
TI Technology Days 2010

1

Stellaris® ARM® Cortex™-M3
Hands-On Session - Part 2

2

Category : Platform

Platform : Stellaris

Module : Collaterals & Graphics

MCU training module

3

Stellaris
®

Collaterals & graphics

4

The Full-Solution Approach

Production-ready Modules
• Customizable modules for drop-in implementation

• Multiple motors supported

• Multiple connectivity options

• Copy-exactly with Open-tooled HW and SW

Schematics Placement Bill of Materials Gerbers
Motor App and

StellarisWare® Source Control / Config GUI

End-to-End

Solution

Source Files

Royalty-Free

Fully Integrated Stellaris MCUs
• ARM Cortex-M3 core with single-cycle Flash

• Advanced Motion Control

• Integrated Deterministic Connectivity

• Easy adoption / learning curve through

10-min Out-of-the-Box Evaluation Kits

Complete Open-tooled RDKs
• Open-tooled HW/SW Reference Design Kits

• Motor included for out-of-the-box demonstration

• Fully documented, available for download, and in stock

Proof-of-Concept
• Stellaris MCUs / Modules

• Putting our Motion Control

to the test before you do.

USBCAN10/100

Ethernet

Stellaris

Power, Motor Control, Hall, Analog

QEI

5

Stellaris® Tools

6

IDE Stellaris® MCUs

Eval Kit License
30-day full function.

Upgradeable.

32KB address-limited.

Upgradeable.

32KB address-limited.

Upgradeable.

Full functional; locked

to board.

Upgradeable.

Compiler GNU C/C++ IAR C/C++ RealView C/C++ GNU C/C++

Debugger / IDE gdb / Eclipse
C-SPY / Embedded

Workbench
µVision

code_probe / Eclipse-

based tool suite

Full Upgrade
199 USD personal

edition / 3000 USD full

support

2700 USD
MDK-Basic (256 KB) =

€2000 (2895 USD)

999 USD (upgrade to

run on customer

platform)

JTAG Debugger J-Link, ~299 USD U-Link, ~199 USD Red Probe, 150 USD

Note: In addition to its original use as an evaluation kit, each

Stellaris evaluation kit has the built-in capability for use as

a simple USB-to-20-pin JTAG debugger.

7

Stellaris® bootloader & Flashloader

 Stellaris Serial Flash Loader

 Small piece of code that allows programming of the flash without the need for a
debugger interface.

 All Stellaris MCUs ship with this pre-loaded in flash

 Interface options include UART or SSI

 TI supplies a Windows™ application (GUI or command line) that makes full use of
all commands supported by the serial flash loader (LMflash.exe)

 See application note AN01242

 Stellaris Boot Loader

 Small piece of code that can be programmed at the beginning of flash to act as
an application loader

 Also used as an update mechanism for an application running on a Stellaris
microcontroller.

 Interface options include UART (default), I2C, SSI, Ethernet, CAN, USB

 Included in the Stellaris Peripheral Driver Library with full applications examples

 See application note AN01248

 Preloaded in ROM on select Stellaris Microcontrollers

http://www.luminarymicro.com/home/app_notes.html
http://www.luminarymicro.com/home/app_notes.html

8

Stellaris® Flash Programming GUI

15

StellarisWare®

16

Stellarisware introduction

 100% C/C++ progamming possibility even ISR and initialization

 Includes source code and royalty-free libraries for applications support

 Stellaris Software compiles on:

Code Composer Studio 4

 ARM/Keil Microcontroller Development Toolkit for ARM

 IAR Embedded Workbench

Code Red Technologies' RedSuite

Code Sourcery SourceryG++

Generic GNU development tools

 Key functional areas (Free license & royalty-free source code):

 Stellaris Peripheral Driver Library

 Stellaris Graphics Library

 Stellaris USB Library

 Stellaris IEC 60730 Library

Code Samples

 Stellaris In-System Programming Support

17

Stellaris® Peripheral Driver Lib

 High-level API interface to complete peripheral set

 Free license and royalty-free use

 Simplifies and speeds development of applications

 Can be used for application development or as

programming example

 Available as object library and as source code

 Compiles on ARM/Keil, IAR, Code Red, and GNU

tools

 Includes Stellaris Graphics Library and Stellaris

USB Library

 DriverLib functions are preprogrammed in ROM on

select Stellaris MCUs

18

Stellaris® Peripheral Driver Lib

 Collection of „c‟ source and header files

 Base root directory structure with individual compiler specific

library output directory.

 “.\StellarisWare” contains Hardware specific header files

 Include peripheral specific definition

 Required ‘Type’ definitions

 Macros

 „.\StellarisWare\driverlib‟ contains

 ‘c’ source and header files peripheral specific functionality

Compiler specific project files for building the driver library ‘libraries’

 ‘Compiler Specific’ output directories and files, ie the actual ‘library’ file

used by each compiler.

 C:\StellarisWare\driverlib\ewarm - IAR

 C:\StellarisWare\driverlib\gcc - CodeRed

 C:\StellarisWare\driverlib\rvmdk - Keil

 C:\StellarisWare\driverlib\sourcerygxx - CodeSourcery

20

Stellaris® IEC 60730 support

IEC: World‟s authority in international

standards for household appliances

StellarisWare extension provides

support for IEC 60730 Class B safety

requirements

Class B covers most home appliances,

such as washers/dryers, refrigerators,

freezers, and cookers/stoves

Free license and royalty-free use for

use on Stellaris MCUs

Library supports both startup and

periodic testing requirements of IEC

60730

The International

Electrotechnical

Commission (IEC)

http://www.iec.ch/index.html

21

Stellaris® code examples

 „.\StellarisWare\boards‟ contains all kits projects

 Each kit has it‟s own directory

 There are multi-project workspace files for all available projects
for all supported compilers

 Each individual project directory contains

 ‘Readme’ giving details of the project

 Project files supported compilers

 Project source code

 Compiler specific ‘library’ output directories

 C:\StellarisWare\boards\kit\project\ccs - CCS

 C:\StellarisWare\boards\kit\project\ewarm - IAR

 C:\StellarisWare\kit\project\gcc - CodeRed

 C:\StellarisWare\kit\project\\rvmdk - Keil

 C:\StellarisWare\kit\project\\sourcerygxx - CodeSourcery

 All project that use the driver library reference

 Driver library ‘library’ file from ‘C:\StellarisWare\driverlib\complier’

 Driver Library header ‘*.h’ file from ‘C:\StellarisWare\driverlib’

 Other related files

 ‘c:\StellarisWare\inc’ - Device specific header ‘lm3sxxxx.h’ files

 ‘c:\StellarisWare’ - Peripheral hardware header ‘hw_xxxx.h’ files

23

On-chip SW Enhancements (ROM)

StellarisWare™ DriverLib

 High-level API interface to complete peripheral set.

 Simplifies and speeds development of applications.

 Saves user flash by storing peripheral setup and configuration
code

 Allows programmer focus to be on the application - not setup

StellarisWare™ Bootloader

 Download code to flash memory for firmware updates

 Interface options include UART (default), I2C, SSI, Ethernet

Other flash memory-saving options

 Advanced Encryption Standard (AES) tables – for cryptography
 Supported by the current AES example application

Covers all three sizes: 128, 192, 256

 Cyclic Redundancy Check (CRC) functionality – for error
detection

Stored in exclusive ROM on select Stellaris MCUs

24

On-chip SW Enhancements (ROM)

SAFERTOS for Tempest

 High-integrity RTOS in ROM

 RTOS value $65k free with Tempest
LM3S9B96

 Can be used as a standard operating
system OR as part of a high integrity
application which requires certification to
IEC61508 or FDA510(k)

 Integrated hardware/software solution shortens the time to market and
significantly reduces cost for Industrial and Medical Applications

 Innovative Design Assurance Pack available separately from WITTENSTEIN
provides complete turnkey evidence and process documentation

25

GUIs for embedded systems

26

GUIs for Embedded Systems

 We are not talking about running Linux or

Windows on a low-cost consumer device!

 We are talking about using CPU-rendered, on-

screen graphical controls in conjunction with

touch or button input to control your

application.

27

GUI Benefits

 Customizability

 Product features can be defined by the software.

Offer new features without needing hardware changes.

 Visually appealing and intuitive

 Show only the information the user needs at that time.

 Less display clutter.

28

The Good Old Days

In yesteryears, fewer UI options

were available to embedded device

developers.

• Graphics-capable displays were expensive.

• Microcontrollers were too slow to run an application and

handle graphics processing.

• Graphics took too much storage for use on a small

device.

• Writing graphical interface code was time consuming and

difficult.

29

LCD Displays Are Too Expensive

$0

$5

$10

$15

$20

$25

$30

$35

$40

2004 2005 2006 2007 2008

TFT LCD

CSTN LCD

MSTN LCD

AM OLED

PM OLED

Source: iSuppli/Stanford Resources, http://www.usdc.org/resources/DisplayTrends_summer2004/biggrowthahead.htm

• High demand for mobile phones

and the availability of older-

generation LCD manufacturing

capacity has driven small panel

LCD display prices sharply

downwards.

• 128x64, 4bpp OLED ~$4.00

• 128x128, color CSTN ~$3.60

• QVGA color touchscreen ~$14

30

Graphics Need Too Many MIPs

 320x240x16bpp using an 8bit parallel interface, 2 cycle GPIO
operations, 15Hz refresh.

 This requires about 14MIPS.

 28% of the CortexM3 CPU bandwidth at 50MHz.

 72% of the CPU is left for application use.

 BUT - we are not in the video business!

Updates are seldom at 15Hz and seldom full screen.

 Interface is often 16bits wide with single cycle GPIOs

 15Hz overhead drops to about 9.5% in this case.

Consider a worst case:

31

Bitmapped images are huge!

 A 320x240 16bpp image takes 150KB!

But …

 The display panels we are looking at include integrated

frame buffers.

 Draw directly into the display panel buffer.

 But what about application images?

 Use the CPU power to your advantage:

 Store images in a compressed format.

 Saves about 80% of the space for typical buttons and text.

 Use palletized image formats and convert on-the-fly.

 Describe the image using 16 colors rather than 65536.

32

Graphics library software is big

 True if you want Bezier curves, pixel transparency, non-rectangular

clipping regions, support for 15 image formats, pie charts, metafile

generation, complex pens, customizable line endcaps, double byte

fonts…..

 You don‟t need the Windows GDI or OpenGL to implement a very

usable, compelling graphical user interface.

 TI Stellaris Graphics Library compiles to about 10KB of code and

needs about 400bytes of RAM workspace.

 ASCII fonts are between 1.5KB and 6KB depending upon glyph size.

33

GUI Software Aims

 Develop a minimum subset of graphics primitives that you will need

for your interface.

 Keeps code size to a minimum.

 Keeps work to a minimum!

 Isolate the control definitions and appearance from the code that

manages them.

 Allows rapid prototyping.

 Get the application working with basic controls then spend time making them

pretty.

 Be consistent in how controls are defined and used.

 Learn one set of concepts and use them in different areas.

A widget-based architecture makes a lot of sense.

34

Stellaris
®

Grlib architecture

35

Widget definition

 “A component of a graphical user interface with which a
user interacts.”

 A widget is a control – something on the screen that you
read, press, slide, click, toggle or otherwise fiddle with to
set or get application information.

 Widgets are instantiated as instances of a widget class
(don‟t worry – C++ is not needed!).

 Widgets encapsulate the drawing of the control and its
interaction with the user. Interaction with the application is
via messages sent to an application callback function.

36

Widget definition

Input from the user

Graphical
rendering

Function

Call

37

Stellaris
®

Graphics Library

Display Driver

Graphics Primitives

Widgets

Application

Touchscreeen

Driver

→ Set of graphics primitives
and widgets

Bitmap/Pixel Control

Lines, Circles, Text, Point,
Rectangle, Circle, Image, …

Canvas, Checkbox, Container,
Push Button, Radio Button,
Slider, ListBox

39

Stellaris
®

Display driver

ColorTranslate - 24-bit RGB into palette

Flush - flush cached drawing operations

LineDrawH - Horizontal line, single color

LineDrawV - Vertical line, single color

PixelDraw - Single pixel (single color)

PixelDrawMultiple - Pixel bitmap

RectFill - Filled rectangle, single color

Note: Direct application calls into the
display driver are valid, even if mixed
with other layers

Application

Display Driver

tDisplayStructure ◄

40

Stellaris
®

Graphics primitives

Bitmap/Pixel Control

Lines, Circles, Text, Point,
Rectangle, Circle, Image, …

Canvas, Checkbox, Container,
Push Button, Radio Button,
Slider, ListBox

Application

Display Driver

Graphics Primitives

◄

41

Graph. primitive - Text Rendering

 Serif, san-serif and small caps fonts

 Regular, bold, and italic styles

 12 to 48 point (/2)

 Custom designed 6x8 fixed-point font

void GrContextFontSet(&sContext, &g_sFontCm20);

void GrStringDraw (const tContext pContext,

const char pcString, long lLength, long lX,

long lY, unsigned long bOpaque)

42

Graph. primitive - functions examples

 GrCircleDraw

 GrCircleFill

 GrImageDraw

 GrLineDraw

 GrLineDrawH

 GrLineDrawV

 GrRectDraw

 GrRectFill

 GrRectIntersectGet

 GrRectOverlapCheck

 GrStringDraw

 GrStringGet

43

StellarisWare Widgets

Bitmap/Pixel Control

Lines, Circles, Text, Point,
Rectangle, Circle, Image, …

Canvas, Checkbox, Container,
Push Button, Radio Button,
Slider, ListBox

Application

Display Driver

Graphics Primitives

Widgets

Touchscreeen

Driver

◄

44

Widget Types examples

 Canvas Widget – Draws a picture with no user interaction

 Checkbox Widget – User selects on or off

 Container Widget – Groups multiple child widgets into container

 Image Button Widget – Push button with user-defined on and off

 ListBox Widget – User selects one of a list of strings

 Push Button Widget – Simple push button

 Radio Button Widget – Circle that fills when selected on

 Slider Widget – User selects a range of values

45

Stellaris
®

Graphics lib widgets Ex.

Primitives Radio Buttons Checkbox

Canvas Push Buttons Container

Security Keypad

BLDC Touchscreen

55

Collaterals for graphics

56

Stellaris
®

3.5” Landscape IDM

Example applications:

• Security Systems & Building Access Controllers

• White Goods and other Home Appliances

• Factory Automation

• System Status and Configuration

• Bright QVGA LCD touch-screen display
• 3.5” QVGA 240 x 320 pixels

• 16-bit color

• White LED backlight

• 4-wire Resistive touch panel

• Serial connectivity options
• Headers provide TXD and RXD signals

• RS232 signal levels

• UART serial port with TTL signal levels

• Default 115.2k,8,n,1 operation

• High performance and memory
• 32-bit ARM Cortex-M3 core

• 256KB Main Flash memory, 64KB SRAM

• microSD slot (typically 1GB storage)

• Flexible power supply options
• 5 V DC jack, 5 V Terminal block, and 5 V Serial header

• Peripherals
• Four analog measurement inputs

• 16 digital I/O lines

• Magnetic buzzer, PWM controlled

57

Intelligent Display Module

 240x320 16bpp

touchscreen display with

LED backlight

 10/100 Ethernet

 microSD slot

 4 ADC inputs

 Speaker

58

IDM Example

Security keypad

application

Buttons are arranged

randomly when the keypad

is activated.

Entry of the correct code

closes a relay connected to

the door lock mechanism.

A web server allows the

code to be changed.

59

Stellaris
®

3.5” Landscape IDM

Example applications:

• Security Systems & Building Access Controllers

• White Goods and other Home Appliances

• Factory Automation

• System Status and Configuration

• Bright QVGA LCD touch-screen display
• 3.5” QVGA 240 x 320 pixels

• 16-bit color

• White LED backlight

• Serial connectivity options
• 10/100 Ethernet

• USB 2.0 Full Speed Host

• Controller Area Network

• Integrated Interchip Sound (I2S)

• UART and I2C

• High performance and memory
• 80 MHz LM3S9B92 32-bit ARM Cortex-M3 MCU

• 256 KB Main Flash memory, 96 KB SRAM

• 1 MB external serial Flash memory

• 8 MB SDR SDRAM via External Peripheral Interface

• StellarisWare® Software
• Graphics Library, USB Library, Peripheral Driver Library, IEC

60730 Library

60

Stellaris
®

Oscilloscope Demo

USB Host Mode

Data dump to the memory stick

Oscilloscope Wiring Oscilloscope Demo Oscilloscope Options

USB Device Mode

Control the demo via a PC

61

Oscilloscope

• Uses a text- and menu-based widget system built on top of the Luminary

Stellaris Graphics Library.

• Runs on an EK-LM3S3748 evaluation board with 128x128 CSTN display.

• User input via 4 directional rocker switch with “press to select.”

62

Stellaris DK-LM3S9B96

8MB SDRAM expansion board

3.5” LCD touch screen

TFT QVGA

Resistive touch interface

JTAG/SWD In/Out connector

USB connector for emulation/UART and power

1MB Serial flash memory
2 hardware settings:

- SDRAM connected to EPI, LCD to GPIOs

or

- Flash/SRAM/LCD connected to EPI for
improved LCD performances

63

DK-LM3S9B96 Code examples

 More than 44 software project examples provided in

source code with the DK-LM3S9B96

 Projects includes several graphics features

JPEG widget

JPEG decode

Stellarisware graphics library calls

 Widgets, Touch screen driver, QVGA TFT LCD driver

…

 Projects environments available for Keil, IAR,

CodeRed, Sourcery

64

Conclusion

 Using the CortexM3, today‟s low cost color displays
and software such as TI Stellaris Graphics Library,
visually appealing, high function graphical user
interfaces are both affordable, usable and
straightforward to develop.

