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Analog Applications Journal is a collection of analog application articles 
designed to give readers a basic understanding of TI products and to provide 
simple but practical examples for typical applications. Written not only for 
design engineers but also for engineering managers, technicians, system 
designers and marketing and sales personnel, the book emphasizes general 
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific 
circuits but as examples of how devices could be used to solve specific design 
requirements. Readers will find tutorial information as well as practical 
engineering solutions on components from the following categories:

•	Data Acquisition

•	Power Management

•	Amplifiers: Op Amps

Where applicable, readers will also find software routines and program 
structures. Finally, Analog Applications Journal includes helpful hints and 
rules of thumb to guide readers in preparing for their design.

Introduction
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Introduction
As modern, high-speed analog-to-digital 
converters (ADCs) push the spurious-free 
dynamic range (SFDR) beyond the 100-dB 
barrier, the demand for a high-quality sam-
pling clock has become greater than ever. 
Traditionally, system engineers focused 
mainly on the clock quality when they were 
trading off the signal-to-noise ratio (SNR) 
against the input-signal frequency in under-
sampling applications. As tougher system 
requirements such as multicarrier GSM 
emerge and are starting to demand dynamic 
ranges in excess of 80 dB over a wide band-
width, system designers try to eliminate any 
possible SFDR degradation, such as the spur 
feedthrough from a distorted sampling clock.

Spurs on the sampling clock as low as  
–90 dBc can significantly impact the SFDR 
of the data converter. These low-level spurs 
can be very difficult to track down because 
they can have a variety of different origins. 
They can be generated from crosstalk with 
an adjacent digital circuit that occurs due to 
layout constraints, or they can occur simply 
because the clock source is not properly 
filtered. An example of improper filtering is 
shown in Figure 1, which compares two 
LVDS outputs of the Texas Instruments (TI) CDCE72010, 
one unfiltered and one with a band-pass filter. The spur 
reduction of the filtered output is clearly visible.

This article will discuss how spurs on the sampling  
clock get translated into the output spectrum of the data 
converter. It will also investigate how the spur amplitude 
changes with different input frequencies. More and more 
system designers are moving to an undersampling archi-
tecture, and the spur amplitude is highly dependent upon 
input frequency, as will be shown later. This article will 
also show how to estimate the SNR degradation caused by 
the sampling-clock spurs.

Sampling theory
The spurs that result from sampling a data converter with 
a distorted clock are best described by the relationship of 
their frequency and amplitude components to the same 

Data Acquisition

Impact of sampling-clock spurs on  
ADC performance
By Thomas Neu
Analog Field Applications Engineer
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Figure 1. Phase noise of CDCE72010’s filtered 
and unfiltered LVDS outputs

components of the sampled input signal. In order to derive 
that relationship, one has to start with the basic sampling 
theory. Let’s consider the setup shown in Figure 2, where 
the input signal is

x t A tIN IN( ) sin( ),= × w

and the clock input with a spurious component is

y t A t B tCLK S( ) sin( ) sin( ).= × + ×w w

The quality of the sampling clock can easily be evaluated 
with a phase-noise analyzer. It displays the clock’s phase 
noise versus frequency offset from the carrier, which is 
very helpful when the clock jitter is calculated to determine 
the SNR of the receiver. The phase-noise plot displays any 
spurious component on the clock signal, referencing its 
frequency offset and spur amplitude, SX, to the main signal. 
If the amplitude is normalized in dBc/Hz, care must be 
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taken to extract it with the resolution bandwidth of the instrument in that measurement:

Amplitude (dBc) = SX (dBc/Hz) + 10log(Resolution Bandwidth)

Due to the presence of the spur, the original sampling instant, or zero crossing of the clock, has shifted slightly by ∆T. 
Now the sampling instant, y(t) = 0, can be solved for:

y t A t T B t TCLK S( ) = × + + × + =sin[ ( )] sin[ ( )]w w∆ ∆ 0

y t A t T A t T BCLK CLK CLK CLK( ) = × × + × × + ×sin( ) cos( ) cos( ) sin( ) sw w w w∆ ∆ iin( ) cos( ) cos( ) sin( )w w w wS S S St T B t T× + × × =∆ ∆ 0

Assuming that B << A and ∆T ≈ 0 results in:	 cos( ) sin( )

cos( ) sin( )

w w w
w w w

CLK CLK CLK

S S S

T T T

T T T

∆ ∆ ∆
∆ ∆ ∆

≈ ≈
≈ ≈

1

1

The ideal sampling instant is t = 0, hence:	 sin( ) cos( ) cos( )w w wCLK CLK St t t= = =0 1 1

Substituting these results into y(t) = 0 produces:

y t A t T A t T BCLK CLK CLK CLK( ) = × × + × × + ×sin( ) cos( ) cos( ) sin( ) sω ω ω ω∆ ∆ iin( ) cos( ) cos( ) sin( )ω ω ω ωS S S St T B t T× + × × =∆ ∆ 0

0 1 1 ωCLK∆T 1 1 ωS∆T

y t A T B t B TCLK S S( ) = × + × + × =w w w∆ ∆sin( ) 0

Then T can be solved for:   .   ∆ ∆T
B t

A B
S

CLK S
= −

×
× + ×

sin( )w
w w

AAssuming that A >> B results in ∆T
B t

A
S

CLK
= −

×
×
sin( )

.
w

w

Next, the input signal, x(t) = AIN×sin(wINt), is sampled at the zero crossing, t + ∆T, of the non-ideal clock:

x t A T A t T A tIN IN IN IN IN IN( ) sin( ) sin ( ) sin( ) cos(= × = × +  = × ×ω ω ω∆ ωω ω ωIN IN IN INT A t T∆ ∆) cos( ) sin+ × × ( )
1 ωIN∆T

Figure 2. Setup with input signal, clock, and clock spur
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This results in x t A t A t TIN IN IN IN IN( ) sin( ) cos( ) .= × + × ×ω ω ω ∆

Ideal Sample Error Sample

Focusing on the error sample and substituting ∆T produces:

x t A
B t

A
t A

B

AIN IN
S

CLK
IN IN IN

CLK
( )

sin( )
cos( )= × ×

− ×
×

= × ×
×

×ω
ω

ω
ω ω

ω
1

2
ssin ( ) sin ( )− + × + − − × { }ω ω ω ωS IN S INt t

Two Frequency Products:
–ωS + ωIN and –ωS – ωIN

Scale Factor of
Spur Amplitude

Therefore, it can be observed that each spurious component of the sampling clock generates two spurs, S1 and S2, in the 
data converter with amplitude and frequencies relative to the input signal as follows.

S1 and S2 amplitude:   
B

A

B

A

f

f

B A

IN

CLK

IN

CLK
×

×
= ×

×

= − +

w
w2 2

20

 or  in terms of decibels, ,

llog .
f

f
IN

CLK2×










S1 and S2 frequencies:   f f f

f f f
S S IN

S S IN

1

2

= − −
= − +

The resulting spurs can be shifted by one clock period, 2p/T = fCLK, and considering fS – fCLK = m yields:

f f f f f f f f f f f m fS S IN CLK IN CLK S IN CLK S IN IN1 = − − + = − + − = − − + = − + = +( ) ( ) mm

f f f f f f f f mS S IN CLK IN CLK S IN2 = − + + = + + − = −

These equations show that the frequencies of the gener
ated spurs will be centered around the input signal and 
offset by the distance m, which is the difference between 
the clock frequency and the clock-spur frequency. The 
amplitude of the generated spurs, on the other hand, is 
highly dependent upon the input frequency. For every 
doubling of the input frequency (e.g., fIN = 20 MHz versus 
fIN = 10 MHz), the spur amplitude increases by 6 dB! 
Hence, as system designers consider sampling in higher 
Nyquist zones, this relationship becomes very important  
to them.

m m

fS1 fS2 f /2CLK

Figure 3. Spurs pushed outside the FFT band and aliased back in-band

mm

fS1 fS2 f /2CLK

Sometimes the fast Fourier transform (FFT) plot can be 
a bit misleading when one is trying to trace spurs back to 
their origins. If the clock spur is relatively far from the 
clock frequency, the generated spurs of the ADC can get 
pushed outside the plot’s boundaries—either to negative 
frequencies or beyond fCLK/2. The spurs then alias back in-
band and generate an asymmetric FFT plot, as demon-
strated in Figure 3.

http://www.ti.com/aaj
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Measurements
To further demonstrate the impact of the spur’s frequency 
and amplitude, the following experiment was set up (see 
Figure 4). A low-jitter-signal generator was used to provide 
a sine-wave input signal to TI’s ADS5463 evaluation module 
(EVM). The ADC input was sampled with a 122.88-MHz 
clock, and a power combiner and third signal generator 
were used to mix a spur into the clock’s frequency. This 
way the frequency and amplitude of the spur could easily 
be adjusted. The spur’s amplitude and frequency were  
verified with a phase-noise analyzer.

For the first experiment, the spur generator was set up 
to output a tone with a frequency of 102 MHz and an 
amplitude of –30 dBm. The power combiner reduced the 
clock and spur signals by about 3 dB. The phase-noise 
analyzer showed the amplitudes of the clock and spur at 
–9 dBm and about –33 dBm, respectively, with an offset 
(m) of about 20.9 MHz (122.88 MHz – 102 MHz) as illus-
trated in the screen capture in Figure 5. As previously 
derived, this setup generated two spurs with a spur- 
amplitude scale factor of

B A
f

f
dBm

MHzIN

CLK
− +

×








 = − − − +

×
20

2
9 20

10

2 1
log ( ) log33 dBm  

 

222 88
51 8

.
.

 
 

MHz
dBc







= −

and spur frequencies of

f f m MHz

f f m MHz
S IN

S IN

1

2

20 9 30 9

10 20

= + = + =
= − = −

10 MHz   MHz and

 

. .

.99 10 9  MHz MHz= − . .

Clock Generator
122.88 MHz

Spur
Generator
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fS
fCLK

fIN
ADS5463
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Data
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Figure 4. Test setup to mix a spur and 
clock signal
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The resulting FFT plot of the ADS5463 
output is shown in Figure 6. The gener-
ated spurs are about 52 dB lower than 
the input signal and are located at 10.9 
and 30.9 MHz. This matches the calcu-
lated values very closely.

Next, the spur amplitude was lowered 
from –30 dBm to –40 dBm. It was expect
ed that the S1 and S2 spur amplitudes 
would drop by 10 dB as well. This was 
confirmed with the FFT plot of the 
ADS5463 output, as illustrated in  
Figure 7. The frequencies of the spurs 
stayed the same.

As discussed previously, the spur 
amplitude is highly dependent upon the 
frequency of the input signal. To further 
illustrate this, the frequency of the input 
signal was increased from 10 MHz to  
100 MHz. This changed the spur- 
amplitude scale factor to

B A 20log
f

2
33 dBm ( 9 dBm) 20log

100 MHz

2
IN

CLK

− +
×











 = − − − +

×f 1122.88 MHz
24 7.8 31.8 dBc







= − − = −

and the frequencies of the two spurs to f f f MHz

f f f MH
S S IN

S S IN

1

2

100 2

102

= − + = − + = −
= − − = −

102 MHz   MHz and

 zz MHz MHz− = −100 202  .

Aliasing them back in-band generated two spurs, f MHz

f MHz MHz MHz
S

S

1

2

2

202 2 122 88 43 8

= − = +
= − + × =

2  MHz and

   ( . ) . .

Frequency (MHz)
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( d

B
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Figure 6. FFT output of 102-MHz, –30-dBm clock spur
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This was also confirmed with the FFT plot of the ADS5463 
output (see Figure 8).

For the last experiment, a comparison of spur frequen-
cies was made with the clock frequency set at 102 MHz 
and at 132 MHz. The spur amplitude was set to –30 dBm, 
and the input signal was set to 10 MHz. These settings 
caused the spur-frequency offset (m) to change from 
about 20.9 MHz to about 9.1 MHz, respectively. Two new 
spur frequencies resulted:

f f m MHz MHz
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Figure 9. FFT output of –30-dBm clock spur at 132 MHz 
versus 102 MHz

Once again, this correlated very well with the FFT out-
put plot from the ADS5463, as illustrated in Figure 9.

Practical example
Let’s go back and analyze the case of the CDCE72010, 
mentioned earlier under “Introduction.” This device’s low-
jitter phase-locked loop was configured to drive the TI 
ADS5483 with LVDS outputs at 122.88 MSPS. No filter 
was placed between the outputs of the CDCE72010 and 
the clock input of the ADS5483. This way the full effect of 
the clock spurs in a real-world design can be observed.
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The phase-noise plot of the unfiltered CDCE72010 in 
Figure 10 shows two spurs that will impact the SFDR 
performance of the ADS5483.One spur (S1) is offset 
about 27 MHz with an amplitude of about –130 dBc/Hz; 
the other spur (S2) is offset about 3 MHz with an ampli-
tude of about –138 dBc/Hz. The actual spurs are 6 dB 
lower than shown in the plot because the phase-noise 
analyzer sums the spurs of the two sidebands together.

The amplitudes of the two spurs can be converted 
from dBc/Hz to dBc as described before:

For     

 

S dBc Hz dBc MHz

dBc

1 136 136 10 27 1

136 54 4

, / log( %)

.

= − + ×
= − +   

 

dB

dBc= −81 6. .

For     

  

S dBc Hz dBc MHz

dBc d

2 144 144 10 3 1

144 45

, / log( %)− = − + ×
= − + BB

dBc= −99 .

These results can be used to calculate the spur ampli-
tudes of the ADC output spectrum:

S dBc
MHz

MHz

dBc d

1 20
100

2 122 88

81 6 7 8

= +
×







= − −

81.6 
 

 

  

log
.

. . BB

dBc= −89 4.  

S dBc
MHz

MHz

dBc dB

2 99 20
100

2 122 88

99 7 8

= − +
×







= − −

= −

 
 

 

  

log
.

.

1106 8.  dBc

These amplitudes match the measured spur 
amplitudes of the ADC output spectrum 
fairly well (within 1 to 2 dB), as shown in 
Figure 11.
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Impact of clock spurs on SNR
Besides reducing the SFDR, spurs on the clock also impact 
the SNR of the data converter. Since the spurs are at a 
fixed frequency, they are considered deterministic jitter 
(DJ); and they contribute to the overall clock jitter, which 
in turn highly impacts the SNR.

The peak-to-peak DJ from the clock spur can be 
approximated by

DJPP ≈ ×
×

2 10 20

S dBc

CLK

X

f

( )

,
p

where SX (dBc) is the spur amplitude in dBc. The RMS  
jitter can be calculated as

DJ
DJ

14RMS
PP≈ .

As in the first experiment, with the measured amplitude 
of the spurs at –33 dBm and that of the clock at about  
–10 dBm, the relative spur amplitude is roughly

–33 dBm – (–10 dBm) = –23 dBc.

Substituting –23 dBc into the formula for DJRMS yields

DJ
DJ

14 122.88 MHz
 RMS

PP≈ = × ×
×

=

−

1

14

2 10
26

23

20

p
ps.

Since there are two spurs with a 20-MHz offset, the 26-ps 
DJ of each spur can be summed together for a total DJ of 
about 52 ps.

For calculating the SNR of the data converter, the DJ 
needs to be added to the phase noise of the clock and the 
aperture jitter of the ADC. However, in this case, the DJ 
far exceeds the other two jitter components. Therefore, 
the resulting SNR can be calculated with a jitter of about 
52 ps (fIN = 10 MHz), which is approximately 50.5 dBFS.

The resulting FFT plot of this setup with the ADS5463 
is shown in Figure 12. The plot clearly shows the two 
resulting spurs with an amplitude of –52 dBc and an SFDR 
of about –52 dBc. The SNR ≈ 50 dBFS, which matches the 
calculated value very well.

Conclusion
This article has shown that spurs on the ADC sampling 
clock can significantly degrade the overall system SFDR  
as well as the SNR. This effect gets amplified even more  
in undersampling applications where the signal input is 
moved to higher frequencies than those traditionally used 
for baseband input. Therefore, it can be concluded that a 
filtered, high-quality sampling clock is necessary for system 
engineers who are trying to achieve maximum data- 
converter performance.

Related Web sites
dataconverter.ti.com
www.ti.com/sc/device/partnumber
Replace partnumber with ADS5463, ADS5483, or 
CDCE72010

Spurs 1 and 2

SFDR 52 dBc

SNR 50 dBFS

f = 10-MHz sine wave
Test Device: ADS5463
IN

Figure 12. FFT output with 122.88-MHz clock and a 102-MHz, –30-dBm spur
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How the voltage reference affects  
ADC performance, Part 2

Introduction
This article is Part 2 of a three-part series that investigates 
the design and performance of a voltage-reference system 
for a successive-approximation register (SAR) analog-to-
digital converter (ADC). A simplified version of this system 
is shown in Figure 1. When a design uses an ADC in this 
system, it is critical to understand the voltage-reference 
path to the converter. Part 1 (see Reference 1) examined 
the fundamental operation of an ADC independent of the 
voltage reference, and then analyzed the performance 
characteristics that have an impact on the accuracy and 
repeatability of the system. Part 2 looks at the key charac-
teristics of the voltage-reference block in Figure 1 and the 
reference’s possible impact on the ADC’s performance. 
Part 2 also shows how to design an appropriate external 
reference for 8- to 16-bit ADCs. Part 3, which will appear 
in a future issue of the Analog Applications Journal, will 
investigate the impact of the voltage-reference buffer and 
the capacitors that follow it, discuss how to ensure that the 
amplifier is stable, and provide a reference design that is 
appropriate for ADCs with 16+ bits.

Choosing the correct VREF topology
Voltage references are available in two-terminal shunt or 
three-terminal series configurations (see Figure 2). Figure 
2a shows a two-terminal shunt voltage reference, in which 
the entire IC chip of 
the shunt reference 
operates in parallel to 
its load. With a shunt 
voltage reference, an 
input voltage is 
applied to the resistor 
that is connected to 
the cathode. The  
typical initial voltage 
accuracy of this 
device can be as low 
as 0.5% or range up 
to 5%, with a temper-
ature coefficient of 
approximately 50 to 
100 µV/°C. The shunt 
voltage reference can 
be used to create 
positive, negative, or 
floating reference 
voltages.

The three-terminal series voltage reference (Figure 2b) 
operates in series with its load. An internal bandgap volt-
age, in combination with an internal amplifier, creates the 
output voltage of this reference. The series voltage refer-
ence produces an output voltage between the output and 
ground while providing the appropriate output current to 
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the external load. As the load current increases or 
decreases, the series reference maintains the voltage  
at VOUT.

The typical initial voltage accuracy of a series-reference 
device can be as low as 0.05% or range up to 0.5%, with 
temperature coefficients as low as 2.5 ppm/°C. Because  
of the series reference’s superior initial output voltage and 
overtemperature performance, this type of device would 
be used to drive the reference pins of precision ADCs. 
Beyond 8 or 14 resolution bits, where the size of the least 
significant bit (LSB) is respectively 0.4% and 0.006%, an 
external series voltage reference ensures that the intended 
precision of the converter can be achieved.

Another common application for series voltage refer
ences is sensor conditioning. In particular, a series voltage 
reference is useful in bridge-sensor applications as well as 
applications that have thermocouples, thermopiles, and 
pH sensors.

The initial accuracy of the series voltage reference in an 
ADC application (as in Figure 1) provides the general ref-
erence for the conversion process. Any initial inaccuracy of 
the output voltage can be calibrated in hardware or soft
ware. Additionally, changes in the accuracy of the voltage-
reference output can be a consequence  
of the temperature coefficient, the line 
regulation, the load regulation, or long-
term drift. The series voltage reference 
provides better performance in all of  
these categories.

Understanding reference- 
voltage noise
From Part 1 of this series it can be con-
cluded that the ADC has only one func-
tion. That function is to compare an input 
voltage to a reference voltage, or to create 
an output code based on an input signal 
and reference voltage. Part 1 presented 
diagrams and formulas that describe the 
basic transfer function of the ADC along 
with the device’s noise characteristics. The 
typical transfer function of an ideal ADC, 
shown here in Figure 3, was described as

Code V
VIN

n

REF
= × 2

, 	 (1)

where “Code” is the ADC output code in decimal form, VIN 
is the analog input voltage to the ADC, n is the number of 
ADC output bits, and VREF is the analog value of the ref
erence voltage to the ADC. This formula shows that any 
initial error or noise in the reference voltage translates to 
a gain error in the code output of the ADC.

If several points from the ADC’s negative full-scale input 
to its positive full-scale input are measured, it becomes 
clear that the contribution of the reference noise is a func-
tion of the ADC input voltage. To evaluate the voltage- 
reference noise as well as the overall noise, it is necessary 
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to measure the noise close to both the negative full scale 
and the positive full scale. Figure 4 shows the results of 
measuring the reference noise and the ADC noise in a  
system. These results show that the overall noise is not 
constant but linearly dependent on the ADC’s analog input 
voltage. When this type of system is designed, it is impor-
tant to keep the reference noise lower than the ADC’s 
internal noise.

Both reference topologies in Figure 2 generate compa-
rable noise over frequency. The voltage noise in series 
voltage references comes mainly from the bandgap and 
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the output amplifier. Both of these elements gener-
ate noise in the 1/f region and the broadband region 
(see Figure 5).

Noise in the voltage reference’s 1/f region
In the data sheets of most series-reference devices, 
the specification for output-voltage noise is over the 
frequency range of 0.1 to 10 Hz, which encompasses 
the 1/f region in Figure 5. Noise in the 1/f region, 
often called “pink noise,” is replaced in the higher 
frequency domain by the broadband noise.

Noise in the voltage reference’s broadband region
Some manufacturers include specifications for the 
voltage reference’s output noise density. This type of 
specification is usually for noise in the broadband 
region, such as the noise density at 10 kHz. Broad
band noise, which is present over the higher wide-
band frequencies, is also known as “white noise” or 
“thermal noise.”

An added low-pass filter with an extremely low 
corner frequency will reduce the broadband noise at the 
output of the reference. This filter is designed with a 
capacitor, the equivalent series resistance (ESR) of the 
capacitor, and the open-loop output impedance of the  
reference output amplifier (see Figure 6).

Table 1 shows the noise measured from the Texas 
Instruments REF5040 for different frequency bandwidths 
as well as for different external-capacitor values and 
types. These measurements demonstrate that ceramic 
capacitors with a low ESR of about 0.1 Ω have a tendency 
to increase noise compared to tantalum capacitors with a 
standard ESR of about 1.5 Ω. This tendency is the result of 
stability problems and the gain peaking of the reference’s 
output amplifier.

As mentioned earlier, the two sources of noise in the 
reference voltage are the internal output amplifier and  
the bandgap. The internal schematic of the REF5040 in 
Figure 7 shows that the TRIM pin provides direct access 
to the bandgap. An external capacitor can be added to the 
TRIM pin to create a low-pass filter. This filter provides a 
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Table 1.	 Noise measured from REF5040 for different bandwidths  
	 and capacitor values and types

CAPACITOR

MEASURED NOISE (µVRMS)  
FOR FOUR BANDWIDTHS

22 kHz
(Low-Pass 

5-Pole)

30 kHz
(Low-Pass 

3-Pole)

80 kHz
(Low-Pass 

3-Pole)
>500 kHz

GND 0.8 1 1.8 4.9

1 µF (tantalum) 37.8 41.7 53.7 9017

2.2 µF (ceramic) 41.7 46.2 55.1 60.8

10 µF (tantalum) 33.4 33.4 35.2 38.5

10 µF (ceramic) 37.1 37.2 37.8 39.1

20 µF (ceramic) 33.1 33.1 33.2 34.5

47 µF (tantalum) 23.2 23.8 24.1 26.5
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Figure 6. Low-pass filter between series 
voltage reference and ADC

1 µF

10 k

1 k

VOUT

1.2 V

+

REF5040

TRIM

+

–

Figure 7. Using TRIM pin to filter REF5040 
bandgap noise

Figure 5. Example voltage-noise regions in the 
frequency domain
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bandgap broadband attenuation of approximately –21 dB. 
For example, a small 1-μF capacitor adds a pole at 14.5 Hz 
and a zero at 160 Hz. If more filtering is needed, a larger-
value capacitor can be used in place of the 1-μF capacitor. 
For instance, a 10-μF capacitor will generate a 3-dB corner 
frequency of 1.45 Hz. This low-pass filter will lower the 
bandgap noise. Attaching a 1-μF capacitor to the TRIM pin 
of the REF5040 will lower the total output RMS noise by a 
factor of 2.5.

Conclusion
Figure 8 shows a complete circuit diagram for a reference 
system configured with an 8- to 16-bit converter. The accu
racy of the voltage reference in this system is important; 
however, any initial inaccuracy can be calibrated with 
hardware or software. On the other hand, eliminating or 
reducing reference noise will require a degree of charac-
terization and hardware-filtering techniques. Part 3 of this 
article series will explore the proper filtering for the 
broadband region.

Part 3 will also investigate and explain how to design a 
reference circuit that is appropriate for converters with 
16+ bits. The impact of the voltage-reference buffer and 
its following amplifier/resistor/capacitor network will be 
analyzed. With the measurements that follow the final sys-
tem tuning, the assumptions and conclusions of this article 
series will be compared to the real world.
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Figure 8. Voltage-reference circuit for 10- to 
14-bit converters
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Reducing radiated EMI in WLED drivers

Most mobile phones use white LEDs (WLEDs) as the 
backlight for their displays. Li-Ion batteries with an output 
range of 2.7 to 4.2 V are the most common power source 
for mobile phones. Since several WLEDs in series, each 
with forward voltages around 3.6 V, are typically used for 
the backlight, the backlight driver must provide a voltage 
higher than the Li-Ion range. Therefore, an inductive 
boost converter is a common power-supply topology for 
WLED drivers. Figure 1 shows a typical backlight-driver 
solution that uses the TPS61161 to drive ten LEDs in series.

All inductive switching converters cause radiated electro
magnetic interference (EMI) that is directly proportional 
to output power. As the size of mobile phone displays 
increases to accommodate more features, the backlight 
driver’s increased output power results in more EMI. 
Factors at each design step, from driver-IC selection to 
board layout, impact the WLED driver’s EMI. Therefore, 
minimizing the WLED backlight driver’s radiated EMI so 
that it does not affect other systems is a major concern for 
manufacturers of both the backlight driver IC and the 
mobile phone.

Radiated EMI is caused by induced electric fields where 
capacitors store their energy, and induced magnetic fields 
where inductors store their energy. The electric-field 

By Jeff Falin
Senior Applications Engineer
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Figure 1. TPS61161 backlight driver

strength of a capacitor is directly proportional to its capac-
itance and the voltage across its terminals. The capacitance 
is inversely proportional to the distance between the termi
nals. Ideally, the IC and components are laid out on the 
board to minimize the undesired (often called “parasitic”) 
capacitance. Such capacitance can be created, for example, 
by a large metal trace or plane on top of a ground trace or 
plane. Likewise, an inductor’s magnetic-field strength is 
directly proportional to its inductance value and the current 
flowing through it. The inductance value is directly propor
tional to the wire or trace length. The board ideally is laid 
out to minimize parasitic inductance created by long wires, 
loops, and traces; and shielded inductors are used on the 
PCB itself. Moreover, the rate of change of the voltages 
across and the currents through these parasitic compo-
nents directly impacts their field strengths. Key methods 
of reducing EMI are to minimize the size of and interaction 
between these parasitic components and to reduce their 
voltages and current ramp rates.

The circuit designer and IC-layout engineer are respon
sible for minimizing the parasitic inductances and capaci-
tances that occur at high frequencies (greater than  
300 MHz) and/or for managing voltage and current ramp 
rates inside the IC. Otherwise, the IC itself will generate 
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EMI. Consider Figure 2, which shows the 
drain voltage, VDS, of the TPS61161’s inter-
nal NMOS FET (i.e., the switch node) as 
the FET turns on. The blue trace is from a 
test board with beta TPS61161 silicon that 
has a commonly used high-speed gate drive. 
The red trace shows the same node on the 
same test board but with the final TPS61161 
silicon that has TI’s dual-slope switching 
technology. This technology controls the 
switch node’s slope on the falling edge (i.e., 
dv/dt) in two steps. When the internal 
power FET first turns on, there is a large 
current spike. During the first step of a 
dual-slope FET compared to a normal FET, 
the dv/dt is slowed to reduce the amplitude 
of the current spike and the EMI that 
results primarily from parasitic inductance. 
During the second step, the switch FET 
returns to its normal, faster dv/dt to mini-
mize the switching losses that would other-
wise occur.

To measure the far-field EMI from a  
battery-powered evaluation module 
(TPS61161EVM-243), an IC with a tradi-
tional switch (shown in red in Figure 3) and 
an IC with a dual-slope switch (shown in green) were used 
in the same test environment. The black curve shows the 
noise floor of the measurement, and the 850-MHz spike is 
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Figure 2. Switch node (VDS of NMOS FET) of TPS61161’s 
WLED driver

from a spurious GSM signal. It is clear that the dual-slope 
switching technology reduced the EMI in the 400-MHz 
range by 10 dBµV/m.
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At lower frequencies, the parasitic inductance and 
capacitance of the PCB’s traces and planes are the primary 
contributors to EMI. Figure 4 shows the schematic for a 
boost-converter-based WLED driver. The loop created by 
the parasitic capacitance of Q1 and D1 and the parasitic 
inductance of the board traces conducts current when 
switches D1 and Q1 turn on and off. When switch Q1 turns 
off, inductor L1 is fully charged and ready to continue the 
current flow. Since the only available element through 
which current can continue to flow is D1, the inductor 
voltage quickly switches from GND to VOUT, which causes 
ringing due to the parasitics. The resonance point of the 
parasitic inductance and capacitance can sometimes be 
seen on the oscilloscope as ringing at the resonant fre-
quency. In addition to the parasitic capacitance of Q1 and 
D1, ground planes and the traces over/under them also 
contribute to parasitic capacitance. A commonly over-
looked type of parasitic capacitance is that formed by the 
switch node—with its large dv/dt—and the ground plane 
underneath. Figure 5 shows a poor PCB layout that uses 
the TPS61161, where L1 is the inductor, D1 is the diode, 
U1 is the TPS61161 controller, C1 is the input capacitor, 
and C3 and C4 are the output capacitors. The critical loop, 
highlighted in blue, is long; and there is a large ground 
plane underneath the large pad for L1 that serves as the 
high-speed switch node (not shown).

Control
and

Gate Drive

LPar1 LPar2

LPar4

COUT
CIN

VIN VOUT

CPar_Q1

CPar_D1
L1

D1

Q1

Critical Loop

Converter-IC GND

Switch Node

Figure 4. Schematic of boost-converter-based WLED driver
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Figure 5. Poor PCB layout with TPS61161

http://www.ti.com/aaj


Texas Instruments Incorporated

20

Analog Applications JournalHigh-Performance Analog Products	 www.ti.com/aaj	 3Q 2009

Power Management

Switch
Node

Critical
Loop

Figure 6. Improved PCB layout with TPS61161
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Figure 7. TPS61161’s EMI measurements with poor and 
improved layouts

Figure 6 shows the TPS61161 evaluation module with 
the same components as in Figure 5 but with a smaller 
switch node, no ground plane underneath, and more com-
pact part placement to reduce the length of the critical 
loop (shown in blue).

Figure 7 shows the near-field EMI measurements from 
two battery-powered test boards, one with poor layout 
and the other with improved layout. The tests were con-
ducted under identical conditions with the same inductor 
and the TPS61161 (final silicon). Clearly, an improved 
board layout that minimizes parasitic board capacitance 
and inductance reduces EMI across multiple frequencies.

A switching converter’s EMI cannot be completely elimi-
nated. However, with careful IC and passive-component 
selection as well as good board-layout techniques, EMI can 
be reduced to acceptable levels.
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Using fully differential op amps as  
attenuators, Part 2: Single-ended bipolar  
input signals

Introduction
Fully differential operational amplifiers (FDAs) can easily 
be used to attenuate and level-shift high-voltage input  
signals to match the input requirements of lower-voltage 
ADCs. This article is Part 2 of a three-part series. In Part 1 
(see Reference 2) we considered a balanced, differential 
bipolar input signal and proposed an architecture utilizing 
an FDA to accomplish the task. In Part 2 we will show how 
to adapt the circuits presented in Part 1 to a high-voltage, 
single-ended (SE) bipolar input. Part 3, which will appear 
in a future issue of the Analog Applications Journal, will 
show the more generic case of an SE unipolar input with 
arbitrary common-mode voltage. As mentioned in Part 1, 
the fundamentals of FDA operation are presented in 
Reference 1, which provides definitions and derivations.

Attenuator circuit for SE bipolar input
Using an input attenuator
Now consider a high-amplitude, SE bipolar input signal 
that needs to be attenuated and level-shifted to the appro-
priate levels to drive a lower-voltage input ADC. The first 
step is to modify the differential bipolar input circuit pre-
sented in Part 1 to accept an SE bipolar input and keep 
the amplifier balanced. This is accomplished by grounding 
one side of the signal source, splitting RT in half, and 
grounding the center point. Otherwise the circuit is the 
same. Splitting RT in half and grounding the center point 
are key to keeping the resistances that set the gain on 
each side of the amplifier balanced so that no offsets are 
generated. Figure 5 shows the modified circuit.

We can build the circuit as shown (with appropriate  
values), but we can get the equivalent circuit shown in 
Figure 6 with a few simple changes: Combine RS, RG, and 
RT/2 on the alternate input from the signal into an equiv
alent resistor RG–; use reference designator RG+ on the 
positive side; and replace RT/2 with RT. The circuit analy-
sis of Figure 6 is very similar to that of Figure 1 in Part 1 
of this series, but the changes in the input configuration 
result in a new gain equation:
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V
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R R

R

R R R
OUT

Sig

T

S T

F

G S T

±

+
=
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(4)

The noise gain of the FDA can be set to 2 by making the 
second half of Equation 4 equal to 1:

	 R R R RG S T F+ + = 	
(5)
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Figure 5. Differential bipolar input circuit 
modified to accept SE bipolar input
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With this constraint, the overall gain equation reduces to

	

V

V

R

R R
OUT

Sig

T

S T

± =
+

.

	

(6)

The design equations provide two degrees of freedom for 
choosing components. The input impedance is given by 
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ZIN = RS + RT || ZIN_Amp, which is approximated by ZIN = 
RS + RT || RG+; so we start by first choosing RS close to the 
desired input impedance. We then select RF in the recom-
mended range for the device and calculate the required 
value of RT to give the desired attenuation. These results 
can be used to calculate RG+ and an equivalent value for 
RG–. To see an example Excel® worksheet, click on the 
Attachments tab or icon on the left side of the Acrobat® 
Reader® window. Open the file FDA_Attenuator_
Examples_SE_Bipolar_Input.xls, then select the Bipolar 
SE FDA Input Atten worksheet tab.

Design Examples 3a and 3b
For Example 3a, let’s say that again we have a 20-VPP 
bipolar (±10-V) input, but this time it is an SE signal.  
We need a 1-kW input impedance and want to use the 
ADS8321 SAR ADC with a 5-VPP differential input and a 
2.5-V common-mode voltage. We choose RS = 1 kW and  
RF = 1 kW. Rearranging Equation 6 and using substitution, 
we can calculate

R
R

V

V

T
S

Sig

OUT

=
−

=
−

=

±
1

1
4 1

333 3
 k

 
Ω Ω. .

The nearest standard 1% value, 332 W, should be used. 
Then, rearranging Equation 5 and using substitution, we 
can calculate

R R R R kG F S T+ = − = − = 1 1 332 750 k    Ω Ω Ω Ω,

which is a standard 1% value. We can then calculate

R R R R k kG G S T− += + = + = 750    Ω Ω Ω Ω1 332 1 ,

which is a standard 1% value. These values will provide 
the needed attenuation and keep the FDA stable. Again 
the VOCM input on the FDA is used to set the output  
common-mode voltage to 2.5 V.

The input impedance is ZIN = 1254 W, which is higher 
than desired. If the input impedance really needs to be 
closer to 1 kW, we can iterate with a lower value as before. 
In this case, using RS = 787 W and RF = 1 kW will yield  
ZIN = 999 W, which comes as close as is possible when 
standard 1% values are used.

To see a TINA-TI™ simulation of the circuit in Example 
3a, click on the Attachments tab or icon on the left side of 
the Acrobat Reader window. If you have the TINA-TI soft-
ware installed, you can open the file FDA_Attenuator_
Examples_SE_Bipolar_Input.TSC to view the example 
(the top circuit labeled “Example 3a”). To download and 
install the free TINA-TI software, visit www.ti.com/tina-ti 
and click the Download button.

The simulation waveforms for Example 3a show that the 
signal is distorted. Further investigation will show that the 
input common-mode voltage range of the THS4520 used 
in the simulation has been violated, causing nonlinear 
operation. In this case the SPICE model shows a problem; 
but care must be taken to double-check operation against 

the data sheet, as not all SPICE models will show this 
error. For instance, replacing the THS4520 model with the 
THS4509 will simulate fine, but the actual device has a 
similar input common-mode voltage range.

One way to correct the problem is to use pull-up resis-
tors from the FDA input pins to the +5-V supply, as 
described in the THS4520 data sheet. In this case, 2-kW 
pull-up resistors will bring the input common-mode voltage 
back into linear operation and will have no effect on the 
gain of the signal. To see a TINA-TI simulation of this  
corrected circuit (Example 3b), follow the same procedure 
as for Example 3a, but view the middle circuit labeled 
“Example 3b.” Note that this circuit provides the same 
results as those shown in Figure 3 of Part 1.

Another way to eliminate the problem with input  
common-mode voltage is to use the RF and RG gain-setting 
resistors of the FDA as the attenuator, a method that is 
described next.

Using an FDA’s RF and RG as an attenuator
The proposed circuit using gain-setting resistors to obtain 
an SE bipolar input signal is shown in Figure 7. In this cir-
cuit, the FDA is used as an attenuator in a manner similar 
to using an inverting op amp, as described in Part 1 for the 
differential bipolar signal. The design equations are the 
same as in Part 1, except that the input impedance is 
reduced by approximately half. Thus, the gain (or attenua-
tion) is set by RF and RG:

V

V

R

R
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RT is used to set the noise gain to 2 for stability; i.e.,

R R
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and the input impedance is ZIN ≈ RG.
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Figure 7. Using FDA’s RF and RG as attenuator 
for SE bipolar input
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Design Example 4
Using the same approach as for Example 3a, with RF = 1 kW, 
we calculate RG = 4 kW (the nearest standard 1% value is 
4.02 kW) and RT = 2.67 kW (the nearest standard 1% value 
is 2.67 kW). This makes ZIN ≈ 4.02 kW, and SPICE shows it 
to be more on the order of 4.46 kW. The simulation results 
are the same as before, but with this approach the only 
freedom of choice given the design requirements is the 
value of RF.

To see an example Excel worksheet, click on the 
Attachments tab or icon on the left side of the Acrobat 
Reader window. Open the file FDA_Attenuator_Examples_
SE_Bipolar_Input.xls, then select the Bipolar SE FDA RF_
RG Atten worksheet tab. To see a TINA-TI simulation of 
the circuit in Example 4, follow the same procedure as for 
Example 3a, but view the bottom circuit labeled “Example 
4.” Note that the circuit provides the same results as those 
shown in Figure 3 of Part 1.

Conclusion
We have analyzed two approaches to using an FDA to 
attenuate and level-shift high-amplitude, SE bipolar signals 
to the input range of lower-voltage input ADCs. The first 
approach (Example 3a) uses an input attenuator with  
values chosen to provide the required attenuation and to 
keep the noise gain of the FDA equal to 2 for stability. We 
saw in the simulation of this example that there is a poten-
tial problem with input common-mode voltage that we can 
solve by using pull-up resistors from the inputs (Example 
3b). The second approach (Example 4) uses the gain- 
setting resistors of the FDA in much the same way as 
using an inverting op amp, then a resistor is bootstrapped 
across the inputs to provide a noise gain of 2. Except for 
the potential problem with the input common-mode voltage 
in Example 3a, the approaches in Examples 3a and 4 yield 
the same voltage translation that is needed to accomplish 
the interface task. Other performance metrics were not 
analyzed here, but the two approaches have substantially 
the same noise, bandwidth, and other AC and DC perform
ance characteristics as long as the value of RF is the same.

The input-attenuator approach in Example 3a is more 
complex but allows the input impedance to be adjusted 

independently from the gain-setting resistors used around 
the FDA. At least to a certain degree, lower values can 
easily be achieved if desired, but there is a maximum 
allowable RS where larger values require the RG+ resistor 
to be a negative value. For example, setting RS = 4 kW 
results in RG+ = 0 W. The spreadsheet tool provided will 
generate “#NUM!” errors for this input as it tries to calcu-
late the nearest standard value, which then replicates 
throughout the rest of the cells that require a value for 
RG+; but this value will work.

The approach in Example 4 is easier, but the input 
impedance is set as a multiplication of the feedback resis-
tor and attenuation: ZIN ≈ 2 × RF × Attenuation. This does 
allow some design flexibility by varying the value of RF, 
but the impact on noise, bandwidth, distortion, and other 
performance characteristics should be considered.

One final note: The source impedance will affect the 
input gain or attenuation of either circuit and should be 
included in the value of RS, especially if it is significant.
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Interfacing op amps to high-speed DACs, 
Part 1: Current-sinking DACs

Introduction
Digital-to-analog converters (DACs) come 
in many bit resolutions and sampling 
speeds. Outputs from lower-speed DACs 
are often single-ended and have either a 
voltage or a current output. Most high-
speed DACs are designed with comple-
mentary outputs that either source or 
sink current. This article, Part 1 of a 
three-part series, discusses the interface 
between a current-sinking DAC and an 
op amp. Part 2, which will appear in a 
future issue of the Analog Applications 
Journal, will discuss the interface 
between a current-sourcing DAC and  
an op amp. Part 3, also in a future issue 
of the Analog Applications Journal, 
will provide a simplified approach to the 
interface analogy presented in Part 2.

High-speed DACs are used in end-
equipment applications like communica-
tions, test equipment, medical applications, industrial 
applications, and many more where signal generation is 
required. Each of these applications has its own specific 
requirements for signal characteristics and performance. 
This article focuses on end equipment that requires DC 
coupling, like signal generators with frequency bandwidths 
of up to 100 MHz and a single-ended output. In these 
cases, high-speed op amps can provide a good solution for 
converting the complementary-current output from a high-
speed DAC to a voltage that can drive the signal output.

Overview of complementary-current-steering DAC
A simplified block diagram of a complementary-current-
steering DAC is shown in Figure 1. The digital input is 
decoded for the switch drivers that switch, or steer, the 
appropriate current source(s) in the current-source array 
to the outputs, IOUT1 and IOUT2. IOUT1 and IOUT2 are com
plementary, which means that if current flows out of one it 
is subtracted from the other, and vice versa, keeping the 
total current constant. For example, if full scale is 20 mA, 
the minimum code input or zero-scale input may provide  

By Jim Karki
Member, Technical Staff, High-Performance Analog

Bias
Circuit

Current-
Source
Array

Switch
Array

Analog
Output

IOUT2

IOUT1

Digital
Input
Data

DAC

Decoder
Logic

Switch
Drivers

Figure 1. Simplified block diagram of current-steering DAC

Table 1. Example of IOUT1 and IOUT2 currents for 20-mA full scale

INPUT
IOUT1
(mA)

IOUT2
(mA)

Maximum Scale 20 0

Midscale 10 10

Zero Scale 0 20

0 mA at IOUT1 and 20 mA at IOUT2. At midscale, each output 
provides 10 mA; and at maximum or full scale, IOUT1 =  
20 mA and IOUT2 = 0 mA. This example is illustrated in 
Table 1. It is important to note that the midscale input, 
with each output at 10 mA, will be used to set the output 
common-mode condition for the design.

The current-source array is constructed with either 
n-type or p-type transistors. The word “source” is used 
generically to refer to the transistor circuit structure, 
which may either source or sink current. This article con-
siders the interface between a current-sinking DAC and an 
op amp in the case where the source array is constructed 
with n-type transistors.
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Architecture and compliance voltage  
of current-sinking DACs
Figure 2 shows simplified examples of 
NMOS and NPN current sinks and lists a few 
devices that use them. The compliance volt
age shown for each group of devices is the 
voltage range at the DAC outputs within 
which a device will perform as specified. 
Lower voltages tend to shut down the out-
puts, and higher voltages have the potential 
to cause breakdown. Both of these should be 
avoided to provide the best performance and 
long-term reliability.

Generally the output is terminated via some 
impedance to a positive power supply. This 
impedance supplies a current path needed 
for the sink array, and the voltage drop across 
the same impedance can be used as a voltage 
output. The impedance can be constructed in 
various ways; it can be a simple resistor 
divider, a transformer-coupled impedance, or a combina-
tion of passive components and an active circuit. This  
article focuses on the latter option, with an op amp as the 
active circuit.

Op amp interface
The proposed op amp interface is shown in Figure 3. This 
circuit will provide biasing of the DAC outputs, convert 
the DAC currents to voltages, and provide a single-ended 
output voltage via the op amp. The op amp is the active 

amplifier element for the circuit and uses R2, R3, RG, and 
RF to make a difference amplifier.

•	 IDAC+ and IDAC– are the current outputs from the DAC.

•	 R2 and R3 are input resistors to the positive input of the 
op amp.

•	 RG and RF are the main gain-setting resistors for the  
op amp.

•	 RX, R1, RY, and R4 provide bias and impedance termina-
tion for the DAC outputs.

Example Devices:
DAC5686/87/88,
DAC5681/82Z

IOUT1 IOUT2

Compliance
Voltage:

AV ± 0.5 VDD

Current-
Sink

Cascodes

Switches

Figure 2. Simplified NMOS and NPN current sinks

(a) NMOS

Example Device:
DAC5675A
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AV ± 0.3 VDD

Current-
Sink

Cascodes

Switches

(b) NPN (bipolar)
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Figure 3. Proposed circuit for an op amp interface
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•	 VDAC+ and VDAC– are the voltages at the outputs of the 
DAC.

•	 Vp and Vn are the input terminals of the op amp.

•	 VS+ and VS– are the power supplies to the op amp.

Proper component selection will provide the impedance 
required to maintain voltage compliance with maximum 
amplitude and balance for the best performance.

Typically, harmonic distortion in an op amp is dominated 
(at least at lower frequencies) by the second-order har-
monics. Balanced inputs to the difference-amplifier circuit 
will help suppress second-order harmonics and provide for 
the best performance, but little impact is expected on 
third-order harmonics if the inputs are not balanced.

For analysis, it is easiest to break the circuit into posi-
tive and negative halves and examine each separately. It 
will also be assumed that the op amp is ideal.

Analysis of positive side
The positive half of the circuit is shown in Figure 4. To 
start the analysis, Kirchhoff’s current law can be used to 
write a node equation at VDAC+:

I
V V

R

V

R

V

R RDAC
DAC REF

X

DAC DAC
+

+ + ++
−

+ +
+

=
1 2 3

0 	 (1)

The input impedance can be expressed as

Z R R R RDAC X+ = +|| || ( ).1 2 3 	 (2)

Equations 1 and 2 are simultaneous equations with many 
variables, and designers must choose or identify values 
based on other design criteria in order to solve them. The 
following assumptions are made for this article:

1.	 The DAC output current, IDAC+, and the voltage swing, 
VDAC+, are defined by the designer, which sets a target 
value for ZDAC+.

2.	 An existing circuit voltage or other known voltage is 
used for VREF.

3.	 In a difference amplifier, R3/R2 needs to equal RF/RG to 
balance the gain of the amplifier.*

4.	 The equations will be solved for the condition where the 
DAC current on the positive side is zero: IDAC+ = 0 mA. 
This in turn sets the DAC voltage on the positive side 
to its maximum value, VDAC+ = VDAC+(max).

With these constraints, the designer can apply algebra and 
simultaneous-equation techniques to Equations 1 and 2 to 
solve for 1/R1:
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The known value for R1 can be substituted into Equation 2, 
which can then be rearranged to find 1/RX:

1 1 1 1

1 2 3R Z R R RX DAC
= − −

++
	 (4)

Analysis of negative side
The negative half of the circuit is shown in Figure 5. 
Analysis of the negative side is complicated, because Vn is 
driven not only by the negative side of the DAC but also 
by the positive side via the op amp’s action. To start the 
analysis, Kirchhoff’s current law can be used to write a 
node equation at VDAC–:
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The input impedance can be expressed as
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With substitution and rearrangement, the designer can use
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and Vn = αVp to rewrite Equation 6 as
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Figure 4. Positive side of analysis circuit

*	Note that in a voltage-feedback op amp, it is desirable to make the impedance 
at Vp equal to that at Vn in order to cancel voltage offset caused by the input 
bias current. In a current-feedback op amp, the input bias currents are not 
correlated; so it is acceptable not to balance these impedances, but it may be 
desirable to minimize them.
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Figure 5. Negative side of analysis circuit
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Using the same substitutions and general design constraints used on the positive side to drive values for ZDAC–, VREF, 
and RG, simultaneous-equation techniques can be applied to Equations 5 and 7 to solve for 1/R4 (Equation 8). Note that 
the equations are solved for the condition where the DAC current on the negative side is zero: IDAC– = 0 mA. This sets the 
DAC voltage on the negative side to its maximum value, VDAC– = VDAC–(max), and sets the DAC voltage on the positive side 
to its minimum value, VDAC+ = VDAC+(min).
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The value of 1/R4 can then be used to find 1/RY:
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Note that α, the multiplication factor from Vp to Vn, in essence expresses the difference between the input pins. In a  
voltage-feedback amplifier, α is set by the loop gain of the amplifier. In a current-feedback amplifier, α is the gain of the 
input buffer between the inputs. All that aside, α is typically close enough to 1 that it can simply be removed from the  
calculation.

Calculating output voltage
Superposition can be used to write equations for the separate sources referred to VOUT. Since the DAC only sinks current, 
which is by convention negative current flow, the output-voltage swing is the opposite of what might be expected. In other 
words, when the DAC is sinking current on the positive side, the output of the op amp tends to swing negative, and when 
the DAC is sinking current on the negative side, the output of the op amp tends to swing positive. This means that in the 
following equations, IDAC+ and IDAC– are always negative or zero.

The output-referred DC bias from the positive side is
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The output-referred DAC signal from the positive side is
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The output-referred DC bias from the negative side is

V V
R

R R

R

R R ROUT V REF
Y

F

G Y
n DC_ ( ) ||

.= − ×
+

×
+









4

4 4

The output-referred DAC signal from the negative side is
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Adding these four equations provides an expression for VOUT:
V V V V VOUT OUT V OUT V OUT V OUT Vp DC p DAC n DC n DAC

= + + +_ _ _ _( ) ( ) ( ) ( )
	 (10)

If it is assumed that IDAC = IDAC+ – IDAC–, Z = ZDAC+ = ZDAC–, and RF/RG = R3/R2, the DC component of the DAC outputs 
will cancel and the AC-signal’s gain equation from the DAC output current to the voltage output of the op amp can be 
simplified and written as

V

I
Z

R

R
OUT

DAC

F

G
= ×2 . 	 (11)
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Equations 3, 4, 8, and 9 can be used to find, respectively, R1, RX, R4, and RY:
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Design example and simulation
For an example of how to proceed with the design, assume 
that one of the NMOS DACs noted earlier, with a compli-
ance voltage of 3.3 ±0.5 V, is being used. Also assume that 
the full-scale output is set to 20 mA. To get a 5-VPP, DC- 
coupled single-ended output signal, the circuit shown in 
Figure 3 can be used. Since a ±5-V power supply is being 
used for the op amp, it is convenient to make VREF = 5 V. 
Given that IDAC± = 20 mA and VDAC± = 1 VPP, the target 
impedance, ZDAC±, can be calculated to equal 50 Ω.

With the starting design constraints given earlier, the 
THS3095 current-feedback op amp is selected as the 
amplifier, where R3 = RF = 750 Ω. The gain from VDAC± to 
the output is given by the resistor ratios RF/RG = R3/R2, so 
RG can be calculated as

R R R
V

V
V
VG F

DAC

OUT
= = × = × =±

2
2

750 
1 
5 

300 Ω Ω( )
.

The nearest standard 1% value, 301 Ω, should be used.
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The nearest standard 1% values should be used:  
R1 = 261 Ω, RX = 66.5 Ω, R4 = 442 Ω, and RY = 82.5 Ω.

These equations are easily solved when set up in a 
spreadsheet. To see an example Excel® worksheet, click 
on the Attachments tab or icon on the left side of the 
Acrobat® Reader® window. Open the file DAC_Sink_to_
Op_Amp_Wksht.xls, then select the “DAC Sink to Op 
Amp, No Filter” worksheet tab.

SPICE simulation is a great way to validate the design. 
To see a TINA-TI™ simulation of the circuit in this exam-
ple, click on the Attachments tab or icon on the left side 
of the Acrobat Reader window. If you have the TINA-TI 
software installed, you can open the file DAC_Sink_to_
Op_Amp_No_Filter.TSC to view the example. To download 
and install the free TINA-TI software, visit www.ti.com/
tina-ti and click the Download button.

The simulation circuit and waveforms in Figure 6 show 
that the circuit simulates as expected. IDAC+ and IDAC– are 
the DAC currents, VDAC+ and VDAC– are the voltages 
developed at the DAC outputs, and VOUT is the output of 
the amplifier. The current-sinking DAC and op amp are 
ideal elements constructed with SPICE macros and are 
intended to show that the equations derived earlier for R1, 
RX, R4, and RY are valid for ideal elements. Actual perform
ance will vary depending on selected devices.

DAC image-filter considerations
The DAC output signal will have the desired baseband sig-
nal as well as the sampling images that occur at multiples 
of the sampling frequency. Filtering is usually used to 
reduce the amplitude of the sampling images because they 
degrade performance. Filtering directly at the DAC output 

before the op amp will preserve the best performance. 
This is especially important with multitone signals where 
second-order intermodulation products from the sampling 
images appear at the baseband.

Filter design is not the topic of this article, so it will not 
be covered in much detail; but for proper operation the  
filter component values are calculated based on the input 
and output impedances seen by the filter. While finding 
the exact value of the impedance is not so troublesome, it 
is usually much easier to find standard component values 
to implement the filter when the input and output imped-
ances to the filter are equal. With this in mind, let’s now 
consider how to achieve the same goals as before while 
keeping the impedance seen by the filter balanced.
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Figure 6. Simulation of current-sinking DAC interfaced to op amp
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Figure 7 shows the pro-
posed circuit implementa-
tion. R1, RX, R4, and RY 
have been replaced with 
prime and double-prime 
components on either side 
of the filter, where 

R1 = R′1 || R″1,  
RX = R′X || R″X,  
R4 = R′4 || R″4, and  
RY = R′Y || R″Y.

With the additional con-
straint that the impedance 
seen on each terminal of 
the filter is 2 × ZDAC±, the 
following equations can be 
derived after quite a lot of 
algebra:
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These equations are easily solved when set up in a 
spreadsheet. To see an example Excel worksheet, click on 
the Attachments tab or icon on the left side of the Acrobat 
Reader window. Open the file DAC_Sink_to_Op_Amp_
Wksht.xls, then select the “DAC Sink to Op Amp, With 
Filter” worksheet tab.

SPICE simulation is a great way to validate the design. 
To see a TINA-TI simulation comparing results with a filter 
used in the circuit, click on the Attachments tab or icon on 
the left side of the Acrobat Reader window. If you have the 
TINA-TI software installed, you can open the file DAC_
Sink_to_Op_Amp_With_Filter.TSC to view the example. 
To download and install the free TINA-TI software, visit 
www.ti.com/tina-ti and click the Download button. To show 
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the effects of balancing the filter impedance, a 100-MHz 
differential filter designed for 100-Ω input and output 
impedance is inserted into the interface of the DAC 
and op amp. In the top circuit, the filter is inserted 
between the bias resistors and amplifier gain resistors 
with no regard for balancing the impedance; the out-
put is labeled “VOUT No Match1.” In the bottom circuit, 
the filter is inserted between the DAC and the bias 
resistors with no regard for balancing the impedance; 
the output is labeled “VOUT No Match2.” In the center 
circuit, the bias network is designed for 100-Ω balanced 
impedance; the output is labeled “VOUT Matched.” The 
transient simulation waveforms look the same as those 
shown in Figure 6 for each of these circuits, but simu-
lation of an AC transfer function (see Figure 8) shows 
that the unmatched implementations result in signifi-
cant ripple in the frequency response while the 
matched design performs as desired.

During design of the Texas Instruments TSW3070 
evaluation board, a circuit was derived as shown in 
Figure 9 that appears to be well-balanced and that 
provides for proper impedance matching to the  
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Figure 8. Simulation of AC transfer function with 
matched vs. unmatched filter implementations
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100-MHz low-pass filter (LPF). However, the circuit’s simu
lation waveforms show that the impedances seen by the 
outputs of the DAC are not balanced and that the voltage 
at VDAC+ is not the mirror image of that at VDAC–. Per the 
last example given, this circuit was modified to balance the 
impedances for the DAC and the LPF. Performance of the 
second and third harmonics was tested before and after 
the modification, and the results (shown in Figure 10) show 
as much as a 10-dB improvement in the second harmonics 
(depending on the frequency) with basically no change in 
the third harmonics.

Conclusion
This article has shown a circuit implementation using a 
single-stage op amp to convert complementary-current 

outputs from a current-sinking DAC to a single-ended volt-
age. Equations were derived and a methodology presented 
for proper selection of component values to set the DAC’s 
output-voltage compliance while maintaining balanced input 
signals to the op amp for best overall performance. Filter-
design considerations were also included to explain proper 
insertion when filtering before the amplifier is desired.

Related Web sites
amplifier.ti.com
www.ti.com/sc/device/partnumber
Replace partnumber with DAC5675A, DAC5681, 
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Using the infinite-gain, MFB filter topology  
in fully differential active filters

Active filters are commonly employed in analog signal-
conditioning applications. Some of the more common appli
cations include tailoring a signal’s bandwidth to reduce 
noise. One example of this is a low-pass anti-aliasing filter 
in front of an analog-to-digital converter (ADC); another is 
an anti-imaging filter that follows the output of a delta- 
sigma digital-to-analog converter (DAC) to remove 
unwanted high-frequency content. These filters—most 
commonly low-pass, high-pass, and band-pass filters—are 
often used to manage the amplitude response within a 
particular frequency range. The amplitude response may be 
tailored to track a particular pass-band or stop-band  
characteristic such as one provided by a Butterworth, 
Chebyshev, or Bessel filter. Filter-synthesis software is 
available from several sources, including Texas Instruments 
(TI). The synthesis programs and various on-line calcula-
tors allow for quick realization of practical filter designs. 
TI’s FilterPro™ software accommodates all of the filters 
just mentioned.

Differential-amplifier and differential-input mixed-signal 
circuits such as ADCs are recognized for their inherent 
ability to reject common-mode signals and noise.1 This 
ability provides a distinct advantage over the performance 
of single-ended-input/output ADCs, where unintended 
noise and signals may be processed along with the intended 
signal. Both the circuit complexity and the passive compo-
nent count increase for a differential circuit, but maximiz-
ing system performance may easily justify the increased 
complexity. Like the basic differential-amplifier stages,  
differential active filters reject common-mode signals.

Designers often need to filter a signal as it is processed 
through the circuit’s signal chain. In most instances the 
application calls for a low-pass filter. Other filters such as 
the band-pass, high-pass, band-reject, or an all-pass (used 
to create a specific time delay) are sometimes needed, but 
not nearly as often as the low-pass filter.

The Sallen-Key and infinite-gain, multiple-feedback 
(MFB) filter topologies are well-documented in filter liter-
ature, books, and on-line resources. Their popularity may 
stem from the fact that they require only one operational 
amplifier per second-order stage. Alternate topologies are 
available that provide a very precise filter response and 
offer lower component sensitivity; but they require two to 
four operational amplifiers per second-order stage, plus 
several additional precise passive components. Using one 
or more cascaded Sallen-Key or MFB stages often provides 
the necessary level of filter performance without resorting 
to more complex topologies.

The MFB configuration is one of the few topologies that 
readily lends itself to an application requiring a fully differ-
ential active filter because typical feedback paths run from 
the amplifier output back to only one input circuit—the 
inverting input circuit. The noninverting input is either 
biased at a common-mode potential or grounded, and no 
feedback is applied to it in its most common connection. 
The basic single-ended MFB filter topology can be used as 
the basis for developing a differential filter that has equiv-
alent response characteristics. Nearly all other filter topol-
ogies require one or more feedback paths to each input of 
the operational amplifiers and are therefore more difficult 
to apply.

Transforming a single-ended-input/output filter 
into a fully differential filter
Filter handbooks and software don’t always include topol-
ogies for differential filters, so knowing how to convert a 
single-ended-input/output filter to a fully differential filter 
when needed can save design time. For example, TI’s 
FilterPro includes a provision for selecting a fully differen-
tial low-pass or high-pass filter but not a fully differential 
band-pass filter. Suppose the latter is needed. A basic  
single-ended MFB filter created with FilterPro can be used 
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as a starting point. The 10-kHz second-order Butterworth  
filter (Q = 0.707) shown in Figure 1 is used here as an 
example. Butterworth filters have a maximally flat pass-
band response, which is a desirable trait for most analog 
signal paths. A higher-order Butterworth filter further flat-
tens the pass-band response and provides higher attenua-
tion in the stop band. The second-order filter used in this 
example provides an amplitude roll-off rate of –40 dB/
decade, beyond the –3-dB cutoff frequency. For now, a 
value of 100 nF is selected for C2, and all the other com-
ponents are allowed to float to their calculated values. 
FilterPro allows the designer to enter a capacitor value or 
a seed value for the input resistor; in this case, C2’s value of 
100 nF is entered. Once the filter requirements are entered 
into the program, the resulting values are displayed within 
a schematic of the filter.

A helpful FilterPro feature is that it selects standard 
capacitance values and then calculates the required resist
ances that meet the filter response. Often the resistor  
values are within the range of resistors with 1% tolerance. 
Capacitors with a tolerance of better than 5%, such as 2 or 
1%, have limited availability. Resistors, by comparison, are 
commonly available with a tolerance of 1% and even 0.1%. 
Therefore, most of the filter component values can be  

covered without resorting to parallel or series combinations; 
but keep in mind that components with tight tolerances 
are required if a precise filter response is to be achieved.

The 10-kHz Butterworth low-pass filter shown in Figure 1 
uses an OPA211 precision operational amplifier, which is 
well suited for this application because of its wide band-
width and high gain at the filter’s critical frequencies. 
Other operational amplifiers will also work but must have 
sufficient gain bandwidth (GBW) to support the filter’s 
performance. More will be mentioned about this later.

Transforming the single-ended-input/output low-pass  
filter to a fully differential filter is really quite simple. The 
procedure is as follows: (1) Create a mirror of the single-
ended filter circuit; (2) combine the circuit elements that 
connect to ground; and (3) replace the operational ampli-
fier and its mirror with a fully differential operational 
amplifier. Viewing the circuit in Figure 2, which shows the 
single-ended low-pass filter and its mirror, aids under-
standing of this procedure.

The fully differential amplifier does not require the 
ground reference that a conventional operational amplifier 
uses, so the ground points in the circuit are no longer 
needed. Also, when the mirror was created, an extra 
input-voltage source and output meter were created; they 
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are redundant and not required either. The capacitor C2 
and the mirrored C2 are required, but their individual 
reactances can be combined in one capacitor. Once their 
ground connections are removed and they are connected 
together, they form a series connection. Therefore, C2 
becomes common to both sides of the filter’s input circuit, 
and its value is half of the original value. In the original 
low-pass filter, C2 had a value of 10 nF, but once the filter 
has been transformed, C2’s final value is 5 nF. Lastly, the 
two conventional operational amplifiers are removed and 
replaced with one fully differential operational amplifier. 
In this case, a high-performance audio OPA1632 is selected. 
The transformed fully differential second-order low-pass 
filter is shown in Figure 3. A plot of gain versus frequency 
shows that the response is exactly the same for the fully 
differential and the single-ended filters.

By now it may be apparent why the value of C2 was pre-
set to 10 nF. When a low-pass filter undergoes the transfor
mation process, the capacitor ends up at half the original 
value. Selecting a capacitor value of 10 nF or 20 nF results 
in a transformed capacitor value of 5 nF or 10 nF, respec-
tively. All of these are standard capacitor values. If C2 had 
originally been 4.7 nF, the transformed value would have 
been 2.35 nF, which isn’t a standard value. Fortunately, 
when FilterPro synthesizes a fully differential filter, it 
always selects standard capacitor values and adjusts the 
resistor values to provide the correct response.

The transformation procedure may be just as easily 
applied to high-pass and band-pass filters. The resistors 
and capacitors of these filters lie in different positions 
within the MFB circuit than do those of low-pass filters. 
As a result, instead of the one capacitor and its mirror 
being reduced to one capacitor, a resistor and its mirror 
are combined into one resistor. That resistor requires 
twice the resistance of that used by the single-ended filter.
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Figure 4 provides an example of a band-pass filter with 
a center frequency of 10 kHz, a –3-dB bandwidth of 1 kHz, 
and a gain of 10 V/V, with Qbp = 10 (fC/BW–3 dB). This filter 
was transformed via the same steps described earlier for 
the low-pass fully differential filter. Keep in mind that R3 
is double the resistance required in a single-ended filter.

The differential-input, single-ended-output  
active filter
Up to this point, single-ended-input/output and fully differ
ential active filters have been discussed. There are times, 
however, when an application requires a filter function 
provided by a differential input but requires only a single-
ended output. System applications sometimes are config-
ured with the input transducer or sensor entering the  
circuit differentially, while the remainder of the circuitry 
after the input stage operates in a single-ended fashion. 
Certainly the fully differential filter could be employed 
with one or the other output, but the amplifier involved 
likely offers more capability than is needed. Numerous 
fully differential operational amplifiers are available, but 
their parametric variety is limited when compared to the 
vast selection offered by conventional operational ampli
fiers. Thus, for the differential-input, single-ended-output 
filter, a conventional operational amplifier is a logical and 
often lower-cost option.

The differential-input, single-ended-output filter can be 
viewed as having similarities to the difference amplifier, 
which is comprised of a single operational amplifier and 
four resistors or impedances. An example schematic for a 
difference amplifier is shown in Figure 5. Note the differ-
ential inverting and noninverting inputs and the single-
ended output. The ratios of R2 to R1 and R3 to R4 are 
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precisely matched such that the rejection of common-
mode signals is maximized, and the amplification of differ-
ential signals is achieved with high gain accuracy. When it 
comes to the filter’s case, the components are arranged to 
provide the differential filter function and to maintain 
input balance, just as the difference amplifier does.

The procedure for transforming the single-ended filter to 
the differential-input, single-ended-output filter is the same 
as it was for creating the fully differential filter. A conven-
tional operational amplifier replaces the fully differential 
operational amplifier and, since there is a single output, the 
circuit is connected a little differently. Instead of connect-
ing from a differential output back to the noninverting 
input, the lower feedback network simply connects to 
ground. Viewing Figure 6 makes the connection easy to 
understand. The circuit and response are shown for a 
50-kHz differential-input, single-ended-output, second-order 
0.5-dB Chebyshev filter that has a gain of +10 V/V. The  
differential-input, single-ended-output configuration can 
be just as easily applied to band-pass and high-pass filters.

Considerations for practical active filters
Using filter software such as FilterPro can make designing 
filters straightforward and easy, but be aware that the 
component values resulting from such software or even 
from manual calculations may not always be completely 
satisfactory. The resistor and capacitor values derived  
may place impractical loading on the sensors that drive 
the filter, or on the operational amplifiers used in and/or 
around the filter circuit. This includes the input and feed-
back resistors in the filter. When using fully differential 
operational amplifiers such as the OPA1632, the designer 
should review the data sheet before using the feedback 
resistor value returned by a filter program or calculation. 
The OPA1632 is a very low-noise operational amplifier 
with a noise spectral density of about 1.3 nV/√

—
Hz

–
 (10 kHz). 

There may be the temptation to use large-value resistors 
to minimize capacitances, but those resistors can easily 
produce noise on their own that exceeds that of the 
OPA1632. The capacitance associated with amplifier input 
in conjunction with a large feedback resistance creates a 
pole in the response that degrades the amplifier’s closed-
loop bandwidth and phase margin. Therefore wideband 
amplifiers like the OPA1632 most often use small-value 
feedback resistors to preserve the amplifier’s bandwidth. 
The same precautions must be observed whether the 
operational amplifier is conventional or fully differential.

Circuit designers are sometimes surprised to find that 
the filter response of the actual filter is not as expected. 
The filter exhibits inexact gain, incorrect cutoff or center 
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Figure 6. A 50-kHz, differential-input, single-
ended-output, second-order 0.5-dB Chebyshev 
low-pass filter (AV = +10 V/V)

Frequency (Hz)

G
a
in

( d
B

)

500 5 k 50 k 500 k 5 M 50 M
–80

–60

–40

–20

0

20

40

frequencies, or incorrect pass-band or stop-band response 
characteristics. Most often this is the result of the opera-
tional amplifier having insufficient closed-loop gain at  
frequencies critical to the filter’s performance. Surprisingly 
high GBW may be required of the operational amplifier, 
especially when a filter’s operating frequency is increased, 
the stage gain is high, and the filter must accurately repro-
duce the pass-band ripple characteristics. For best MFB 
performance, it is recommended that any one stage’s filter 
Q be 10 or less.
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FilterPro performs a GBW calculation for both the low-
pass and high-pass filters. The GBW returned is a simple 
approximation based on the following:

GBWSection = G × fn × Q,

where G is the section or stage gain (V/V), fn is the section’s 
natural frequency, and Q is related to the stage-damping 
factor, Q = 1/(2ζ). FilterPro provides the G, fn, Q, and 
GBW product (listed as “GBP”) in a table that summarizes 
the filter characteristics of each stage. This simple approx-
imation may be used as a starting point for the other filter 
responses as well. More exacting GBW results may be 
obtained from the formulas listed in Reference 2.

Fortunately, some operational amplifiers have SPICE 
simulation models that accurately model the AC and tran-
sient behaviors. That is the case for both the OPA211 and 
OPA1632 mentioned in this article. Once the particular  
filter has been defined and synthesized, the filter compo-
nents and operational amplifiers can be tested with a sim-
ulator such as TI’s TINA-TI™ or one of the many other 
SPICE-based simulators.

The test run should provide an accurate account of a 
particular filter’s true AC and transient behaviors. Any 
unexpected distortions in the filter performance should 

become evident from the simulations. Using the simulation 
approach is a good place to start before the actual filter is 
built and bench tested. All of the filter responses shown in 
this article were obtained from TINA-TI SPICE simulations.
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SE Bipolar FDA Input Atten

		Design Inputs (enter values)												Worksheet: SE Bipolar FDA Input Atten

		VSig_min		VSig_max		VOUT_Diff		VOCM						Yellow = Input values

		-10		10		5		2.5						Orange = Output values

		Design Choices (enter values)

		RS		RF										Notes

		1000		1000										1.       For unity gain FDA stability, keep RT||RS + RG = RF

		Calculated Values												2.       VOUT ÷ VSig = RT ÷ (RS + RT) x RF ÷ (RG + RT||RS)

		VOUT/VSig		RT		RG+		RG–						3.       With RF = RT||RS + RG, where RF ÷ (RG + RT||RS) = 1,

		0.250		333.33		750.00		1000.00								the gain is set by the input attenuator with VOUT ÷ VSig = RT ÷ (RS + RT)

		Nearest Standard Values												4.       Choose RS then calculate RT = RS ÷ [(VSig ÷ VOUT) – 1]

				RT		RG+		RG–						5.       Choose RF then calculate RG = RF – RT||RS

				332.0		750.0		1000.0						6.       ZIN = RS + RT||ZIN_Amp

		Attenuation, FB Factors, and ZIN with Standard Values												7.       If RG computes to a negative value, RS||RT > RF, then reduce RS so RG will compute correctly.

		B+		B–		Atten		ZIN

		0.500		0.500		0.249		1254.1169335806

		Output Voltages with Standard Values

				Min		Mid		Max		VOUT_Diff

		VOUT+		1.253		2.500		3.746		4.988

				Max		Mid		Min		Offset

		VOUT–		3.747		2.500		1.254		-0.001





SE Bipolar FDA RF_RG Atten

		Design Inputs (enter values)

		VSig_min		VSig_max		VOUT_Diff		VOCM		RF				Worksheet: SE Bipolar FDA RF/RG Atten

		-10		10		5		2.5		1000				Yellow = Input values

		Calculated Values												Orange = Output values

		RT		RG

		2666.67		4000.00										Notes

		Nearest Standard Values												1.       VOUT ÷ VSIG = RF ÷ RG

		RT		RG		Gain		FB Factor						2.       Choose RF then calculate RG = RF × VSig ÷ VOUT

		2670.0		4020.0		0.249		0.501						3.       For unity-gain FDA stability, keep (RT ÷ 2)||RG = RF

		Output Voltages with Standard Values												4.       ZIN is approximately equal to RG

				Min		Mid		Max		VOUT_Diff				5.       VSig = VSig_max – VSig_min

		VOUT±		1.256		2.500		3.744		4.975
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DAC Sink to Op Amp, No Filter

		Design Inputs (enter values)

		IDAC Max (mA)		VDAC mid		VDAC SE PP		RF		R3		VOUT_ PP		VREF

		20		3.3		1		750		750		5		5

		Calculated Values

		RG		R2		ZDAC±

		300		300		50

		Nearest Standard Values

		RG		R2

		301.0		301.0

		Calculated Values with Standard Values for RG and R2

		R1		RX		ZDAC+

		259.84		65.79		50.00

		R4		RY		ZDAC–

		447.15		82.85		50.00

		Calculated Voltages with Exact Values

		Range		VDAC–		VDAC+		VOUT

		Low		2.800		2.800		-2.500

		Mid		3.300		3.300		-0.000

		High		3.800		3.800		2.500										Note: If resistor values calculate as negative values,

		Nearest Standard Values																the design targets entered cannot be met,

		R1		RX		ZDAC+												resulting in "#NUM!" errors in this spreadsheet.

		261.0		66.5		50.45

		R4		RY		ZDAC–

		442.0		82.5		49.72

		Calculated Voltages with Standard Values

		Range		VDAC–		VDAC+		VOUT

		Low		2.801		2.784		-2.520

		Mid		3.299		3.289		-0.024

		High		3.796		3.793		2.472





DAC Sink to Op Amp, With Filter

		Design Inputs (enter values)

		IDAC Max (mA)		VDAC Mid		VDAC SE PP		RF		R3		VOUT_PP		VREF

		20		3.3		1		750		750		5		5

		Calculated Values

		RG		R2		ZDAC±

		300		300		50

		Nearest Standard Values

		RG		R2

		301.0		301.0

		Calculated Values with Standard Values for RG and R2

		R'1		R"1		R'X		R"X		ZDAC+								R1		Rx

		416.67		690.36		131.58		131.58		50.00								259.84		65.79

		R'4		R"4		R'Y		R"Y		ZDAC–								R4		Ry

		472.70		8272.26		149.27		186.17		50.00								447.15		82.85

		Calculated Voltages with Exact Values

		Range		VDAC–		VDAC+		VOUT

		Low		2.800		2.800		-2.500

		Mid		3.300		3.300		-0.000														Note: If resistor values calculate as negative values,

		High		3.800		3.800		2.500														the design targets entered cannot be met,

		Nearest Standard Values																				resulting in "#NUM!" errors in this spreadsheet.

		R'1		R"1		R'X		R"X		ZDAC+								R1		Rx

		412.0		698.0		133.0		133.0		50.38								259.08		66.50

		R'4		R"4		R'Y		R"Y		ZDAC–								R4		Ry

		475.0		8250.0		150.0		187.0		50.14								449.14		83.23

		Calculated Voltages with Standard Values

		Range		VDAC–		VDAC+		VOUT

		Low		2.793		2.780		-2.530

		Mid		3.294		3.284		-0.025

		High		3.796		3.788		2.479
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