
TI ARM® Cortex-M, ARM9™, Cortex™-A8

Detailed overview

Jens Stapelfeldt

TI Technology Days 2010

2

TI ARM® investment and innovation

Newest DaVinci
solution for

flexible,
HD video

Two ARM
Cortex-R4

cores
for

automotive

TI
licenses

first
ARM
core

1995

1st single-chip
digital baseband -

DSP/ARM
multi-core

1st multi-core
applications
processor,

ARM9-based

2002 2005

*TI first licensee for
ARM Cortex™- A8

Introduced DaVinci
processors for

digital video
– ARM9-based SoCs

2006

1st ARM
Cortex-A8

based silicon

2007

TI
licenses

Cortex-A9

* TI licensed in July 2003, but publicly announced Oc t 2005.

TI has shipped over 5 billion ARM-based products an d continues to invest
in a large portfolio of scalable platforms from $1 to >1GHz

2009

TI
Acquires
Luminary

Micro

TI
announces

31 new
ARM-based

products
and

introduces
Sitara™
family

Stellaris
Sandstorm

Class

Stellaris ®

Fury
Class

2008

Stellaris
DustDevil

Class

Stellaris
Tempest

Class

Stellaris
MCUFixed/

Floating-
Point
ARM9
SoC

1993

TMS570F
MCU

1st R4F-based
floating-point,
dual-core auto

MCU

DaVinci

OMAP
OMAP3

OMAP
OMAP1510

DaVinci ™ TMS570
MCU

OMAP™

OMAP-L138

3

H

L

H

L

Processors for All Applications

H

L

Applications

Processor

Market

Real-Time

Embedded

Market

Microcontroller

Market

ARM926EJ-S

Cortex-A8

ARM11 MPCore

ARM1176JZ(F)-S

ARM1136J(F)-S

600+ MIPS Uni-Proc

2000+ MIPS Uni-Proc

2000+ MIPS Multi-proc

600+ MIPS Uni-Proc

250+ MIPS Uni-Proc

Graphics
Accelerators

MBX R-S

MBX HR-S

ARM7TDMI
Cortex-M

ARM968E-S

ARM946E-S

ARM1156T2(F)-S

ARM7TDMI

600+ MIPS Uni-Proc

300+ MIPS Uni-Proc

150+ MIPS Uni-Proc

100+ MIPS Uni-Proc

4

ARM instruction set evolution

Key Technology
Additions by

Architecture Generation

NEON™
Adv SIMD

Dynamic
Compiler
Support

v7 A&R

VFPv3

Thumb

v4T

Jazelle®

VFPv2

v5

SIMD

Thumb®-2

TrustZone™

v6 v7 M

Cortex-M3

Thumb-2 Only

5

Thumb-2 Instruction Set

• Thumb-2 is a major extension to the Thumb ISA
– Adds 32 bit instructions to implement almost all of the ARM ISA functionality
– Retains complete 16 bit Thumb instruction set
– First implementation is ARM1156T2-S

• Design objective: ARM performance with Thumb code density

• Advantages:
– No need to manually select instruction set split

• Reduces need to profile code and understand execution patterns
• Compiler can automatically select mix of 16 and 32 bit instructions

– Gives access to ARM state behaviour
• Exceptions may be handled directly
• Coprocessors can be accessed
• Advanced data handling of v5TE & v6 can be done

– Conditional Execution via If-Then (IT) instruction
• 1-4 following instructions conditionally executed

6

• Endianness determines how contents of registers relate to the contents of
memory

– ARM registers are word (4 bytes) width
– ARM addresses memory as a sequence of bytes

• ARM processors are little-endian
– But can be configured to access big-endian memory systems

Little-endian memory system
• Least significant byte is at lowest address

Big-endian memory system
• Most significant byte is at lowest address

• ARM support three models of endianness
– LE Little-Endian
– BE-32 Word Invariant Big-Endian (dropped in architecture v7)
– BE-8 Byte invariant Big-Endian (introduced in architectu re v6)

Endianness

7

Which architecture is my processor?
Processor core Architecture Products e.g.

ARM7TDMI, ARM720T v4T

ARM9TDMI, ARM92xT, ARM940T v4T

ARM946E-S, ARM966E-S, ARM968E-S v5TE

ARM926EJ-S, ARM1026EJ-S v5TEJ AM1808

ARM102xE v5TE

ARM1136J(F)-S v6

ARM1156T2(F)-S v6T2

ARM1176JZ(F)-S v6Z

Cortex-M0/1 v6M

Cortex-A8 v7A OMAP35x, AM3350

Cortex-R4 v7R TMS570

Cortex-M3 / M4 v7M Stellaris , TMS470

8

Processor Modes
• The ARM has seven basic operating modes:

– Each mode has access to:
• Its own stack space and a different subset of registers

– Some operations can only be carried out in a privileged mode

Mode Description

Supervisor

(SVC)
Entered on reset and when a Software Interrupt instruction (SWI) is executed

Privileged
modes

FIQ Entered when a high priority (fast) interrupt is raised

IRQ Entered when a low priority (normal) interrupt is raised

Abort Used to handle memory access violations

Undef Used to handle undefined instructions

System Privileged mode using the same registers as User mode

User Mode under which most Applications / OS tasks run Unprivileged mode

E
xc

ep
tio

n
m

od
es

9

The Registers

• ARM has 37 registers all of which are 32-bits long
– 1 dedicated program counter

– 1 dedicated current program status register

– 5 dedicated saved program status registers
– 30 general purpose registers

• The current processor mode governs which of several banks is accessible

• Each mode can access
– A particular set of r0-r12 registers

– A particular r13 (the stack pointer, sp) and r14 (the link register, lr)
– The program counter, r15 (pc)

– The current program status register, cpsr

Privileged modes (except System) can also access
– A particular spsr (saved program status register)

10

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ ModeIRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

The ARM Register Set

11

User
mode

r0-r7,
r15,
and
cpsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r0

r1

r2

r3

r4

r5

r6

r7

User

r13 (sp)

r14 (lr)

spsr

IRQ

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Undef

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

SVC

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Abort

User
mode

r0-r12,
r15,
and
cpsr

Thumb state
Low registers

Thumb state
High registers

Note: System mode uses the User mode register set

Register Organization Summary

12

Program Status Registers

• Condition code flags
– N = Negative result from ALU
– Z = Zero result from ALU
– C = ALU operation Carried out
– V = ALU operation oVerflowed

• Sticky Overflow flag - Q flag
– Architecture 5TE and later only
– Indicates if saturation has occurred

• J bit
– Architecture 5TEJ and later only
– J = 1: Processor in Jazelle state

• Interrupt Disable bits.
– I = 1: Disables the IRQ
– F = 1: Disables the FIQ

• T Bit
– T = 0: Processor in ARM state

– T = 1: Processor in Thumb state

– Introduced in Architecture 4T

• Mode bits
– Specify the processor mode

f s x c

2731

N Z C V Q

28 67

I F T mode

1623 15 5 4 024

U n d e f i n e dJ

� New bits in V6

� GE[3:0] used by some SIMD
instructions

� E bit controls load/store endianness

� A bit disables imprecise data aborts

� IT [abcde] IF THEN conditional
execution of Thumb2 instruction groups

10 8919

GE[3:0] E AIT cond_abcde

13

Exception Handling

• When an exception occurs, the core:
– Copies CPSR into SPSR_<mode>

– Sets appropriate CPSR bits
• Change to ARM state
• Change to exception mode
• Disable interrupts (if appropriate)

– Stores the return address in LR_<mode>

– Sets PC to vector address

• To return, exception handler needs to:
– Restore CPSR from SPSR_<mode>

– Restore PC from LR_<mode>

This can only be done in ARM state
Vector Table

Vector table can be at
0xFFFF0000 on ARM720T

and later

FIQ
IRQ

(Reserved)
Data Abort

Prefetch Abort
Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

*(in ARM7 to ARM Cortex-R /A)

14

Interrupt Handling
• The ARM has two levels of external interrupt - FIQ and IRQ

• However most ARM based systems have more than 2 interrupt sources!
– Therefore need an interrupt controller (typically memory mapped) to control how interrupts are

passed onto the ARM

– In many systems some interrupts will be higher priority than others - these will need to preempt any
lower priority interrupts that may be being handled at that point in time

• Note: An interrupt handler should always contain code which clears the source of
an interrupt

Memory
Mapped

Interrupt
Controller

nIRQ

nFIQ ARM

Multiple
Peripheral
interrupt
sources

1) ARM reads controller
register to find out interrupt
source which clears IRQ/FIQ

2) ARM writes to peripheral to
clear actual interrupt source

*(in ARM7 to ARM Cortex-R /A)

15

C Nested Interrupt Example
IRQHandler

SUB lr, lr, #4
STMFD sp!, {lr}
MRS r14, SPSR
STMFD sp!, {r12, r14}

MOV r12, #IntBase
LDR r12, [r12, #IntSource]

MRS r14, CPSR
BIC r14, r14, #0x9F
ORR r14, r14, #0x1F
MSR CPSR_c, r14

STMFD sp!, {r0-r3, lr}
MOV r0,r12
BL C_irq_handler
LDMFD sp!, {r0-r3, lr}

MRS r12, CPSR
BIC r12, r12, 0x1F
ORR r12, r12, 0x92
MSR CPSR_c, r12

LDMFD sp!, {r12, r14}
MSR SPSR_csxf, r14
LDMFD sp!, {PC}^

Switch to IRQ
mode, with
IRQ disabled.

Push LR_irq ,
SPSR_irq and a work
register (r12) onto the
stack to stop them
being corrupted should
another interrupt occur

}

Save registers and
LR_user on user mode
stack, then call the C
subroutine, passing
interrupt source as a
parameter (in r0)

}
Restore work register, LR
and SPSR and return from
exception using modified
LR

}

Read interrupt source,
clearing interrupt in
controller

{
Switch to system
mode, with
IRQ enabled. {

{

*(in ARM7 to ARM11)

16

Register Usage - ARM APCS

r8
r9/sb
r10/sl
r11

r12

r13/sp
r14/lr
r15/pc

r0
r1
r2
r3

r4
r5
r6
r7Register variables

Must be preserved

Arguments into function
Result(s) from function

otherwise corruptible
(Additional parameters

passed on stack)

Scratch register
(corruptible)

Stack Pointer
Link Register

Program Counter

The compiler has a set of rules known as a
Procedure Call Standard that determine how to
pass parameters to a function (see AAPCS)

CPSR flags may be corrupted by function call.
Assembler code which links with compiled code
must follow the AAPCS at external interfaces

The AAPCS is part of the new ABI for the ARM
Architecture

Register

- Static base if RWPI option select
- Stack limit if software stack checking selected

- R14 can be used as a temporary once value stacked
- SP should always be 8-byte (2 word) aligned

17

Program Status Registers
• ARMv7M architecture conceptually partitions the ARMv6

CPSR
– FPSR – Flags are identical to previous ARMv6 processors
– IPSR – Replaces mode and interrupt bits with current exception number
– EPSR – Extends Thumb-2 if-then-else bits with interrupt continuation

• Interrupted LDM/STM may resume using ICI rather than restarting
• New MSR, MRS and CPS instructions allow access
• For example: MSR FPSR, r0

MRS r1, IPSR

CPSR N Z C V Q IT J A I F T MODEEIT

FPSR N Z C V Q

IPSR EXCEPTION NUMBER

EPSR ICI/IT T ICI/IT

18

Cortex-M3 Processor

• Hierarchical processor integrating core and
advanced system peripherals

• Cortex-M3 core
– Harvard architecture
– 3-stage pipeline w. limited branch prediction
– Thumb®-2 and traditional Thumb

– ALU w. H/W divide and single cycle multiply

• Cortex-M3 Processor
– Cortex-M3 core
– Configurable interrupt controller

– Bus matrix
– Advanced debug components
– Optional MPU & ETM

19

ARM Cortex-M3 Microprocessor

SWD or JTAG
Flash Patch &
Breakpoints

Data Watchpoints
& Trace

Debug and Sleep
Control

3-Stage Pipeline, Harvard Architecture,
Thumb-2 ISA (or Thumb) 30K* Gates

1-240 Configurable
Interrupts

(32 Standard)
Configurable Priority

Levels

Cortex M3 Total
60k* Gates* Preliminary gate counts & power consumption based on initial implementation

Gate Counts are based on TSMC 0.18 at 50MHz
Optional ETM & MPU gate counts not included

Non Maskable
Interrupt

20

• Thumb-2 processing core (gives complete Thumb compatibility)
– Mix of 16 and 32 bit instructions for very high code density

• 16 x 32-bit registers

• Excellent compiler target

• Reduced pin count requirements

• Efficient interrupt handling

• Power management

• MUL/DIV instructions

• Efficient debug and development support features
– Breakpoints, Watchpoints, Flash Patch support*, Instruction Trace*

• Strong OS support
– User/Supervisor model
– OS support features

• Designed to be fully programmed in C
– Even reset, interrupts and exceptions

ARM Cortex-M 32-bit Microcontroller

21

Different From Other ARM Processors

• ARMv7M Architecture

• No ARM instruction set support

– Thumb-2 only

• No Cache - No MMU

• Debug is optimized for microcontroller applications

• Vector table is addresses, not instructions

• Interrupts automatically save/restore state

• Exceptions programmed in C

• No Coprocessor 15

– All registers are memory-mapped

• Interrupt controller is part of Cortex-M macrocell

22

Cortex-M3 Defined Memory Map

Code

SRAM

System

Peripheral

External
Peripheral

External
SRAM

FFFF_FFFF

2000_0000

4000_0000

6000_0000

A000_0000

E000_0000

0000_0000

512MB

1GB

1 GB

512MB

512MB

512MB

ITM

Internal Private Peripheral Bus

E000_E000

E000_3000

E000_2000

E000_1000

E000_0000

E000_F000

E00F_F000

E004_2000

E004_1000

E004_0000

E00F_FFFF
External Private Peripheral Bus

DWT
FPB

NVIC

RESERVED

RESERVED

UNUSED

TPIU
ETM

ROM Table

E003_FFFF

(XN)

23

Word alias

Physical bit

32M
B

Bit band alias32MB

31MB

1MB Bit band region

Bit band alias32MB

31MB

1MB Bit band region

• Writes to a word address in the bit band
alias affect a single bit in the bit band
region

• The write is translated to an atomic read-
modify-write by the Cortex-M3 bus matrix

• Bit 0 of the stored register is written
to the appropriate bit

Cortex-M3 Bit Banding

24

Cortex-M3 Interrupts
• One Non-Maskable Interrupt (INTNMI) supported

• 1-240 prioritizable, maskable interrupts supported
– Implementation option selects number of interrupts supported

• Interrupt Controller (NVIC) is tightly coupled with processor core

• Interrupt inputs are active HIGH

Cortex-M3
Processor Core

INTNMI

NVIC

Cortex-M3

1-240 Interrupts
INTISR[239:0] …

25

“Micro-Coded” Interrupt Mechanism

• Interrupt structure designed for low latency

• Interrupt prioritization mechanism is part of Cortex-M3

• Processor state saved/restored by core on interrupt entry/return

• Interrupt entry/exit is “micro-coded”
– No instruction overhead

– Allows late determination of highest priority pending interrupt
– Allows another pending interrupt to be serviced without a full

restore/save of processor state (tail-chaining)

– Interrupt Service Routines (ISRs) can be written entirely in C

• Long instructions are interruptible for improved interrupt latency
– LDM/STM and PUSH/POP instructions are interruptible and continuable

– DIV and long MUL instructions will be cancelled, then restarted later

26

Interrupt Entry

• Upon receiving an interrupt, the processor will finish current instruction
– LDM/STM, PUSH/POP, DIV, MUL may be interrupted for better interrupt

latency
– LDM/STM, PUSH/POP will normally be continued upon return from

interrupt

• Then, processor state automatically saved to the stack over the data bus
– {PC, R0-R3, R12, R14, xPSR}
– Follows AAPCS (ARM Architecture Procedure Calling Standard)

• In parallel, Interrupt Service Routine (ISR) is prefetched on the instruction
bus

– ISR ready to start executing as soon as stack push is complete

• Late arriving interrupt will restart ISR prefetch, but state saving does not
need to be repeated

27

<- Old SP

Interrupt Stack

• Cortex-M3 stack at start of ISR
– Following automatic stacking of registers by

core

• Stack Pointer is automatically decremented

• Cortex-M3 stack is Full-Descending

• Saving these registers allows ISRs to be
written in C/C++

– Follows AAPCS (ARM Architecture
Procedure Calling Standard)

<previous> <-SP
xPSR

PC
LR
R12
R3
R2
R1
R0

<-SP

28

H

L

H

L

Processors for All Applications

H

L

Applications

Processor

Market

Real-Time

Embedded

Market

Microcontroller

Market

ARM926EJ-S

Cortex-A8

ARM11 MPCore

ARM1176JZ(F)-S

ARM1136J(F)-S

600+ MIPS Uni-Proc

2000+ MIPS Uni-Proc

2000+ MIPS Multi-proc

600+ MIPS Uni-Proc

250+ MIPS Uni-Proc

Graphics
Accelerators

MBX R-S

MBX HR-S

ARM7TDMI
Cortex-M

ARM968E-S

ARM946E-S

ARM1156T2(F)-S

ARM7TDMI

600+ MIPS Uni-Proc

300+ MIPS Uni-Proc

150+ MIPS Uni-Proc

100+ MIPS Uni-Proc

29

ARM Cortex-R4 Processor
• Synthesizable

• ARM v7-R Architecture
– Divide instructions

– Support for Mixed Endianness

– Unaligned data support

– v7 Debug Architecture

• High Performance Core
– 8-stage pipeline

– Dynamic Branch prediction

– Return stack
– Hardware Divide

• FPU option (Cortex-R4F)

• ECC for local memories (r1 and after)

• Configurable caches and TCMs
– With external DMA support

30

ARM Cortex-R4 Processor Features
• Instruction sets supported

– ARM Instruction Set
– Thumb-2 Instruction Set

• RTL Configuration options
– MPU present / not
– FPU present / not
– Number of regions: 8 or 12
– Number of breakpoint / watchpoint registers: 2-8 / 1-8
– Cache sizes / way size: 0-64KB / 1,2,4,8 or 16KB
– TCM sizes: 0-8MB
– Redundant core present / not
– Parity/ECC support on Cache/TCM
– Parity support on AXI interfaces

• MBIST Interface can be used with a memory BIST controller, providing the ability
to test the RAM blocks in the processor

31

ARM Cortex-R4 Processor Pipeline

Decode Issue
Pre-

Decode
Fetch2

Shift ALU Sat

MAC
1

MAC
2

FPU2

Data
Cache

1

Data
Cache

2
Format

FPU0 FPU1

Branch3

Wr

Fetch1

AGU

Common decode pipeline 4 parallel back end pipelines

Prefetch Unit

� AGU = Address Generation Unit
� Separate divide pipeline

Branch1 Branch2

MAC
3

Wr

FPU (Optional)

32

TMS570 Safety Features

• Developed with a functional safety management plan
• Certified by exida for use in SIL3 safety systems

• Developed with a functional safety management plan
• Certified by exida for use in SIL3 safety systems

Fail Safe
Detection

TMS570LS20216

CRC

Enhanced System Bus and Vectored Interrupt Management

DMA

Memory

2 MB
Flash w/ ECC

160 KB
RAM w/ ECC

Power, Clock, & Safety

VMON / OSCMON
Memory Protection

ARM®

Cortex ™-
R4F

160MHz

ARM®

Cortex ™-
R4F

160MHz

Timers / IO

3x SPI’s

Serial I/F Network I/F

2 ch FlexRay

ADC

MibADC1

MibADC2

High End Timer

(NHET)

2x LIN

(UART) GIO

Dual Core Lockstep -
Cycle by Cycle CPU
Fail Safe Detection

ECC for flash / RAM /
interconnect evaluated
inside the Cortex R4F

Parity on all Peripheral,
DMA and Interrupt
controller RAMS

Memory BIST on all
RAMS allows fast

memory test at startup

CPU Self Test
Controller requires
little S/W overhead

CRC, IO Loop Back,
ADC Self Test, …

Error Signaling
Module w/ External

Error Pin

On-Chip Clock and
Voltage Monitoring

3x CAN’s

CPU BIST

MEMORY BISTLogical / physical
design optimized to
reduce probability of

common cause failure

33

H

L

H

L

Processors for All Applications

H

L

Applications

Processor

Market

Real-Time

Embedded

Market

Microcontroller

Market

ARM926EJ-S

Cortex-A8

ARM11 MPCore

ARM1176JZ(F)-S

ARM1136J(F)-S

600+ MIPS Uni-Proc

2000+ MIPS Uni-Proc

2000+ MIPS Multi-proc

600+ MIPS Uni-Proc

250+ MIPS Uni-Proc

Graphics
Accelerators

MBX R-S

MBX HR-S

ARM7TDMI
Cortex-M

ARM968E-S

ARM946E-S

ARM1156T2(F)-S

ARM7TDMI

600+ MIPS Uni-Proc

300+ MIPS Uni-Proc

150+ MIPS Uni-Proc

100+ MIPS Uni-Proc

34

ARM926EJ-S Performance

• Target 180-200MHz

• ~1000CM @ 180MHz

• 230k gates
– Excluding RAMs and caches

• ~1.4mW/MHz
– Including caches

• 1.0 Dhrystone MIPS/MHz

– Above figures obtained with 0.18µm library

– Results dependant upon library and process used

35

35

ARM/Thumb
State

FETCH DECODE EXECUTE MEMORY WRITE

Instruction
Fetch

Shift/ALU Memory
Reg

Write
Reg Read

ARM or Thumb
Inst Decode

Multiply 1 Multiply 2\
Saturation

Instruction
Fetch

Shift/ALU Memory
Reg

Write
Reg Read

Java Decode
2

Multiply 1 Multiply 2

Java
Decode

FETCH DECODE 2 EXECUTE MEMORY WRITE

Java
State

DECODE 1

Pipeline Operation

36

Example Cached ARM Macrocell

AMBA
Bus

Interface
AMBA

Interface

Cache

ARM
Core

Address

A
dd

re
ss

MMU
or

MPU

Data Read
Data Write

Control
Logic

CP15

D
at

a Write
Buffer

• MPU – Memory Protection Unit
– Controls memory access permissions

– Controls cacheable and bufferable
attributes for memory regions

• MMU – Memory Management Unit
– Has all the features of an MPU

– Also provides Virtual to Physical
address translation

• Cache
– Fast local memory

– Holds copies of recently accessed memory
locations

• Write buffer
– Decouples writes to external memory

• CP15 - System Control Coprocessor
– Controls core and cache configurations

37

H

L

H

L

Processors for All Applications

H

L

Applications

Processor

Market

Real-Time

Embedded

Market

Microcontroller

Market

ARM926EJ-S

Cortex-A8

ARM11 MPCore

ARM1176JZ(F)-S

ARM1136J(F)-S

600+ MIPS Uni-Proc

2000+ MIPS Uni-Proc

2000+ MIPS Multi-proc

600+ MIPS Uni-Proc

250+ MIPS Uni-Proc

Graphics
Accelerators

MBX R-S

MBX HR-S

ARM7TDMI
Cortex-M

ARM968E-S

ARM946E-S

ARM1156T2(F)-S

ARM7TDMI

600+ MIPS Uni-Proc

300+ MIPS Uni-Proc

150+ MIPS Uni-Proc

100+ MIPS Uni-Proc

38

Cortex-A8
• ARMv7-A Architecture

– ARM, Thumb-2, Thumb-2EE

– TrustZone extensions

• Custom or Synthesized
design

• High Performance Core
– Branch Prediction & Return

Stack

• L1 Caches
– 16 or 32KB each

– 4-way set associative

• L2 Cache
– 0-2MB in size

– 8-way set associative

– Unified instructions and data

� Optional features

� IEM power saving support

� VFPv3 Vector Floating-Point (VFPLite)

� NEON media processing engine

Fetch Unit

I-
Cache

ITLB

Branch Prediction

Return Stack

Global History Buffer

Br Target Buffer

Level 2

I/D/PLE Arbitration

L2 Cache/PLE Controller

L2 Data
RAM

L2 TAG
RAMWrite BufferBIU

Fill/Eviction Queue

Decode Unit

Debug
Interface

Neon

Integer

SIMD
and FP

Execute

units
Pending and Replay

Instruction Queue

Score
Board &

Issue Logic

Instruction Queue

Execute Unit

Reg

Bank
Write

Back

ALU/MUL

ALU

Load/Store Unit

AGU D-CacheDTLB

Decode
Queue

ETM

39

Fe: Fetch stages

IQ: Instruction Queue

De: Decode

PQ: Pending Replay Queue

ISS: Issue

P0: Main execution pipeline

P1: Secondary execution pipeline

LS: Load/Store pipeline

AGU: Address Generation Unit

LSU: Load/Store Unit

WB: Write Back

Cortex-A8 Pipeline

Fe0 Fe1

ISS

Ex1

Ex1

AGU

WB

LSU

De

PQ

ALU/MUL

(P0)

ALU

(P1)

M1

Ex2

Ex2

M2
IQ

Load/store

(LS)

In-order, dual-issue, statically-scheduled, and sup er-scalar 13-stage pipeline

� NEON pipeline connected onto the end of the integer core pipeline

Ex3

Ex3

M3

40

Program Flow Prediction

• Cortex-A8 implements dynamic prediction hardware which significantly reduces average
branch penalty by avoiding pipeline flushed on branches

• Consists of:
– Global History Buffer

• 4096-entry 2-bit saturating counters that encode both branch direction and strength
information

– Branch Target Buffer
• 512-entry 2-way set associative cache which supplies the branch target address for

predicted branches
– Return Stack

• 8-entry FIFO which contains address and state information for function returns

• Setup: Set the Z bit in the CP15 c1 System Control Register
• Disabled at reset

• Performance Monitors can provide data on efficiency of branch prediction

41

Level 1 Caches
• Instruction and Data Caches

– 16 or 32KB, 4-way set-
associative

– Virtually-indexed, physically
tagged

– Pseudo-random eviction policy
– Write back and write through

replacement policy

Cortex-A8
Core

MMU
Instruction side

I-Cache

Data side

Write
Buffer

D-Cache

Branch
Predict

Instruction
Queue

� Instruction side

� Branch prediction

� Instruction queue

� Data side

� Write buffer

L2 Cache

42

Application Processors
• Application compatibility across multiple

generations of processors
• Driven by power efficiency

and scalable performance
• Ideal processor for

supporting high level OS

x1-4

Cortex-A9

Cortex-A8

x1-4

Cortex-A5

x2

Osprey *

x1-4

Cortex-A15

*Osprey: 2xCortex-A9 hard
macro (TSMC 40G)

P
er

fo
rm

an
ce

, F
un

ct
io

na
lit

y

Release Timeline

43

Sitara ™ Cortex ™-A8 and ARM9 ™ MPU Roadmap

1H11
Speeds shown are for commercial temperature. Dates approximate initial samples. Not all peripherals shown. Limitations apply among package and pin muxing.

2H10 2H11

Performance Line - performance and features optimized

Value Line - device and system cost optimized

2012|---------------------------TODAY---------------------------------|

AM387x
• Cortex-A8
• Increased

integration

AM386x
• Cortex-A8
• Peripheral

enhancements

OMAP35x
• Cortex-A8
• Up to 720 MHz
• 3D Graphics
• LPDDR1

AM35x
• Cortex-A8
• Up to 600MHz
• 3D Graphics
• 10/100 Enet
• CAN
• DDR2

AM335x
• Cortex-A8
• Cost optimization
• Increased

features

Production Sampling Development

AM17x
• ARM9
• Up to 456MHz
• 10/100 Enet
• PRU
• SDRAM

AM18x
• ARM9
• Up to 456MHz
• 10/100 Enet
• PRU
• SATA
• SDRAM/LPDDR1

/DDR2

AM37x
• Cortex-A8
• Up to 1GHz
• 3D Graphics
• LPDDR1

AM389x
• Cortex-A8
• Up to 1.5GHz
• 2x 1G-Enet
• 3D Graphics
• PCIe, SATA
• DDR2/3
• Advanced Display

44

Q&A TI ARM Portfolio

Thanks
& Questions?

45
11/23/2010

45

TI Embedded Processing Portfolio

Microcontrollers

32-bit
Real-time

C2000

Fixed &
Floating Point

Up to 300 MHz

Flash
32 KB to 512 KB

PWM, ADC,
CAN, SPI, I2C

Motor Control,
Digital Power,

Lighting

$1.50 to $20.00

32-bit
M3 ARM

Stellaris-M3

Industry Std
Low Power

<100 MHz

Flash
Up to 512 KB

USB, ENET,
ADC, PWM, CAN

Host
Control

$1.00 to $7.00

16-bit

MSP430

Ultra-low
Power

Up to 25 MHz

Flash
1 KB to 256 KB

Analog I/O, ADC
LCD, USB, RF

Measurement,
Sensing, General

Purpose

$0.49 to $9.00

ARM Core Offerings

DSP

C55x, C64x+
C647x

Leadership DSP
Performance

24,000 MMACS

Up to 3 MB
L2 Cache

1G EMAC, SRIO,
DDR2, PCI-66

Comm, WiMAX,
Industrial/

Medical Imaging

$4.00 to $99+

32-bit
ARM+

ARM9
ARM Cortex-A8

Industry-Std
Core,

High-Perf GPP

Accelerators

MMU

USB, LCD,
MMC, EMAC

Linux/WinCE
User Apps

$8.00 to $35.00

Applications Processors / DSP

Software, Tools & BSPs

32-bit
ARM+DSP

ARM9/Cortex-A8
plus C64x+

Industry-Std Core +

DSP for Signal Proc.

4800 MMACs/
1.07 DMIPS/MHz

MMU, Cache

VPSS, USB,
EMAC, MMC

Lin/Win O/S +
Video, Imag, MM

$12.00 to $65.00

3232--bitbit
R4F ARM`R4F ARM`

TMS570TMS570

Floating PointFloating Point

Over 250 DMIPSOver 250 DMIPS

FlashFlash
Up to 3 MBUp to 3 MB

Timer coTimer co --procproc
ADC, CANADC, CAN

Safety SIL3Safety SIL3
ControlControl

$7.00$7.00 to $18.00to $18.00

