
How to Achieve Minimal Embedded
Linux Boot Times

Jonathan Mikhailovich Short

Embedded Linux Business Manager

MPC Data Limited

TI Technology Days 2010

Agenda

•  Who are MPC Data?

•  Why bother with minimal boot times?

•  Why does embedded Linux take so long to boot?

•  Best approach to boot time reduction

•  Case study: OMAP3530 EVM

•  The viral 1 second swiftBoot demo

•  Conclusion and Q & A

2

MPC Data

•  MPC Data is a 25 year old embedded software engineering company
with a strong focus on platform development,
–  60 strong team serving Europe & North America,
–  Experts in board support packages and embedded development,
–  Technical focus and track record backed-up by numerous successful

products in a wide variety of markets

•  OMAP Technology Center (OTC), DaVinci ASP

•  Provides swiftBoot unique boot time reduction services,

•  Contact: business@mpcdata.com / http://www.mpcdata.com/

•  http://www.swiftBoot.com/

Motivation

•  Consumers are expecting more and more functionality from their
embedded devices,
–  In order to meet that need, the use of embedded Linux is growing -

Unfortunately so are boot times,

•  Long boot times are unacceptable to consumers,

•  Long boot times contribute to un-necessary power consumption in
mobile devices,

•  Reducing boot times results in Linux becoming a viable choice for
device vendors reducing cost.

•  What’s your motivation?

4

Why so long anyway?

•  Embedded Linux is:
–  General purpose

•  Likely to contain functionality your device doesn’t require which will result in more
initialisation and a larger image size

–  Convenient and flexible
•  Likely to probe and detect hardware which you know will always be there which

will contribute to boot delays

•  Boot speed isn’t seen as the highest priority

•  There are many approaches to overcome large boot delays such as
hibernation, stand-by and similar technologies,

•  This presentation describes how boot times can be drastically reduced
by specialising Linux to your device’s needs and product requirements

5

The swiftBoot Approach

Identify
boot time

functionality

Measure
boot time
across the

board

Remove
un-

necessary
functionality

Optimise
required

functionality
Re-order

initialisation

6

Case Study

•  Use the OMAP3530 EVM (OneNAND) as a case study,
–  Typical starting point: OMAP35x Linux PSP 02.xx.yy
–  Used BuildRoot JFFS2 filesystem

•  Boot time functionality:
–  Capture and render video to framebuffer
–  Using saMmapLoopback demo as basis for digital camera application

•  Additional functionality:
–  Video overlay and user interface

•  Will describe tools and techniques along the way

7

OMAP3530 EVM Boot Process

•  Boot process:
–  Rom Boot Loader (RBL) loads user boot loader (UBL) into SRAM,
–  User Boot Loader (UBL) / Xloader loads UBoot into RAM,
–  UBoot loads kernel into RAM,
–  Kernel mounts root filesystem and starts init process,
–  Init process starts demo application

•  Component times measured using GPIO and a logic analyser,
–  RBL & UBL time measured time between OMAP reset and GPIO line being

asserted

•  Time to required boot time functionality: > 12 seconds!

8

Baseline
(seconds)

RBL & UBL
(0.29)

UBoot
(4.79)

Kernel
(5.65)

Filesystem
Mount
(~0.75)

Video
Application

(0.60)

Power-to-image: 12.08 seconds

Rom and User Boot Loaders

Functionality Removal
•  RBL UART Boot – 300ms
•  MMC Support - 4ms

Functionality Optimisation
•  Reduce size of UBoot copy - 224ms
•  Console Output – 8ms
•  Optimised memcpy

Reduction: 587ms -> 51 ms (91%)

9

UART Load
(RBL)

0.300 s

Initialisation
(XLoader)

0.026 s

Load uBoot
from Flash
(XLoader)

0.261 s

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Ti
m

e
(S

)

Boot Task

UBoot

Functionality Removal
• User Boot Delay – 1000ms
•  Image Verification – 1071ms (2.1 MB Image)
•  Image Decompression

Functionality Optimisation
•  Image Move – 834ms (2.1 MB Image)

Reduction: 4791ms->1886 ms (60%)

10 TI Proprietary Information - Strictly Private 11/17/10

Initialisation
0.388 s

User Boot
Delay

1.000 s

Load uImage
from Flash

0.893 s

Verify
uImage

checksum
1.071 s

Move uImage
0.834 s

uImage
Decompress

0.596 s

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Ti
m

e
(S

)

Boot Task

Linux Kernel

Functionality Removal
•  Disabling of unused clocks – 271 ms
•  Networking support – 123 ms
•  Removal of MMC, TouchScreen, USB, Keyboard,

Sound – 332 ms

Functionality Optimisation
•  Removal of console and output – 4126 ms
•  Optimisation of DSS drivers – 405 ms
•  Remove calculation on Loops Per Jiffy (LPJ) – 162 ms

Functionality Re-ordering
•  Deferring functionality required after boot (e.g. Keypad,

etc)

Reduction: 5645ms -> 226 ms (96%)

11

Userspace

Functionality Removal
•  All init scripts (change application to init process)

Functionality Optimisation
•  Statically link application with uClibc libraries
•  Use SquashFS instead of JFFS2

Functionality Re-ordering
•  Start video first then load additional modules

Reduction: 600 ms > 406 ms (32%)

12

Essential tools

•  Discrete events can be measured by toggling GPIO outputs and
utilising a logic analyser,

•  Kernel events can be measured with:
–  Printk timings,
–  Initcall_debug and bootchart scripts,

•  Userspace events can be measured with ubootchart
–  http://code.google.com/p/ubootchart/
–  http://www.bootchart.org/

•  These are just some of the many tools available

Case Study: Before and After

Additional Boot Time Reductions from:
–  Loading kernel into RAM from Xloader instead of Uboot,
–  Modifications to video drivers,
–  Using uncompressed kernel image,
–  Kernel Initialisation parallelisation,
–  Smaller kernel image size

14

Baseline
(seconds)

RBL & UBL
(0.29)

UBoot
(4.79)

Kernel
(5.65)

Filesystem
Mount
(~0.75)

Video
Application

(0.60)

Power-to-image: 11.469 seconds

After
Modifications

(seconds)

RBL & UBL
(0.23)

UBoot
(0.05)

Kernel
(0.18)

Filesystem
Mount
(~0.02)

Video
Application

(0.40)

Power-to-image: 0.87 seconds!

Guiding Principles

•  Observe and Record
–  Measuring boot times is the only way to form a clear picture of what is

contributing to boot time,
–  Keep copious notes

•  Tackle the biggest delays in the system first,
–  Identify the largest delays and remove them to be most effective

•  Be aware of varying boot times

•  Remember the uncertainty principle

•  Don’t forget testing

15

Demonstration: < 1 Second Boot

16

Boot Time = 0.87 second (to Image)

Conclusion

•  Complex functionality with short boot times (< 5 seconds) are certainly
achievable with Embedded Linux (with the right approach),

•  Boot time reductions can be achieved by specialising Linux (and
friends) to your device’s boot time functionality needs:
–  E.g. Removal of unnecessary functionality, optimisation and re-ordering,
–  Other functionality can come later

•  The internet covers many techniques for reducing boot speed but to
make a big difference you need the right approach,
–  Observe, record, remove, optimise and re-order

•  Everything you require to make an improvement is freely availably
online

•  Requires time and in-depth knowledge of the kernel and software
components...

17

Other Solutions

•  MPC Data offer a selection of consultancy and fixed price
investigation services.

•  Input: Your new or existing embedded Linux product,

•  Process:
–  Identification of required boot time functionality,
–  Extensive and holistic investigation into boot delays of your product

including all our areas of our expertise

•  Output: swiftBoot report
–  Documents boot process including narration on boot delays and mitigations,
–  Enough information for your engineers to act on – though we can also help

with implementation,
–  Typically provide recommendations to reduce boot time in excess of > 50%!

•  Visit http://www.swiftBoot.com/ for more information.

18

19

Any Questions?

http://www.swiftBoot.com/

