
1

Introduction to Linux

Texas Instruments Tech Days

Copyright Copyright ©© 2001 Texas Instruments. All rights reserved.2001 Texas Instruments. All rights reserved.Technical TrainingTechnical Training
OrganizationOrganization

TT TOTO

2

Linux Functionality

Drivers
Buffer applications from underlying hardware, providing portability
and abstraction

Kernel
Provides system-level services such as interrupt routing, memory
management and networking support

Scheduler
Multiple applications execute on the processor, seeming to the end
user to be running concurrently

User Process 1

User Process 3

User Process 2
Linux
Kernel

APIDriver

RAM Memory

Storage

Peripherals

File Sys

Res Mgr

API

API

MORE THAN JUST A SCHEDULER…
BIG VALUE: RESOURCE ABSTRACTION – HW SHARED VIA API SET

API DOESN’T CHANGE EVEN WHEN UNDERLYING HW CHANGES
EG: PORTING A PC BASED APP’N TO AN EMBEDDED SOLUTION –

NEARLY SEAMLESS
VERY DIFFERENT THAN IN, SAY, A DSP SYSTEM…

USER CODE UNCHANGED / DRIVER SWAPPING ONLY …

An operating system provides a common platform across many different machines on which user
programs may run. User programs request resources such as memory and peripherals through a
standard set of API (Application program interface, note User Programs are also called Application
Programs in computerspeak) calls to the operating system.

By extracting the user interface, memory and peripherals away from the user program, this ensures that
user programs can run on any machine supported by the O/S. Further, by managing these resources, an
OS can provide a scalable environment in which many different programs may share common resources.

In addition to managing resources, GP O/S’es also manage user I/O, i.e. the user interface, which is why
hitting ctrl-alt-delete will take you to a certain screen no matter what program you are in, and why all
programs display within Windows on the Windows O/S.

3

Kernel Space

Linux-based Solution

GUI
Song
Volume
Bass
Treble

mySong.mp3

Process
(algorithm)

Input
Driver

Output
Driver

User Space
// “Master Thread”
// Create Phase

get IO
alloc process RAM

// Execute Phase
while(run)

Input (exch bufs)
Process
Output (exch bufs)

// Delete Phase
free process RAM
surrender IO

• Application Host
Software Pre-Ported
to Linux
– Device drivers
– DSP link
– Sample code

• Developers can
leverage the
abundance of available
open source and third
party software
– Networking software
– Web browser
– Signaling software,

e.g., SIP
– Electronic

programming guideD SP
TEXAS INSTRUMENTS

TECHNOLOGY

Agenda

• Kernel and Booting
• Drivers
• Scheduling

User Process 1

User Process 3

User Process 2
Linux
Kernel

APIDriver

RAM Memory

Storage

Peripherals

File Sys

Res Mgr

API

API

4

Linux in Three Parts

Flash

Bootloader
Provides rudimentary h/w init
Calls Linux kernel and passes
boot arguments

Kernel
Initializes the system (and device)
Manages system resources
Provides services for user programs Filesystem

Single filesystem (/ root)
Stores all system files
After init, kernel looks to
filesystem for “what’s next”
bootarg tells
linux where
to find root
filesystem

5

6

File System

Linux Kernel

Boot Loader

Linux Boot Process

U-Boot

Linux Kernel

Initrd (optional)

Init Process

Login Prompt

Power On

ARM assembly code
Passes args to Linux (bootargs)

Initialize hardware

Initial RAM Disk (we don’t use this)

/sbin/init – 1st process exe by kernel

Login console
Usually one of first prog’s to run

7

Bootloader: Das U-Boot

D SP
TEXAS INSTRUMENTS

TECHNOLOGY

• U-Boot resides in NOR flash memory, copies itself
to DDR, and executes itself from DDR when the
DaVinci EVM is powered on.

• In general, U-Boot performs the following
functions:

1. Initializes the processor
2. Provides boot parameters to the Linux kernel
3. Starts the Linux kernel

Configuring U-Boot
Common Uboot Commands:

printenv - prints one or more uboot variables
setenv - sets a uboot variable
saveenv - save uboot variable(s)
run - evaluate a uboot variable expression
ping - (debug) use to see if Uboot can access NFS server

Common Uboot Variables:
You can create whatever variables you want, though some are
defined either by Linux or common style

bootcmd - where Linux kernel should boot from
bootargs - string passed when booting Linux kernel

e.g. tells Linux where to find the root filesystem
serverip - IP address of root file system for NFS boot
nfspath - Location on serverip for root filesystem

8

Boot Variations
Mode IP Linux Kernel Root Filesystem
1. dhcp Flash HDD
2. dhcp Flash NFS
3. dhcp TFTP HDD
4. dhcp TFTP NFS

HDD
setenv bootargs console=ttyS0,115200n8
noinitrd rw ip=dhcp root=/dev/hda1, nolock
mem=120M

NFS
setenv bootargs console=ttyS0,115200n8
noinitrd rw ip=dhcp root=/dev/nfs
nfsroot=$(serverip):$(nfspath),nolock
mem=120M

U-Boot’s bootargs variable specifies
where to find the root filesystem

9

10

Configuring U-Boot
Kernel from Flash, Filesystem from HDD

[rs232]# baudrate 115200
[rs232]# setenv stdin serial
[rs232]# setenv stdout serial
[rs232]# setenv stderr serial
[rs232]# setenv bootdelay 3
[rs232]# setenv bootfile uImage
[rs232]# setenv serverip 192.168.2.101
[rs232]# setenv nfspath /home/user/workdir/filesys
[rs232]# setenv bootcmd bootm 0x2050000
[rs232]# setenv bootargs console=ttyS0,115200n8

noinitrd rw ip=dhcp root=/dev/hda1, nolock
mem=120M

[rs232]# saveenv

11

Configuring U-Boot
Kernel from Flash, Filesystem from NFS

[rs232]# baudrate 115200
[rs232]# setenv stdin serial
[rs232]# setenv stdout serial
[rs232]# setenv stderr serial
[rs232]# setenv bootdelay 3
[rs232]# setenv bootfile uImage
[rs232]# setenv serverip 192.168.2.101
[rs232]# setenv nfspath /home/user/workdir/filesys
[rs232]# setenv bootcmd bootm 0x2050000
[rs232]# setenv bootargs console=ttyS0,115200n8

noinitrd rw ip=dhcp root=/dev/nfs
nfsroot=$(serverip):$(nfspath),nolock
mem=120M

[rs232]# saveenv

12

Configuring U-Boot
Kernel via TFTP, Filesystem from NFS

[rs232]# baudrate 115200
[rs232]# setenv stdin serial
[rs232]# setenv stdout serial
[rs232]# setenv stderr serial
[rs232]# setenv bootdelay 3
[rs232]# setenv bootfile uImage
[rs232]# setenv serverip 192.168.2.101
[rs232]# setenv nfspath /home/user/workdir/filesys
[rs232]# setenv bootcmd 'dhcp;bootm'
[rs232]# setenv bootargs console=ttyS0,115200n8

noinitrd rw ip=dhcp root=/dev/nfs
nfsroot=$(serverip):$(nfspath),nolock
mem=120M

[rs232]# saveenv

Booting with Static IP Addresses
Mode IP Linux Kernel Root Filesystem

1. dhcp Flash HDD

2. dhcp Flash NFS

3. dhcp TFTP HDD

4. dhcp TFTP NFS

5. static Flash HDD

6. static Flash NFS

7. static TFTP HDD

8. static TFTP NFS

13

14

U-Booting : Static vs Dynamic IP

[rs232]# setenv serverip 192.168.13.120
[rs232]# setenv ipaddr 192.168.13.121
[rs232]# setenv gateway 192.168.13.97
[rs232]# setenv netmask 255.255.255.224
[rs232]# setenv dns1 156.117.126.7
[rs232]# setenv dns2 157.170.1.5
[rs232]# setenv myip $(ipaddr):$(gateway):$(netmask):$(dns1):$(dns2)::off
[rs232]# setenv nfspath /home/user/workdir/filesys
[rs232]# setenv bootcmd bootm 0x2050000
[rs232]# setenv bootargs console=ttyS0,115200n8 noinitrd rw

ip=$(myip) root=/dev/nfs nfsroot=$(serverip):$(nfspath)
,nolock mem=120M $(videocfg)

[rs232]# saveenv

Everywhere we previously had dhcp must now reference the static ip addresses
This example creates a variable called myip and used it in place of the previous
dhcp entries in bootargs

Agenda

• Kernel and Booting
• Drivers
• Scheduling

User Process 1

User Process 3

User Process 2
Linux
Kernel

APIDriver

RAM Memory

Storage

Peripherals

File Sys

Res Mgr

API

API

15

16

Example Linux Drivers

GPIO
Serial - UART, I2C, SPI
Storage - ATA, NAND, MMC
Audio - ALSA Audio driver
Video - V4L2 for Video Capture/Display
Video - FBDev for On-Screen Display
Network - 10/100 Ethernet (EMAC/CPMAC)
USB - Mass storage - Host and Gadget drivers
Boot - Das UBoot (open source Linux boot-loader)

D SP
TEXAS INSTRUMENTS

TECHNOLOGY

17

User Access to Kernel Space

Kernel Space

User Space

audio driver video driver
harddrive

ATA driver
buffer buffer

Memory
process

main(){

func1();

func2();

…

/dev/dsp /dev/video0

/mypath/myfile

/dev/hda1

filesystem
‘mounted’ to
root file system

PROTECTION OF THE SYSTEM – MMU – EACH APP HAS IT’S OWN
MEMORY AND CANNOT TOUCH BEYOND – BY ACCIDENT OR
INTENTION

HOW DOES A PROC ACCESS PERIPHS THEN?

VIA ‘DEVICE NODES’

READS FROM PORTS ARE AS THOUGH THEY WERE FILES ON A
DRIVE (ABSTRACTION)

TWO TYPES OF DRIVERS:
CHARACTER (STREAM) DRIVERS
BLOCK DRIVERS

BLOCK DRIVERS ALLOW RANDOM ACCESS ANYWHERE IN PERIPH
(EG: HDD)

BLOCK DRIVERS ARE MOUNTED INTO THE ROOT FILE SYSTEM
ACCESSED NOT BY THEIR NODE ID BUT INSTEAD BY

THEIR FILE NAMES (ABOVE)

18

Four Steps to Accessing Drivers

1. Load the driver’s code into the kernel (insmod or static)

2. Create a virtual file to reference the driver using mknod

3. Mount block drivers using a filesystem (block drivers only)

4. Access resources using open, read, write and close

RANDOM ACCESS REQUIRES FILE SYSTEM TO FIND GIVEN
COMPONENT ON PERIPH.

19

Kernel Object Modules

insmod <mod_name>.ko [mod_properties]

Use insmod (short for insert module) command to dynamically
add modules into the kernel
Keep statically built kernel small (to reduce size or boot-up
time), then add functionality later with insmod
Insmod is also handy when developing kernel modules
Later we’ll insert two modules (cmem.ko, dsplink.ko) using a
script: loadmodules.sh

Linux Kernel source code is broken into individual modules
Only those parts of the kernel that are needed are built in

Kernel Module Examples:
fbdev frame buffer dev
v4l2 video for linux 2
nfsd network file server dev
dsp digital sound processor
oss audio driver

1. Static (built-in)

2. Dynamic
(insmod)

.ko = kernel object

Linux Kernel

v4l2

fbdev

dsp

oss

nfsd ext3

httpd

LIKE OTHER OSs

PEOPLE LIKE A GIVEN NUMBER OF SVCS, BUT NOT ANY GREATER
BUILD SIZE THAN NECESSARY
THUS, LINUX IS A MODULAR OS, BUILDING ONLY THE SVCS AND
COMPONENTS YOU REQUIRE

DAEMONS – ALWAYS RUNNING IN BKGND…
WAITING FOR NEW ACTIVITY – EG: INTERNET TCP/IP

FILE SYSTEM – WHICH ONES DO YOU WANT?
EXT3 – HDD SUPPORT… LATER

INSERTMODULE MODULE NAME . KERNEL OBJECT … PROPERTIES

DRIVERS CAN BE STATICALLY BUILT INTO A GIVEN KERNEL OR
DYNAMICALLY INVOKED, AS SEEN HERE…

20

Examining The Steps in More
Detail…

1. Load the driver’s code into the kernel (insmod or static)

2. Create a virtual file to reference the driver using mknod

3. Mount block drivers using a filesystem (block drivers only)

4. Access resources using open, read, write and close

MAKE NODE :

21

Linux Driver Registration

• Register new drivers with mknod (i.e. Make Node) command.
• Major number determines which driver is used
• Minor number is significant for some drivers; it could denote instance of given driver,

or in our example, it refers to a specific buffer in the FBdev driver.

mknod <name> <type> <major> <minor>

<name>: Node name (i.e. virtual file name)

<type>: b block
c character

<major>: Major number for the driver

<minor>: Minor number for the driver

Example: mknod /dev/fb c 29 3

Useage: Fd = open("/dev/fb/3", O_RDWR);

MAKE NODE :
ALL DEVICE NODES, BY LINUX ‘STYLE’ GO IN THE /DEV DIRECTORY OFF THE ROOT.
MYDEVICE – YOUR DRIVER NAME
TYPE – BLOCK CHAR, ETC
MAJOR/MINOR NUMBER – ENUMERATION OF DRIVERS BY TYPE AND EXAMPLE
A NUMBER OF LONG USED DRIVERS HAVE FIXED ‘WELL KNOWN’ MAJOR NUMBERS
OTHERS THE NUMBERS ARE CHOSEN AT AUTHORS DISCRETION AND REFERENCED BY USER.
MINOR NUMBER – USUALLY FOR ‘INSTANCE NUMBERS’ : EG: FOR 4 SERIAL DRIVERS, BUILD ONLY 1
SET OF CODE, BUT RECOGNIZE (AS DATA OBJECTS) A NUMBER OF CHANNELS OF THAT CODE.

Most device files will already be created and will be there ready to use after you install your Linux system. If by
some chance you need to create one which is not provided then you should first try to use the MAKEDEV script.
This script is usually located in /dev/MAKEDEV but might also have a copy (or a symbolic link) in /sbin/MAKEDEV.
If it turns out not to be in your path then you will need to specify the path to it explicitly.
In general the command is used as: # /dev/MAKEDEV -v ttyS0 create ttyS0 c 4 64 root:dialout 0660 This will
create the device file /dev/ttyS0 with major node 4 and minor node 64 as a character device with access
permissions 0660 with owner root and group dialout.
ttyS0 is a serial port. The major and minor node numbers are numbers understood by the kernel. The kernel refers
to hardware devices as numbers, this would be very difficult for us to remember, so we use filenames. Access
permissions of 0660 means read and write permission for the owner (root in this case) and read and write
permission for members of the group (dialout in this case) with no access for anyone else.

22

Block and Character Drivers
Block Drivers:

/dev/hda ATA harddrive, CF
/dev/ram external RAM

Character Drivers:
/dev/dsp sound driver
/dev/video0 v4l2 video driver
/dev/fb0 frame buffer video driver

• Block drivers allow out of order access
• Block devices can be mounted into the filesystem
• Character drivers are read as streams in a FIFO order
• Networking drivers are special drivers

23

1. Load the driver’s code into the kernel (insmod or static)

2. Create a virtual file to reference the driver using mknod

3. Mount block drivers using a filesystem (block drivers only)

4. Access resources using open, read, write and close

Examining The Steps in More
Detail…

MAKE NODE :

24

Mounting Block Devices

• Mounting a block driver into the filesystem gives access to the files on the device as
a new directory

• Easy manipulation of flash, hard drive, compact flash and other storage media
• Use mkfs.ext2, mkfs.jffs2, etc. to format a device with a given filesystem

/ # mkdir /mnt/harddrive

/ # ls /mnt/harddrive

user /dev – Shell – Konsole

/ # mkdir /mnt/harddrive

/ # Initially empty

25

Mounting Block Devices

• Mounting a block driver into the filesystem gives access to the files on the device
• You must mount to a mount point (i.e. empty directory) in the root filesystem
• Use mkfs.ext2, mkfs.jffs2, etc. to format a device with a given filesystem

/ # mkdir /mnt/harddrive

/ #

user – Shell – Konsole

Now populated

Initially empty

* Try ls –l : adds linefeeds

mount –t ext3 /dev/hda1 /mnt/harddrive

/ # ls /mnt/harddrive

ls /mnt/harddrive

/ #

bin db etc initrd mnt proc sbin tmp

boot dev lib home lib misc opt usr

/ #

26

Example Linux File Systems
Harddrive File systems:

ext2 Common general-purpose filesystem
ext3 Journaled extension to ext2
vfat Windows “File Allocation Table” filesystem

Memory File systems:
jffs2 Journaling flash filesystem (NOR flash)
yaffs yet another flash filesystem (NAND flash)
ramfs Filesystem for RAM
cramfs Compressed RAM filesystem

Network File systems:
nfs Share a remote linux filesystem
smbfs Share a remote Windows® filesystem

27

Examining The Steps in More
Detail…

1. Load the driver’s code into the kernel (insmod or static)

2. Create a virtual file to reference the driver using mknod

3. Mount block drivers using a filesystem (block drivers only)

4. Access resources using open, read, write and close

MAKE NODE :

28

Basic File I/O & Character Driver API
Basic Linux file I/O usage in user programs is via these API:

myFileFd = fopen(“/mnt/harddrive/myfile”, “rw”);
fread (aMyBuf, sizeof(int), len, myFileFd);
fwrite(aMyBuf, sizeof(int), len, myFileFd);
fclose(myFileFd);

Additionally, you can use fprintf() and fscanf() for more feature-rich file read/writes.

Some Linux drivers (such as V4L2 and FBDEV video drivers) typically use mmap
and ioctl commands instead of read and write that pass data by reference
instead of by copy.

Simple drivers use the same format as files…
soundFd = open(“/dev/dsp”, O_RDWR);
read (soundFd, aMyBuf, len);
write(soundFd, aMyBuf, len);
close(soundFd);

Additionally, drivers use I/O control (ioctl) commands to set driver characteristics
ioctl(soundFd, SNDCTL_DSP_SETFMT, &format);

D SP
TEXAS INSTRUMENTS

TECHNOLOGY

Agenda

• Kernel and Booting
• Drivers
• Scheduling

User Process 1

User Process 3

User Process 2
Linux
Kernel

APIDriver

RAM Memory

Storage

Peripherals

File Sys

Res Mgr

API

API

29

30

What is a Processor?

System #1

main(){

func1();

func2();

…

Processor A
Memory

main(){

func3();

func4();

…

Processor B
Memory

main(){

func5();

func6();

…

Processor C
Memory

Processor A

Processor B

Processor C

When we executed our program in the previous section, we were really
creating a Linux process and running our executable program within it. What
do we mean when we say that we are running a process? What really is a
process?

Let’s back up for a moment and image a system which has three
independent processors. Each processor, if it had no operating system, can
only run a single program at a time, the entry point of which is the main()
function. For instance, processor A in this example might run the program
that we built in the previous section.

Each processor has a memory space, i.e. the internal and external memory
that is physically connected to the processor. As shown in the bar diagram in
the top left corner, the programs on these three processors run concurrently
and independently, and the three memory spaces for the three processors
are distinct, so that unless memory is shared physically through connections
on the hardware board, one processor cannot access the memory used by
another processor. This can be a nice feature because it provides insulation
between the three processors. If the program on one processor has a rogue
pointer which starts overwriting memory incorrectly, it may crash its own
program, but since it cannot access the memory of the other two processors,
it will at least not crash the programs which are running on them.

31

What is a Process?

System #2

main(){

func1();

func2();

…

Process A
Memory

main(){

func3();

func4();

…

Process B
Memory

main(){

func5();

func6();

…

Process C
Memory

Process A

Process B

Process C

Processor A

On this next slide, we show a similar system; however, in this system we have only one
processor. If this processor is running an operating system such as Linux which supports
multiple processes, we can take the three programs which in our previous example were
running on three different processors and run them as three concurrent processes on the
single processor.

The three processes have many characteristics corresponding to the three individual
processors in the previous system. Firstly, each process encapsulates an executable
program, each having its own main() function as an entry point. Furthermore, each process
has its own memory space, which is separate from the memory spaces of other processes
running on the system. (This feat is accomplished through hardware called the Memory
Management Unit, and will not be discussed here.) So, as in our previous example, if the
executable program running in process B develops a rogue pointer that begins overwriting
random memory locations, it may bring down Process B, but cannot effect Processes A or
C, which are isolated.

Notice that the difference in this system versus the previous systems is that the three
processes, since they are now running on a single processor, cannot run concurrently. They
now must be scheduled on the processor so that only one is running at a time, and the
processor must be shared between the three. This is referred to as sheduling.

32

Processes and Threads
Process A Process B

Process A global vars

Th
re

ad
 A

1 w
/ lo

ca
l v

ar
s

pT
hr

ea
d

A2
 w

/ lo
ca

l v
ar

s

pT
hr

ea
d

A3
 w

/ lo
ca

l v
ar

s

Th
re

ad
 B

1 w
/ lo

ca
l v

ar
s

Process B global vars

Process Pipes

• By default, each process contains one main thread of execution
• Additional threads can be spawned within a process (pThreads)
• All threads within a process share global variables

This slide shows an overall view of how processes and threads fit into the Linux operating system. As
previously discussed, Linux may run multiple processes concurrently (at least appear to run
concurrently, we already know they are actually time sliced). Each of these processes has its own
memory space (note Process 1 global vars and Process 2 global vars, separate, each within their own
process), but can communicate with each other through process pipes.

This much should be a review of the previous section. We have added, however, a new element of
threads within each process. So process 1 has three threads running within it in this example system.
Each of these threads can run concurrently (again, they are really time sliced, but appear to run
concurrently), and each has its own entry point, so in those two ways they are similar to Processes.

The predominant difference between Processes and Threads is that the multiple threads within a
process share the same Memory space (i.e. global variables, file descriptors, etc.), whereas the
multiple Processes within the Linux O/S do not share the same Memory Space.

As a result, the overhead of creating new Threads within a process and the overhead of switching
between threads in the same process is less than the overhead of creating new Processes and the
overhead of switching between Processes. Furthermore, since Threads within the same process
share the same Address space, they can pass large buffers with a simple pointer pass, whereas for
processes to pass buffers of data over a process pipe requires copying of the entire buffer, a much
less efficient process.

What threads give up in exchange for this reduced overhead, however, is the protection that
Processes afford. Because threads exist in the same memory space, a rogue pointer in one thread will
likely bring down all of the threads within the given process (though the threads in other processes will
be insulated and will not be brought down.)

33

Threads vs Processes

Processes Threads
Memory protection
Ease of use
Start-up cycles
Context switch
Shared globals no yes
Environment program function

This slide is a visual of the speaker’s notes on the previous slide,
summarizing some of the pluses and minus of threads versus processes.

34

Linux Scheduler

Thread 1

Thread 2

Thread 4

• Process entry point at main() is scheduled as a thread.
• Threads are scheduled with time slicing and blocking as

previously discussed for processes.
• Processes may add additional threads

Pr
oc

es
s A

Pr
oc

es
s B

This slide is similar to the Linux Scheduler slide shown for Processes which
did not show threads. The reason for this is actually due to bullet one above.
Every process has a minimum of one thread, corresponding to the entry
point at the main() function. You may think of this as an implicit thread since
it does not have to be created using pthread_create, which is how additional
threads are added into a process.

Because many Linux programmers do not use threads, a lot of literature
shows the convenient simplification of individual processes being scheduled
by Linux. In actuality, even on a system which consists of processes which
only have one thread (the implicit main thread), it is really this implicit thread
which is being scheduled, not the process.

For a system with some processes that have one thread and some
processes with multiple threads, each thread is thrown into the mix and
individually scheduled, so processes that “have no threads”, (i.e. which just
have the one implicit main() thread) are scheduled as threads in the system.
Processes with multiple threads simply have each of their individual threads
scheduled individually on the system.

35

Scheduling Methodologies

Time-Slicing
Scheduler shares processor
run time between all threads
with greater time for higher
priority
No threads completely starve
Corrects for non-”good citizen”
threads
Can’t guarantee processor
cycles, even to highest priority
threads.
More context switching
overhead

Realtime
Higher priority threads must
block for lower priority
threads to run
Requires “good citizen”
threads
Low priority threads may

starve
Lower priority threads never
break high priority threads
Lower context-switch
overhead

This slide compares the Time-slicing scheduling methodology used in Linux to an operating
system such as BIOS which uses Blocking only, without time slicing.

The advantage of the time slicing model is that it bends but doesn’t break – i.e. even when
the processor becomes overloaded, no threads completely starve. This is the typical
functionality of the desktop systems that linux was developed for. When too many
applications are opened, the system slows, but all of the applications continue to run.

The reason that BIOS does not use time slicing is that it is a true Real-Time operating
system, developed specifically for DSPs. The main advantage of using Blocking only without
time slicing is determinism. The highest priority threads in the system are guaranteed the
processor bandwidth they need, therefore they are guaranteed to meet real-time, no matter
how many lower priority threads are added into the system. The downside is that in an
overloaded system, the lower priority threads may be given no CPU time at all, i.e.
starvation. Because of this, it is very necessary that threads in a blocking-only scheduler,
especially high priority threads, are good citizens and yield processor time by blocking
themselves when they do not need processor time (as opposed to using polling or spin-
loops), whereas a Time-Slicing scheduler such as linux will have performance loss due to
non-good-citizen threads, but will not be as adversely effected.

Both methodologies have their place, and in most cases, an optimal configuration is one
such as DaVinci with Linux on the ARM (where user interface will run) and BIOS on the DSP
(where Real-time algorithms will run)

Launching a Process – Terminal

36

37

pThread Functions

pthread_create(&video, null, video_thread_function, …)

pthread_exit(&video)

main()

video thread

Use pthread_create() to kickoff a new thread (i.e. child)
Starts new thread executing in the same process as its parent
As shown, both threads now via for time from the Linux scheduler
Two important arguments – thread object, function to start running upon creation

pthread_exit() causes child thread end
If _create’s starting function exits, pthread_exit() is called implicitly

The process for a thread to create another thread is fairly simple.

Recall that the entry point for each process is main(), and that this entry point defines the implicit or originating thread of execution for a
process. The main() thread may then create new threads by using the ptherad_create function call. Likewise, created threads can
themselves create new threads using the same call.

The example above shows the main() thread, which exists at time 0, and at some time later uses pthread_create to spawn a new thread. The
pthread_create function takes four arguments:

pthread_t *thrad – An empty thread object is passed by reference in the function call. This object must be declared before
the function is called to allocate memory for it, but does not need to be initialized. The pthread_create function call initializes the object.

pthread_attr_t *attr – a pointer to an attributes structure for the thread to be created. Pass a NULL pointer to use default
attributes.

void *(*start_routine)(void *) – this is a pointer to a function. The function specified here is the entry point for the thread to
be created. A thread function must have a single argument, a void pointer, and returns a void pointer. The use of void pointers allows a
pointer of any type to be passed or returned, even a pointer to a structure, so that, in effect, this function can have any arguments or return
values the programmer requires.

void *arg – this is the void pointer that will be passed to the start_routine function as its argument at the thread’s entry
point. Again, use of void * allows passing of a pointer to a structure so that any number of arguments may actually be passed.

In the example above, after the new thread is created the two run concurrently for some amount of time. (Again, recall that they are not truly
running concurrently, but only appear to due to time slicing.) Some time later, the main thread calls pthread_join. The effect of this function
call is to block the thread’s execution until another thread has exited (in this case “new thread”)

The pthread_join function call is simple, taking as its first argument the thread which must exit before the currently executing thread may
resume. In this case that would be “new thread”. The second argument is a pointer to a pointer, which is really just a void * passed by
reference so that it may be modified. The void * is passed by reference and on return of ptherad_join will have the return value of the thread
which just exited.

Which brings about the final function. In order to exit, i.e. terminate, a thread calls pthread_exit. In addition to terminating the thread, this
function allows the terminating thread to pass a return value (which is a null *). This value is what is returned by pthread_join.

38

pthread_create (&child,…)

pthread_exit(&child)

main()

BlockWaitingForChildThreadToExit (&child)
pthread_join (&join)

blocked

video thread

pthread_create(&video, null, video_thread_function, …)

pthread_exit(&video)

main()

video thread

Re-Joining Main

The process for a thread to create another thread is fairly simple.

Recall that the entry point for each process is main(), and that this entry point defines the implicit or originating thread of execution for a
process. The main() thread may then create new threads by using the ptherad_create function call. Likewise, created threads can
themselves create new threads using the same call.

The example above shows the main() thread, which exists at time 0, and at some time later uses pthread_create to spawn a new thread. The
pthread_create function takes four arguments:

pthread_t *thrad – An empty thread object is passed by reference in the function call. This object must be declared before
the function is called to allocate memory for it, but does not need to be initialized. The pthread_create function call initializes the object.

pthread_attr_t *attr – a pointer to an attributes structure for the thread to be created. Pass a NULL pointer to use default
attributes.

void *(*start_routine)(void *) – this is a pointer to a function. The function specified here is the entry point for the thread to
be created. A thread function must have a single argument, a void pointer, and returns a void pointer. The use of void pointers allows a
pointer of any type to be passed or returned, even a pointer to a structure, so that, in effect, this function can have any arguments or return
values the programmer requires.

void *arg – this is the void pointer that will be passed to the start_routine function as its argument at the thread’s entry
point. Again, use of void * allows passing of a pointer to a structure so that any number of arguments may actually be passed.

In the example above, after the new thread is created the two run concurrently for some amount of time. (Again, recall that they are not truly
running concurrently, but only appear to due to time slicing.) Some time later, the main thread calls pthread_join. The effect of this function
call is to block the thread’s execution until another thread has exited (in this case “new thread”)

The pthread_join function call is simple, taking as its first argument the thread which must exit before the currently executing thread may
resume. In this case that would be “new thread”. The second argument is a pointer to a pointer, which is really just a void * passed by
reference so that it may be modified. The void * is passed by reference and on return of ptherad_join will have the return value of the thread
which just exited.

Which brings about the final function. In order to exit, i.e. terminate, a thread calls pthread_exit. In addition to terminating the thread, this
function allows the terminating thread to pass a return value (which is a null *). This value is what is returned by pthread_join.

39

Technical TrainingTechnical Training
OrganizationOrganization

Backup

40

Linux Command Summary

File Management
ls and ls –la
cd
cp
mv
pwd
tar (create, extract tar and tar.gz files)
chmod
chown
mkdir
mount, umount (in general, what is
“mounting” and how do you do it?)
alias
touch

Network
/sbin/ifconfig, ifup, ifdown
ping
nfs (What is it? How to share a folder via
NFS. Mounting via NFS.)

VMware Shared Folders
/mnt/hgfs/<shared name>

Program Control
<ctrl>-c
ps
kill

Linux Users
root
user
su (… exit)

BASH
What is BASH scripting
What are environment variables
How to set the PATH environment
variable
What is .bashrc? (like DOS autoexec.bat)
man pages
change command line prompt

41

Outline

1:Format Highlight List Item Here
2:Format Regular List Items Here

42

