

LMH6619Q 130 MHz, 1.25 mA RRIO Operational Amplifier

Check for Samples: LMH6619Q

FEATURES

- V_S = 5V, R_L = 1 kΩ, T_A = 25°C and A_V = +1, unless otherwise specified.
- Operating voltage range 2.7V to 11V
- Supply current per channel 1.25 mA
- Small signal bandwidth 130 MHz
- Input offset voltage (limit at 25°C) ±0.75 mV
- Slew rate 55 V/µs
- Settling time to 0.1% 90 ns
- Settling time to 0.01% 120 ns
- SFDR (f = 100 kHz, A_V = +1, V_{OUT} = 2 V_{PP}) 100 dBc
- 0.1 dB bandwidth $(A_V = +2)$ 15 MHz
- Low voltage noise 10 nV/√Hz
- · Rail-to-Rail input and output

AEC-Q100 grade 2 qualified -40°C to +105°C

Manufactured on an automotive grade flow

APPLICATIONS

- ADC driver
- DAC buffer
- Active filters
- · High speed sensor amplifier
- · Current sense amplifier
- Portable video
- · STB, TV video amplifier
- Automotive

DESCRIPTION

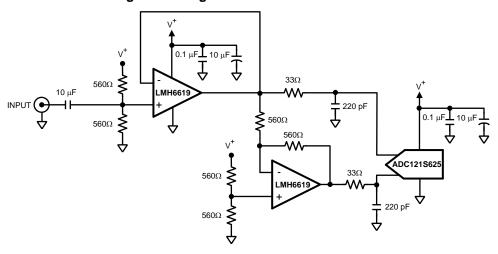
The LMH6619Q (dual) is a 130 MHz rail-to-rail input and output amplifier designed for ease of use in a wide range of applications requiring high speed, low supply current, low noise, and the ability to drive complex ADC and video loads. The operating voltage range extends from 2.7V to 11V and the supply current is typically 1.25 mA per channel at 5V. The LMH6619Q is a member of the PowerWise® family and have an exceptional power-to-performance ratio.

The amplifier's voltage feedback design topology provides balanced inputs and high open loop gain for ease of use and accuracy in applications such as active filter design. Offset voltage is typically 0.1 mV and settling time to 0.01% is 120 ns which combined with an 100 dBc SFDR at 100 kHz makes the part suitable for use as an input buffer for popular 8-bit, 10-bit, 12-bit and 14-bit mega-sample ADCs.

The input common mode range extends 200 mV beyond the supply rails. On a single 5V supply with a ground terminated 150Ω load the output swings to within 37 mV of the ground rail, while a mid-rail terminated 1 k Ω load will swing to 77 mV of either rail, providing true single supply operation and maximum signal dynamic range on low power rails. The amplifier output will source and sink 35 mA and drive up to 30 pF loads without the need for external compensation.

The LMH6619Q is offered in the 8-Pin SOIC package.

M


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerWise, WEBENCH are registered trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

Typical Application

Figure 1. Single to Differential ADC Driver

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

2000V
2000V
200V
12V
150°C max
−65°C to 150°C

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
- (2) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).
- (3) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

Operating Ratings (1)

_ 1	
Supply Voltage $(V_S = V^+ - V^-)$	2.7V to 11V
Ambient Temperature Range (2)	−40°C to +105°C
Package Thermal Resistance (θ _{JA})	
8-Pin SOIC	160°C/W

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
- (2) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

Submit Documentation Feedback

+3V Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = +25^{\circ}C$, $V^+ = 3V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2 \text{ k}\Omega$ for $A_V \neq +1$, $R_L = 1 \text{ k}\Omega \parallel 5 \text{ pF}$. **Boldface** Limits apply at temperature extremes. (1)

Symbol	Parameter	Condition	Min (2)	Тур (3)	Max (2)	Units
Frequen	cy Domain Response	1				
SSBW	-3 dB Bandwidth Small Signal	$A_V = 1$, $R_L = 1 k\Omega$, $V_{OUT} = 0.2 V_{PP}$		120		
		$A_V = 2, -1, R_L = 1 k\Omega, V_{OUT} = 0.2 V_{PP}$		56		MHz
GBW	Gain Bandwidth	$A_V = 10, R_F = 2 k\Omega, R_G = 221\Omega,$ $R_L = 1 k\Omega, V_{OUT} = 0.2 V_{PP}$	55	63		MHz
LSBW	-3 dB Bandwidth Large Signal	$A_V = 1$, $R_L = 1$ k Ω , $V_{OUT} = 2$ V_{PP}		13		NAL I-
		$A_V = 2$, $R_L = 150\Omega$, $V_{OUT} = 2 V_{PP}$		13		MHz
Peak	Peaking	$A_V = 1, C_L = 5 pF$		1.5		dB
0.1 dBBW	0.1 dB Bandwidth	$A_V = 2$, $V_{OUT} = 0.5 V_{PP}$, $R_F = R_G = 825\Omega$		15		MHz
DG	Differential Gain	$A_V = +2$, 4.43 MHz, 0.6V < V_{OUT} < 2V, $R_L = 150\Omega$ to $V^+/2$		0.1		%
DP	Differential Phase	A_V = +2, 4.43 MHz, 0.6V < V_{OUT} < 2V, R_L = 150 Ω to $V^+/2$		0.1		deg
Time Do	main Response		"			
t _r /t _f	Rise & Fall Time	2V Step, A _V = 1		36		ns
SR	Slew Rate	2V Step, A _V = 1	36	46		V/µs
t _{s_0.1}	0.1% Settling Time	2V Step, A _V = −1		90		20
t _{s_0.01}	0.01% Settling Time	2V Step, A _V = −1		120		ns
Noise ar	nd Distortion Performance	,	*	•	•	•
SFDR	OR Spurious Free Dynamic Range	$f_C = 100 \text{ kHz}, V_{OUT} = 2 V_{PP}, R_L = 1 \text{ k}\Omega$		100		
		$f_C = 1 \text{ MHz}, V_{OUT} = 2 V_{PP}, R_L = 1 \text{ k}\Omega$		61		dBc
		$f_C = 5 \text{ MHz}, V_{OUT} = 2 V_{PP}, R_L = 1 \text{ k}\Omega$		47		
e _n	Input Voltage Noise Density	f = 100 kHz		10		nV/√Hz
i _n	Input Current Noise Density	f = 100 kHz		1		pA/√Hz
СТ	Crosstalk	f = 5 MHz, V _{IN} = 2 V _{PP}		80		dB
Input, D	C Performance				11	li
V _{OS}	Input Offset Voltage	$V_{CM} = 0.5V$ (pnp active) $V_{CM} = 2.5V$ (npn active)		0.1	±0.75 ±1.3	mV
TCV _{OS}	Input Offset Voltage Temperature Drift	(4)		0.8		μV/°C
I _B	Input Bias Current	V _{CM} = 0.5V (pnp active)		-1.4	-2.6	
		V _{CM} = 2.5V (npn active)		+1.0	+1.8	μA
los	Input Offset Current			0.01	±0.27	μA
C _{IN}	Input Capacitance			1.5		pF
R _{IN}	Input Resistance			8		ΜΩ
CMVR	Common Mode Voltage Range	DC, CMRR ≥ 65 dB	-0.2		3.2	V
CMRR	Common Mode Rejection Ratio	V _{CM} Stepped from −0.1V to 1.4V	78	96		10
		V _{CM} Stepped from 2.0V to 3.1V	81	107		dB
A _{OL}	Open Loop Voltage Gain	$R_L = 1 \text{ k}\Omega \text{ to } +2.7 \text{V or } +0.3 \text{V}$	85	98		10
		$R_L = 150\Omega$ to +2.6V or +0.4V	76	82		dB

⁽¹⁾ Boldface limits apply to temperature range of -40°C to 105°C

⁽²⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using the Statistical Quality Control (SQC) method.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

⁴⁾ Voltage average drift is determined by dividing the change in V_{OS} by temperature change.

SNOSC78A -JUNE 2012-REVISED NOVEMBER 2012

+3V Electrical Characteristics (continued)

Unless otherwise specified, all limits are guaranteed for T_J = +25°C, V^+ = 3V, V^- = 0V, V_{CM} = V_O = $V^+/2$, A_V = +1 (R_F = 0 Ω), otherwise R_F = 2 k Ω for $A_V \neq$ +1, R_L = 1 k Ω || 5 pF. **Boldface** Limits apply at temperature extremes. (1)

Symbol	Parameter	Condition	Min (2)	Тур (3)	Max (2)	Units
V _{OUT}	Output Voltage Swing High (Voltage from V ⁺ Supply Rail)	$R_L = 1 k\Omega$ to $V^+/2$		50	56 62	
		$R_L = 150\Omega$ to V ⁺ /2		160	172 198	
	Output Voltage Swing Low (Voltage from V ⁻ Supply Rail)	$R_L = 1 k\Omega \text{ to } V^+/2$		62	68 76	mV from either rail
		$R_L = 150\Omega$ to $V^+/2$		175	189 222	
		$R_L = 150\Omega$ to V^-		34	44 48	
I _{OUT}	Linear Output Current	$V_{OUT} = V^{+}/2^{(5)}$	±25	±35		mA
R _{OUT}	Output Resistance	f = 1 MHz		0.17		Ω
Power S	Supply Performance					
PSRR	Power Supply Rejection Ratio	DC, $V_{CM} = 0.5V$, $V_{S} = 2.7V$ to 11V	84	104		dB
I _S	Supply Current (per channel)	R _L = ∞		1.2	1.5 1.75	

⁽⁵⁾ Do not short circuit the output. Continuous source or sink currents larger than the I_{OUT} typical are not recommended as it may damage the part.

Submit Documentation Feedback

+5V Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = +25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2 \text{ k}\Omega$ for $A_V \neq +1$, $R_L = 1 \text{ k}\Omega \parallel 5 \text{ pF}$. **Boldface** Limits apply at temperature extremes.

Symbol	Parameter	Condition	Min (1)	Typ (2)	Max (1)	Units
Frequen	cy Domain Response					
SSBW	-3 dB Bandwidth Small Signal	$A_V = 1$, $R_L = 1 k\Omega$, $V_{OUT} = 0.2 V_{PP}$		130		
		$A_V = 2$, -1 , $R_L = 1$ k Ω , $V_{OUT} = 0.2$ V_{PP}		53		MHz
GBW	Gain Bandwidth	$A_V = 10, R_F = 2 k\Omega, R_G = 221\Omega, R_L = 1 k\Omega, V_{OUT} = 0.2 V_{PP}$	54	57		MHz
LSBW	-3 dB Bandwidth Large Signal	$A_V = 1$, $R_L = 1$ k Ω , $V_{OUT} = 2$ V_{PP}		15		NAL I-
		$A_V = 2$, $R_L = 150\Omega$, $V_{OUT} = 2 V_{PP}$		15		MHz
Peak	Peaking	$A_V = 1, C_L = 5 pF$		0.5		dB
0.1 dBBW	0.1 dB Bandwidth	$A_V = 2, V_{OUT} = 0.5 V_{PP},$ $R_F = R_G = 1 k\Omega$		15		MHz
DG	Differential Gain	$A_V = +2$, 4.43 MHz, 0.6V < V_{OUT} < 2V, $R_L = 150\Omega$ to $V^+/2$		0.1		%
DP	Differential Phase	$A_V = +2$, 4.43 MHz, 0.6V < V_{OUT} < 2V, $R_L = 150\Omega$ to $V^+/2$		0.1		deg
Time Do	main Response		·			
t _r /t _f	Rise & Fall Time	2V Step, A _V = 1		30		ns
SR	Slew Rate	2V Step, A _V = 1	44	55		V/µs
t _{s_0.1}	0.1% Settling Time	2V Step, A _V = −1		90		20
t _{s_0.01}	0.01% Settling Time	2V Step, A _V = −1		120		ns
Distortio	on and Noise Performance					
SFDR	FDR Spurious Free Dynamic Range	$f_C = 100 \text{ kHz}, V_{OUT} = 2 V_{PP}, R_L = 1 \text{ k}\Omega$		100		
		$f_C = 1 \text{ MHz}, V_{OUT} = 2 V_{PP}, R_L = 1 \text{ k}\Omega$		88		dBc
		$f_C = 5 \text{ MHz}, V_O = 2 V_{PP}, R_L = 1 \text{ k}\Omega$		61		
e_{n}	Input Voltage Noise Density	f = 100 kHz		10		nV/√Hz
i _n	Input Current Noise Density	f = 100 kHz		1		pA/√Hz
СТ	Crosstalk	$f = 5 \text{ MHz}, V_{IN} = 2 V_{PP}$		80		dB
Input, Do	C Performance					
V _{OS}	Input Offset Voltage	V _{CM} = 0.5V (pnp active) V _{CM} = 4.5V (npn active)		0.1	±0.75 ±1.3	mV
TCV _{OS}	Input Offset Voltage Temperature Drift	(3)		8.0		μV/°C
I_{B}	Input Bias Current	V _{CM} = 0.5V (pnp active)		-1.5	-2.4	
		V _{CM} = 4.5V (npn active)		+1.0	+1.9	μA
Ios	Input Offset Current			0.01	±0.26	μA
C _{IN}	Input Capacitance			1.5		pF
R_{IN}	Input Resistance			8		ΜΩ
CMVR	Common Mode Voltage Range	DC, CMRR ≥ 65 dB	-0.2		5.2	V
CMRR	Common Mode Rejection Ratio	V _{CM} Stepped from -0.1V to 3.4V	81	98		40
		V _{CM} Stepped from 4.0V to 5.1V	84	108		dB
A _{OL}	Open Loop Voltage Gain	$R_L = 1 \text{ k}\Omega \text{ to } +4.6 \text{V or } +0.4 \text{V}$	84	100		٩D
		$R_L = 150\Omega$ to +4.5V or +0.5V	78	83		dB

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using the Statistical Quality Control (SQC) method.

Product Folder Links: LMH6619Q

Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

Voltage average drift is determined by dividing the change in V_{OS} by temperature change.

SNOSC78A – JUNE 2012 – REVISED NOVEMBER 2012

+5V Electrical Characteristics (continued)

Unless otherwise specified, all limits are guaranteed for T_J = +25°C, V^+ = 5V, V^- = 0V, V_{CM} = V_O = $V^+/2$, A_V = +1 (R_F = 0 Ω), otherwise R_F = 2 k Ω for $A_V \neq$ +1, R_L = 1 k Ω || 5 pF. **Boldface** Limits apply at temperature extremes.

Symbol	Parameter	Condition	Min (1)	Typ (2)	Max (1)	Units
V _{OUT}	Output Voltage Swing High Voltage from V ⁺ Supply Rail)	$R_L = 1 \text{ k}\Omega \text{ to V}^+/2$		60	73 82	
		$R_L = 150\Omega$ to V ⁺ /2		230	255 295	
	Output Voltage Swing Low Voltage from V ⁻ Supply Rail)	$R_L = 1 \text{ k}\Omega \text{ to } V^+/2$		77	85 98	mV from either rail
		$R_L = 150\Omega$ to $V^+/2$		255	275 326	
		$R_L = 150\Omega$ to V^-		37	48 50	
I _{OUT}	Linear Output Current	$V_{OUT} = V^{+}/2^{-(4)}$	±25	±35		mA
R _{OUT}	Output Resistance	f = 1 MHz		0.17		Ω
	Supply Performance					
PSRR	Power Supply Rejection Ratio	DC, $V_{CM} = 0.5V$, $V_{S} = 2.7V$ to 11V	84	104		dB
I _S	Supply Current (per channel)	R _L = ∞		1.3	1.5 1.75	

⁽⁴⁾ Do not short circuit the output. Continuous source or sink currents larger than the I_{OUT} typical are not recommended as it may damage the part.

Submit Documentation Feedback

±5V Electrical Characteristics

Unless otherwise specified, all limits are guaranteed for $T_J = +25^{\circ}C$, $V^+ = 5V$, $V^- = -5V$, $V_{CM} = V_O = 0V$, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2 \text{ k}\Omega$ for $A_V \neq +1$, $R_L = 1 \text{ k}\Omega \parallel 5 \text{ pF}$. **Boldface** Limits apply at temperature extremes.

y Domain Response					
			I	I.	11
–3 dB Bandwidth Small Signal	$A_V = 1$, $R_L = 1 k\Omega$, $V_{OUT} = 0.2 V_{PP}$		140		
	$A_V = 2$, -1 , $R_L = 1 k\Omega$, $V_{OUT} = 0.2 V_{PP}$		53		MHz
Gain Bandwidth	$A_V = 10, R_F = 2 k\Omega, R_G = 221\Omega, \\ R_L = 1 k\Omega, V_{OUT} = 0.2 V_{PP}$	54	58		MHz
−3 dB Bandwidth Large Signal	$A_V = 1$, $R_L = 1$ k Ω , $V_{OUT} = 2$ V_{PP}		16		N 41 1-
	$A_V = 2$, $R_L = 150\Omega$, $V_{OUT} = 2 V_{PP}$		15		MHz
Peaking	$A_V = 1, C_L = 5 pF$		0.05		dB
0.1 dB Bandwidth	$A_V = 2$, $V_{OUT} = 0.5 V_{PP}$, $R_F = R_G = 1.21 \text{ k}\Omega$		15		MHz
Differential Gain	$A_V = +2$, 4.43 MHz, 0.6V < V_{OUT} < 2V, $R_L = 150\Omega$ to $V^+/2$		0.1		%
Differential Phase	$A_V = +2$, 4.43 MHz, 0.6V < V_{OUT} < 2V, $R_L = 150\Omega$ to $V^+/2$		0.1		deg
nain Response					
Rise & Fall Time	2V Step, A _V = 1		30		ns
Slew Rate	2V Step, A _V = 1	45	57		V/µs
0.1% Settling Time	2V Step, A _V = −1		90		ne
0.01% Settling Time	2V Step, A _V = −1		120		ns
d Distortion Performance		·			
SFDR Spurious Free Dynamic Range	$f_C = 100 \text{ kHz}, V_{OUT} = 2 V_{PP}, R_L = 1 \text{ k}\Omega$		100		
	$f_C = 1 \text{ MHz}, V_{OUT} = 2 V_{PP}, R_L = 1 \text{ k}\Omega$		88		dBc
	$f_C = 5 \text{ MHz}, V_{OUT} = 2 V_{PP}, R_L = 1 \text{ k}\Omega$		70		
Input Voltage Noise Density	f = 100 kHz		10		nV/√Hz
Input Current Noise Density	f = 100 kHz		1		pA/√Hz
Crosstalk	f = 5 MHz, V _{IN} = 2 V _{PP}		80		dB
Performance					
Input Offset Voltage	V _{CM} = -4.5V (pnp active) V _{CM} = 4.5V (pnp active)		0.1	±0.75 ±1.3	mV
Input Offset Voltage Temperature Drift	(3)		0.9		μV/°C
Input Bias Current	V _{CM} = −4.5V (pnp active)		-1.5	-2.4	
	V _{CM} = 4.5V (npn active)		+1.0	+1.9	μA
Input Offset Current			0.01	±0.26	μΑ
Input Capacitance			1.5		pF
Input Resistance			8		ΜΩ
Common Mode Voltage Range	DC, CMRR ≥ 65 dB	-5.2		5.2	V
Common Mode Rejection Ratio	V _{CM} Stepped from -5.1V to 3.4V	84	100		
	V _{CM} Stepped from 4.0V to 5.1V	83	108		dB
Open Loop Voltage Gain	$R_L = 1 \text{ k}\Omega \text{ to } +4.6 \text{V or } -4.6 \text{V}$	86	95		j
	$R_L = 150\Omega$ to +4.3V or -4.3V	79	84		dB
	Peaking 0.1 dB Bandwidth Differential Gain Differential Phase Differen	A _V = 1, R _L = 1 kΩ, V _{OUT} = 2 V _{PP} A _V = 2, R _L = 150Ω, V _{OUT} = 2 V _{PP} A _V = 2, R _L = 150Ω, V _{OUT} = 2 V _{PP} A _V = 1, C _L = 5 pF 0.1 dB Bandwidth A _V = 1, C _L = 5 pF 0.1 dB Bandwidth Differential Gain A _V = 2, V _{OUT} = 0.5 V _{PP} , R _F = R _G = 1.21 kΩ Differential Phase A _V = +2, 4.43 MHz, 0.6V < V _{OUT} < 2V, R _L = 150Ω to V*/2 Differential Time Differential Time 2V Step, A _V = 1 Slew Rate 2V Step, A _V = 1 2V Step, A _V = 1 D.0.1% Settling Time 2V Step, A _V = −1 D.0.1% Settling Time Distortion Performance Spurious Free Dynamic Range	A ₂ = 1, R _L = 1 kΩ, V _{OUT} = 2 V _{PP} $A_V = 2$, $R_L = 150\Omega$, $V_{OUT} = 2$ V _{PP} $A_V = 2$, $R_L = 150\Omega$, $V_{OUT} = 2$ V _{PP} Peaking A _V = 1, C _L = 5 pF D.1 dB Bandwidth A _V = 2, V _{OUT} = 0.5 V _{PP} , R _F = R _G = 1.21 kΩ Differential Gain A _V = 2, 4.43 MHz, 0.6V < V _{OUT} < 2V, R _L = 150Ω to V*/2 Differential Phase A _V = 2, 4.43 MHz, 0.6V < V _{OUT} < 2V, R _L = 150Ω to V*/2 Differential Phase A _V = 1, 20 to V*/2 Differential Phase A _V = 2, 4.43 MHz, 0.6V < V _{OUT} < 2V, R _L = 150Ω to V*/2 Differential Phase A _V = 1, 24, 43 MHz, 0.6V < V _{OUT} < 2V, R _L = 150Ω to V*/2 Differential Phase A _V = 1, 43 MHz, 0.6V < V _{OUT} < 2V, R _L = 150Ω to V*/2 Differential Phase A _V = 1, 43 MHz, 0.6V < V _{OUT} < 2V, R _L = 150Ω to V*/2 Differential Phase A _V = 1, 43 MHz, 0.6V < V _{OUT} < 2V, R _L = 150Ω to V*/2 Differential Phase A _V = 1, 43 MHz, 0.6V < V _{OUT} < 2V, R _L = 1 MΩ A _V = 1, 24 MHz, A _V = 1 Differential Phase A _V = 1, 24 MHz, 0.6V < V _{OUT} < 2V, R _L = 1 MΩ A _V = 1, 24 MHz, V _{OUT} = 2 V _{PP} , R _L = 1 kΩ A _V = 1, 24 MHz, V _V = 1, 24 MHz, V _V = 1, 24 MTz,	$ \begin{array}{c} -3 \text{ dB Bandwidth Large Signal} & A_{V} = 1, R_{L} = 1 k\Omega, V_{OUT} = 2 V_{PP} & 16 \\ A_{V} = 2, R_{L} = 150\Omega, V_{OUT} = 2 V_{PP} & 15 \\ A_{V} = 2, R_{L} = 150\Omega, V_{OUT} = 2 V_{PP} & 15 \\ 0.05 \\ 0.1 dB Bandwidth & A_{V} = 1, C_{L} = 5 PF & 0.05 \\ 0.1 dB Bandwidth & A_{V} = 2, V_{OUT} = 0.5 V_{PP}, R_{F} = R_{G} = 1.21 k\Omega & 0.1 \\ R_{F} = R_{G} = 1.21 k\Omega & 0.1 \\ R_{L} = 150\Omega \text{to} V'/2 & 0.1 \\ R_{L} = 150\Omega \text{to} V'/2 & 0.1 \\ A_{V} = +2, 4.43 \text{MHz}, 0.6V < V_{OUT} < 2V, 0.1 \\ R_{L} = 150\Omega \text{to} V'/2 & 0.1 \\ A_{V} = +2, 4.43 \text{MHz}, 0.6V < V_{OUT} < 2V, 0.1 \\ A_{V} = +2, 4.43 \text{MHz}, 0.6V < V_{OUT} < 2V, 0.1 \\ A_{V} = 150\Omega \text{to} V'/2 & 0.1 \\ A_{V} = 15\Omega \text{to} $	

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using the Statistical Quality Control (SQC) method.

⁽²⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

³⁾ Voltage average drift is determined by dividing the change in V_{OS} by temperature change.

±5V Electrical Characteristics (continued)

Unless otherwise specified, all limits are guaranteed for $T_J = +25^{\circ}C$, $V^+ = 5V$, $V^- = -5V$, $V_{CM} = V_O = 0V$, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2$ k Ω for $A_V \neq +1$, $R_L = 1$ k $\Omega \parallel 5$ pF. **Boldface** Limits apply at temperature extremes.

Symbol	Parameter	Condition	Min (1)	Тур (2)	Max (1)	Units
V _{OUT}	Output Voltage Swing High (Voltage from V ⁺ Supply Rail)	$R_L = 1 \text{ k}\Omega \text{ to GND}$		100	111 126	
		$R_L = 150\Omega$ to GND		430	457 526	
	Output Voltage Swing Low (Voltage from V ⁻ Supply Rail)	$R_L = 1 \text{ k}\Omega \text{ to GND}$		115	126 141	mV from either rail
		$R_L = 150\Omega$ to GND		450	484 569	
		$R_L = 150\Omega$ to V^-		45	61 62	
I _{OUT}	Linear Output Current	$V_{OUT} = V^{+}/2^{-(4)}$	±25	±35		mA
R _{OUT}	Output Resistance	f = 1 MHz		0.17		Ω
Power S	upply Performance					
PSRR	Power Supply Rejection Ratio	DC, $V_{CM} = -4.5V$, $V_{S} = 2.7V$ to 11V	84	104		dB
I _S	Supply Current (per channel)	R _L = ∞		1.45	1.65 2.0	

⁽⁴⁾ Do not short circuit the output. Continuous source or sink currents larger than the I_{OUT} typical are not recommended as it may damage the part.

Connection Diagram

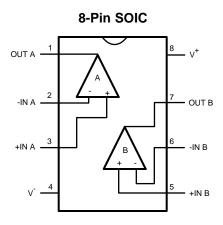
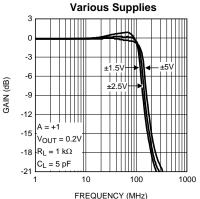
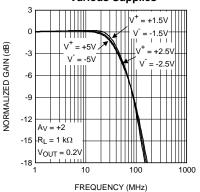
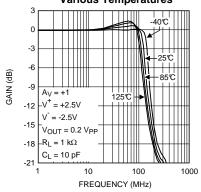


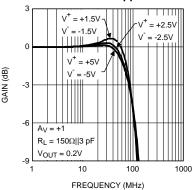
Figure 2. Top View

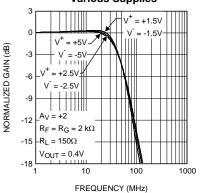

PRODUCT PREVIEW

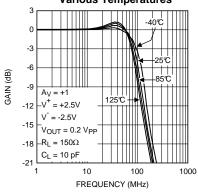

Typical Performance Characteristics

At $T_J = 25^{\circ}C$, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2$ k Ω for $A_V \neq +1$, unless otherwise specified.

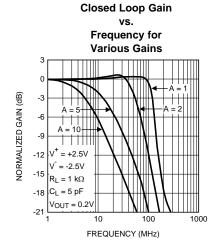

Closed Loop Frequency Response for


Closed Loop Frequency Response for Various Supplies

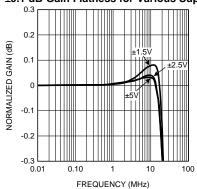

Closed Loop Frequency Response for Various Temperatures


Closed Loop Frequency Response for Various Supplies

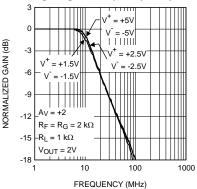
Closed Loop Frequency Response for Various Supplies

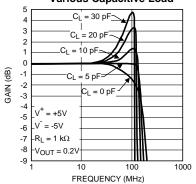


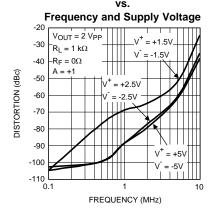
Closed Loop Frequency Response for Various Temperatures



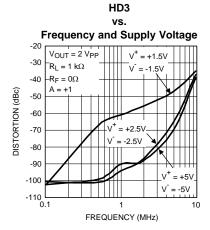

At $T_J = 25^{\circ}$ C, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2 \text{ k}\Omega$ for $A_V \neq +1$, unless otherwise specified.


±0.1 dB Gain Flatness for Various Supplies

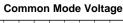

Small Signal Frequency Response with Capacitive Load and Various R_{ISO}

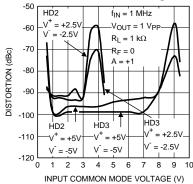

Large Signal Frequency Response

Small Signal Frequency Response with Various Capacitive Load



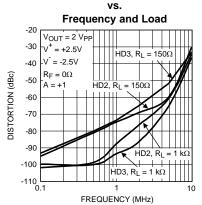
HD2





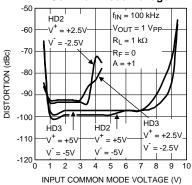
At $T_J = 25$ °C, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2$ k Ω for $A_V \neq +1$, unless otherwise specified.

HD2 and HD3 vs.

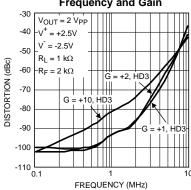


HD2 vs.

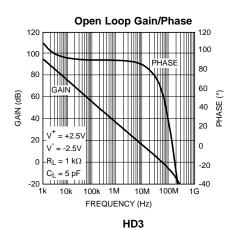
Frequency and Gain V_{OUT} = 2 V_{PP} $V^{+} = +2.5V$ V = -2.5V -50 $R_L = 1 \text{ k}\Omega$ G = +10, HD2 DISTORTION (dBc) -60 $-R_E = 2 k\Omega$ -70 -80 = +2, HD2 -110 L 0.1

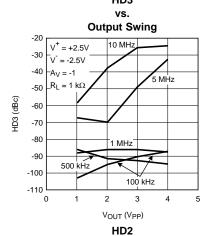

FREQUENCY (MHz)

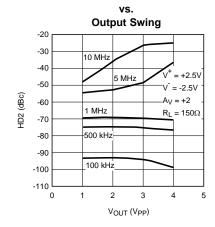
HD2 and HD3

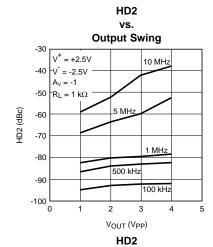

HD2 and HD3 vs.

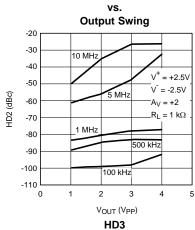
HD3 vs.

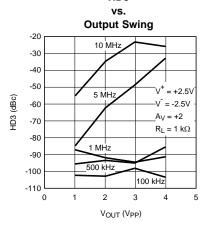

Frequency and Gain

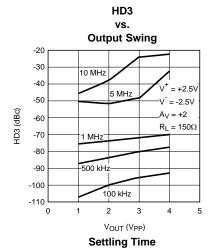


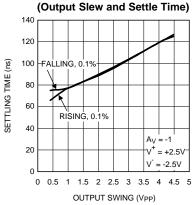

Copyright © 2012, Texas Instruments Incorporated

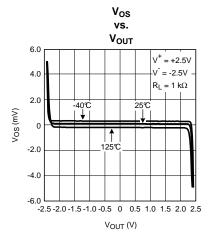


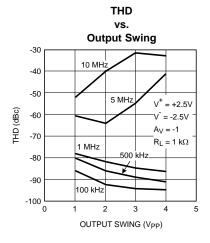

At $T_J = 25^{\circ}C$, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2 k\Omega$ for $A_V \neq +1$, unless otherwise specified.

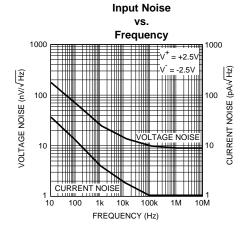


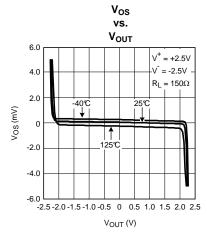


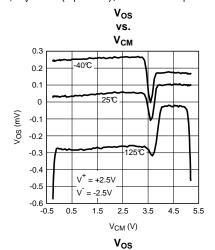


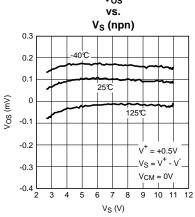


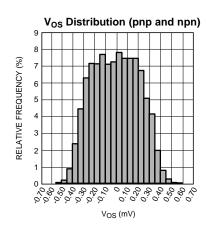

At $T_J = 25$ °C, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2$ k Ω for $A_V \neq +1$, unless otherwise specified.

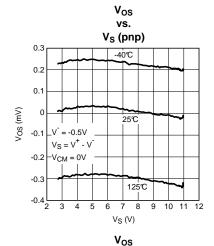


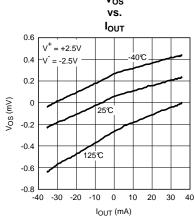

vs. Input Step Amplitude

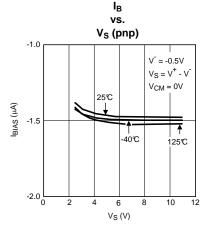


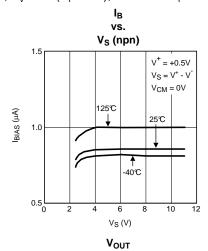


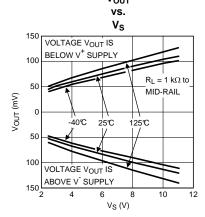


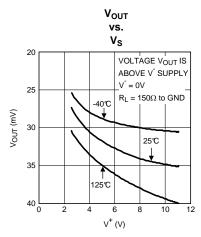


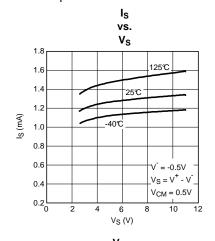

At $T_J = 25^{\circ}C$, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2$ k Ω for $A_V \neq +1$, unless otherwise specified.

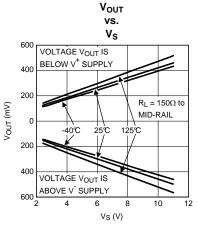


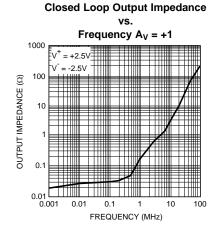


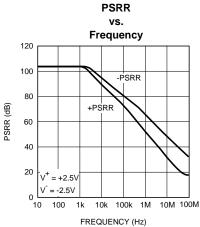


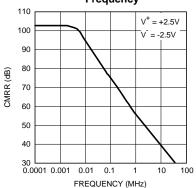


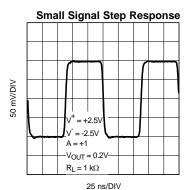


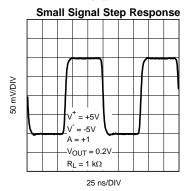

At $T_J = 25^{\circ}$ C, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2 \text{ k}\Omega$ for $A_V \neq +1$, unless otherwise specified.

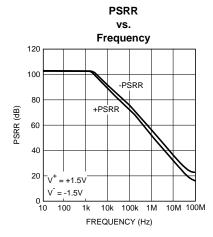


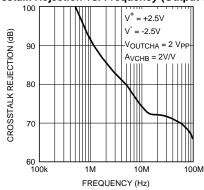


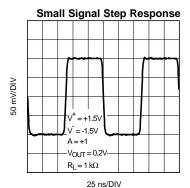


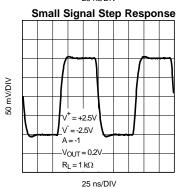



At $T_J = 25$ °C, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2$ k Ω for $A_V \neq +1$, unless otherwise specified.

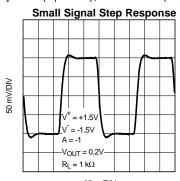


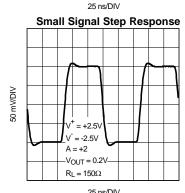


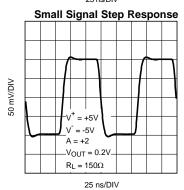


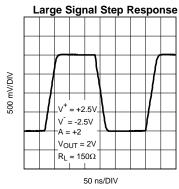


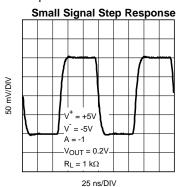
Crosstalk Rejection vs. Frequency (Output to Output)

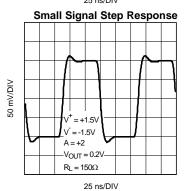


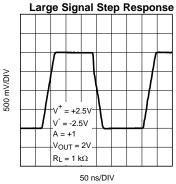


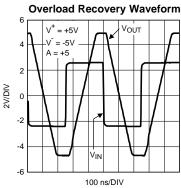

Submit Documentation Feedback




At $T_J = 25^{\circ}C$, $A_V = +1$ ($R_F = 0\Omega$), otherwise $R_F = 2$ k Ω for $A_V \neq +1$, unless otherwise specified.







Application Information

The LMH6619Q is based on National Semiconductor's proprietary VIP10 dielectrically isolated bipolar process. This device family architecture features the following:

Complimentary bipolar devices with exceptionally high f_t (~8 GHz) even under low supply voltage (2.7V) and

low bias current.

- Common emitter push-push output stage. This architecture allows the output to reach within millivolts of either supply rail.
- Consistent performance from any supply voltage (2.7V 11V) with little variation with supply voltage for the most important specifications (e.g. BW, SR, I_{OLIT}.)
- Significant power saving compared to competitive devices on the market with similar performance.

With 3V supplies and a common mode input voltage range that extends beyond either supply rail, the LMH6619Q is well suited to many low voltage/low power applications. Even with 3V supplies, the -3 dB BW (at $A_V = +1$) is typically 120 MHz.

The LMH6619Q is designed to avoid output phase reversal. With input over-drive, the output is kept near the supply rail (or as close to it as mandated by the closed loop gain setting and the input voltage). Figure 3 shows the input and output voltage when the input voltage significantly exceeds the supply voltages.

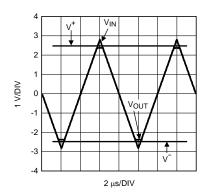


Figure 3. Input and Output Shown with CMVR Exceeded

SINGLE TO DIFFERENTIAL ADC DRIVER

Figure 4 shows the LMH6619Q used to drive a differential ADC with a single-ended input. The ADC121S625 is a fully differential 12-bit ADC. Table 1 shows the performance data of the LMH6619Q and the ADC121S625.



Figure 4. LMH6619Q Driving an ADC121S625

Table 1. Performance Data for the Single to Differential ADC Driver

Parameter	Measured Value
Signal Frequency	10 kHz
Signal Amplitude	2.5V

Submit Documentation Feedback

Table 1. Performance Data for the Single to Differential ADC Driver (continued)

Parameter	Measured Value
SINAD	67.9 dB
SNR	68.29 dB
THD	−78.6 dB
SFDR	75.0 dB
ENOB	11.0 bits

DIFFERENTIAL ADC DRIVER

Its low noise and wide bandwidth make the LMH6619Q an excellent choice for driving a 12-bit ADC. Figure 5 shows the LMH6619Q driving an ADC121S705. The ADC121S705 is a fully differential 12-bit ADC.The LMH6619Q is set up in a 2nd order multiple-feedback configuration with a gain of -1. The -3 dB point is at 500 kHz and the -0.01 dB point is at 100 kHz. The 22Ω resistor and 390 pF capacitor form an antialiasing filter for the ADC121S705. The capacitor also stores and delivers charge to the switched capacitor input of the ADC. The capacitive load on the LMH6619Q created by the 390 pF capacitor is decreased by the 22Ω resistor. Table 2 shows the performance data.

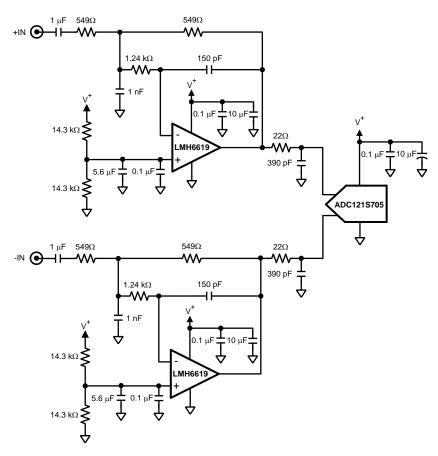


Figure 5. LMH6619Q Driving an ADC121S705

Table 2. Performance Data for the Differential ADC Driver

Parameter	Measured Value
Signal Frequency	100 kHz
SINAD	71.5 dB
SNR	71.87 dB
THD	−82.4 dB

Product Folder Links: LMH6619Q

TEXAS INSTRUMENTS

SNOSC78A - JUNE 2012-REVISED NOVEMBER 2012

Table 2. Performance Data for the Differential ADC Driver (continued)

Parameter	Measured Value
SFDR	90.97 dB
ENOB	11.6 bits

DC LEVEL SHIFTING

Often a signal must be both amplified and level shifted while using a single supply for the op amp. The circuit in Figure 6 can do both of these tasks. The procedure for specifying the resistor values is as follows.

- 1. Determine the input voltage.
- 2. Calculate the input voltage midpoint, V_{INMID} = V_{INMIN} + (V_{INMAX} V_{INMIN})/2.
- 3. Determine the output voltage needed.
- 4. Calculate the output voltage midpoint, V_{OUTMID} = V_{OUTMIN} + (V_{OUTMAX} V_{OUTMIN})/2.
- 5. Calculate the gain needed, gain = $(V_{OUTMAX} V_{OUTMIN})/(V_{INMAX} V_{INMIN})$
- 6. Calculate the amount the voltage needs to be shifted from input to output, $\Delta V_{OUT} = V_{OUTMID}$ gain x V_{INMID} .
- 7. Set the supply voltage to be used.
- 8. Calculate the noise gain, noise gain = gain + $\Delta V_{OUT}/V_{S}$.
- 9. Set R_F.
- 10. Calculate R_1 , $R_1 = R_F/gain$.
- 11. Calculate R_2 , $R_2 = R_F/(noise gain-gain)$.
- 12. Calculate R_G , $R_G = R_F/(noise gain 1)$.

Check that both the V_{IN} and V_{OUT} are within the voltage ranges of the LMH6619Q.

The following example is for a V_{IN} of 0V to 1V with a V_{OUT} of 2V to 4V.

- 1. $V_{IN} = 0V \text{ to } 1V$
- 2. $V_{INMID} = 0V + (1V 0V)/2 = 0.5V$
- 3. $V_{OUT} = 2V \text{ to } 4V$
- 4. $V_{OUTMID} = 2V + (4V 2V)/2 = 3V$
- 5. Gain = (4V 2V)/(1V 0V) = 2
- 6. $\Delta V_{OUT} = 3V 2 \times 0.5V = 2$
- 7. For the example the supply voltage will be +5V.
- 8. Noise gain = 2 + 2/5V = 2.4
- 9. $R_F = 2 k\Omega$
- 10. $R_1 = 2 k\Omega/2 = 1 k\Omega$
- 11. $R_2 = 2 k\Omega/(2.4-2) = 5 k\Omega$
- 12. $R_G = 2 k\Omega/(2.4 1) = 1.43 k\Omega$

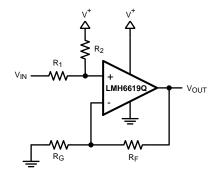


Figure 6. DC Level Shifting

20

4th ORDER MULTIPLE FEEDBACK LOW-PASS FILTER

Figure 7 shows the LMH6619Q used as the amplifier in a multiple feedback low pass filter. This filter is set up to have a gain of +1 and a -3 dB point of 1 MHz. Values can be determined by using the WEBENCH® Active Filter Designer found at amplifiers.national.com.

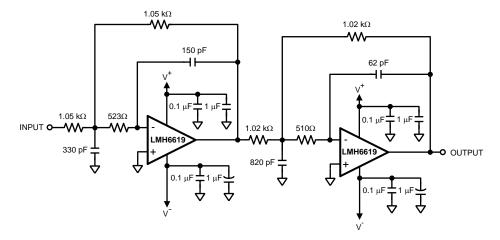


Figure 7. 4th Order Multiple Feedback Low-Pass Filter

CURRENT SENSE AMPLIFIER

With it's rail-to-rail input and output capability, low V_{OS} , and low I_B the LMH6619Q is an ideal choice for a current sense amplifier application. Figure 8 shows the schematic of the LMH6619Q set up in a low-side sense configuration which provides a conversion gain of 2V/A. Voltage error due to V_{OS} can be calculated to be V_{OS} x (1 + R_F/R_G) or 0.6 mV x 21 = 12.6 mV. Voltage error due to I_O is I_O x I_O x I_O x 12.86 mV + 0.26 mV or 12.86 mV which translates into a current error of 12.86 mV/(2 V/A) = 6.43 mA.

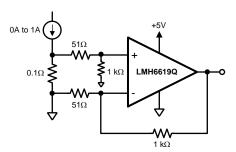


Figure 8. Current Sense Amplifier

TRANSIMPEDANCE AMPLIFIER

By definition, a photodiode produces either a current or voltage output from exposure to a light source. A Transimpedance Amplifier (TIA) is utilized to convert this low-level current to a usable voltage signal. The TIA often will need to be compensated to insure proper operation.

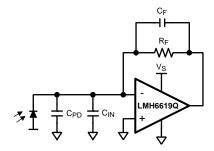


Figure 9. Photodiode Modeled with Capacitance Elements

Figure 9 shows the LMH6619Q modeled with photodiode and the internal op amp capacitances. The LMH6619Q allows circuit operation of a low intensity light due to its low input bias current by using larger values of gain (R_F). The total capacitance (C_T) on the inverting terminal of the op amp includes the photodiode capacitance (C_{PD}) and the input capacitance of the op amp (C_{IN}). This total capacitance (C_T) plays an important role in the stability of the circuit. The noise gain of this circuit determines the stability and is defined by:

$$NG = \frac{1 + sR_F (C_T + C_F)}{1 + sC_F R_F}$$
 (1)

Where,
$$f_Z = \frac{1}{2\pi R_F C_T}$$
 and $f_P = \frac{1}{2\pi R_F C_F}$ (2)

Figure 10. Bode Plot of Noise Gain Intersecting with Op Amp Open-Loop Gain

Figure 10 shows the bode plot of the noise gain intersecting the op amp open loop gain. With larger values of gain, C_T and R_F create a zero in the transfer function. At higher frequencies the circuit can become unstable due to excess phase shift around the loop.

A pole at f_P in the noise gain function is created by placing a feedback capacitor (C_F) across R_F . The noise gain slope is flattened by choosing an appropriate value of C_F for optimum performance.

Theoretical expressions for calculating the optimum value of C_F and the expected −3 dB bandwidth are:

$$C_F = \sqrt{\frac{C_T}{2\pi R_F(GBWP)}}$$
 (3)

$$f_{-3 dB} = \sqrt{\frac{GBWP}{2\pi R_F C_T}}$$
(4)

Equation 4 indicates that the -3 dB bandwidth of the TIA is inversely proportional to the feedback resistor. Therefore, if the bandwidth is important then the best approach would be to have a moderate transimpedance gain stage followed by a broadband voltage gain stage.

2 Submit Documentation Feedback

Table 3 shows the measurement results of the LMH6619Q with different photodiodes having various capacitances (C_{PD}) and a feedback resistance (R_F) of 1 k Ω .

Table 3. TIA (Figure 1) Compensation and Performance Results

C _{PD}	Ст	C _{F CAL}	C _{F USED}	f -3 dB CAL	f -3 dB MEAS	Peaking
(pF)	(pF)	(pF)	(pF)	(MHz)	(MHz)	(dB)
22	24	7.7	5.6	23.7	20	0.9
47	49	10.9	10	16.6	15.2	0.8
100	102	15.8	15	11.5	10.8	0.9
222	224	23.4	18	7.81	8	2.9

Figure 11 shows the frequency response for the various photodiodes in Table 3.

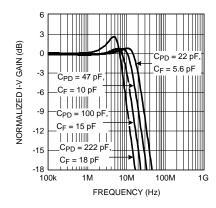


Figure 11. Frequency Response for Various Photodiode and Feedback Capacitors

When analyzing the noise at the output of the TIA, it is important to note that the various noise sources (i.e. op amp noise voltage, feedback resistor thermal noise, input noise current, photodiode noise current) do not all operate over the same frequency band. Therefore, when the noise at the output is calculated, this should be taken into account. The op amp noise voltage will be gained up in the region between the noise gain's zero and pole (f_Z and f_P in Figure 10). The higher the values of R_F and C_T , the sooner the noise gain peaking starts and therefore its contribution to the total output noise will be larger. It is obvious to note that it is advantageous to minimize C_{IN} by proper choice of op amp or by applying a reverse bias across the diode at the expense of excess dark current and noise.

DIFFERENTIAL CABLE DRIVER FOR NTSC VIDEO

The LMH6619Q can be used to drive an NTSC video signal on a twisted-pair cable. Figure 12 shows the schematic of a differential cable driver for NTSC video. This circuit can be used to transmit the signal from a camera over a twisted pair to a monitor or display located a distance. C_1 and C_2 are used to AC couple the video signal into the LMH6619Q. The two amplifiers of the LMH6619Q are set to a gain of 2 to compensate for the 75 Ω back termination resistors on the outputs. The LMH6619Q is set to a gain of 1. Because of the DC bias the output of the LMH6619Q is AC coupled. Most monitors and displays will accept AC coupled inputs.

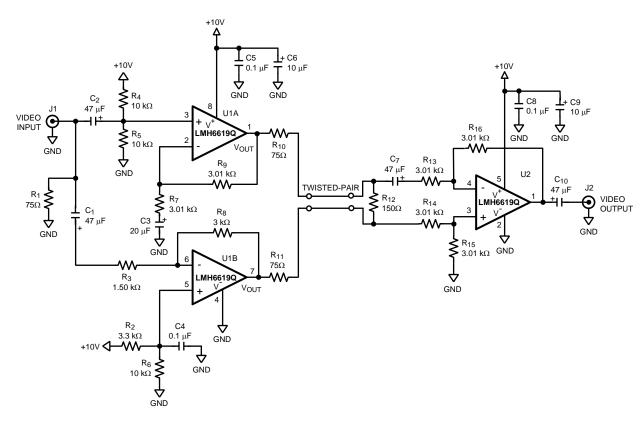


Figure 12. Differential Cable Driver

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LMH6619QMAK/NOPB	Active	Production	SOIC (D) 8	95 TUBE	Yes	SN	(5) Level-1-260C-UNLIM	-40 to 105	LMH66 19QMA
LMH6619QMAK/NOPB.A	Active	Production	SOIC (D) 8	95 TUBE	Yes	SN	Level-1-260C-UNLIM	-40 to 105	LMH66 19QMA
LMH6619QMAKE/NOPB	Active	Production	SOIC (D) 8	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 105	LMH66 19QMA
LMH6619QMAKE/NOPB.A	Active	Production	SOIC (D) 8	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 105	LMH66 19QMA
LMH6619QMAKX/NOPB	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 105	LMH66 19QMA
LMH6619QMAKX/NOPB.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 105	LMH66 19QMA

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

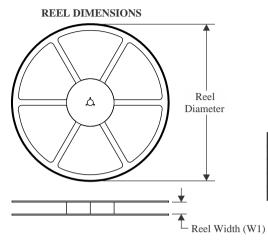
www.ti.com 11-Nov-2025

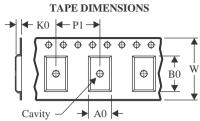
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LMH6619-Q1:

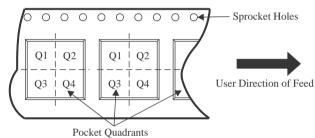
Catalog: LMH6619


NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product

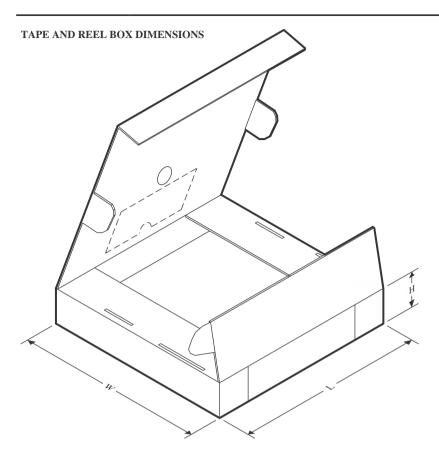
PACKAGE MATERIALS INFORMATION

www.ti.com 1-Aug-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

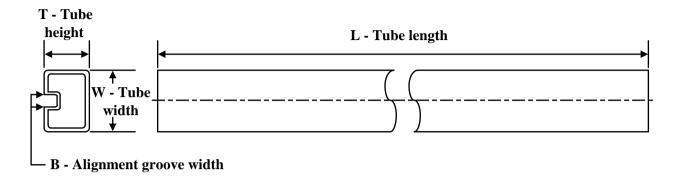


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMH6619QMAKE/NOPB	SOIC	D	8	250	177.8	12.4	6.5	5.4	2.0	8.0	12.0	Q1
LMH6619QMAKX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Aug-2025

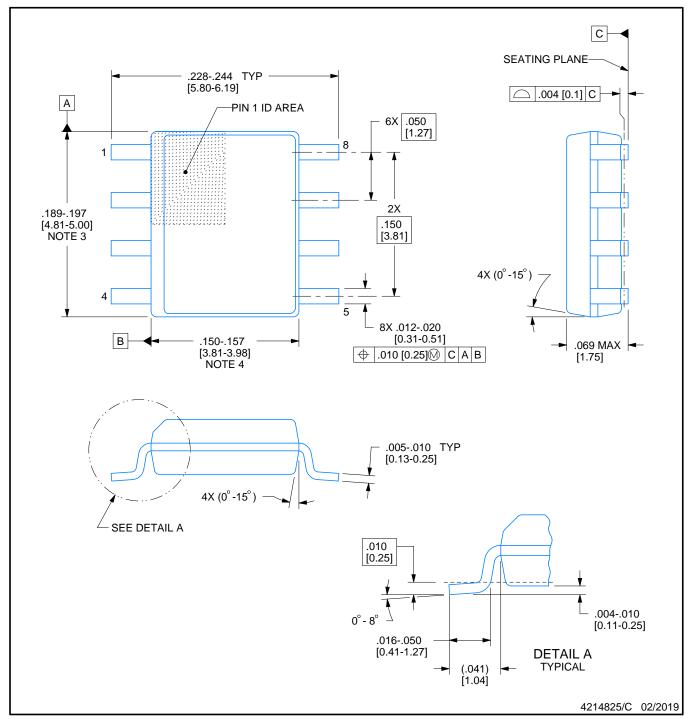

*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMH6619QMAKE/NOPB	SOIC	D	8	250	208.0	191.0	35.0
LMH6619QMAKX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Aug-2025

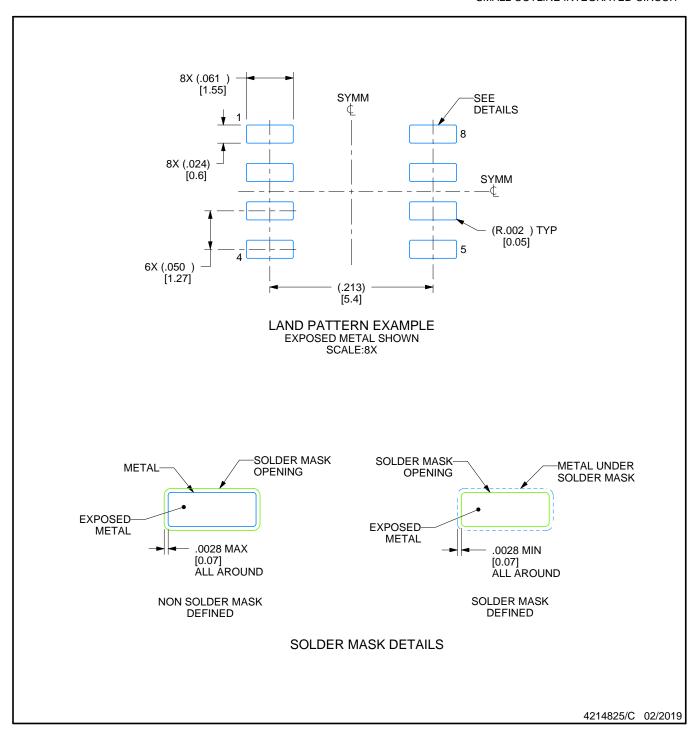
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
LMH6619QMAK/NOPB	D	SOIC	8	95	495	8	4064	3.05
LMH6619QMAK/NOPB.A	D	SOIC	8	95	495	8	4064	3.05

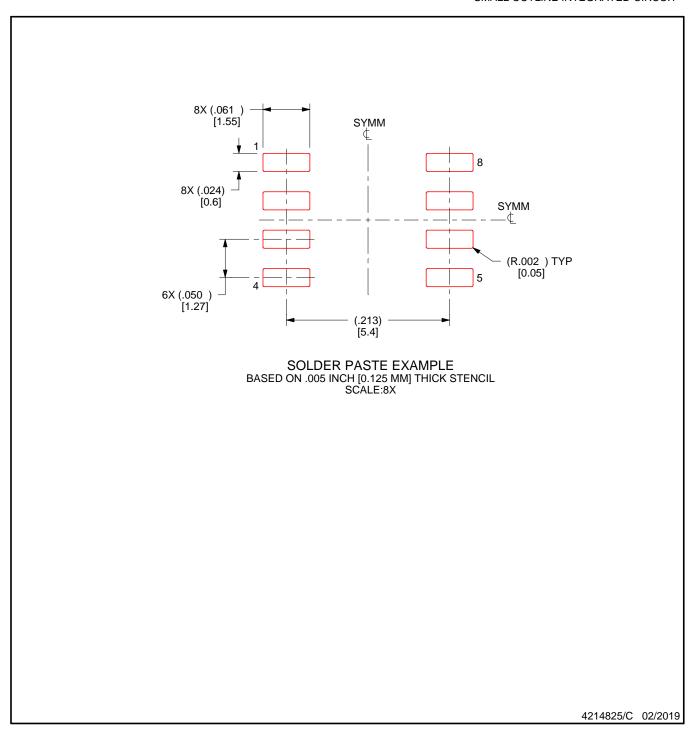
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025