How to Achieve Minimal Embedded
Linux Boot Times

Jonathan Mikhailovich Short
Embedded Linux Business Manager

MPC Data Limited




Agenda

* Who are MPC Data?

« Why bother with minimal boot times?

 Why does embedded Linux take so long to boot?
» Best approach to boot time reduction

» Case study: OMAP3530 EVM

* The viral 1 second swiftBoot demo

« Conclusionand Q & A

i3 TEXAS
INSTRUMENTS




MPC Data

MPC Data is a 25 year old embedded software engineering company
with a strong focus on platform development,

— 60 strong team serving Europe & North America,
— Experts in board support packages and embedded development,

— Technical focus and track record backed-up by numerous successful
products in a wide variety of markets

OMAP Technology Center (OTC), DaVinci ASP

Provides swiftBoot unique boot time reduction services,

Contact: business@mpcdata.com / hitp://www.mpcdata.com/

http://www.swiftBoot.com/

i3 TEXAS
INSTRUMENTS




Motivation

« Consumers are expecting more and more functionality from their
embedded devices,

— In order to meet that need, the use of embedded Linux is growing -
Unfortunately so are boot times,

* Long boot times are unacceptable to consumers,

* Long boot times contribute to un-necessary power consumption in
mobile devices,

* Reducing boot times results in Linux becoming a viable choice for
device vendors reducing cost.

« What's your motivation?

i3 TEXAS
INSTRUMENTS




Why so long anyway?

Embedded Linux is:

— General purpose
* Likely to contain functionality your device doesn’t require which will result in more
initialisation and a larger image size
— Convenient and flexible

* Likely to probe and detect hardware which you know will always be there which
will contribute to boot delays

Boot speed isn’'t seen as the highest priority

There are many approaches to overcome large boot delays such as
hibernation, stand-by and similar technologies,

This presentation describes how boot times can be drastically reduced
by specialising Linux to your device’s needs and product requirements

i3 TEXAS
INSTRUMENTS




The swiftBoot Approach

Measure Remove
boot time un-
across the necessary
functionality

|dentify
boot time
functionality board

Optimise
required
functionality

Re-order
initialisation

13 TEXAS
INSTRUMENTS




Case Study

Use the OMAP3530 EVM (OneNAND) as a case study,
— Typical starting point: OMAP35x Linux PSP 02.xx.yy
— Used BuildRoot JFFS2 filesystem

Boot time functionality:
— Capture and render video to framebuffer
— Using saMmapLoopback demo as basis for digital camera application

Additional functionality:
— Video overlay and user interface

Will describe tools and techniques along the way

i3 TEXAS
INSTRUMENTS




OMAP3530 EVM Boot Process

RBL & UBL UBoot Kernel Filesystem Ap\pll'ﬁ:iﬁon
(0.29) (4.79) (5.69) (~0.75) (0.60)

» Boot process:
— Rom Boot Loader (RBL) loads user boot loader (UBL) into SRAM,
— User Boot Loader (UBL) / Xloader loads UBoot into RAM,
— UBoot loads kernel into RAM,
— Kernel mounts root filesystem and starts init process,
— Init process starts demo application

» Component times measured using GPIO and a logic analyser,

— RBL & UBL time measured time between OMAP reset and GPIO line being
asserted

» Time to required boot time functionality: > 12 seconds!

i3 TEXAS
INSTRUMENTS




Rom and User Boot Loaders

0.70 Functionality Removal

 RBL UART Boot — 300ms
« MMC Support - 4ms

0.60

0.50

0.40

Functionality Optimisation

» Reduce size of UBoot copy - 224ms
» Console Output — 8ms
» Optimised memcpy

Time (S)

0.30

0.20

0.10

0.00

Boot Task Reduction: 587ms -> 51 ms (91%)

13 TEXAS
INSTRUMENTS




UBoot

5.00
Functionality Removal
4.50 * User Boot Delay — 1000ms
4,00 * Image Verification — 1071ms (2.1 MB Image)
' * Image Decompression
3.50
3.00 : . -
= Functionality Optimisation
_g 2.50 * Image Move — 834ms (2.1 MB Image)
[
2.00
1.50
1.00
0.50
Initialisation :
0.00 0.388 s Reduction: 4791ms->1886 ms (60%)
' Boot Task

11/17

13 TEXAS
INSTRUMENTS

10 Tl Proprietary Information - Strictly Private

10



Linux Kernel

Functionality Removal

* Disabling of unused clocks — 271 ms
* Networking support — 123 ms

* Removal of MMC, TouchScreen, USB, Keyboard,
Sound — 332 ms

1038 omapfb_imit

7.18

Functionality Optimisation

* Removal of console and output — 4126 ms
* Optimisation of DSS drivers — 405 ms
* Remove calculation on Loops Per Jiffy (LPJ) — 162 ms

9.58

senal8250_imt

e ]
|met_1mt I
[

Functionality Re-ordering

+ Deferring functionality required after boot (e.g. Keypad,
etc)

8.78

L

5.59

omap_dss_imt

7.98 Reduction: 5645ms -> 226 ms (96%)

479

13 TEXAS

INSTRUMENTS »




Userspace

Functionality Removal

« All init scripts (change application to init process)

Functionality Optimisation

« Statically link application with uClibc libraries
» Use SquashFS instead of JFFS2

Functionality Re-ordering

» Start video first then load additional modules

Reduction: 600 ms > 406 ms (32%)

13 TEXAS
INSTRUMENTS




Essential tools

Discrete events can be measured by toggling GPIO outputs and
utilising a logic analyser,

Kernel events can be measured with:
— Printk timings,
— Initcall_debug and bootchart scripts,

Userspace events can be measured with ubootchart
— http://code.google.com/p/ubootchart/
— http://www.bootchart.org/

These are just some of the many tools available

i3 TEXAS
INSTRUMENTS




Case Study: Before and After

RBL & UBL UBoot Kernel Filesystem Ap\pflliccj:eact)ion
(0.29) (4.79) (5.65) (~0.75) (0.60)
RBL & UBL UBoot Kernel Filesystom Ap\glliccj:?t)ion
(0.23) (0.05) (0.18) (~0.02) (0.40)

Additional Boot Time Reductions from:

— Loading kernel into RAM from Xloader instead of Uboot,
— Modifications to video drivers,

— Using uncompressed kernel image,

— Kernel Initialisation parallelisation,

— Smaller kernel image size

i3 TEXAS
INSTRUMENTS

14




Guiding Principles

Observe and Record

— Measuring boot times is the only way to form a clear picture of what is

contributing to boot time,
— Keep copious notes

Tackle the biggest delays in the system first,

— ldentify the largest delays and remove them to be most effective

Be aware of varying boot times
Remember the uncertainty principle

Don'’t forget testing

i3 TEXAS
INSTRUMENTS

15



Demonstration: <1 Second Boot

Boot Time = 0.87 second (to Image)

i3 TEXAS
INSTRUMENTS

16



Conclusion

« Complex functionality with short boot times (< 5 seconds) are certainly
achievable with Embedded Linux (with the right approach),

» Boot time reductions can be achieved by specialising Linux (and
friends) to your device’s boot time functionality needs:

— E.g. Removal of unnecessary functionality, optimisation and re-ordering,
— Other functionality can come later

» The internet covers many techniques for reducing boot speed but to
make a big difference you need the right approach,

— Observe, record, remove, optimise and re-order

» Everything you require to make an improvement is freely availably
online

» Requires time and in-depth knowledge of the kernel and software
components...

i3 TEXAS
INSTRUMENTS

17




Other Solutions SWift Bd)Ot

MPC Data offer a selection of consultancy and fixed price
iInvestigation services.

Input: Your new or existing embedded Linux product,

Process:
— ldentification of required boot time functionality,

— Extensive and holistic investigation into boot delays of your product
including all our areas of our expertise

Output: swiftBoot report
— Documents boot process including narration on boot delays and mitigations,

— Enough information for your engineers to act on — though we can also help
with implementation,

— Typically provide recommendations to reduce boot time in excess of > 50%!

Visit http:/lwww.swiftBoot.com/ for more information.

i3 TEXAS
INSTRUMENTS

18



swiftBhot

Any Questions?

http://www.swiftBoot.com/




