
defined.

� The BUFSIZ macro, which expands to the size of the buffer that setbuf()
uses.

� The EOF macro, which is the end-of-file marker.

� The FOPEN_MAX macro, which expands to the largest number of files
that can be open at one time.

Header Files

 7-22

� The FILENAME_MAX macro, which expands to the length of the longest
file name in characters.

� The L_tmpnam macro, which expands to the longest filename string that
tmpnam() can generate.

� SEEK_CUR, SEEK_SET, and SEEK_END, macros that expand to indi-
cate the position (current, start-of-file, or end-of-file, respectively) in a file.

� TMP_MAX, a macro that expands to the maximum number of unique file-
names that tmpnam() can generate.

� stderr, stdin, stdout, which are pointers to the standard error, input, and
output files, respectively.

The input/output functions are listed in Table 7-3 (g) on page 7-31.

7.3.12 General Utilities (stdlib.h/cstdlib)

The stdlib.h/cstdlib header declares several functions, one macro, and two
types. The types include:

� The div_t structure type that is the type of the value returned by the div
function

� The ldiv_t structure type that is the type of the value returned by the ldiv
function

The macro, RAND_MAX, is the maximum random number the rand function
will return.

The header also declares many of the common library functions:

� String conversion functions that convert strings to numeric repre-
sentations

� Searching and sorting functions that allow you to search and sort arrays

� Sequence-generation functions that allow you to generate a pseudo-
random sequence and allow you to choose a starting point for a sequence

� Program-exit functions that allow your program to terminate normally or
abnormally

� Integer arithmetic that is not provided as a standard part of the C language

The general utility functions are listed in Table 7-3 (h) on page 7-33.

Header Files

7-23Run-Time-Support Functions

7.3.13 String Functions (string.h/cstring)

The string.h/cstring header declares standard functions that allow you to
perform the following tasks with character arrays (strings):

� Move or copy entire strings or portions of strings
� Concatenate strings
� Compare strings
� Search strings for characters or other strings
� Find the length of a string

In C, all character strings are terminated with a 0 (null) character. The string
functions named strxxx all operate according to this convention. Additional
functions that are also declared in string.h/cstring allow you to perform
corresponding operations on arbitrary sequences of bytes (data objects)
where a 0 value does not terminate the object. These functions have names
such as memxxx.

When you use functions that move or copy strings, be sure that the destination
is large enough to contain the result. The string functions are listed in
Table 7-3 (i) on page 7-35.

7.3.14 Time Functions (time.h/ctime)

The time.h/ctime header declares one macro, several types, and functions
that manipulate dates and times. Times are represented in two ways:

� As an arithmetic value of type time_t. When expressed in this way, a time
is represented as a number of seconds since 12:00 AM January 1, 1900.
The time_t type is a synonym for the type unsigned long.

� As a structure of type struct_tm. This structure contains members for ex-
pressing time as a combination of years, months, days, hours, minutes,
and seconds. A time represented like this is called broken-down time. The
structure has the following members.

Header Files

 7-24

int tm_sec; /* seconds after the minute (0-59) */
int tm_min; /* minutes after the hour (0-59) */
int tm_hour; /* hours after midnight (0-23) */
int tm_mday; /* day of the month (1-31) */
int tm_mon; /* months since January (0-11) */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Saturday (0-6) */
int tm_yday; /* days since January 1 (0-365) */
int tm_isdst; /* daylight savings time flag */

A time, whether represented as a time_t or a struct_tm, can be expressed from
different points of reference:

� Calendar time represents the current Gregorian date and time.
� Local time is the calendar time expressed for a specific time zone.

The time functions and macros are listed in Table 7-3 (j) on page 7-36.

Local time can be adjusted for daylight savings time. Obviously, local time de-
pends on the time zone. The time.h/ctime header declares a structure type
called tmzone and a variable of this type called _tz. You can change the time
zone by modifying this structure, either at run time or by editing tmzone.c and
changing the initialization. The default time zone is Central Standard Time,
U.S.A.

The basis for all the functions in time.h are two system functions: clock and
time. Time provides the current time (in time_t format), and clock provides the
system time (in arbitrary units). The value returned by clock can be divided by
the macro CLOCKS_PER_SEC to convert it to seconds. Since these functions
and the CLOCKS_PER_SEC macro are system specific, only stubs are pro-
vided in the library. To use the other time functions, you must supply custom
versions of these functions.

Note: Writing Your Own Clock Function

The clock function works with the stand-alone simulator. Used in this envi-
ronment, clock() returns a cycle accurate count. The clock function returns
-1 when used with the HLL debugger.

A host-specific clock function can be written. You must also define the
CLOCKS_PER_SEC macro according to the units of your clock so that the
value returned by clock()—number of clock ticks—can be divided by
CLOCKS_PER_SEC to produce a value in seconds.

Header Files

7-25Run-Time-Support Functions

7.3.15 Exception Handling (exception and stdexcept)

Exception handling is not supported. The exception and stdexcept include
files, which are for C++ only, are empty.

7.3.16 Dynamic Memory Management (new)

The new header, which is for C++ only, defines functions for new, new[], delete,
delete[], and their placement versions.

The type new_handler and the function set_new_handler() are also provided
to support error recovery during memory allocation.

7.3.17 Run-Time Type Information (typeinfo)

The typeinfo header, which is for C++ only, defines the type_info structure,
which is used to represent C++ type information at run time.

Summary of Run-Time-Support Functions and Macros

 7-26

7.4 Summary of Run-Time-Support Functions and Macros

Table 7-3 summarizes the run-time-support header files (in alphabetical
order) provided with the TMS320C55x ISO C/C++ compiler. Most of the func-
tions described are per the ISO standard and behave exactly as described in
the standard.

The functions and macros listed in Table 7-3 are described in detail in section
7.5, Description of Run-Time-Support Functions and Macros on page 7-37.
For a complete description of a function or macro, see the indicated page.

A superscripted number is used in the following descriptions to show expo-
nents. For example, xy is the equivalent of x to the power y.

Summary of Run-Time-Support Functions and Macros

7-27Run-Time-Support Functions

Table 7-3. Summary of Run-Time-Support Functions and Macros

(a) Error message macro (assert.h/cassert)

Macro Description Page

void assert(int expr); Inserts diagnostic messages into programs 7-39

(b) Character typing and conversion functions (ctype.h/cctype)

Function Description Page

int isalnum(int c); Tests c to see if it is an alphanumeric-ASCII
character

7-59

int isalpha(int c); Tests c to see if it is an alphabetic-ASCII character 7-59

int isascii(int c); Tests c to see if it is an ASCII character 7-59

int iscntrl(int c); Tests c to see if it is a control character 7-59

int isdigit(int c); Tests c to see if it is a numeric character 7-59

int isgraph(int c); Tests c to see if it is any printing character except a
space

7-59

int islower(int c); Tests c to see if it is a lowercase alphabetic ASCII
charcter

7-59

int isprint(int c); Tests c to see if it is a printable ASCII character
(including a space)

7-59

int ispunct(int c); Tests c to see if it is an ASCII punctuation character 7-59

int isspace(int c); Tests c to see if it is an ASCII space bar, tab
(horizontal or vertical), carriage return, form feed, or
new line character

7-59

int isupper(int c); Tests c to see if it is an uppercase ASCII alphabetic
character

7-59

int isxdigit(int c); Tests c to see if it is a hexadecimal digit 7-59

char toascii(int c); Masks c into a legal ASCII value 7-93

char tolower(int char c); Converts c to lowercase if it is uppercase 7-93

char toupper(int char c); Converts c to uppercase if it is lowercase 7-93

Summary of Run-Time-Support Functions and Macros

 7-28

(c) Extended addressing functions (extaddr.h)

Function Description Page

extern int far_peek(FARPTR x); Reads an integer from an extended memory
address

extern unsigned long far_peek_l(FARPTR x); Reads an unsigned long from an extended memory
address

extern void far_poke(FARPTR x, int x); Writes an integer to an extended memory address

extern void far_poke_l(FARPTR x,
unsigned long x);

Writes an unsigned long to an extended memory
address

extern void far_memcpy(FARPTR *s1,
FARPTR *s2, int n);

Copies n integers from the object pointed to by s2
into the object pointed to by s1.

extern void far_near_memcpy(void *,
FARPTR, int n);

Copies n integers from an extended memory
address to page 0

extern void near_far_memcpy(FARPTR,
void *, int n);

Copies n integers from page 0 to an extended
memory address

(d) Floating-point math functions (math.h/cmath)

Function Description Page

double acos(double x); Returns the arc cosine of x 7-38

double asin(double x); Returns the arc sine of x 7-39

double atan(double x); Returns the arc tangent of x 7-40

double atan2(double y, double x); Returns the arc tangent of y/x 7-40

double ceil(double x); Returns the smallest integer ≥ x; expands inline if
-x is used

7-43

double cos(double x); Returns the cosine of x 7-45

double cosh(double x); Returns the hyperbolic cosine of x 7-45

double exp(double x); Returns ex 7-48

double fabs(double x); Returns the absolute value of x 7-48

double floor(double x); Returns the largest integer � x; expands inline if
-x is used

7-51

double fmod(double x, double y); Returns the exact floating-point remainder of x/y 7-52

double frexp(double value, int *exp); Returns f and exp such that .5 � |f| � 1 and value
is equal to f × 2exp

7-55

double ldexp(double x, int exp); Returns x × 2exp 7-60

double log(double x); Returns the natural logarithm of x 7-61

Summary of Run-Time-Support Functions and Macros

7-29Run-Time-Support Functions

(d) Floating-point math functions (math.h/cmath) (Continued)

Function PageDescription

double log10(double x); Returns the base-10 logarithm of x 7-62

double modf(double value, double *ip); Breaks value into a signed integer and a signed
fraction

7-67

double pow(double x, double y); Returns xy 7-68

double sin(double x); Returns the sine of x 7-76

double sinh(double x); Returns the hyperbolic sine of x 7-76

double sqrt(double x); Returns the nonnegative square root of x 7-77

double tan(double x); Returns the tangent of x 7-91

double tanh(double x); Returns the hyperbolic tangent of x 7-92

Summary of Run-Time-Support Functions and Macros

 7-30

(e) Nonlocal jumps macro and function (setjmp.h/csetjmp)

Function or Macro Description Page

int setjmp(jmp_buf env); Saves calling environment for use by longjmp; this
is a macro

7-74

void longjmp(jmp_buf env, int _val); Uses jmp_buf argument to restore a previously
saved environment

7-74

(f) Variable argument macros (stdarg.h/cstdarg)

Macro Description Page

type va_arg(va_list, type); Accesses the next argument of type type in a
variable-argument list

7-95

void va_end(va_list); Resets the calling mechanism after using va_arg 7-95

void va_start(va_list, parmN); Initializes ap to point to the first operand in the
variable-argument list

7-95

Summary of Run-Time-Support Functions and Macros

7-31Run-Time-Support Functions

(g) C I/O functions (stdio.h/cstdio)

Function Description Page

int add_device(char *name, unsigned flags,
int (*dopen)(), int (*dclose)(),
int (*dread)(), int (*dwrite)(),
fpos_t (*dlseek)(), int (*dunlink)(),
int (*drename)());

Adds a device record to the device table 7-9

void clearerr(FILE *_fp); Clears the EOF and error indicators for the stream
that _fp points to

7-44

int fclose(FILE *_fp); Flushes the stream that _fp points to and closes
the file associated with that stream

7-49

int feof(FILE *_fp); Tests the EOF indicator for the stream that _fp
points to

7-49

int ferror(FILE *_fp); Tests the error indicator for the stream that _fp
points to

7-50

int fflush(register FILE *_fp); Flushes the I/O buffer for the stream that _fp
points to

7-50

int fgetc(register FILE *_fp); Reads the next character in the stream that
_fp points to

7-50

int fgetpos(FILE *_fp, fpos_t *pos); Stores the object that pos points to to the current
value of the file position indicator for the stream
that _fp points to

7-51

char *fgets(char *_ptr, register int _size,
register FILE *_fp);

Reads the next _size minus 1 characters from the
stream that _fp points to into array _ptr

7-51

FILE *fopen(const char *_fname,
const char *_mode);

Opens the file that _fname points to; _mode points
to a string describing how to open the file

7-52

int fprintf(FILE *_fp, const char *_format, ...); Writes to the stream that _fp points to 7-52

int fputc(int _c, register FILE *_fp); Writes a single character, _c, to the stream that _fp
points to

7-53

int fputs(const char *_ptr, register FILE *_fp); Writes the string pointed to by _ptr to the stream
pointed to by _fp

7-53

size_t fread(void *_ptr, size_t _size,
size_t _count, FILE *_fp);

Reads from the stream pointed to by _fp and
stores the input to the array pointed to by _ptr

7-53

FILE *freopen(const char *_fname,
const char *_mode, register FILE *_fp);

Opens the file that _fname points to using the
stream that _fp points to; _mode points to a string
describing how to open the file

7-54

int fscanf(FILE *_fp, const char *_fmt, ...); Reads formatted input from the stream that _fp
points to

7-55

Summary of Run-Time-Support Functions and Macros

 7-32

(g) C I/O functions (stdio.h/cstdio) (Continued)

Function PageDescription

int fseek(register FILE *_fp, long _offset,
int _ptrname);

Sets the file position indicator for the stream that
_fp points to

7-55

int fsetpos(FILE *_fp, const fpos_t *_pos); Sets the file position indicator for the stream that
_fp points to to _pos. The pointer _pos must be a
value from fgetpos() on the same stream.

7-56

long ftell(FILE *_fp); Obtains the current value of the file position indica-
tor for the stream that _fp points to

7-56

size_t fwrite(const void *_ptr, size_t _size,
size_t _count, register FILE *_fp);

Writes a block of data from the memory pointed to
by _ptr to the stream that _fp points to

7-56

int getc(FILE *_fp); Reads the next character in the stream that
_fp points to

7-57

int getchar(void); A macro that calls fgetc() and supplies stdin as the
argument

7-57

char *gets(char *_ptr); Performs the same function as fgets() using stdin
as the input stream

7-58

void perror(const char *_s); Maps the error number in _s to a string and prints
the error message

7-68

int printf(const char *_format, ...); Performs the same function as fprintf but uses
stdout as its output stream

7-68

int putc(int _x, FILE *_fp); A macro that performs like fputc() 7-69

int putchar(int _x); A macro that calls fputc() and uses stdout as the
output stream

7-69

int puts(const char *_ptr); Writes the string pointed to by _ptr to stdout 7-69

int remove(const char *_file); Causes the file with the name pointed to by _file to
be no longer available by that name

7-72

int rename(const char *_old_name,
const char *_new_name);

Causes the file with the name pointed to by
_old_name to be known by the name pointed to by
_new_name

7-72

void rewind(register FILE *_fp); Sets the file position indicator for the stream
pointed to by _fp to the beginning of the file

7-72

int scanf(const char *_fmt, ...); Performs the same function as fscanf() but reads
input from stdin

7-73

void setbuf(register FILE *_fp, char *_buf); Returns no value. setbuf() is a restricted version of
setvbuf() and defines and associates a buffer with
a stream

7-73

int setvbuf(register FILE *_fp, register char *_buf,
register int _type, register size_t _size);

Defines and associates a buffer with a stream 7-75

Summary of Run-Time-Support Functions and Macros

7-33Run-Time-Support Functions

(g) C I/O functions (stdio.h/cstdio) (Continued)

Function PageDescription

int snprintf(char *_string, const char *_format, ...); Performs the same function as sprintf() but places
an upper limit on the number of characters to be
written to a string

7-77

int sprintf(char *_string, const char *_format, ...); Performs the same function as fprintf() but writes
to the array that _string points to

7-77

int sscanf (const char *_str, const char *_fmt, ...); Performs the same function as fscanf() but reads
from the string that _str points to

7-78

FILE *tmpfile(void); Creates a temporary file 7-93

char *tmpnam(char *_s); Generates a string that is a valid filename (that is,
the filename is not already being used)

7-93

int ungetc(int _c, register FILE *_fp); Pushes the character specified by _c back into the
input stream pointed to by _fp

7-94

int vfprintf(FILE *_fp, const char *_format,
va_list _ap);

Performs the same function as fprintf() but re-
places the argument list with _ap

7-96

int vprintf(const char *_format, va_list _ap); Performs the same function as printf() but replaces
the argument list with _ap

7-96

int vsnprintf(char *_string, const char *_format,
va_list _ap);

Performs the same function as vsprintf() but
places an upper limit on the number of characters
to be written to a string

7-97

int vsprintf(char *_string, const char *_format,
va_list _ap);

Performs the same function as sprintf() but re-
places the argument list with _ap

7-97

(h) General functions (stdlib.h/cstdlib)

Function Description Page

void abort(void); Terminates a program abnormally 7-37

int abs(int i); Returns the absolute value of val; expands inline
unless -x0 is used

7-37

int atexit(void (*fun)(void)); Registers the function pointed to by fun, called
without arguments at program termination

7-41

double atof(const char *st); Converts a string to a floating-point value; expands
inline if -x is used

7-41

int atoi(register const char *st); Converts a string to an integer 7-41

long atol(register const char *st); Converts a string to a long integer value; expands
inline if -x is used

7-41

Summary of Run-Time-Support Functions and Macros

 7-34

(h) General functions (stdlib.h/cstdlib)(Continued)

Function PageDescription

void *bsearch(register const void *key,
register const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *,const void *));

Searches through an array of nmemb objects for
the object that key points to

7-42

void *calloc(size_t num, size_t size); Allocates and clears memory for num objects,
each of size bytes

7-43

div_t div(register int numer, register int denom); Divides numer by denom producing a quotient and
a remainder

7-47

void exit(int status); Terminates a program normally 7-48

void free(void *packet); Deallocates memory space allocated by malloc,
calloc, or realloc

7-54

char *getenv(const char *_string) Returns the environment information for the vari-
able associated with _string

7-57

long labs(long i); Returns the absolute value of i; expands inline
unless -x0 is used

7-37

ldiv_t ldiv(register long numer,
register long denom);

Divides numer by denom 7-47

int ltoa(long val, char *buffer); Converts val to the equivalent string 7-62

void *malloc(size_t size); Allocates memory for an object of size bytes 7-63

void minit(void); Resets all the memory previously allocated by
malloc, calloc, or realloc

7-67

void qsort(void *base, size_t nmemb,
size_t size, int (*compar) ());

Sorts an array of nmemb members; base points to
the first member of the unsorted array, and size
specifies the size of each member

7-70

int rand(void); Returns a sequence of pseudorandom integers in
the range 0 to RAND_MAX

7-70

void *realloc(void *packet, size_t size); Changes the size of an allocated memory space 7-71

void srand(unsigned int seed); Resets the random number generator 7-70

double strtod(const char *st, char **endptr); Converts a string to a floating-point value 7-89

long strtol(const char *st, char **endptr, int base); Converts a string to a long integer 7-89

unsigned long strtoul(const char *st,
char **endptr, int base);

Converts a string to an unsigned long integer 7-89

Summary of Run-Time-Support Functions and Macros

7-35Run-Time-Support Functions

(i) String functions (string.h/cstring)

Function Description Page

void *memchr(const void *cs, int c, size_t n); Finds the first occurrence of c in the first n charac-
ters of cs; expands inline if -x is used

7-63

int memcmp(const void *cs, const void *ct,
size_t n);

Compares the first n characters of cs to ct;
expands inline if -x is used

7-64

void *memcpy(void *s1, const void *s2,
register size_t n);

Copies n characters from s1 to s2 7-64

void *memmove(void *s1, const void *s2,
size_t n);

Moves n characters from s1 to s2 7-65

void *memset(void *mem, register int ch,
register size_t length);

Copies the value of ch into the first length charac-
ters of mem; expands inline if -x is used

7-65

char *strcat(char *string1, const char *string2); Appends string2 to the end of string1 7-78

char *strchr(const char *string, int c); Finds the first occurrence of character c in s;
expands inline if -x is used

7-79

int strcmp(register const char *string1,
register const char *s2);

Compares strings and returns one of the following
values: <0 if string1 is less than string2; 0 if string1
is equal to string2; >0 if string1 is greater than
string2. Expands inline if -x is used.

7-80

int strcoll(const char *string1,
const char *string2);

Compares strings and returns one of the following
values: <0 if string1 is less than string2; 0 if string1
is equal to string2; >0 if string1 is greater than
string2.

7-80

char *strcpy(register char *dest,
register const char *src);

Copies string src into dest; expands inline if -x is
used

7-81

size_t strcspn(register const char *string,
const char *chs);

Returns the length of the initial segment of string
that is made up entirely of characters that are not
in chs

7-81

char *strerror(int errno); Maps the error number in errno to an error mes-
sage string

7-82

size_t strlen(const char *string); Returns the length of a string 7-84

char *strncat(char *dest, const char *src,
register size_t n);

Appends up to n characters from src to dest 7-84

int strncmp(const char *string1,
const char *string2, size_t n);

Compares up to n characters in two strings;
expands inline if -x is used

7-85

char *strncpy(register char *dest,
register const char *src, register size_t n);

Copies up to n characters from src to dest;
expands inline if -x is used

7-86

char *strpbrk(const char *string,
const char *chs);

Locates the first occurrence in string of any char-
acter from chs

7-87

Summary of Run-Time-Support Functions and Macros

 7-36

(i) String functions (string.h/cstring)(Continued)

Function PageDescription

char *strrchr(const char *string, int c); Finds the last occurrence of character c in string;
expands inline if -x is used

7-88

size_t strspn(register const char *string,
const char *chs);

Returns the length of the initial segment of string,
which is entirely made up of characters from chs

7-88

char *strstr(register const char *string1,
const char *string2);

Finds the first occurrence of string2 in string1 7-89

char *strtok(char *str1, const char *str2); Breaks str1 into a series of tokens, each delimited
by a character from str2

7-90

size_t strxfrm(register char *to,
register const char *from,
register size_t n);

Transforms n characters from from, to to 7-91

(j) Time-support functions (time.h/cstring)

Function Description Page

char *asctime(const struct tm *timeptr); Converts a time to a string 7-38

clock_t clock(void); Determines the processor time used 7-44

char *ctime(const time_t *timer); Converts calendar time to local time 7-46

double difftime(time_t time1, time_t time0); Returns the difference between two calendar
times

7-46

struct tm *gmtime(const time_t *timer); Converts local time to Greenwich Mean Time 7-58

struct tm *localtime(const time_t *timer); Converts time_t value to broken down time 7-61

time_t mktime(register struct tm *tptr); Converts broken down time to a time_t value 7-65

size_t strftime(char *out, size_t maxsize,
const char *format, const struct tm *time);

Formats a time into a character string 7-82

time_t time(time_t *timer); Returns the current calendar time 7-92

 Description of Runtime-Support Functions and Macros abort, abs/labs

7-37 Runtime-Support Functions

7.5 Description of Run-Time-Support Functions and Macros

This section describes the run-time-support functions and macros. For each
function or macro, the syntax is given in both C and C++. Because the func-
tions and macros originated from C header files, however, program examples
are shown in C code only. The same program in C++ code would differ in that
the types and functions declared in the header file are introduced into the std
namespace.

This section describes the runtime-support functions and macros.

Abortabort

Syntax #include <stdlib.h>

void abort(void);

Syntax for C++ #include <cstdlib>

void std::abort(void);

Defined in exit.c in rts.src

Description The abort function terminates the program.

Example void abort(void)
{
 exit(EXIT_FAILURE);
}

See the exit function on page 7-48.

Absolute Valueabs/labs

Syntax #include <stdlib.h>

int abs(int j);
long labs(long i);

Syntax for C++ #include <cstdlib>

int std::abs(int j);
long std::labs(long i);

Defined in abs.c in rts.src

add_device, asctime Description of Runtime-Support Functions and Macros

7-38

Description The C/C++ compiler supports two functions that return the absolute value of
an integer:

� The abs function returns the absolute value of an integer j.
� The labs function returns the absolute value of a long integer i.

Arc Cosineacos

Syntax #include <math.h>

double acos(double x);

Syntax for C++ #include <cmath>

double std::acos(double x);

Defined in acos.c in rts.src

Description The acos function returns the arc cosine of a floating-point argument x, which
must be in the range [-1,1]. The return value is an angle in the range [0,π]
radians.

Example double realval, radians;

realval = 1.0;
radians = acos(realval);
return (radians); /* acos return π/2 */

Internal Time to Stringasctime

Syntax #include <time.h>

char *asctime(const struct tm *timeptr);

Syntax for C++ #include <ctime>

char *std::asctime(const struct tm *timeptr);

Defined in asctime.c in rts.src

Description The asctime function converts a broken-down time into a string with the
following form:

Mon Jan 11 11:18:36 1988 \n\0

The function returns a pointer to the converted string.

For more information about the functions and types that the time.h header
declares and defines, see subsection 7.3.14, Time Functions (time.h), on
page 7-23.

 Description of Runtime-Support Functions and Macros asin, assert

7-39 Runtime-Support Functions

Arc Sineasin

Syntax #include <math.h>

double asin(double x);

Syntax for C++ #include <cmath>

double std::asin(double x);

Defined in asin.c in rts.src

Description The asin function returns the arc sine of a floating-point argument x, which
must be in the range [-1, 1]. The return value is an angle in the range
[- π/2, π/2] radians.

Example double realval, radians;

realval = 1.0;

radians = asin(realval); /* asin returns π/2 */

Insert Diagnostic Information Macroassert

Syntax #include <assert.h>

void assert(int expr);

Syntax for C++ #include <cassert>

void std::assert(int expr);

Defined in assert.h/cassert as macro

Description The assert macro tests an expression; depending upon the value of the
expression, assert either issues a message and aborts execution or continues
execution. This macro is useful for debugging.

� If expr is false, the assert macro writes information about the call that failed
to the standard output and then aborts execution.

� If expr is true, the assert macro does nothing.

The header file that declares the assert macro refers to another macro,
NDEBUG. If you have defined NDEBUG as a macro name when the assert.h
header is included in the source file, the assert macro is defined as:

#define assert(ignore)

Example In this example, an integer i is divided by another integer j. Since dividing by
0 is an illegal operation, the example uses the assert macro to test j before the
division. If j = = 0, assert issues a message and aborts the program.

int i, j;
assert(j);
q = i/j;

atan, atan2 Description of Runtime-Support Functions and Macros

7-40

Polar Arc Tangentatan

Syntax #include <math.h>

double atan(double x);

Syntax for C++ #include <cmath>

double std::atan(double x);

Defined in atan.c in rts.src

Description The atan function returns the arc tangent of a floating-point argument x. The
return value is an angle in the range [-π/2, π/2] radians.

Example double realval, radians;

realval = 0.0;
radians = atan(realval); /* return value = 0 */

Cartesian Arc Tangentatan2

Syntax #include <math.h>

double atan2(double y, double x);

Syntax for C++ #include <cmath>

double std::atan2(double y, double x);

Defined in atan2.c in rts.src

Description The atan2 function returns the inverse tangent of y/x. The function uses the
signs of the arguments to determine the quadrant of the return value. Both
arguments cannot be 0. The return value is an angle in the range [-π, π]
radians.

Example double rvalu, rvalv;

double radians;

rvalu = 0.0;
rvalv = 1.0;
radians = atan2(rvalu, rvalv); /* return value = 0 */

 Description of Runtime-Support Functions and Macros atexit, atof/atoi/atol

7-41 Runtime-Support Functions

Register Function Called by Exit ()atexit

Syntax #include <stdlib.h>

int atexit(void (*fun)(void));

Syntax for C++ #include <cstdlib>

int std::atexit(void (*fun)(void));

Defined in exit.c in rts.src

Description The atexit function registers the function that is pointed to by fun, to be called
without arguments at normal program termination. Up to 32 functions can be
registered.

When the program exits through a call to the exit function, the functions that
were registered are called, without arguments, in reverse order of their
registration.

String to Numberatof/atoi/atol

Syntax #include <stdlib.h>

double atof(const char *st);
int atoi(const char *st);
long atol(const char *st);

Syntax for C++ #include <cstdlib>

double std::atof(const char *st);
int std::atoi(const char *st);
long std::atol(const char *st);

Defined in atof.c, atoi.c, and atol.c in rts.src

Description Three functions convert strings to numeric representations:

� The atof function converts a string into a floating-point value. Argument st
points to the string. The string must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

� The atoi function converts a string into an integer. Argument st points to
the string; the string must have the following format:

[space] [sign] digits

� The atol function converts a string into a long integer. Argument st points
to the string. The string must have the following format:

[space] [sign] digits

bsearch, calloc Description of Runtime-Support Functions and Macros

7-42

The space is indicated by a space (character), a horizontal or vertical tab, a
carriage return, a form feed, or a new line. Following the space is an optional
sign, and the digits that represent the integer portion of the number. The frac-
tional part of the number follows, then the exponent, including an optional sign.

The first character that cannot be part of the number terminates the string.

The functions do not handle any overflow resulting from the conversion.

Array Searchbsearch

Syntax #include <stdlib.h>

void *bsearch(register const void *key, register const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Syntax for C++ #include <cstdlib>

void *std::bsearch(register const void *key, register const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Defined in bsearch.c in rts.src

Description The bsearch function searches through an array of nmemb objects for a mem-
ber that matches the object that key points to. Argument base points to the first
member in the array; size specifies the size (in bytes) of each member.

The contents of the array must be in ascending order. If a match is found, the
function returns a pointer to the matching member of the array; if no match is
found, the function returns a null pointer (0).

Argument compar points to a function that compares key to the array
elements. The comparison function should be declared as:

int cmp(const void *ptr1, const void *ptr2)

The cmp function compares the objects that prt1 and ptr2 point to and returns
one of the following values:

< 0 if *ptr1 is less than *ptr2

0 if *ptr1 is equal to *ptr2

> 0 if *ptr1 is greater than *ptr2

 Description of Runtime-Support Functions and Macros calloc, ceil

7-43 Runtime-Support Functions

Allocate and Clear Memorycalloc

Syntax #include <stdlib.h>

void *calloc(size_t num, size_t size);

Syntax for C++ #include <cstdlib>

void *std::calloc(size_t num, size_t size);

Defined in memory.c in rts.src

Description The calloc function allocates size bytes (size is an unsigned integer or size_t)
for each of num objects and returns a pointer to the space. The function initial-
izes the allocated memory to all 0s. If it cannot allocate the memory (that is,
if it runs out of memory), it returns a null pointer (0).

The memory that calloc uses is in a special memory pool or heap. The constant
_ _SYSMEM_SIZE defines the size of the heap as 1K words. You can change
this amount at link time by invoking the linker with the -heap option and
specifying the desired size of the heap (in words) directly after the option. See
subsection 6.1.4, Dynamic Memory Allocation, on page 6-6.

Example This example uses the calloc routine to allocate and clear 20 bytes.

prt = calloc (10,2) ; /*Allocate and clear 20 bytes */

Ceilingceil

Syntax #include <math.h>

double ceil(double x);

Syntax for C++ #include <cmath>

double std::ceil(double x);

Defined in ceil.c in rts.src

Description The ceil function returns a floating-point number that represents the smallest
integer greater than or equal to x.

Example extern double ceil();

double answer;

answer = ceil(3.1415); /* answer = 4.0 */

answer = ceil(-3.5); /* answer = -3.0 */

ceil, clearerr, clock Description of Runtime-Support Functions and Macros

7-44

Clear EOF and Error Indicatorsclearerr

Syntax #include <stdio.h>

void clearerr(FILE *_fp);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in clearerr in rts.src

Description The clearerr function clears the EOF and error indicators for the stream that
_fp points to.

Processor Timeclock

Syntax #include <time.h>

clock_t clock(void);

Syntax for C++ #include <ctime>

void std::clearerr(FILE *_fp);

Defined in clock.c in rts.src

Description The clock function determines the amount of processor time used. It returns
an approximation of the processor time used by a program since the program
began running. The time in seconds is the return value divided by the value
of the macro CLOCKS_PER_SEC.

If the processor time is not available or cannot be represented, the clock func-
tion returns the value of [(clock_t) -1].

Note: Writing Your Own Clock Function

The clock function is host-system specific, so you must write your own clock
function. You must also define the CLOCKS_PER_SEC macro according to
the units of your clock so that the value returned by clock() — number of clock
ticks — can be divided by CLOCKS_PER_SEC to produce a value in
seconds.

 Description of Runtime-Support Functions and Macros cos, cosh, ctime

7-45 Runtime-Support Functions

Cosinecos

Syntax #include <math.h>

double cos(double x);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in cos.c in rts.src

Description The cos function returns the cosine of a floating-point number x. The angle x
is expressed in radians. An argument with a large magnitude can produce a
result with little or no significance.

Example double radians, cval; /* cos returns cval */

radians = 3.1415927;

cval = cos(radians); /* return value = -1.0 */

Hyperbolic Cosinecosh

Syntax #include <math.h>

double cosh(double x);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in cosh.c in rts.src

Description The cosh function returns the hyperbolic cosine of a floating-point number x.
A range error occurs if the magnitude of the argument is too large.

Example double x, y;

x = 0.0;
y = cosh(x); /* return value = 1.0 */

cos, cosh, ctime Description of Runtime-Support Functions and Macros

7-46

Calendar Timectime

Syntax #include <time.h>

char *ctime(const time_t *timer);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in ctime.c in rts.src

Description The ctime function converts a calendar time (pointed to by timer) to local time
in the form of a string. This is equivalent to:

asctime(localtime(timer))

The function returns the pointer returned by the asctime function.

For more information about the functions and types that the time.h header
declares and defines, see subsection 7.3.14, Time Functions (time.h), on
page 7-23.

Time Differencedifftime

Syntax #include <time.h>

double difftime(time_t time1, time_t time0);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in difftime.c in rts.src

Description The difftime function calculates the difference between two calendar times,
time1 minus time0. The return value expresses seconds.

For more information about the functions and types that the time.h header de-
clares and defines, see subsection 7.3.14, Time Functions (time.h), on
page 7-23.

 Description of Runtime-Support Functions and Macros difftime, div/ldiv

7-47 Runtime-Support Functions

Divisiondiv/ldiv

Syntax #include <stdlib.h>

div_t div(int numer, int denom);
ldiv_t ldiv(long numer, long denom);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in div.c in rts.src

Description Two functions support integer division by returning numer (numerator) divided
by denom (denominator). You can use these functions to get both the quotient
and the remainder in a single operation.

� The div function performs integer division. The input arguments are inte-
gers; the function returns the quotient and the remainder in a structure of
type div_t. The structure is defined as follows:

typedef struct
{

int quot; /* quotient */
int rem; /* remainder */

} div_t;

� The ldiv function performs long integer division. The input arguments are
long integers; the function returns the quotient and the remainder in a
structure of type ldiv_t. The structure is defined as follows:

typedef struct
{

long int quot; /* quotient */
long int rem; /* remainder */

} ldiv_t;

The sign of the quotient is negative if either but not both of the operands is
negative. The sign of the remainder is the same as the sign of the dividend.

exit, exp, fabs Description of Runtime-Support Functions and Macros

7-48

Normal Terminationexit

Syntax #include <stdlib.h>

void exit(int status);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in exit.c in rts.src

Description The exit function terminates a program normally. All functions registered by the
atexit function are called in reverse order of their registration. The exit function
can accept EXIT_FAILURE as a value. (See the abort function on page 7-37).

You can modify the exit function to perform application-specific shut-down
tasks. The unmodified function simply runs in an infinite loop until the system
is reset.

The exit function cannot return to its caller.

Exponentialexp

Syntax #include <math.h>

double exp(double x);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in exp.c in rts.src

Description The exp function returns the exponential function of real number x. The return
value is the number e raised to the power x. A range error occurs if the magni-
tude of x is too large.

Example double x, y;

x = 2.0;
y = exp(x); /* y = 7.38, which is e**2.0 */

 Description of Runtime-Support Functions and Macros fabs, fclose, feof

7-49 Runtime-Support Functions

Absolute Valuefabs

Syntax #include <math.h>

double fabs(double x);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in fabs.c in rts.src

Description The fabs function returns the absolute value of a floating-point number, x.

Example double x, y;

x = -57.5;
y = fabs(x); /* return value = +57.5 */

Close Filefclose

Syntax #include <stdio.h>

int fclose(FILE *_fp);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in fclose.c in rts.src

Description The fclose function flushes the stream that _fp points to and closes the file
associated with that stream.

Test EOF Indicatorfeof

Syntax #include <stdio.h>

int feof(FILE *_fp);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in feof.c in rts.src

Description The feof function tests the EOF indicator for the stream pointed to by _fp.

fclose, feof, ferror, fflush, fgetc Description of Runtime-Support Functions and Macros

7-50

Test Error Indicatorferror

Syntax #include <stdio.h>

int ferror(FILE *_fp);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in ferror.c in rts.src

Description The ferror function tests the error indicator for the stream pointed to by _fp.

Flush I/O Bufferfflush

Syntax #include <stdio.h>

int fflush(register FILE *_fp);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in fflush.c in rts.src

Description The fflush function flushes the I/O buffer for the stream pointed to by _fp.

Read Next Characterfgetc

Syntax #include <stdio.h>

int fgetc(register FILE *_fp);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in fgetc.c in rts.src

Description The fgetc function reads the next character in the stream pointed to by _fp.

 Description of Runtime-Support Functions and Macros fgetpos, fgets, floor

7-51 Runtime-Support Functions

Store Objectfgetpos

Syntax #include <stdio.h>

int fgetpos(FILE *_fp, fpos_t *pos);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in fgetpos.c in rts.src

Description The fgetpos function stores the object pointed to by pos to the current value
of the file position indicator for the stream pointed to by _fp.

Read Next Charactersfgets

Syntax #include <stdio.h>

char *fgets(char *_ptr, register int _size, register FILE *_fp);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in fgets.c in rts.src

Description The fgets function reads the specified number of characters from the stream
pointed to by _fp. The characters are placed in the array named by _ptr. The
number of characters read is _size -1.

Floorfloor

Syntax #include <math.h>

double floor(double x);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in floor.c in rts.src

Description The floor function returns a floating-point number that represents the largest
integer less than or equal to x.

Example double answer;

answer = floor(3.1415); /* answer = 3.0 */
answer = floor(-3.5); /* answer = -4.0 */

fmod, fopen, fprintf, fputc Description of Runtime-Support Functions and Macros

7-52

Floating-Point Remainderfmod

Syntax #include <math.h>

double fmod(double x, double y);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in fmod.c in rts.src

Description The fmod function returns the floating-point remainder of x divided by y. If
y = = 0, the function returns 0.

Example double x, y, r;

x = 11.0;
y = 5.0;
r = fmod(x, y); /* fmod returns 1.0 */

Open Filefopen

Syntax #include <stdio.h>

FILE *fopen(const char *_fname, const char *_mode);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in fopen.c in rts.src

Description The fopen function opens the file that _fname points to. The string pointed to
by _mode describes how to open the file. Under UNIX, specify mode as rb for
a binary read or wb for a binary write.

Write Streamfprintf

Syntax #include <stdio.h>

int fprintf(FILE *_fp, const char *_format, ...);

Syntax for C++ #include <cstdio>

void std::clearerr(FILE *_fp);

Defined in fprintf.c in rts.src

Description The fprintf function writes to the stream pointed to by _fp. The string pointed
to by _format describes how to write the stream.

 Description of Runtime-Support Functions and Macros fputs, fread, free

7-53 Runtime-Support Functions

Write Characterfputc

Syntax #include <stdio.h>

int fputc(int _c, register FILE *_fp);

Syntax for C++ #include <cstdio>

int std::fputc(int _c, register FILE *_fp);

Defined in fputc.c in rts.src

Description The fputc function writes a character to the stream pointed to by _fp.

Write Stringfputs

Syntax #include <stdio.h>

int fputs(const char *_ptr, register FILE *_fp);

Syntax for C++ #include <cstdio>

int std::fputs(const char *_ptr, register FILE *_fp);

Defined in fputs.c in rts.src

Description The fputs function writes the string pointed to by _ptr to the stream pointed to
by _fp.

Read Streamfread

Syntax #include <stdio.h>

size_t fread(void *_ptr, size_t size, size_t count, FILE *_fp);

Syntax for C++ #include <cstdio>

size_t std::fread(void *_ptr, size_t size, size_t count, FILE *_fp);

Defined in fread.c in rts.src

Description The fread function reads from the stream pointed to by _fp. The input is stored
in the array pointed to by _ptr. The number of objects read is _count. The size
of the objects is _size.

free, freopen Description of Runtime-Support Functions and Macros

7-54

Deallocate Memoryfree

Syntax #include <stdlib.h>

void free(void *ptr);

Syntax for C++ #include <cstdlib>

void std::free(void *ptr);

Defined in memory.c in rts.src

Description The free function deallocates memory space (pointed to by ptr) that was pre-
viously allocated by a malloc, calloc, or realloc call. This makes the memory
space available again. If you attempt to free unallocated space, the function
takes no action and returns. For more information, see subsection 6.1.4,
Dynamic Memory Allocation, on page 6-6.

Example This example allocates ten bytes and then frees them.

char *x;
x = malloc(10); /* allocate 10 bytes */
free(x); /* free 10 bytes */

Open Filefreopen

Syntax #include <stdio.h>

FILE *freopen(const char *_fname, const char *_mode, register FILE *_fp);

Syntax for C++ #include <cstdio>

FILE *std::freopen(const char *_fname, const char *_mode, register FILE
*_fp);

Defined in freopen.c in rts.src

Description The freopen function opens the file pointed to by _fname, and associates with
it the stream pointed to by _fp. The string pointed to by _mode describes how
to open the file.

 Description of Runtime-Support Functions and Macros freopen, frexp, fscanf, fseek

7-55 Runtime-Support Functions

Fraction and Exponentfrexp

Syntax #include <math.h>

double frexp(double value, int *exp);

Syntax for C++ #include <cmath>

double std::frexp(double value, int *exp);

Defined in frexp.c in rts.src

Description The frexp function breaks a floating-point number into a normalized fraction
and the integer power of 2. The function returns a value with a magnitude in
the range [1/2, 1] or 0, so that value = = x × 2exp. The frexp function stores the
power in the int pointed to by exp. If value is 0, both parts of the result are 0.

Example double fraction;

int exp;

fraction = frexp(3.0, &exp);
/* after execution, fraction is .75 and exp is 2 */

Read Streamfscanf

Syntax #include <stdio.h>

int fscanf(FILE *_fp, const char *_fmt, ...);

Syntax for C++ #include <cstdio>

int std::fscanf(FILE *_fp, const char *_fmt, ...);

Defined in fscanf.c in rts.src

Description The fscanf function reads from the stream pointed to by _fp. The string pointed
to by _fmt describes how to read the stream.

Set File Position Indicatorfseek

Syntax #include <stdio.h>

int fseek(register FILE *_fp, long _offset, int _ptrname);

Syntax for C++ #include <cstdio>

int std::fseek(register FILE *_fp, long _offset, int _ptrname);

Defined in fseek.c in rts.src

Description The fseek function sets the file position indicator for the stream pointed to by
_fp. The position is specified by _ptrname. For a binary file, use _offset to posi-
tion the indicator from _ptrname. For a text file, offset must be 0.

fsetpos, ftell, fwrite, getc Description of Runtime-Support Functions and Macros

7-56

Set File Position Indicatorfsetpos

Syntax #include <stdio.h>

int fsetpos(FILE *_fp, const fpos_t *_pos);

Syntax for C++ #include <cstdio>

int std::fsetpos(FILE *_fp, const fpos_t *_pos);

Defined in fsetpos.c in rts.src

Description The fsetpos function sets the file position indicator for the stream pointed to
by _fp to _pos. The pointer _pos must be a value from fgetpos() on the same
stream.

Get Current File Position Indicatorftell

Syntax #include <stdio.h>

long ftell(FILE *_fp);

Syntax for C++ #include <cstdio>

long ftell(FILE *_fp);

Defined in ftell.c in rts.src

Description The ftell function gets the current value of the file position indicator for the
stream pointed to by _fp.

Write Block of Datafwrite

Syntax #include <stdio.h>

size_t fwrite(const void *_ptr, size_t _size, size_t _count, register FILE *_fp);

Syntax for C++ #include <cstdio>

size_t std::fwrite(const void *_ptr, size_t _size, size_t _count, register FILE
*_fp);

Defined in fwrite.c in rts.src

Description The fwrite function writes a block of data from the memory pointed to by _ptr
to the stream that _fp points to.

 Description of Runtime-Support Functions and Macros getchar, getenv, gets, gmtime

7-57 Runtime-Support Functions

Read Next Charactergetc

Syntax #include <stdio.h>

int getc(FILE *_fp);

Syntax for C++ #include <cstdio>

int std::getc(FILE *_fp);

Defined in fgetc.c in rts.src

Description The getc function reads the next character in the file pointed to by _fp.

Read Next Character From Standard Inputgetchar

Syntax #include <stdio.h>

int getchar(void);

Syntax for C++ #include <cstdio>

int std::getchar(void);

Defined in fgetc.c in rts.src

Description The getchar function reads the next character from the standard input device.

Get Environment Informationgetenv

Syntax #include <stdlib.h>

char *getenv(const char *_string);

Syntax for C++ #include <cstdlib>

char *std::getenv(const char *_string);

Defined in trgdrv.c in rts.src

Description The getenv function returns the environment information for the variable
associated with _string.

gets, gmtime Description of Runtime-Support Functions and Macros

7-58

Read Next From Standard Inputgets

Syntax #include <stdio.h>

char *gets(char *_ptr);

Syntax for C++ #include <cstdio>

char *std::gets(char *_ptr);

Defined in fgets.c in rts.src

Description The gets function reads an input line from the standard input device. The char-
acters are placed in the array named by _ptr.

Greenwich Mean Timegmtime

Syntax #include <time.h>

struct tm *gmtime(const time_t *timer);

Syntax for C++ #include <ctime>

struct tm *std::gmtime(const time_t *timer);

Defined in gmtime.c in rts.src

Description The gmtime function converts a calendar time (pointed to by timer) into a
broken-down time, which is expressed as Greenwich Mean Time.

For more information about the functions and types that the time.h header
declares and defines, see subsection 7.3.14, Time Functions (time.h), on
page 7-23.

 Description of Runtime-Support Functions and Macros isxxx

7-59 Runtime-Support Functions

Character Typingisxxx

Syntax #include <ctype.h>

int isalnum(int c); int islower(int c);
int isalpha(int c); int isprint(int c);
int isascii(int c); int ispunct(int c);
int iscntrl(int c); int isspace(int c);
int isdigit(int c); int isupper(int c);
int isgraph(int c); int isxdigit(int c);

Syntax for C++ #include <cctype>

int std::isalnum(int c); int std::islower(int c);
int std::isalpha(int c); int std::isprint(int c);
int std::isascii(int c); int std::ispunct(int c);
int std::iscntrl(int c); int std::isspace(int c);
int std::isdigit(int c); int std::isupper(int c);
int std::isgraph(int c); int std::isxdigit(int c);

Defined in isxxx.c and ctype.c in rts.src
Also defined in ctype.h/cctype as macros

Description These functions test a single argument c to see if it is a particular type of char-
acter—alphabetic, alphanumeric, numeric, ASCII, etc. If the test is true, the
function returns a nonzero value; if the test is false, the function returns 0. The
character typing functions include:

isalnum Identifies alphanumeric ASCII characters (tests for any
character for which isalpha or isdigit is true)

isalpha Identifies alphabetic ASCII characters (tests for any character
for which islower or isupper is true)

isascii Identifies ASCII characters (any character from 0-127)

iscntrl Identifies control characters (ASCII characters 0-31 and 127)

isdigit Identifies numeric characters between 0 and 9 (inclusive)

isgraph Identifies any nonspace character

islower Identifies lowercase alphabetic ASCII characters

isprint Identifies printable ASCII characters, including spaces (ASCII
characters 32-126)

ispunct Identifies ASCII punctuation characters

isspace Identifies ASCII tab (horizontal or vertical), space bar, carriage
return, form feed, and new line characters

labs, ldexp,ldiv Description of Runtime-Support Functions and Macros

7-60

isupper Identifies uppercase ASCII alphabetic characters

isxdigit Identifies hexadecimal digits (0-9, a-f, A-F)

The C compiler also supports a set of macros that perform these same func-
tions. The macros have the same names as the functions but are prefixed with
an underscore; for example, _isascii is the macro equivalent of the isascii
function. In general, the macros execute more efficiently than the functions.

See abs/labs on page 7-37.labs

Multiply by a Power of Twoldexp

Syntax #include <math.h>

double ldexp(double x, int exp);

Syntax for C++ #include <cmath>

double std::ldexp(double x, int exp);

Defined in ldexp.c in rts.src

Description The ldexp function multiplies a floating-point number by the power of 2 and
returns x × 2exp. The exp can be a negative or a positive value. A range error
occurs if the result is too large.

Example double result;

result = ldexp(1.5, 5); /* result is 48.0 */
result = ldexp(6.0, -3); /* result is 0.75 */

See div/ldiv on page 7-47.ldiv

 Description of Runtime-Support Functions and Macros labs, ldexp, ldiv, localtime

7-61 Runtime-Support Functions

Local Timelocaltime

Syntax #include <time.h>

struct tm *localtime(const time_t *timer);

Syntax for C++ #include <ctime>

struct tm *std::localtime(const time_t *timer);

Defined in localtime.c in rts.src

Description The localtime function converts a calendar time (pointed to by timer) into a
broken-down time, which is expressed as local time. The function returns a
pointer to the converted time.

For more information about the functions and types that the time.h header
declares and defines, see subsection 7.3.14, Time Functions (Time.h) on
page 7-23.

Natural Logarithmlog

Syntax #include <math.h>

double log(double x);

Syntax for C++ #include <cmath>

double std::log(double x);

Defined in log.c in rts.src

Description The log function returns the natural logarithm of a real number x. A domain
error occurs if x is negative; a range error occurs if x is 0.

Description float x, y;

x = 2.718282;
y = log(x); /* Return value = 1.0 */

log, log10, longjmp, ltoa Description of Runtime-Support Functions and Macros

7-62

Common Logarithmlog10

Syntax #include <math.h>

double log10(double x);

Syntax for C++ #include <cmath>

double std::log10(double x);

Defined in log10.c in rts.src

Description The log10 function returns the base-10 logarithm of a real number x. A domain
error occurs if x is negative; a range error occurs if x is 0.

Example float x, y;

x = 10.0;
y = log(x); /* Return value = 1.0 */

See setjmp/longjmp on page 7-74.longjmp

Long Integer to ASCIIltoa

Syntax no prototype provided

int ltoa(long val, char *buffer);

Syntax for C++ no prototype provided

int ltoa(long val, char *buffer);

Defined in ltoa.c in rts.src

Description The ltoa function is a nonstandard (non-ISO) function and is provided for com-
patibility. The standard equivalent is sprintf. The function is not prototyped in
rts.src. The ltoa function converts a long integer n to an equivalent ASCII string
and writes it into the buffer. If the input number val is negative, a leading minus
sign is output. The ltoa function returns the number of characters placed in the
buffer.

 Description of Runtime-Support Functions and Macros malloc, memchr

7-63 Runtime-Support Functions

Allocate Memorymalloc

Syntax #include <stdlib.h>

void *malloc(size_t size);

Syntax for C++ #include <cstdlib>

void *std::malloc(size_t size);

Defined in memory.c in rts.src

Description The malloc function allocates space for an object of size 16-bit bytes and re-
turns a pointer to the space. If malloc cannot allocate the packet (that is, if it
runs out of memory), it returns a null pointer (0). This function does not modify
the memory it allocates.

The memory that malloc uses is in a special memory pool or heap. The con-
stant _ _SYSMEM_SIZE defines the size of the heap as 1K words. You can
change this amount at link time by invoking the linker with the -heap option and
specifying the desired size of the heap (in words) directly after the option. For
more information, see subsection 6.1.4, Dynamic Memory Allocation, on
page 6-6.

Find First Occurrence of Bytememchr

Syntax #include <string.h>

void *memchr(const void *cs, int c, size_t n);

Syntax for C++ #include <cstring>

void *std::memchr(const void *cs, int c, size_t n);

Defined in memchr.c in rts.src

Description The memchr function finds the first occurrence of c in the first n characters of
the object that cs points to. If the character is found, memchr returns a pointer
to the located character; otherwise, it returns a null pointer (0).

The memchr function is similar to strchr, except that the object that memchr
searches can contain values of 0 and c can be 0.

memcmp, memcpy Description of Runtime-Support Functions and Macros

7-64

Memory Comparememcmp

Syntax #include <string.h>

int memcmp(const void *cs, const void *ct, size_t n);

Syntax for C++ #include <cstring>

int std::memcmp(const void *cs, const void *ct, size_t n);

Defined in memcmp.c in rts.src

Description The memcmp function compares the first n characters of the object that ct
points to with the object that cs points to. The function returns one of the
following values:

< 0 if *cs is less than *ct
0 if *cs is equal to *ct

> 0 if *cs is greater than *ct

The memcmp function is similar to strncmp, except that the objects that
memcmp compares can contain values of 0.

Memory Block Copy — Nonoverlappingmemcpy

Syntax #include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

Syntax for C++ #include <cstring>

void *memcpy(void *s1, const void *s2, size_t n);

Defined in memcpy.c in rts.src

Description The memcpy function copies n characters from the object that s2 points to into
the object that s1 points to. If you attempt to copy characters of overlapping
objects, the function’s behavior is undefined. The function returns the value
of s1.

The memcpy function is similar to strncpy, except that the objects that memcpy
copies can contain values of 0.

 Description of Runtime-Support Functions and Macros memset, mktime

7-65 Runtime-Support Functions

Memory Block Copy — Overlappingmemmove

Syntax #include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

Syntax for C++ #include <cstring>

void *std::memmove(void *s1, const void *s2, size_t n);

Defined in memmove.c in rts.src

Description The memmove function moves n characters from the object that s2 points to
into the object that s1 points to; the function returns the value of s1. The
memmove function correctly copies characters between overlapping objects.

Duplicate Value in Memorymemset

Syntax #include <string.h>

void *memset(void *mem, register int ch, size_t length);

Syntax for C++ #include <cstring>

void *std::memset(void *mem, register int ch, size_t length);

Defined in memset.c in rts.src

Description The memset function copies the value of ch into the first length characters of
the object that mem points to. The function returns the value of mem.

Convert to Calendar Timemktime

Syntax #include <time.h>

time_t *mktime(struct tm *timeptr);

Syntax for C++ #include <ctime>

time_t *std::mktime(struct tm *timeptr);

Defined in mktime.c in rts.src

Description The mktime function converts a broken-down time, expressed as local time,
into proper calendar time. The timeptr argument points to a structure that holds
the broken-down time.

mktime, minit Description of Runtime-Support Functions and Macros

7-66

The function ignores the original values of tm_wday and tm_yday and does not
restrict the other values in the structure. After successful completion of time
conversions, tm_wday and tm_yday are set appropriately, and the other
components in the structure have values within the restricted ranges. The final
value of tm_mday is not sent until tm_mon and tm_year are determined.

The return value is encoded as a value of type time_t. If the calendar time
cannot be represented, the function returns the value -1.

For more information about the functions and types that the time.h header
declares and defines, see subsection 7.3.14, Time Functions (time.h), on
page 7-23.

Example This example determines the day of the week that July 4, 2001, falls on.

#include <time.h>
static const char *const wday[] = {

”Sunday”, ”Monday”, ”Tuesday”, ”Wednesday”,
”Thursday”, ”Friday”, ”Saturday” };

struct tm time_str;

time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 7;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = 1;

mktime(&time_str);

/* After calling this function, time_str.tm_wday */
/* contains the day of the week for July 4, 2001 */

 Description of Runtime-Support Functions and Macros minit, modf

7-67 Runtime-Support Functions

Reset Dynamic Memory Poolminit

Syntax no prototype provided

void minit(void);

Syntax for C++ no prototype provided

void std::minit(void);

Defined in memory.c in rts.src

Description The minit function resets all the space that was previously allocated by calls
to the malloc, calloc, or realloc functions.

The memory that minit uses is in a special memory pool or heap. The constant
_ _SYSMEM_SIZE defines the size of the heap as 1K words. You can change
this amount at link time by invoking the linker with the -heap option and
specifying the desired size of the heap (in words) directly after the option. For
more information, refer to subsection 6.1.4, Dynamic Memory Allocation, on
page 6-6.

Note: No Previously Allocated Objects are Available After minit

Calling the minit function makes all the memory space in the heap available
again. Any objects that you allocated previously will be lost; do not try to
access them.

Signed Integer and Fractionmodf

Syntax #include <math.h>

double modf(double value, double *iptr);

Syntax for C++ #include <cmath>

double std::modf(double value, double *iptr);

Defined in modf.c in rts.src

Description The modf function breaks a value into a signed integer and a signed fraction.
Each of the two parts has the same sign as the input argument. The function
returns the fractional part of value and stores the integer as a double at the
object pointed to by iptr.

Example double value, ipart, fpart;

value = -3.1415;

fpart = modf(value, &ipart);

/* After execution, ipart contains -3.0, */
/* and fpart contains -0.1415. */

modf, perror, pow Description of Runtime-Support Functions and Macros

7-68

Map Error Numberperror

Syntax #include <stdio.h>

void perror(const char *_s);

Syntax for C++ #include <cstdio>

void std::perror(const char *_s);

Defined in perror.c in rts.src

Description The perror function maps the error number in s to a string and prints the error
message.

Raise to a Powerpow

Syntax #include <math.h>

double pow(double x, double y);

Syntax for C++ #include <cmath>

double std::pow(double x, double y);

Defined in pow.c in rts.src

Description The pow function returns x raised to the power y. A domain error occurs if x = 0
and y≤ 0, or if x is negative and y is not an integer. A range error occurs if the
result is too large to represent.

Example double x, y, z;

x = 2.0;
y = 3.0;
x = pow(x, y); /* return value = 8.0 */

Write to Standard Outputprintf

Syntax #include <stdio.h>

int printf(const char *_format, ...);

Syntax for C++ #include <cstdio>

int std::printf(const char *_format, ...);

Defined in printf.c in rts.src

Description The printf function writes to the standard output device. The string pointed to
by _format describes how to write the stream.

 Description of Runtime-Support Functions and Macros printf, putc, putchar, puts

7-69 Runtime-Support Functions

Write Characterputc

Syntax #include <stdio.h>

int putc(int _x, FILE *_fp);

Syntax for C++ #include <cstdio>

int std::putc(int _x, FILE *_fp);

Defined in putc.c in rts.src

Description The putc function writes a character to the stream pointed to by _fp.

Write Character to Standard Outputputchar

Syntax #include <stdio.h>

int putchar(int _x);

Syntax for C++ #include <cstdio>

int std::putchar(int _x);

Defined in putchar.c in rts.src

Description The putchar function writes a character to the standard output device.

Write to Standard Outputputs

Syntax #include <stdio.h>

int puts(const char *_ptr);

Syntax for C++ #include <cstdio>

int std::puts(const char *_ptr);

Defined in puts.c in rts.src

Description The puts function writes the string pointed to by _ptr to the standard output
device.

qsort, rand/srand Description of Runtime-Support Functions and Macros

7-70

Array Sortqsort

Syntax #include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size, int (*compar) ());

Syntax for C++ #include <cstdlib>

void std::qsort(void *base, size_t nmemb, size_t size, int (*compar) ());

Defined in qsort.c in rts.src

Description The qsort function sorts an array of nmemb members. Argument base points
to the first member of the unsorted array; argument size specifies the size of
each member.

This function sorts the array in ascending order.

Argument compar points to a function that compares key to the array
elements. The comparison function should be declared as:

int cmp(const void *ptr1, const void *ptr2)

The cmp function compares the objects that ptr1 and ptr2 point to and returns
one of the following values:

< 0 if *ptr1 is less than *ptr2

0 if *ptr1 is equal to *ptr2
> 0 if *ptr1 is greater than *ptr2

Random Integerrand/srand

Syntax #include <stdlib.h>

int rand(void);
void srand(unsigned int seed);

Syntax for C++ #include <cstdlib>

int std::rand(void);
void std::srand(unsigned int seed);

Defined in rand.c in rts.src

Description Two functions work together to provide pseudorandom sequence generation:

� The rand function returns pseudorandom integers in the range
0–RAND_MAX.

 Description of Runtime-Support Functions and Macros realloc, remove

7-71 Runtime-Support Functions

� The srand function sets the value of seed so that a subsequent call to the
rand function produces a new sequence of pseudorandom numbers. The
srand function does not return a value.

If you call rand before calling srand, rand generates the same sequence it
would produce if you first called srand with a seed value of 1. If you call srand
with the same seed value, rand generates the same sequence of numbers.

Change Heap Sizerealloc

Syntax #include <stdlib.h>

void *realloc(void *packet, size_t size);

Syntax for C++ #include <cstdlib>

void *std::realloc(void *packet, size_t size);

Defined in memory.c in rts.src

Description The realloc function changes the size of the allocated memory pointed to by
packet to the size specified in words by size. The contents of the memory
space (up to the lesser of the old and new sizes) is not changed.

� If packet is 0, realloc behaves like malloc.

� If packet points to unallocated space, realloc takes no action and re-
turns 0.

� If the space cannot be allocated, the original memory space is not
changed, and realloc returns 0.

� If size = = 0 and packet is not null, realloc frees the space that
packet points to.

If the entire object must be moved to allocate more space, realloc returns a
pointer to the new space. Any memory freed by this operation is deallocated.
If an error occurs, the function returns a null pointer (0).

The memory that calloc uses is in a special memory pool or heap. The constant
_ _SYSMEM_SIZE defines the size of the heap as 1K words. You can change
this amount at link time by invoking the linker with the -heap option and
specifying the desired size of the heap (in words) directly after the option. For
more information, see subsection 6.1.4, Dynamic Memory Allocation, on
page 6-6.

realloc, remove Description of Runtime-Support Functions and Macros

7-72

Remove Fileremove

Syntax #include <stdio.h>

int remove(const char *_file);

Syntax for C++ #include <cstdio>

int std::remove(const char *_file);

Defined in remove.c in rts.src

Description The remove function makes the file pointed to by _file no longer available by
that name.

Rename Filerename

Syntax #include <stdio.h>

int rename(const char *old_name, const char *new_name);

Syntax for C++ #include <cstdio>

int std::rename(const char *old_name, const char *new_name);

Defined in rename.c in rts.src

Description The rename function renames the file pointed to by old_name. The new name
is pointed to by new_name.

Position File Position Indicator to Beginning of Filerewind

Syntax #include <stdio.h>

void rewind(register FILE *_fp);

Syntax for C++ #include <cstdio>

void std::rewind(register FILE *_fp);

Defined in rewind.c in rts.src

Description The rewind function sets the file position indicator for the stream pointed to by
_fp to the beginning of the file.

 Description of Runtime-Support Functions and Macros rename, rewind, scanf, setbuf

7-73 Runtime-Support Functions

Read Stream From Standard Inputscanf

Syntax #include <stdio.h>

int scanf(const char *_fmt, ...);

Syntax for C++ #include <cstdio>

int std::scanf(const char *_fmt, ...);

Defined in fscanf.c in rts.src

Description The scanf function reads from the stream from the standard input device. The
string pointed to by _fmt describes how to read the stream.

Specify Buffer for Streamsetbuf

Syntax #include <stdio.h>

void setbuf(register FILE *_fp, char *_buf);

Syntax for C++ #include <cstdio>

void std::setbuf(register FILE *_fp, char *_buf);

Defined in setbuf.c in rts.src

Description The setbuf function specifies the buffer used by the stream pointed to by _fp.
If _buf is set to null, buffering is turned off. No value is returned.

setjmp/longjmp Description of Runtime-Support Functions and Macros

7-74

Nonlocal Jumpssetjmp/longjmp

Syntax #include <setjmp.h>

int setjmp(jmp_buf env)
void longjmp(jmp_buf env, int _val)

Syntax for C++ #include <csetjmp>

int std::setjmp(jmp_buf env)
void std::longjmp(jmp_buf env, int _val)

Defined in setjmp.asm in rts.src

Description The setjmp.h header defines one type, one macro, and one function for
bypassing the normal function call and return discipline:

� The jmp_buf type is an array type suitable for holding the information
needed to restore a calling environment.

� The setjmp macro saves its calling environment in the jmp_buf argument
for later use by the longjmp function.

If the return is from a direct invocation, the setjmp macro returns the value
0. If the return is from a call to the longjmp function, the setjmp macro
returns a nonzero value.

� The longjmp function restores the environment that was saved in the
jmp_buf argument by the most recent invocation of the setjmp macro. If
the setjmp macro was not invoked, or if it terminated execution irregularly,
the behavior of longjmp is undefined.

After longjmp is completed, the program execution continues as if the cor-
responding invocation of setjmp had just returned the value specified by
_val. The longjmp function does not cause setjmp to return a value of 0,
even if _val is 0. If _val is 0, the setjmp macro returns the value 1.

 Description of Runtime-Support Functions and Macros setvbuf, sin, sinh

7-75 Runtime-Support Functions

Example These functions are typically used to effect an immediate return from a deeply
nested function call:

#include <setjmp.h>

jmp_buf env;

main()
{

int errcode;

if ((errcode = setjmp(env)) == 0)
nest1();

else
switch (errcode)

. . .
}

. . .
nest42()
{

if (input() == ERRCODE42)
/* return to setjmp call in main */

longjmp (env, ERRCODE42);
. . .

}

Define and Associate Buffer With Streamsetvbuf

Syntax #include <stdio.h>

int setvbuf(register FILE *_fp, register char *_buf, register int _type,
register size_t _size);

Syntax for C++ #include <cstdio>

int std::setvbuf(register FILE *_fp, register char *_buf, register int _type,
register size_t _size);

Defined in setvbuf.c in rts.src

Description The setvbuf function defines and associates the buffer used by the stream
pointed to by _fp. If _buf is set to null, a buffer is allocated. If _buf names a buff-
er, that buffer is used for the stream. The _size specifies the size of the buffer.
The _type specifies the type of buffering as follows:

_IOFBF Full buffering occurs

_IOLBF Line buffering occurs

_IONBF No buffering occurs

sin, sinh Description of Runtime-Support Functions and Macros

7-76

Sinesin

Syntax #include <math.h>

double sin(double x);

Syntax for C++ #include <cmath>

double std::sin(double x);

Defined in sin.c in rts.src

Description The sin function returns the sine of a floating-point number x. The angle x is
expressed in radians. An argument with a large magnitude may produce a
result with little or no significance.

Example double radian, sval; /* sval is returned by sin */

radian = 3.1415927;
sval = sin(radian); /* -1 is returned by sin */

Hyperbolic Sinesinh

Syntax #include <math.h>

double sinh(double x);

Syntax for C++ #include <cmath>

double std::sinh(double x);

Defined in sinh.c in rts.src

Description The sinh function returns the hyperbolic sine of a floating-point number x. A
range error occurs if the magnitude of the argument is too large.

Example double x, y;

x = 0.0;
y = sinh(x); /* return value = 0.0 */

 Description of Runtime-Support Functions and Macros sprintf, sqrt, srand, sscanf

7-77 Runtime-Support Functions

Write Stream With Limitsnprintf

Syntax #include <stdio.h>

int snprintf(char _string, size_t n, const char *_format, ...);

Syntax for C++ #include <cstdio>

int std::snprintf(char _string, size_t n, const char *_format, ...);

Defined in snprintf.c in rts.src

Description The snprintf function writes up to n characters to the array pointed to by _string.
The string pointed to by _format describes how to write the stream. Returns
the number of characters that would have been written if no limit had been
placed on the string.

Write Streamsprintf

Syntax #include <stdio.h>

int sprintf(char _string, const char *_format, ...);

Syntax for C++ #include <cstdio>

int std::sprintf(char _string, const char *_format, ...);

Defined in sprintf.c in rts.src

Description The sprintf function writes to the array pointed to by _string. The string pointed
to by _format describes how to write the stream.

Square Rootsqrt

Syntax #include <math.h>

double sqrt(double x);

Syntax for C++ #include <cmath>

double std::sqrt(double x);

Defined in sqrt.c in rts.src

Description The sqrt function returns the nonnegative square root of a real number x. A
domain error occurs if the argument is negative.

Example double x, y;

x = 100.0;
y = sqrt(x); /* return value = 10.0 */

sprintf, sqrt, srand, sscanf Description of Runtime-Support Functions and Macros

7-78

See rand/srand on page 7-70.srand

Read Streamsscanf

Syntax #include <stdio.h>

int sscanf(const char *str, const char *format, ...);

Syntax for C++ #include <cstdio>

int std::sscanf(const char *str, const char *format, ...);

Defined in sscanf.c in rts.src

Description The sscanf function reads from the string pointed to by str. The string pointed
to by _format describes how to read the stream.

Concatenate Stringsstrcat

Syntax #include <string.h>

char *strcat(char *string1, char *string2);

Syntax for C++ #include <cstring>

char *std::strcat(char *string1, char *string2);

Defined in strcat.c in rts.src

Description The strcat function appends a copy of string2 (including a terminating null
character) to the end of string1. The initial character of string2 overwrites the
null character that originally terminated string1. The function returns the value
of string1.

 Description of Runtime-Support Functions and Macros strcat, strchr

7-79 Runtime-Support Functions

Example In the following example, the character strings pointed to by *a, *b, and *c were
assigned to point to the strings shown in the comments. In the comments, the
notation “\0” represents the null character:

char *a, *b, *c;
.
.
.

/* a --> ”The quick black fox\0” */
/* b --> ” jumps over \0” */
/* c --> ”the lazy dog.\0” */

strcat (a,b);

/* a --> ”The quick black fox jumps over \0” */
/* b --> ” jumps over \0” */
/* c --> ”the lazy dog.\0” */

strcat (a,c);

/* a--> ”The quick black fox jumps over the lazy dog.\0”*/
/* b --> ” jumps over \0” */
/* c --> ”the lazy dog.\0” */

Find First Occurrence of a Characterstrchr

Syntax #include <string.h>

char *strchr(const char *string, int c);

Syntax for C++ #include <cstring>

char *std::strchr(const char *string, int c);

Defined in strchr.c in rts.src

Description The strchr function finds the first occurrence of c in string. If strchr finds the
character, it returns a pointer to the character; otherwise, it returns a null
pointer (0).

Example char *a = ”When zz comes home, the search is on for zs.”;

char *b;

char the_z = ’z’;

b = strchr(a,the_z);

After this example, *b points to the first z in zz.

strcmp/strcoll, strcpy Description of Runtime-Support Functions and Macros

7-80

String Comparestrcmp/strcoll

Syntax #include <string.h>

int strcmp(const char *string1, const char *string2);
int strcoll(const char *string1, const char *string2);

Syntax for C++ #include <cstring>

int std::strcmp(const char *string1, const char *string2);
int std::strcoll(const char *string1, const char *string2);

Defined in strcmp.c in rts.src

Description The strcmp and strcoll functions compare string2 with string1. The functions
are equivalent; both functions are supported to provide compatibility with
ISO C.

The functions return one of the following values:

< 0 if *string1 is less than *string2
0 if *string1 is equal to *string2

> 0 if *string1 is greater than *string2

Example char *stra = ”why ask why”;

char *strb = ”just do it”;

char *strc = ”why ask why”;

if (strcmp(stra, strb) > 0)
{

/* statements here will be executed */
}

if (strcoll(stra, strc) == 0)
{

/* statements here will be executed also */
}

 Description of Runtime-Support Functions and Macros strcpy, strcspn

7-81 Runtime-Support Functions

String Copystrcpy

Syntax #include <string.h>

char *strcpy(char *dest, const char *src);

Syntax for C++ #include <cstring>

char *std::strcpy(char *dest, const char *src);

Defined in strcpy.c in rts.src

Description The strcpy function copies s2 (including a terminating null character) into s1.
If you attempt to copy strings that overlap, the function’s behavior is undefined.
The function returns a pointer to s1.

Example In the following example, the strings pointed to by *a and *b are two separate
and distinct memory locations. In the comments, the notation \0 represents the
null character:

char *a = ”The quick black fox”;
char *b = ” jumps over ”;

/* a --> ”The quick black fox\0” */
/* b --> ” jumps over \0” */

strcpy(a,b);

/* a --> ” jumps over \0” */
/* b --> ” jumps over \0” */

Find Number of Unmatching Charactersstrcspn

Syntax #include <string.h>

size_t strcspn(const char *string, const char *chs);

Syntax for C++ #include <cstring>

size_t std::strcspn(const char *string, const char *chs);

Defined in strcspn.c in rts.src

Description The strcspn function returns the length of the initial segment of string, which
is made up entirely of characters that are not in chs. If the first character in
string is in chs, the function returns 0.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strcspn(stra,strb); /* length = 0 */
length = strcspn(stra,strc); /* length = 9 */

strftime Description of Runtime-Support Functions and Macros

7-82

String Errorstrerror

Syntax #include <string.h>

char *strerror(int errno);

Syntax for C++ #include <cstring>

char *std::strerror(int errno);

Defined in strerror.c in rts.src

Description The strerror function returns the string “string error”. This function is supplied
to provide ISO compatibility.

Format Timestrftime

Syntax #include <time.h>

size_t *strftime(char *s, size_t maxsize, const char *format,
const struct tm *timeptr);

Syntax for C++ #include <ctime>

size_t *std::strftime(char *s, size_t maxsize, const char *format,
const struct tm *timeptr);

Defined in strftime.c in rts.src

 Description of Runtime-Support Functions and Macros strftime

7-83 Runtime-Support Functions

Description The strftime function formats a time (pointed to by timeptr) according to a for-
mat string and returns the formatted time in the string s. Up to maxsize charac-
ters can be written to s. The format parameter is a string of characters that tells
the strftime function how to format the time; the following list shows the valid
characters and describes what each character expands to.

Character Expands to

%a The abbreviated weekday name (Mon, Tue, . . .)

%A The full weekday name

%b The abbreviated month name (Jan, Feb, . . .)

%B The locale’s full month name

%c The date and time representation

%d The day of the month as a decimal number (0-31)

%H The hour (24-hour clock) as a decimal number (00-23)

%I The hour (12-hour clock) as a decimal number (01-12)

%j The day of the year as a decimal number (001-366)

%m The month as a decimal number (01-12)

%M The minute as a decimal number (00-59)

%p The locale’s equivalency of either a.m. or p.m.

%S The seconds as a decimal number (00-50)

%U The week number of the year (Sunday is the first day of the week) as
a decimal number (00-52)

%x The date representation

%X The time representation

%y The year without century as a decimal number (00-99)

%Y The year with century as a decimal number

%Z The time zone name, or by no characters if no time zone exists

For more information about the functions and types that the time.h header
declares and defines, see subsection 7.3.14, Time Functions (time.h), on
page 7-23.

strlen, strncat Description of Runtime-Support Functions and Macros

7-84

Find String Lengthstrlen

Syntax #include <string.h>

size_t strlen(const char *string);

Syntax for C++ #include <cstring>

size_t std::strlen(const char *string);

Defined in strlen.c in rts.src

Description The strlen function returns the length of string. In C, a character string is termi-
nated by the first byte with a value of 0 (a null character). The returned result
does not include the terminating null character.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strlen(stra); /* length = 13 */
length = strlen(strb); /* length = 26 */
length = strlen(strc); /* length = 7 */

Concatenate Stringsstrncat

Syntax #include <string.h>

char *strncat(char *dest, const char *src, size_t n);

Syntax for C++ #include <cstring>

char *std::strncat(char *dest, const char *src, size_t n);
Defined in strncat.c in rts.src

Description The strncat function appends up to n characters of s2 (including a terminating
null character) to dest. The initial character of src overwrites the null character
that originally terminated dest; strncat appends a null character to the result.
The function returns the value of dest.

 Description of Runtime-Support Functions and Macros strncat, strncmp

7-85 Runtime-Support Functions

Example In the following example, the character strings pointed to by *a, *b, and *c were
assigned the values shown in the comments. In the comments, the notation
\0 represents the null character:

char *a, *b, *c;
size_t size = 13;
.
.
.

/* a--> ”I do not like them,\0” */;
/* b--> ” Sam I am, \0” */;
/* c--> ”I do not like green eggs and ham\0” */;

strncat (a,b,size);

/* a--> ”I do not like them, Sam I am, \0” */;
/* b--> ” Sam I am, \0” */;
/* c--> ”I do not like green eggs and ham\0” */;

strncat (a,c,size);

/* a--> ”I do not like them, Sam I am, I do not like\0” */;
/* b--> ” Sam I am, \0” */;
/* c--> ”I do not like green eggs and ham\0” */;

Compare Stringsstrncmp

Syntax #include <string.h>

int strncmp(const char *string1, const char *string2, size_t n);

Syntax for C++ #include <cstring>

int std::strncmp(const char *string1, const char *string2, size_t n);

Defined in strncmp.c in rts.src

Description The strncmp function compares up to n characters of s2 with s1. The function
returns one of the following values:

< 0 if *string1 is less than *string2
0 if *string1 is equal to *string2

> 0 if *string1 is greater than *string2

strncpy Description of Runtime-Support Functions and Macros

7-86

Example char *stra = ”why ask why”;

char *strb = ”just do it”;

char *strc = ”why not?”;

size_t size = 4;

if (strcmp(stra, strb, size) > 0)
{

/* statements here will get executed */
}

if (strcomp(stra, strc, size) == 0)
{

/* statements here will get executed also */
}

String Copystrncpy

Syntax #include <string.h>

char *strncpy(char *dest, const char *src, size_t n);

Syntax for C++ #include <cstring>

char *std::strncpy(char *dest, const char *src, size_t n);

Defined in strncpy.c in rts.src

Description The strncpy function copies up to n characters from src into dest. If src is n
characters long or longer, the null character that terminates src is not copied.
If you attempt to copy characters from overlapping strings, the function’s
behavior is undefined. If src is shorter than n characters, strncpy appends null
characters to dest so that dest contains n characters. The function returns the
value of dest.

Example Note that strb contains a leading space to make it five characters long. Also
note that the first five characters of strc are an I, a space, the word am, and
another space, so that after the second execution of strncpy, stra begins with
the phrase I am followed by two spaces. In the comments, the notation \0 rep-
resents the null character.

char *stra = ”she’s the one mother warned you of”;
char *strb = ” he’s”;
char *strc = ”I am the one father warned you of”;
char *strd = ”oops”;
int length = 5;

strncpy (stra,strb,length);

/* stra--> ” he’s the one mother warned you of\0” */;
/* strb--> ” he’s\0” */;
/* strc--> ”I am the one father warned you of\0” */;
/* strd--> ”oops\0” */;

 Description of Runtime-Support Functions and Macros strpbrk, strrchr

7-87 Runtime-Support Functions

strncpy (stra,strc,length);

/* stra--> ”I am the one mother warned you of\0” */;
/* strb--> ” he’s\0” */;
/* strc--> ”I am the one father warned you of\0” */;
/* strd--> ”oops\0” */;

strncpy (stra,strd,length);

/* stra--> ”oops\0” */;
/* strb--> ” he’s\0” */;
/* strc--> ”I am the one father warned you of\0” */;
/* strd--> ”oops\0” */;

Find Any Matching Characterstrpbrk

Syntax #include <string.h>

char *strpbrk(const char *string, const char *chs);

Syntax for C++ #include <cstring>

char *std::strpbrk(const char *string, const char *chs);

Defined in strpbrk.c in rts.src

Description The strpbrk function locates the first occurrence in string of any character in
chs. If strpbrk finds a matching character, it returns a pointer to that character;
otherwise, it returns a null pointer (0).

Example char *stra = ”it wasn’t me”;

char *strb = ”wave”;

char *a;

a = strpbrk (stra,strb);

After this example, *a points to the w in wasn’t.

strspn, strstr Description of Runtime-Support Functions and Macros

7-88

Find Last Occurrence of a Characterstrrchr

Syntax #include <string.h>

char *strrchr(const char *string, int c);

Syntax for C++ #include <cstring>

char *std::strrchr(const char *string, int c);

Defined in strrchr.c in rts.src

Description The strrchr function finds the last occurrence of c in string. If strrchr finds the
character, it returns a pointer to the character; otherwise, it returns a null
pointer (0).

Example char *a = ”When zz comes home, the search is on for zs”;

char *b;

char the_z = ’z’;

After this example, *b points to the z in zs near the end of the string.

Find Number of Matching Charactersstrspn

Syntax #include <string.h>

size_t *strspn(const char *string, const char *chs);

Syntax for C++ #include <cstring>

size_t *std::strspn(const char *string, const char *chs);

Defined in strspn.c in rts.src

Description The strspn function returns the length of the initial segment of string, which is
entirely made up of characters in chs. If the first character of string is not in chs,
the strspn function returns 0.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strspn(stra,strb); /* length = 3 */
length = strspn(stra,strc); /* length = 0 */

 Description of Runtime-Support Functions and Macros strtod/strtol/strtoul

7-89 Runtime-Support Functions

Find Matching Stringstrstr

Syntax #include <string.h>

char *strstr(const char *string1, const char *string2);

Syntax for C++ #include <cstring>

char *std::strstr(const char *string1, const char *string2);

Defined in strstr.c in rts.src

Description The strstr function finds the first occurrence of string2 in string1 (excluding the
terminating null character). If strstr finds the matching string, it returns a pointer
to the located string; if it doesn’t find the string, it returns a null pointer. If string2
points to a string with length 0, strstr returns string1.

Example char *stra = ”so what do you want for nothing?”;

char *strb = ”what”;

char *ptr;

ptr = strstr(stra,strb);

The pointer *ptr now points to the w in what in the first string.

String to Numberstrtod/strtol/
strtoul

Syntax #include <stdlib.h>

double strtod(const char *st, char **endptr);
long strtol(const char *st, char **endptr, int base);
unsigned long strtoul(const char *st, char **endptr, int base);

Syntax for C++ #include <cstdlib>

double std::strtod(const char *st, char **endptr);
long std::strtol(const char *st, char **endptr, int base);
unsigned long std::strtoul(const char *st, char **endptr, int base);

Defined in strtod.c, strtol.c, and strtoul.c in rts.src

Description Three functions convert ASCII strings to numeric values. For each function,
argument st points to the original string. Argument endptr points to a pointer;
the functions set this pointer to point to the first character after the converted
string.The functions that convert to integers also have a third argument, base,
which tells the function what base to interpret the string in.

strtok, strxfrm, tan Description of Runtime-Support Functions and Macros

7-90

� The strtod function converts a string to a floating-point value. The string
must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

The function returns the converted string; if the original string is empty or
does not have the correct format, the function returns a 0. If the converted
string would cause an overflow, the function returns ±HUGE_VAL; if the
converted string would cause an underflow, the function returns 0. If the
converted string overflows or an underflows, errno is set to the value of
ERANGE.

� The strtol function converts a string to a long integer. The string must have
the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

� The strtoul function converts a string to an unsigned long integer. The
string must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

The space is indicated by a horizontal or vertical tab, space bar, carriage
return, form feed, or new line. Following the space is an optional sign and digits
that represent the integer portion of the number. The fractional part of the num-
ber follows, then the exponent, including an optional sign.

The first unrecognized character terminates the string. The pointer that endptr
points to is set to point to this character.

Break String into Tokenstrtok

Syntax #include <string.h>

char *strtok(char *str1, const char *str2);

Syntax for C++ #include <cstdio>

char *std::strtok(char *str1, const char *str2);

Defined in strtok.c in rts.src

Description Successive calls to the strtok function break str1 into a series of tokens, each
delimited by a character from str2. Each call returns a pointer to the next token.

 Description of Runtime-Support Functions and Macros strxfrm, tan

7-91 Runtime-Support Functions

Example After the first invocation of strtok in the example below, the pointer stra points
to the string excuse\0 because strtok has inserted a null character where the
first space used to be. In the comments, the notation \0 represents the null
character.

char *stra = ”excuse me while I kiss the sky”;
char *ptr;

ptr = strtok (stra,” ”); /* ptr --> ”excuse\0” */
ptr = strtok (0,” ”); /* ptr --> ”me\0” */
ptr = strtok (0,” ”); /* ptr --> ”while\0” */

Convert Charactersstrxfrm

Syntax #include <string.h>

size_t strxfrm(char *to, const char *from, size_t n);

Syntax for C++ #include <cstring>

size_t std::strxfrm(char *to, const char *from, size_t n);

Description The strxfrm function converts n characters pointed to by from into the n
characters pointed to by to.

Tangenttan

Syntax #include <math.h>

double tan(double x);

Syntax for C++ #include <cmath>

double std::tan(double x);

Defined in tan.c in rts.src

Description The tan function returns the tangent of a floating-point number x. The angle
x is expressed in radians. An argument with a large magnitude can produce
a result with little or no significance.

Example double x, y;

x = 3.1415927/4.0;
y = tan(x); /* return value = 1.0 */

tanh, time, tmpfile Description of Runtime-Support Functions and Macros

7-92

Hyperbolic Tangenttanh

Syntax #include <math.h>

double tanh(double x);

Syntax for C++ #include <cmath>

double std::tanh(double x);

Defined in tanh.c in rts.src

Description The tanh function returns the hyperbolic tangent of a floating-point number x.

Example double x, y;

x = 0.0;
y = tanh(x); /* return value = 0.0 */

Timetime

Syntax #include <time.h>

time_t time(time_t *timer);

Syntax for C++ #include <ctime>

time_t std::time(time_t *timer);

Defined in time.c in rts.src

Description The time function determines the current calendar time, represented in sec-
onds. If the calendar time is not available, the function returns -1. If timer is
not a null pointer, the function also assigns the return value to the object that
timer points to.

For more information about the functions and types that the time.h header
declares and defines, see subsection 7.3.14, Time Functions (time.h)
page 7-23.

Note: The time Function Is Target-System Specific

The time function is target-system specific, so you must write your own time
function.

 Description of Runtime-Support Functions and Macros tanh, time, tmpfile

7-93 Runtime-Support Functions

Create Temporary Filetmpfile

Syntax #include <stdio.h>

FILE *tmpfile(void);

Syntax for C++ #include <cstdio>

FILE *std::tmpfile(void);

Defined in tmpfile.c in rts.src

Description The tmpfile function creates a temporary file.

Generate Valid Filenametmpnam

Syntax #include <stdio.h>

char *tmpnam(char *_s);

Syntax for C++ #include <cstdio>

char *std::tmpnam(char *_s);

Defined in tmpnam.c in rts.src

Description The tmpnam function generates a string that is a valid filename.

Convert to ASCIItoascii

Syntax #include <ctype.h>

int toascii(int c);

Syntax for C++ #include <cctype>

int toascii(int c);

Defined in toascii.c in rts.src

Description The toascii function ensures that c is a valid ASCII character by masking the
lower seven bits. There is also an equivalent macro call _toascii.

tmpnam, toascii, tolower/toupper, ungetc Description of Runtime-Support Functions and Macros

7-94

Convert Casetolower/toupper

Syntax #include <ctype.h>

int tolower(int c);
int toupper(int c);

Syntax for C++ #include <cctype>

int std::tolower(int c);
int std::toupper(int c);

Defined in tolower.c and toupper.c in rts.src

Description Two functions convert the case of a single alphabetic character c into upper
case or lower case:

� The tolower function converts an uppercase argument to lowercase. If c
is already in lowercase, tolower returns it unchanged.

� The toupper function converts a lowercase argument to uppercase. If c is
already in uppercase, toupper returns it unchanged.

The functions have macro equivalents named _tolower and _toupper.

Write Character to Streamungetc

Syntax #include <stdio.h>

int ungetc(int c, FILE *_fp);

Syntax for C++ #include <cstdio>

int std::ungetc(int c, FILE *_fp);

Defined in ungetc.c in rts.src

Description The ungetc function writes the character c to the stream pointed to by _fp.

 Description of Runtime-Support Functions and Macros va_arg/va_end/va_start

7-95 Runtime-Support Functions

Variable-Argument Macrosva_arg/va_end/
va_start

Syntax #include <stdarg.h>

typedef char *va_list;
type va_arg(va_list, _type);
void va_end(va_list);
void va_start(va_list, parmN);

Syntax for C++ #include <cstdarg>

typedef char *std::va_list;
type std::va_arg(va_list, _type);
void std::va_end(va_list);
void std::va_start(va_list, parmN);

Defined in stdarg.h/cstdarg

Description Some functions are called with a varying number of arguments that have vary-
ing types. Such a function, called a variable-argument function, can use the
following macros to step through its argument list at run time. The _ap param-
eter points to an argument in the variable-argument list.

� The va_start macro initializes _ap to point to the first argument in an
argument list for the variable-argument function. The parmN parameter
points to the right-most parameter in the fixed, declared list.

� The va_arg macro returns the value of the next argument in a call to
a variable-argument function. Each time you call va_arg, it modifies _ap
so that successive arguments for the variable-argument function can be
returned by successive calls to va_arg (va_arg modifies _ap to point to
the next argument in the list). The type parameter is a type name; it is
the type of the current argument in the list.

� The va_end macro resets the stack environment after va_start and
va_arg are used.

Note that you must call va_start to initialize _ap before calling va_arg or
va_end.

vfprintf, vprintf, vsprintf Description of Runtime-Support Functions and Macros

7-96

Example int printf (char *fmt...)
va_list ap;
va_start(ap, fmt);
.
.
.
i = va_arg(ap, int); /* Get next arg, an integer */
s = va_arg(ap, char *); /* Get next arg, a string */
l = va_arg(ap, long); /* Get next arg, a long */
.
.
.
va_end(ap); /* Reset */

}

Write to Streamvfprintf

Syntax #include <stdio.h>

int vfprintf(FILE *_fp, const char *_format, char *_ap);

Syntax for C++ #include <cstdio>

int std::vfprintf(FILE *_fp, const char *_format, char *_ap);

Defined in vfprintf.c in rts.src

Description The vfprintf function writes to the stream pointed to by _fp. The string pointed
to by format describes how to write the stream. The argument list is given
by _ap.

Write to Standard Outputvprintf

Syntax #include <stdio.h>

int vprintf(const char *_format, char *_ap);

Syntax for C++ #include <cstdio>

int std::vprintf(const char *_format, char *_ap);

Defined in vprintf.c in rts.src

Description The vprintf function writes to the standard output device. The string pointed to
by _format describes how to write the stream. The argument list is given
by _ap.

 Description of Runtime-Support Functions and Macros vsnprintf, vsprintf

7-97 Runtime-Support Functions

Write Stream With Limitvsnprintf

Syntax #include <stdio.h>

int vsnprintf(char *_string, size_t n, const char *_format, char *_ap);

Syntax for C++ #include <cstdio>

int std::vsnprintf(char *string, size_t n, const char *_format, char *_ap);

Defined in vsnprintf.c in rts.src

Description The vsnprintf function writes up to n characters to the array pointed to by
_string. The string pointed to by _format describes how to write the stream.
The argument list is given by _ap. Returns the number of characters that
would have been written if no limit had been placed on the string.

Write Streamvsprintf

Syntax #include <stdio.h>

int vsprintf(char *string, const char *_format, char *_ap);

Syntax for C++ #include <cstdio>

int std::vsprintf(char *_string, const char *_format, char *_ap);

Defined in vsprintf.c in rts.src

Description The vsprintf function writes to the array pointed to by _string. The string pointed
to by _format describes how to write the stream. The argument list is given
by _ap.

8-1

Library−Build�Utility

When using the TMS320C54x� C/C++ compiler, you can compile your code
under a number of different configurations and options that are not necessarily
compatible with one another. Since it would be cumbersome to include all pos-
sible combinations in individual run-time-support libraries, this package in-
cludes the source archive, rts.src, which contains all run-time-support func-
tions.

You can build your own run-time-support libraries by using the mk500 utility
described in this chapter and the archiver described in the TMS320C54x
Assembly Language Tools User’s Guide.

Topic Page

8.1 Invoking the Library-Build Utility 8-2.

8.2 Library-Build Utility Options 8-3.

8.3 Options Summary 8-4.

Chapter 8

Invoking the Library-Build Utility

 8-2

8.1 Invoking the Library-Build Utility

The syntax for invoking the library-build utility is:

mk500 [options] src_arch1 [-l obj.lib1] [src_arch2 [-l obj.lib2]] ...

mk500 Command that invokes the utility.

options Options affect how the library-build utility treats your files. Options
can appear anywhere on the command line or in a linker command
file. (Options are discussed in Sections 8.2 and 8.3.)

src_arch The name of a source archive file. For each source archive
named, mk500 builds an object library according to the run-time
model specified by the command-line options.

-l obj.lib The optional object library name. If you do not specify a name for
the library, mk500 uses the name of the source archive and
appends a .lib suffix. For each source archive file specified, a cor-
responding object library file is created. You cannot build an object
library from multiple source archive files.

The mk500 utility runs the compiler on each source file in the archive to com-
pile and/or assemble it. Then, the utility collects all the object files into the
object library. All the tools must be in your PATH environment variable. The
utility ignores the environment variables C54X_C_OPTION, C_OPTION,
C54X_C_DIR, and C_DIR.

Library-Build Utility Options

8-3Library-Build Utility

8.2 Library-Build Utility Options

Most of the options that are included on the command line correspond directly
to options of the same name used with the compiler, assembler, linker, and
shell. The following options apply only to the library-build utility.

- -c Extracts C source files contained in the source archive from the
library and leaves them in the current directory after the utility
completes execution.

- -h Uses header files contained in the source archive and leaves
them in the current directory after the utility completes execution.
Use this option to install the run-time-support header files from the
rts.src archive that is shipped with the tools.

- -k Overwrite files. By default, the utility aborts any time it attempts to
create an object file when an object file of the same name already
exists in the current directory, regardless of whether you specified
the name or the utility derived it.

- -q Suppress header information (quiet).

- -u Does not use the header files contained in the source archive
when building the object library. If the desired headers are already
in the current directory, there is no reason to reinstall them. This
option gives you flexibility in modifying run-time-support functions
to suit your application.

- -v Prints progress information to the screen during execution of the
utility. Normally, the utility operates silently (no screen messages).

Options Summary

 8-4

8.3 Options Summary

The other options you can use with the library-build utility correspond directly
to the options used with the compiler and assembler. Table 8-1 lists these
options. These options are described in detail on the indicated page below.

Table 8-1. Summary of Options and Their Effects

(a) Options that control the compiler/shell

Option Effect Page

-g Enables symbolic debugging 2-14

(b) Options that control the parser

Option Effect Page

-pi Disables definition-controlled inlining (but -o3 opti-
mizations still perform automatic inlining)

2-38

-pk Makes code K&R compatible 5-28

-pr Enables relaxed mode; ignores strict ISO violations 5-28

-ps Enables strict ISO mode (for C, not K&R C) 5-28

(c) Options that control diagnostics

Option Effect Page

-pdr Issues remarks (nonserious warnings) 2-31

-pdv Provides verbose diagnostics that display the original
source with line wrap

2-32

-pdw Suppresses warning diagnostics (errors are still
issued)

2-32

(d) Options that control the optimization level

Option Effect Page

-O0 Compiles with register optimization 3-2

-O1 Compiles with -O0 optimization + local optimization 3-2

-O2 (or -o) Compiles with -O1 optimization + global optimization 3-3

-O3 Compiles with -O2 optimization + file optimization.
Note that mk500 automatically sets -oI0 and -op0.

3-3

Options Summary

8-5Library-Build Utility

Table 8-1. Summary of Options and Their Effects (Continued)

(e) Options that are target-specific

Option Effect Page

-ma Assumes variables are aliased 3-11

-mf All calls will be far calls 2-15

-mn Enables optimizer options disabled by -g 3-15

(f) Option that controls the assembler

Option Effect Page

-as Keeps labels as symbols 2-22

(g) Options that change the default file extensions

Option Effect Page

-ea[.] extension Sets default extension for assembly files 2-19

-eo[.] extension Sets default extension for object files 2-19

9-1

C++ Name Demangler

The C++ compiler implements function overloading, operator overloading,
and type-safe linking by encoding a function’s signature in its link-level name.
The process of encoding the signature into the linkname is often referred to
as name mangling. When you inspect mangled names, such as in assembly
files or linker output, it can be difficult to associate a mangled name with its cor-
responding name in the C++ source code. The C++ name demangler is a
debugging aid that translates each mangled name it detects to its original
name found in the C++ source code.

These topics tells you how to invoke and use the C++ name demangler. The
C++ name demangler reads in input, looking for mangled names. All un-
mangled text is copied to output unaltered. All mangled names are demangled
before being copied to output.

Topic Page

9.1 Invoking the C++ Name Demangler 9-2.

9.2 C++ Name Demangler Options 9-2.

9.3 Sample Usage of the C++ Name Demangler 9-3.

Chapter 9

Invoking the C++ Name Demangler

 9-2

9.1 Invoking the C++ Name Demangler

The syntax for invoking the C++ name demangler is:

dem500 [options][filenames]

dem500 Command that invokes the C++ name demangler.

options Options affect how the name demangler behaves. Options can ap-
pear anywhere on the command line or in a linker command file.
(Options are discussed in section 9.2.)

filenames Text input files, such as the assembly file output by the compiler,
the assembler listing file, and the linker map file. If no filenames
are specified on the command line, dem500 uses standard in.

By default, the C++ name demangler sends output to standard out. You can
use the -o file option if you want to send output to a file.

9.2 C++ Name Demangler Options

Following are the options that control the C++ name demangler, along with
descriptions of their effects.

- h Prints a help screen that provides an online summary of the C++
name demangler options

- o file Sends output to the given file rather than to standard out

-u Specifies that external names do not have a C++ prefix

-v Enables verbose mode (outputs a banner)

Sample Usage of the C++ Name Demangler

9-3C++ Name Demangler

9.3 Sample Usage of the C++ Name Demangler

Example 9-1 shows a sample C++ program and the resulting assembly that
is output by the TMS320C54x� compiler. In Example 9-1(a), the linknames
of foo() and compute() are mangled; that is, their signature information is en-
coded into their names.

Example 9-1. Name Mangling

(a) C++ Program

class banana {
public:

int calories(void);
banana();
~banana();

};

int calories_in_a_banana(void)
{

banana x;
return x.calories();

}

(b) Assembly output for calories_in_a_banana

_calories_in_a_banana__Fv:
AADD #-3, SP
MOV SP, AR0
AMAR *AR0+
CALL #___ct__6bananaFv
MOV SP, AR0
AMAR *AR0+
CALL #_calories__6bananaFv
MOV SP, AR0
MOV T0, *SP(#0)
MOV #2, T0
AMAR *AR0+
CALL #___dt__6bananaFv

 MOV *SP(#0), T0
AADD #3, SP
RET

Sample Usage of the C++ Name Demangler

 9-4

Executing the C++ name demangler utility demangles all names that it be-
lieves to be mangled. If you enter:

% dem500 banana.asm

the result is shown in Example 9-2. Notice that the linknames of foo() and
compute() are demangled.

Example 9-2. Result After Running the C++ Name Demangler

_calories_in_a_banana():
AADD #-3, SP
MOV SP, AR0
AMAR *AR0+
CALL #banana::banana()
MOV SP, AR0
AMAR *AR0+
CALL #banana::_calories()
MOV SP, AR0
MOV T0, *SP(#0)
MOV #2, T0
AMAR *AR0+
CALL #banana::~banana()
MOV *SP(#0), T0
AADD #3, SP
RET

A-1

Appendix A

Glossary

A
ANSI: American National Standards Institute. An organization that esta-

blishes standards voluntarily followed by industries.

alias disambiguation: A technique that determines when two pointer ex-
pressions cannot point to the same location, allowing the compiler to
freely optimize such expressions.

aliasing: Aliasing occurs when a single object can be accessed in more than
one way, such as when two pointers point to a single object. It can disrupt
optimization, because any indirect reference could refer to any other
object.

allocation: A process in which the linker calculates the final memory
addresses of output sections.

archive library: A collection of individual files grouped into a single file by
the archiver.

archiver: A software program that collects several individual files into a sin-
gle file called an archive library. The archiver allows you to add, delete,
extract, or replace members of the archive library.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, direc-
tives, and macro definitions. The assembler substitutes absolute opera-
tion codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assignment statement: A statement that initializes a variable with a value.

autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before program execution begins.

autoinitialization at load time: An autoinitialization method used by the
linker when linking C code. The linker uses this method when you invoke
the linker with the -cr option. This method initializes variables at load time
instead of run time.

Appendix A

 A-2

autoinitialization at run time: An autoinitialization method used by the
linker when linking C code. The linker uses this method when you invoke
the linker with the -c option. The linker loads the .cinit section of data ta-
bles into memory, and variables are initialized at run time.

B
big-endian: An addressing protocol in which bytes are numbered from left

to right within a word. More significant bytes in a word have lower
numbered addresses. Endian ordering is hardware-specific and is deter-
mined at reset. See also little endian

block: A set of statements that are grouped together with braces and treated
as an entity.

.bss section: One of the default COFF sections. You can use the .bss direc-
tive to reserve a specified amount of space in the memory map that you
can use later for storing data. The .bss section is uninitialized.

byte: The smallest addressable unit of storage that can contain a character.
On C54x, a byte is 16 bits.

C
C compiler: A software program that translates C source statements into

assembly language source statements.

code generator: A compiler tool that takes the file produced by the parser
or the optimizer and produces an assembly language source file.

command file: A file that contains linker or hex conversion utility options and
names input files for the linker or hex conversion utility.

comment: A source statement (or portion of a source statement) that docu-
ments or improves readability of a source file. Comments are not com-
piled, assembled, or linked; they have no effect on the object file.

common object file format (COFF): A binary object file format that pro-
motes modular programming by supporting the concept of sections. All
COFF sections are independently relocatable in memory space; you can
place any section into any allocated block of target memory.

constant: A type whose value cannot change.

cross-reference listing: An output file created by the assembler that lists
the symbols it defined, what line they were defined on, which lines refer-
enced them, and their final values.

A-3Glossary

D
.data section: One of the default COFF sections. The .data section is an in-

itialized section that contains initialized data. You can use the .data direc-
tive to assemble code into the .data section.

direct call: A function call where one function calls another using the func-
tion’s name.

directives: Special-purpose commands that control the actions and
functions of a software tool.

disambiguation: See alias disambiguation

dynamic memory allocation: A technique used by several functions (such
as malloc, calloc, and realloc) to dynamically allocate memory for vari-
ables at run time. This is accomplished by defining a large memory pool
(heap) and using the functions to allocate memory from the heap.

E
emulator: A development system used to test software directly on

TMS320C54x� hardware.

entry point: A point in target memory where execution starts.

environment variable: System symbol that you define and assign to a
string. They are often included in batch files, for example, .cshrc.

epilog: The portion of code in a function that restores the stack and returns.

executable module: A linked object file that can be executed in a target sys-
tem.

expression: A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
defined or declared in a different program module.

F
file-level optimization: A level of optimization where the compiler uses the

information that it has about the entire file to optimize your code (as op-
posed to program-level optimization, where the compiler uses informa-
tion that it has about the entire program to optimize your code).

 A-4

function inlining: The process of inserting code for a function at the point
of call. This saves the overhead of a function call, and allows the opti-
mizer to optimize the function in the context of the surrounding code.

G
global symbol: A symbol that is either defined in the current module and

accessed in another or accessed in the current module but defined in
another.

I
indirect call: A function call where one function calls another function by giv-

ing the address of the called function.

initialized section: A COFF section that contains executable code or data.
An initialized section can be built with the .data, .text, or .sect directive.

integrated preprocessor: A C preprocessor that is merged with the parser,
allowing for faster compilation. Standalone preprocessing or prepro-
cessed listing is also available.

interlist: A feature that inserts as comments your original C source state-
ments into the assembly language output from the assembler. The C
statements are inserted next to the equivalent assembly instructions.

ISO: International Organization for Standardization. A worldwide federation of
national standards bodies, which establishes international standards
voluntarily followed by industries.

K
kernel: The body of a software-pipelined loop between the pipelined-loop

prolog and the pipelined-loop epilog.

K&R C: Kernighan and Ritchie C, the de facto standard as defined in the first
edition of The C Programming Language (K&R). Most K&R C programs
written for earlier, non-ANSI C compilers correctly compile and run with-
out modification.

L
label: A symbol that begins in column 1 of an assembler source statement

and corresponds to the address of that statement. A label is the only
assembler statement that can begin in column 1.

A-5Glossary

linker: A software program that combines object files to form an object mod-
ule that can be allocated into system memory and executed by the de-
vice.

listing file: An output file created by the assembler that lists source state-
ments, their line numbers, and their effects on the section program
counter (SPC).

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher num-
bered addresses. Endian ordering is hardware-specific and is deter-
mined at reset. See also big endian

loader: A device that loads an executable module into system memory.

loop unrolling: An optimization that expands small loops so that each
iteration of the loop appears in your code. Although loop unrolling
increases code size, it can improve the efficiency of your code.

M

macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The process of inserting source statements into your
code in place of a macro call.

map file: An output file, created by the linker, that shows the memory
configuration, section composition, section allocation, symbol
definitions, and the addresses at which the symbols were defined for
your program.

memory map: A map of target system memory space that is partitioned into
functional blocks.

O

object file: An assembled or linked file that contains machine-language
object code.

object library: An archive library made up of individual object files.

 A-6

operand: An argument of an assembly language instruction, assembler
directive, or macro directive that supplies information to the operation
performed by the instruction or directive.

optimizer: A software tool that improves the execution speed and reduces
the size of C programs.

options: Command parameters that allow you to request additional or
specific functions when you invoke a software tool.

output module: A linked, executable object file that can be downloaded and
executed on a target system.

output section: A final, allocated section in a linked, executable module.

‘
P

parser: A software tool that reads the source file, performs preprocessing
functions, checks the syntax, and produces an intermediate file that can
be used as input for the optimizer or code generator.

pragma: Preprocessor directive that provides directions to the compiler
about how to treat a particular statement.

preprocessor: A software tool that interprets macro definitions, expands
macros, interprets header files, interprets conditional compilation, and
acts upon preprocessor directives.

program-level optimization: An aggressive level of optimization where all
of the source files are compiled into one intermediate file. Because the
compiler can see the entire program, several optimizations are per-
formed with program-level optimization that are rarely applied during file-
level optimization.

R
relocation: A process in which the linker adjusts all the references to a

symbol when the symbol’s address changes.

run-time environment: The run-time parameters in which your program
must function. These parameters are defined by the memory and regis-
ter conventions, stack organization, function call conventions, and sys-
tem initialization.

run-time-support functions: Standard ANSI functions that perform tasks
that are not part of the C language (such as memory allocation, string
conversion, and string searches).

A-7Glossary

run-time-support library: A library file, rts.src, that contains the source for
the run-time-support functions.

S

section: A relocatable block of code or data that ultimately occupies
contiguous space in the memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header. The header
points to the section’s starting address, contains the section’s size, etc.

shell program: A utility that lets you compile, assemble, and optionally link
in one step. The shell runs one or more source modules through the
compiler (including the parser, optimizer, and code generator), the
assembler, and the linker.

:simulator: A development system used to test software on a workstation
without C54x hardware.

source file: A file that contains C code or assembly language code that is
compiled or assembled to form an object file.

standalone preprocessor: A software tool that expands macros, #include
files, and conditional compilation as an independent program. It also per-
forms integrated preprocessing, which includes parsing of instructions.

static variable: A kind of variable whose scope is confined to a function or
a program. The values of static variables are not discarded when the
function or program is exited; their previous value is resumed when the
function or program is reentered.

storage class: Any entry in the symbol table that indicates how to access
a symbol.

structure: A collection of one or more variables grouped together under a
single name.

symbol: A string of alphanumeric characters that represents an address or
a value.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

symbolic debugging: The ability of a software tool to retain symbolic
information that can be used by a debugging tool such as a simulator or
an emulator.

 A-8

T

target system: The system on which the object code you have developed
is executed.

.text section: One of the default COFF sections. The .text section is
initialized and contains executable code. You can use the .text directive
to assemble code into the .text section.

trigraph sequence: A three character sequence that has a meaning (as de-
fined by the ISO 646-1983 Invariant Code Set). These characters cannot
be represented in the C character set and are expanded to one charac-
ter. For example, the trigraph ??’ is expanded to ^.

U

uninitialized section: A COFF section that reserves space in the memory
map but that has no actual contents. These sections are built up with the
.bss and .usect directives.

unsigned value: A value that is treated as a nonnegative number, regard-
less of its actual sign.

V

variable: A symbol representing a quantity that may assume any of a set of
values.

Index

Index-1

Index

A
-a linker option 4-5
-aa shell option 2-21
abort function 7-37
abs function 7-37
absolute compiler limits 5-31
absolute lister 1-4
absolute listing, creating 2-21
absolute value 7-37, 7-49
-ac shell option 2-21
accumulator A usage

in function calls from assembly language 6-16
to 6-17

with runtime-support routines 6-30
acos function 7-38
-ad shell option 2-21
-ahc shell option 2-21
-ahi shell option 2-21
-al shell option 2-21
algebraic, source file 2-21
alias disambiguation

definition A-1
described 3-18

aliasing 3-11
definition A-1

allocation A-1
alternate directories for include files 2-26
-amg shell option 2-21
ANSI A-1
ANSI C

enabling embedded C++ mode 5-30
enabling relaxed mode 5-30
enabling strict mode 5-30
language 5-1 to 5-31, 7-80, 7-82
standard overview 1-5

-apd shell option 2-21
-api shell option 2-21
-ar linker option 4-5
-ar shell option 2-21
AR1 5-14, 6-11
AR6 5-14, 6-11
arc cosine 7-38
arc sine 7-39
arc tangent 7-40
archive library 4-7, A-1
archiver 1-3, A-1
argument block, described 6-12
-as shell option 2-22
ASCII conversion functions 7-41
asctime function 7-38, 7-46
asin function 7-39
.asm extension 2-17

changing 2-19
asm statement 6-21

C language 5-15
in optimized code 3-10
masking interrupts 6-28

assembler 1-3
definition A-1
options 2-21

assembly language
interfacing with C language 6-16 to 6-27
interlisting with C language 2-42
modules 6-16 to 6-18

assembly listing file, creating 2-21
assert function 7-39
assert.h header 7-16

summary of functions 7-27
assignment statement A-1
atan function 7-40
atan2 function 7-40

Index

Index-2

atexit function 7-41, 7-48
atof function 7-41
atoi function 7-41
atol function 7-41
-au shell option 2-22
autoincrement addressing 3-25
autoinitialization 6-34, A-1

at load time
definition A-1
described 6-38

at runtime
definition A-2
described 6-37

of variables 6-6
types of 4-9

-aw shell option 2-22
-ax shell option 2-22

B
-b option, linker 4-5
banner suppressing 2-16
base-10 logarithm 7-62
big-endian, definition A-2
bit

addressing 6-7
fields 5-3, 6-7

bit fields 5-30
block

allocating sections 4-10, 6-2
definition A-2

boot.asm 6-33
boot.obj 4-7, 4-9, 4-11
branch optimizations 3-18
broken-down time 7-23, 7-46, 7-65
bsearch function 7-42
.bss section 4-10, 6-3

definition A-2
buffer

define and associate function 7-75
specification function 7-73

byte A-2

C
C compiler. See compiler

.C extension 2-17

.c extension 2-17
C I/O

implementation 7-5
library 7-4 to 7-7
low-level routines 7-5

C language
accessing assembler constants 6-20
accessing assembler variables 6-18
The C Programming Language viii, 5-1 to 5-31
characteristics 5-2
compatibility with ANSI C 5-28
data types 5-6
far keyword 5-10
integer expression analysis 6-30
interfacing with assembly language 6-16 to

6-27
interlisting with assembly 2-42
interrupt keyword 5-9
interrupt routines 6-29

preserving registers 6-29
ioport keyword 5-8
keywords 5-7 to 5-11
near keyword 5-10
placing assembler statements in 6-21

- -c library-build utility option 8-3
-c option

linker 4-2, 4-4, 4-5, 4-9
shell 2-14

C system stack. See stack
C++ language

characteristics 5-5
embedded C++ mode 5-30
exception handling 5-5
iostream 5-5
runtime type information 5-5

C++ name demangler
described 9-1
example 9-3 to 9-5
invoking 9-2
options 9-2

C_DIR environment variable 2-23, 2-26
_c_int00 4-9, 6-33
_C_MODE 2-25
C_OPTION environment variable 2-23
C54X_C_DIR environment variable 2-23
C54X_C_OPTION environment variable 2-24 to

2-25
calendar time 7-23, 7-46, 7-65, 7-92

Index

Index-3

call, macro, definition A-5

calloc function 7-43, 7-54, 7-67
dynamic memory allocation 6-6

case sensitivity, in filename extensions 2-17

ceil function 7-43

character
conversion functions 7-91

summary of 7-27
read function

multiple characters 7-51
single character 7-50

character constants 5-29

character sets 5-2

character-typing conversion functions
isalnum 7-59
isalpha 7-59
isascii 7-59
iscntrl 7-59
isdigit 7-59
isgraph 7-59
islower 7-59
isprint 7-59
ispunct 7-59
isspace 7-59
isupper 7-59
isxdigit 7-59
toascii 7-93
tolower 7-94
toupper 7-94

.cinit section 4-9, 4-10, 6-2, 6-33, 6-34

cl500 4-2

clear EOF function 7-44

clearerr function 7-44

clock function 7-44

clock_t data type 7-23

CLOCKS_PER_SEC macro 7-23 to 7-24, 7-44

close file function 7-49

CLOSE I/O function 7-11

Code Composer Studio, and code generation
tools 1-8

code generator, definition A-2

CODE_SECTION pragma 5-16

command file
appending to command line 2-14
definition A-2

comment, definition A-2

common object file format, definition A-2

compare strings 7-85

compatibility 5-28 to 5-30

compile only 2-16

compiler
definition A-2
description 2-1 to 2-42
diagnostic messages 2-29 to 2-33
limits 5-31
options

conventions 2-5
summary table 2-6 to 2-13

overview 1-5, 2-2
sections 4-10
summary of options 2-5

compiling C/C++ code 2-2

concatenate strings 7-78, 7-84

const keyword 5-7

.const section 4-10, 6-2, 6-36
allocating to program memory 6-4
use to initialize variables 5-27

const type qualifier 5-27

constants
.const section 5-27
assembler, accessing from C 6-20
C language 5-2
character string 6-8
definition A-2

control-flow simplification 3-18

controlling diagnostic messages 2-31 to 2-32

conversions 5-3, 7-16
C language 5-3

cos function 7-45

cosh function 7-45

cosine 7-45

cost-based register allocation optimization 3-18

.cpp extension 2-17

-cr linker option 4-2, 4-5, 4-9

cross-reference listing
creation 2-22, 2-34
definition A-2

ctime function 7-46

ctype.h header 7-16
summary of functions 7-27

.cxx extension 2-17

Index

Index-4

D
-d shell option 2-14
data

definition A-3
flow optimizations 3-20
types, C language 5-3

data memory 6-2
.data section 6-3
data types 5-6
__DATE__ 2-25
daylight savings time 7-23
debugging

See also Code Composer Studio User’s Guide;
TMS320C55xx C Source Debugger User’s
Guide

optimized code 3-15
symbolically, definition A-7

declarations, C language 5-3
dedicated registers 6-10
defining variables in assembly language 6-18
dem500 9-2
dem55 9-2
diagnostic identifiers, in raw listing file 2-35
diagnostic messages 7-16

assert 7-39
controlling 2-31
description 2-29 to 2-30
errors 2-29
fatal errors 2-29
format 2-29
generating 2-31 to 2-32
other messages 2-33
remarks 2-29
suppressing 2-31 to 2-33
warnings 2-29

difftime function 7-46
direct call, definition A-3
directives, definition A-3
directories, for include files 2-15
directory specifications 2-20
div function 7-47
div_t type 7-22
division 5-3
division and modulus 6-30
documentation, related viii

DWARF debug format 2-15
dynamic memory allocation

definition A-3
described 6-6

E
-e linker option 4-5
-ea shell option 2-19
-ec shell option 2-19
EDOM macro 7-17
embedded C++ mode 5-30
emulator, definition A-3
entry points

_c_int00 4-9
definition A-3
for C code 4-9
for C/C++ code 4-9
reset vector 4-9
system reset 6-28

enumerator list, trailing comma 5-30
environment, runtime. See runtime environment
environment information function 7-57
environment variable

C_DIR 2-23
C_OPTION 2-23
C54X_C_DIR 2-23
C54X_C_OPTION 2-24
definition A-3

-eo shell option 2-19
EOF macro 7-21
epilog, definition A-3
EPROM programmer 1-4
ERANGE macro 7-17
errno.h header 7-17
error

indicators function 7-44
mapping function 7-68
message macro 7-27

error messages
See also diagnostic messages
handling with options 2-32, 5-29
macro, assert 7-39
preprocessor 2-25

error reporting 7-17
-es shell option 2-19
escape sequences 5-2, 5-29

Index

Index-5

ETSI functions, intrinsics 6-26 to 6-27
executable module, definition A-3
exit function 7-37, 7-41, 7-48
exp function 7-48
exponential math function 7-20, 7-48
expression 5-3

C language 5-3
definition A-3
simplification 3-20

expression analysis
floating point 6-32
integers 6-30

extaddr.h header 7-17
extended addressing 2-25
extensions 2-18

nfo 3-5
external declarations 5-29
external symbol, definition A-3
external variables 6-7

F
-f linker option 4-5
-fa shell option 2-18
fabs function 7-49
far calls and returns 2-15
far keyword 5-10
_FAR_MODE 2-25
fatal error 2-29
-fb shell option 2-20
-fc shell option 2-18
fclose function 7-49
feof function 7-49
ferror function 7-50
-f f shell option 2-20
fflush function 7-50
-fg shell option 2-18
fgetc function 7-50
fgetpos function 7-51
fgets function 7-51
field manipulation 6-7
file

extensions, changing 2-18
names 2-17
options 2-18

removal function 7-72
rename function 7-72

file.h header 7-2, 7-17
__FILE__ 2-25
file-level optimization 3-4

definition A-3
filename, generate function 7-93
FILENAME_MAX macro 7-21
float.h header 7-18
floating-point math functions 7-20

acos 7-38
asin 7-39
atan 7-40
atan2 7-40
ceil 7-43
cos 7-45
cosh 7-45
exp 7-48
fabs 7-49
floor 7-51
fmod 7-52
ldexp 7-60
log 7-61
log10 7-62
modf 7-67
pow 7-68
sin 7-76
sinh 7-76
sqrt 7-77
tan 7-91
tanh 7-92

floating-point remainder 7-52
floating-point

expression analysis 6-32
summary of functions 7-28 to 7-30

floor function 7-51
flush I/O buffer function 7-50
fmod function 7-52
-fo shell option 2-18
fopen function 7-52
FOPEN_MAX macro 7-21
format.h 7-2
FP register 6-9
-fp shell option 2-18
fpos_t data type 7-21
fprintf function 7-52
fputc function 7-53
fputs function 7-53

Index

Index-6

-fr shell option 2-20
fraction and exponent function 7-55
fread function 7-53
free function 7-54
freopen function, described 7-54
frexp function 7-55
-fs shell option 2-20
fscanf function 7-55
fseek function 7-55
fsetpos function 7-56
-ft shell option 2-20
ftell function 7-56
FUNC_CANNOT_INLINE pragma 5-19
FUNC_EXT_CALLED pragma 5-19

use with -pm option 3-8
FUNC_IS_PURE pragma 5-20
FUNC_IS_SYSTEM pragma 5-21
FUNC_NEVER_RETURNS pragma 5-21
FUNC_NO_GLOBAL_ASG pragma 5-22
FUNC_NO_IND_ASG pragma 5-22
function

alphabetic reference 7-37
call, using the stack 6-4
general utility 7-33
inlining 2-37 to 2-41

definition A-4
runtime-support, definition A-6

function calls, conventions 6-12 to 6-15
function prototypes 5-28
fwrite function 7-56

G
-g option

linker 4-5
shell 2-14

general utility functions 7-22
abort 7-37
abs 7-37
atexit 7-41
atof 7-41
atoi 7-41
atol 7-41
bsearch 7-42
calloc 7-43
div 7-47

exit 7-48
free 7-54
labs 7-37
ldiv 7-47
ltoa 7-62
malloc 7-63
minit 7-67
qsort 7-70
rand 7-70
realloc 7-71
srand 7-70
strtod 7-89
strtol 7-89
strtoul 7-89

generating, symbolic debugging directives 2-14,
2-15

get file position function 7-56
getc function 7-57
getchar function 7-57
getenv function 7-57
gets function 7-58
global, definition A-4
global variable construction 4-8
global variables 5-26, 6-7

reserved space 6-2
gmtime function 7-58
-gn compiler option 2-14
-gp shell option 3-16
Gregorian time 7-23
-gt compiler option 2-15
-gw shell option 2-15

H
- -h library-build utility option 8-3
-h option

C++ demangler utility 9-2
linker 4-5

header files
assert.h 7-16
ctype.h 7-16
errno.h 7-17
extaddr.h 7-17
file.h 7-2, 7-17
float.h 7-18
format.h 7-2
limits.h 7-18
math.h 7-20

Index

Index-7

setjmp.h 7-74
stdarg.h 7-20
stddef.h 7-21
stdio.h 7-21
stdlib.h 7-22
string.h 7-23
time.h 7-23
trgcio.h 7-2
values.h 7-2

heap
described 6-6
reserved space 6-3

-heap linker option 4-5

-heap option, with malloc 7-63

hex conversion utility 1-4

HUGE_VAL 7-20

hyperbolic math functions
cosine 7-45
defined by math.h header 7-20
sine 7-76
tangent 7-92

I
-i option

linker 4-5
shell 2-15, 2-26

I/O, summary of functions 7-31 to 7-33

I/O functions
CLOSE 7-11
LSEEK 7-11
OPEN 7-12
READ 7-13
RENAME 7-13
UNLINK 7-14
WRITE 7-14

IDENT pragma 5-23

identifiers, C language 5-2

implementation-defined behavior 5-2 to 5-4

#include files 2-25, 2-26
adding a directory to be searched 2-15

indirect call, definition A-4

initialization
of variables, at load time 6-6
types 4-9

initialized sections 4-10, 6-2
.const 6-2

.switch 6-2 to 6-3

.text 6-3

.cinit 6-2
definition A-4
.pinit 6-2

initializing variables in C language
global 5-26
static 5-26

_INLINE 2-25
preprocessor symbol 2-39

inline
assembly language 6-21
declaring functions as 2-39
definition-controlled 2-39
disabling 2-38
expansion 2-37 to 2-41
function, definition A-4

inline keyword 2-39
inlining

automatic expansion 3-12
unguarded definition-controlled 2-38
restrictions 2-41

integer division 7-47
integer expression analysis 6-30

division and modulus 6-30
overflow and underflow 6-30

integrated preprocessor, definition A-4
interfacing C and assembly language 6-16 to 6-27
interlist, definition A-4
interlist utility

invoking 2-16
invoking with shell 2-42
used with the optimizer 3-13

interrupt handling 6-28 to 6-29
additional code generated by compiler 6-28

interrupt keyword 6-29
INTERRUPT pragma 5-23
intrinsic operators 2-37
intrinsics

ETSI functions 6-26 to 6-27
using to call assembly language state-

ments 6-22
inverse tangent of y/x 7-40
invoking, C++ name demangler 9-2
invoking the

compiler 2-2
interlist utility, with shell 2-42
library-build utility 8-2

Index

Index-8

linker
separately 4-2
with compiler 4-2

optimizer, with shell options 3-2
shell program 2-4

ioport keyword 5-8

iostream support 5-5

isalnum function 7-59

isalpha function 7-59

isascii function 7-59

iscntrl function 7-59

isdigit function 7-59

isgraph function 7-59

islower function 7-59

ISO A-4

isprint function 7-59

ispunct function 7-59

isspace function 7-59

isupper function 7-59

isxdigit function 7-59

isxxx function 7-16, 7-59

J
-j linker option 4-5

jump function 7-30

jump macro 7-30

K
- -k library-build utility option 8-3

-k option
linker 4-5
shell 2-15

K&R C viii, 5-28
compatibility 5-1, 5-28
definition A-4

kernel, definition A-4

keyword
C language keywords 5-7 to 5-11
far 5-10
inline 2-39
interrupt 5-9
ioport 5-8
near 5-10

L
-l option

library-build utility 8-2
linker 4-5, 4-7

L_tmpnam macro 7-21
labels

definition A-4
retaining 2-22

labs function 7-37
ldexp function 7-60
ldiv function 7-47
ldiv_t type 7-22
library

C I/O 7-4 to 7-7
object, definition A-5
runtime-support 7-2, A-7

library-build utility 1-4, 8-1 to 8-5
optional object library 8-2
options 8-2, 8-3

limits
compiler 5-31
floating-point types 7-18
integer types 7-18

limits.h header 7-18
__LINE__ 2-25
linker 4-1 to 4-12

command file 4-11 to 4-12
definition A-5
description 1-3
options 4-5 to 4-6
suppressing 2-14

linking
C code 4-1 to 4-12
C/C++ code 4-1 to 4-12
with the compiler 4-2

linknames generated by the compiler 5-25
listing file

creating cross-reference 2-22
definition A-5

little-endian, definition A-5
loader 5-26

definition A-5
local time 7-23
localtime function 7-46, 7-61, 7-65
log function 7-61
log10 function 7-62

Index

Index-9

longjmp function 7-74

loop unrolling, definition A-5

loop-invariant optimizations 3-23

loops optimization 3-23

LSEEK I/O function 7-11

ltoa function 7-62

M
-m linker option 4-5

macro
alphabetic reference 7-37
definition A-5
definitions 2-25 to 2-26
expansions 2-25 to 2-26

macro call, definition A-5

macro expansion, definition A-5

malloc function 7-54, 7-63, 7-67
dynamic memory allocation 6-6

map file, definition A-5

math.h header 7-20
summary of functions 7-28 to 7-30

-me compiler option 6-28

-me shell option 2-15

memchr function 7-63

memcmp function 7-64

memcpy function 7-64

memmove function 7-65

memory
data 6-2
program 6-2

memory management functions
calloc 7-43
free 7-54
malloc 7-63
minit 7-67
realloc 7-71

memory map, definition A-5

memory model
allocating variables 6-7
dynamic memory allocation 6-6
field manipulation 6-7
sections 6-2
stack 6-4
structure packing 6-7
variable initialization 6-6

memory pool 7-63
See also .heap section; -heap
reserved space 6-3

memset function 7-65
-mf shell option 2-15
minit function 7-67
mk500 8-2
mktime function 7-65
-ml shell option 2-15
-mo shell option 2-16
modf function 7-67
modular programming 4-2
module, output A-6
modulus 5-3, 6-30
-mr shell option 2-16
-ms shell option 2-16
multibyte characters 5-2

N
-n option, shell 2-16
natural logarithm 7-61
NDEBUG macro 7-16, 7-39
near keyword 5-10
.nfo extension 3-5
NO_INTERRUPT pragma 5-24
nonlocal jump function 7-30
nonlocal jump functions and macros, summary

of 7-30
nonlocal jumps 7-74
NULL macro 7-21

O
-o option

C++ demangler utility option 9-2
linker 4-6
shell 3-2

.obj extension 2-17
changing 2-19

object file, definition A-5
object libraries 4-11
object library, definition A-5
offsetof macro 7-21
-oi shell option 3-12

Index

Index-10

-ol shell option 3-4

-on shell option 3-5

-op shell option 3-6 to 3-8

open file function 7-52, 7-54

OPEN I/O function 7-12

operand, definition A-6

optimizations 3-2
alias disambiguation 3-18
autoincrement addressing 3-25
branch 3-18
control-flow simplification 3-18
controlling the level of 3-6
cost based register allocation 3-18
data flow 3-20
expression simplification 3-20
file-level, definition 3-4, A-3
general

algebraic reordering 3-28
constant folding 3-28
symbolic simplification 3-28

induction variables 3-23
information file options 3-5
inline expansion 3-22
levels 3-2
list of 3-17 to 3-28
loop rotation 3-23
loop-invariant code motion 3-23
program-level

definition A-6
described 3-6
FUNC_EXT_CALLED pragma 5-19

strength reduction 3-23
tail merging 3-23
TMS320C54x-specific

calls 3-26
delayed branches 3-26
repeat blocks 3-26
returns 3-26

optimized code, debugging 3-15

optimizer
definition A-6
invoking, with shell 3-2
summary of options 2-11

options
assembler 2-21
C++ name demangler 9-2
compiler 2-6 to 2-22
conventions 2-5
definition A-6

diagnostics 2-10, 2-31
file specifiers 2-19 to 2-26
general 2-14
library-build utility 8-2
linker 4-5 to 4-6
preprocessor 2-9
summary table 2-6

output, overview of files 1-6
output module A-6
output section A-6
overflow

arithmetic 6-30
runtime stack 6-4

P
packing structures 6-7
parser, definition A-6
-pdel shell option 2-31
-pden shell option 2-31
-pdf shell option 2-31
-pdr shell option 2-31
-pds shell option 2-31
-pdse shell option 2-31
-pdsr shell option 2-31
-pdsw shell option 2-31
-pdv shell option 2-32
-pdw shell option 2-32
-pe shell option 5-30
perror function 7-68
-pg shell option 2-27
-pi shell option 2-38
.pinit section 4-10, 6-2
pipeline conflict detection 2-22
-pk shell option 5-28, 5-30
-pm shell option 3-6
pointer combinations 5-29
port variables 5-8
position file indicator function 7-72
pow function 7-68
power 7-68
.pp file 2-27
-ppa shell option 2-27
-ppc shell option 2-27
-ppd shell option 2-28

Index

Index-11

-ppi shell option 2-28

-ppl shell option 2-28
-ppo shell option 2-27

-pr shell option 5-30

pragma, definition A-6
#pragma directive 5-4

pragma directives 5-16 to 5-24
CODE_SECTION 5-16
DATA_SECTION 5-18
FUNC_CANNOT_INLINE 5-19
FUNC_EXT_CALLED 5-19
FUNC_IS_PURE 5-20
FUNC_IS_SYSTEM 5-21
FUNC_NEVER_RETURNS 5-21
FUNC_NO_GLOBAL_ASG 5-22
FUNC_NO_IND_ASG 5-22
IDENT 5-23
INTERRUPT 5-23
NO_INTERRUPT 5-24

predefined names 2-25 to 2-26
__TIME__ 2-25
__DATE__ 2-25
__FILE__ 2-25
__LINE__ 2-25
-ad shell option 2-21
_C_MODE 2-25
_FAR_MODE 2-25
_INLINE 2-25
_TMS320C5XX 2-25
undefining with -au shell option 2-22

prefixing identifiers, _ 6-17
preinitialized 5-26

preprocessed listing file 2-27
preprocessor

controlling 2-25 to 2-28
definition A-6
error messages 2-25
_INLINE symbol 2-39
listing file 2-27
predefining name 2-14
standalone, definition A-7
symbols 2-25

preprocessor directives 2-25
C language 5-4
trailing tokens 5-30

printf function 7-68

profiling optimized code 3-16
program memory 6-2

program termination functions
abort (exit) 7-37
atexit 7-41
exit 7-48

program-level optimization
controlling 3-6
definition A-6
performing 3-6

progress information suppressing 2-16
-ps shell option 5-30
pseudo-random 7-70
ptrdiff_t type 5-3, 7-21
putc function 7-69
putchar function 7-69
puts function 7-69

Q
- -q library-build utility option 8-3
-q option

linker 4-6
shell 2-16

qsort function 7-70

R
-r linker option 4-6
rand function 7-70
RAND_MAX macro 7-22
raw listing file

generating with -pl option 2-35
identifiers 2-35

read
character functions

multiple characters 7-51
next character function 7-57
single character 7-50

stream functions
from standard input 7-73
from string to array 7-53
string 7-55, 7-78

read function 7-58
READ I/O function 7-13
realloc function 6-6, 7-54, 7-67, 7-71
register conventions 6-9 to 6-11

dedicated registers 6-10
status registers 6-10

Index

Index-12

register storage class 5-3
register variables 6-11

C language 5-12
registers

accumulator 6-16 to 6-18
conventions, variables 5-12
save-on-call 6-9
save-on-entry 6-9
use conventions 6-9

related documentation viii
relocation, definition A-6
remarks 2-29
remove function 7-72
rename function 7-72
RENAME I/O function 7-13
return from main 4-8
rewind function 7-72
RPT instruction 2-16
rts.lib 1-4, 7-2
rts.src 7-2, 7-22
runtime environment 6-1 to 6-38

defining variables in assembly language 6-18
definition A-6
floating-point expression analysis 6-32
function call conventions 6-12 to 6-15
inline assembly language 6-21
integer expression analysis 6-30
interfacing C with assembly language 6-16 to

6-27
interrupt handling 6-28 to 6-29
memory model

allocating variables 6-7
during autoinitialization 6-6
dynamic memory allocation 6-6
field manipulation 6-7
sections 6-2
structure packing 6-7

register conventions 6-9 to 6-11
stack 6-4
system initialization 6-33 to 6-38

runtime initialization of variables 6-6
runtime type information 5-5
runtime-model options

-me 2-15
-mf 2-15
-ml 2-15
-mo 2-16
-mr 2-16

runtime-support
functions

definition A-6
introduction 7-1
summary 7-26

libraries 7-2, 8-1
described 1-4
linking with 4-7

library, definition A-7
library function inline expansion 3-22
macros, summary 7-26

S
.s extension 2-17
-s option

linker 4-6
shell 2-16, 2-42

save-on-call registers 6-9
save-on-entry registers 5-13, 6-9
scanf function 7-73
searches 7-42
.sect directive, associating interrupt routines 6-29
section

.bss 6-3

.cinit 6-3, 6-33, 6-34

.const, initializing 5-27

.data 6-3
definition A-7
description 4-10
header A-7
output A-6
.stack 6-3
.sysmem 6-3
.text 6-3
uninitialized A-8

set file-position functions
fseek function 7-55
fsetpos function 7-56

setbuf function 7-73
setjmp function 7-74
setjmp.h header, summary of functions and mac-

ros 7-30
setvbuf function 7-75
shell program

assembler options 2-21
C_OPTION environment variable 2-23
compile only 2-16
definition A-7

Index

Index-13

diagnostic options 2-31 to 2-32
directory specifier options 2-20
enabling linking 2-16
file specifier options 2-18
general options 2-14 to 2-42
invoking the 2-4
keeping the assembly language file 2-15
optimizer options 2-11

shift 5-3

sin function 7-76

sine 7-76

sinh function 7-76

size_t 5-3
data type 7-21
type 7-21

snprintf function 7-77

software development tools 1-2 to 1-4

sorts 7-70

source file
definition A-7
extensions 2-18
specifying algebraic instructions 2-21

source interlist utility. See interlist utility

specifying directories 2-20

sprintf function 7-77

sqrt function 7-77

square root 7-77

srand function 7-70

-ss shell option 2-16, 3-13

sscanf function 7-78

STABS debugging format 2-15

stack 6-4
overflow, runtime stack 6-4
reserved space 6-3

-stack linker option 4-6

stack management 6-4

stack pointer 6-4

.stack section 4-10, 6-3

__STACK_SIZE constant 6-4

standalone preprocessor, definition A-7

static
definition A-7
variables, reserved space 6-3

static variables 5-26, 6-7

status registers, use by compiler 6-10

stdarg.h header 7-20
summary of macros 7-30

stddef.h header 7-21
stdio.h header 7-21

summary of functions 7-31 to 7-33
stdlib.h header 7-22

summary of functions 7-33
storage class, definition A-7
store object function 7-51
strcat function 7-78
strchr function 7-79
strcmp function 7-80
strcoll function 7-80
strcpy function 7-81
strcspn function 7-81
strength reduction optimization 3-23
strerror function 7-82
strftime function 7-82
string copy 7-86
string functions 7-23, 7-35

strcmp 7-80
string.h header 7-23

summary of functions 7-35
strlen function 7-84
strncat function 7-84
strncmp function 7-85
strncpy function 7-86
strpbrk function 7-87
strrchr function 7-88
strspn function 7-88
strstr function 7-89
strtod function 7-89
strtok function 7-90
strtol function 7-89
strtoul function 7-89
structure

definition A-7
members 5-3

structure packing 6-7
strxfrm function 7-91
STYP_CPY flag 4-9
suppressing, diagnostic messages 2-31 to 2-33
.switch section 4-10, 6-2
symbol A-7

table, definition A-7

Index

Index-14

symbolic debugging
cross-reference, creating 2-22
definition A-7
directives 2-14
DWARF directives 2-15
using STABS format 2-15

symbols
assembler-defined 2-21
undefining assembler-defined symbols 2-22

.sysmem section 4-10, 6-3

__SYSMEM_SIZE 6-6

system constraints
__STACK_SIZE 6-4
_SYSMEM_SIZE 6-6

system initialization 6-33 to 6-38
autoinitialization 6-34

system stack 6-4

T
tail merging 3-23

tan function 7-91

tangent 7-91

tanh function 7-92

target system A-8

temporary file creation function 7-93

tentative definition 5-29

test error function 7-50

text, definition A-8

.text section 4-10, 6-3

time functions 7-23
asctime 7-38
clock 7-44
ctime 7-46
difftime 7-46
gmtime 7-58
localtime 7-61
mktime 7-65
strftime 7-82
summary of 7-36
time 7-92

time.h header 7-23
summary of functions 7-36

__TIME__ 2-25

time_t data type 7-23

tm structure 7-23

TMP_MAX macro 7-21
tmpfile function 7-93
tmpnam function 7-93
TMS320C54x C data types. See data types
TMS320C54x C language. See C language
TMS320C55xx C data types. See data types
TMS320C55xx C language. See C language
_TMS320C5XX 2-25
toascii function 7-93
tokens 7-90
tolower function 7-94
toupper function 7-94
trailing comma, enumerator list 5-30
trailing tokens, preprocessor directives 5-30
trgcio.h 7-2
trigonometric math function 7-20
trigraph

sequence, definition A-8
sequences 2-27

U
- -u library-build utility option 8-3
-u option

C++ demangler utility 9-2
linker 4-6
shell 2-16

undefine constant 2-16
underflow 6-30
ungetc function 7-94
unguarded definition-controlled inlining 2-38
uninitialized section, definition A-8
uninitialized sections 4-10, 6-3
UNLINK I/O function 7-14
unsigned, definition A-8
utilities

overview 1-7
source interlist. See interlist utility

V
- -v library-build utility option 8-3
-v option

C++ demangler utility 9-2
linker 4-6
shell 2-16

Index

Index-15

va_arg function 7-95
va_end function 7-95
va_start function 7-95
values.h 7-2
variable, definition A-8
variable allocation 6-7
variable argument functions and macros 7-20

va_arg 7-95
va_end 7-95
va_start 7-95

variable argument macros, summary of 7-30
variable constructors (C++) 4-8
variables, assembler, accessing from C 6-18
vfprintf function 7-96
vprintf function 7-96
vsnprintf function 7-97
vsprintf function 7-97

W
-w linker option 4-6
warning messages 2-29, 5-29
wildcards 2-17
write block of data function 7-56

write functions
fprintf 7-52
fputc 7-53
fputs 7-53
printf 7-68
putc 7-69
putchar 7-69
puts 7-69
snprintf 7-77
sprintf 7-77
ungetc 7-94
vfprintf 7-96
vprintf 7-96
vsnprintf 7-97
vsprintf 7-97

WRITE I/O function 7-14

X
-x linker option 4-6

Z
-z compiler option 2-2
-z linker option 2-4
-z shell option 2-16

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	Contents
	Figures
	Tables
	Examples
	Notes
	Introduction
	Software Development Tools Overview
	C/C++ Compiler Overview
	ISO Standard
	Output Files
	Compiler Interface
	Compiler Operation
	Utilities

	The Compiler and Code Composer Studio

	Using the C/C++ Compiler
	About the Compiler
	Invoking the C/C++ Compiler
	Changing the Compiler’s Behavior With Options
	Frequently Used Options
	Specifying Filenames
	Changing How the Compiler Interprets Filenames (-fa, -fc, -fg, -fo, and\
 -fp Options)
	Changing How the Compiler Program Interprets and Names Extensions (- e \
Options)
	Specifying Directories
	Options That Control the Assembler

	Using Environment Variables
	Specifying Directories (C_DIR and C54X_C_DIR)
	Setting Default Compiler Options (C_OPTION and C54X_C_OPTION)

	Controlling the Preprocessor
	Predefined Macro Names
	The Search Path for #include Files
	Changing the #include File Search Path With the -i Option

	Generating a Preprocessed Listing File (-ppo Option)
	Continuing Compilation After Preprocessing (-ppa Option)
	Generating a Preprocessed Listing File With Comments (-ppc Option)
	Generating a Preprocessed Listing File With Line-Control Information (-\
 ppl Option)
	Generating Preprocessed Output for a Make Utility (-ppd Option)
	Generating a List of Files Included With the #include Directive (-ppi O\
ption)

	Understanding Diagnostic Messages
	Controlling Diagnostics
	How You Can Use Diagnostic Suppression Options
	Other Messages

	Generating Cross-Reference Listing Information (-px Option)
	Generating a Raw Listing File (-pl Option)
	Using Inline Function Expansion
	Inlining Intrinsic Operators
	Automatic Inlining
	Unguarded Definition-Controlled Inlining
	Guarded Inlining and the _INLINE Preprocessor Symbol
	Inlining Restrictions

	Using Interlist

	Optimizing Your Code
	Using the Optimizer
	Performing File-Level Optimization (-O3 Option)
	Controlling File-Level Optimization (-Ol Option)
	Creating an Optimization Information File (-on Option)

	Performing Program-Level Optimization (-pm and -O3 Options)
	Controlling Program-Level Optimization (-op Option)
	Optimization Considerations When Mixing C and Assembly

	Use Caution With asm Statements in Optimized Code
	Accessing Aliased Variables in Optimized Code
	Automatic Inline Expansion (-oi Option)
	Using Interlist With the Optimizer
	Debugging Optimized Code
	Debugging Optimized Code (-g, -gw, and -o Options)
	Profiling Optimized Code (-gp and -o Options)

	What Kind of Optimization Is Being Performed?
	Cost-Based Register Allocation
	Alias Disambiguation
	Branch Optimizations and Control-Flow Simplification
	Data Flow Optimizations
	Expression Simplification
	Inline Expansion of Functions
	Induction Variables and Strength Reduction
	Loop-Invariant Code Motion
	Loop Rotation
	Tail Merging
	Autoincrement Addressing
	Repeat Blocks
	Delays, Branches, Calls, and Returns
	Algebraic Reordering/Symbolic Simplification/Constant Folding

	Linking C/C++ Code
	Invoking the Linker (-z Option)
	Invoking the Linker As a Separate Step
	Invoking the Linker As Part of the Compile Step

	Disabling the Linker (-c Compiler Option)
	Linker Options
	Controlling the Linking Process
	Linking With Runtime-Support Libraries
	Runtime Initialization
	Global Object Constructors
	Specifying the Type of Initialization
	Specifying Where to Allocate Sections in Memory
	A Sample Linker Command File

	TMS32GC54x C/C++ Language
	Characteristics of TMS320C54x C
	Identifiers and Constants
	Data Types
	Conversions
	Expressions
	Declaration
	Preprocessor

	Characteristics of TMS320C54x C++
	Data Types
	Keywords
	The const Keyword
	The ioport Keyword
	The interrupt Keyword
	The near and far Keywords
	The volatile Keyword

	Register Variables
	Global Register Variables
	The asm Statement
	Pragma Directives
	The CODE_SECTION Pragma
	The DATA_SECTION Pragma
	The FUNC_CANNOT_INLINE Pragma
	The FUNC_EXT_CALLED Pragma
	The FUNC_IS_PURE Pragma
	The FUNC_IS_SYSTEM Pragma
	The FUNC_NEVER_RETURNS Pragma
	The FUNC_NO_GLOBAL_ASG Pragma
	The FUNC_NO_IND_ASG Pragma
	The IDENT Pragma
	The INTERRUPT Pragma
	The NO_INTERRUPT Pragma

	Generating Linknames
	Initializing Static and Global Variables
	Initializing Static and Global Variables With the Const Type Qualifier

	Changing the ISO C Language Mode (-pk, -pr, and -ps Options)
	Compatibility With K&R C (-pk Option)
	Enabling Strict ISO Mode and Relaxed ISO Mode (-ps and -pr Options)
	Enabling Embedded C++ Mode (-pe Option)

	Compiler Limits

	Run-Time Environment
	Memory Model
	Sections
	C/C++ System Stack
	Allocating .const to Program Memory
	Dynamic Memory Allocation
	Initialization of Variables
	Allocating Memory for Static and Global Variables
	Field/Structure Alignment

	Character String Constants
	Register Conventions
	Status Registers
	Register Variables

	Function Structure and Calling Conventions
	How a Function Makes a Call
	How a Called Function Responds
	Accessing Arguments and Locals
	Allocating the Frame and Using the 32-bit Memory Read Instructions

	Interfacing C/C++ With Assembly Language
	Using Assembly Language Modules with C/C++ Code
	Accessing Assembly Language Variables From C/C++
	Accessing Assembly Language Global Variables
	Accessing Assembly Language Constants

	Using Inline Assembly Language
	Using Intrinsics to Access Assembly Language Statements
	Intrinsics and ETSI functions

	Interrupt Handling
	General Points About Interrupts
	Using C/C++ Interrupt Routines
	Saving Context on Interrupt Entry

	Integer Expression Analysis
	Arithmetic Overflow and Underflow
	Operations Evaluated With RTS Calls
	C Code Access to the Upper 16 Bits of 16-Bit Multiply

	Floating-Point Expression Analysis
	System Initialization
	Automatic Initialization of Variables
	Global Constructors
	Initialization Tables
	Autoinitialization of Variables at Run Time
	Autoinitialization of Variables at Load Time

	Run-Time-Support Functions
	Libraries
	Nonstandard Header Files in rts.src
	Modifying a Library Function
	Building a Library With Different Options

	The C I/O Functions
	Overview Of Low-Level I/O Implementation
	Adding a Device For C I/O
	add_device
	close
	lseek
	open
	read
	rename
	unlink
	write

	Header Files
	Diagnostic Messages (assert.h/cassert)
	Character-Typing and Conversion (ctype.h/cctype)
	Error Reporting (errno.h/cerrno)
	Extended Addressing Functions (extaddr.h)
	Low-Level Input/Output Functions (file.h)
	Limits (float.h/cfloat and limits.h/climits)
	Floating-Point Math (math.h/cmath)
	Nonlocal Jumps (setjmp.h/csetjmp)
	Variable Arguments (stdarg.h/
	Standard Definitions (stddef.h/cstddef)
	Input/Output Functions (stdio.h/cstdio)
	General Utilities (stdlib.h/cstdlib)
	String Functions (string.h/cstring)
	Time Functions (time.h/ctime)
	Exception Handling (exception and stdexcept)
	Dynamic Memory Management (new)
	Run-Time Type Information (typeinfo)

	Summary of Run-Time-Support Functions and Macros
	Description of Run-Time-Support Functions and Macros
	abort
	abs/labs
	acos
	asctime
	asin
	assert
	atan
	atan2
	atexit
	atof/atoi/atol
	bsearch
	calloc
	ceil
	clearerr
	clock
	cos
	cosh
	ctime
	difftime
	div/ldiv
	exit
	exp
	fabs
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	floor
	fmod
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	fropen
	frexp
	fscanf
	fseek
	fsetpos
	ftell
	fwrite
	getc
	getchar
	getenv
	gets
	gmtime
	isxxx
	labs
	ldexp
	ldiv
	localtime
	log
	log10
	longjmp
	ltoa
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	minit
	modf
	perror
	pow
	printf
	putc
	putchar
	puts
	qsort
	rand/srand
	realloc
	remove
	rename
	rewind
	scanf
	setbuf
	setjmp/longjmp
	setvbuf
	sin
	sinh
	snprintf
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp/strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod/strtol/strtoul
	strtok
	strxfrm
	tan
	tanh
	time
	tmpfile
	tmpnam
	toascii
	tolower/toupper
	ungetc
	va_arg/va_end/va_start
	vfprintf
	vprintf
	vsnprintf
	vsprintf

	Library-Build Utility
	Invoking the Library-Build Utility
	Library-Build Utility Options
	Options Summary

	C++ Name Demangler
	Invoking the C++ Name Demangler
	C++ Name Demangler Options
	Sample Usage of the C++ Name Demangler

	Glossary
	Index

