Product Tree

PWM & Resonant controller overview

With over 30 years of experience, Texas Instruments offers the broadest portfolio of the highest performing Pulse Width Modulation (PWM) Controllers which include Application Specific and General Purpose PWM Controllers. Supporting multiple topology (multi-topology) configurations,  our devices provide customers with the flexibility to cover a broad range of power supply designs used in DC-DC and AC-DC power conversion circuits for a wide range of end equipment.

Learn & design on PWM controller IC

With decades of design expertise, TI provides the right tools and support, speeding time to market.

Explore solutions for PWM controller

Solve complex design challenges with innovative system solutions.

Power supply topology overview

TI offers PWM controllers in a wide range of topologies. Learn more about power supply topologies by downloading the topology reference guide or click through the links below.

Power supply topology guide(PDF, 134KB)

topologies for PWM controller

What is a General purpose PWM controller?

Pulse Width Modulation (PWM) Controllers are control ICs for switch mode power supplies which regulate the target parameter by modulating the Duty Cycle (pulse width) of the switch drive at a (user settable) fixed frequency. These devices support multiple topology (Multi-topology) configurations which include Boost, Buck, Buck-boost, Push-pull, Half-bridge, Full-bridge, Flyback, Forward, and Resonant LLC capability with current and voltage mode feedback control options used in various power supply architectures for a broad range of end equipment.


The Flyback topology is a popular choice for single and multiple output designs at power levels of 150 Watts or less. Derived from the Boost-buck topology, it uses the transformer for both isolation and as the storage inductor, reducing component count and costs. With high peak currents, the topology is typically not used in high output current designs.

Learn more

Flyback for PWM controller


The Forward topology is derived from the Buck topology and uses a transformer for input-output ground isolation. The popularity of the Forward topology is primarily its simplicity, performance, and efficiency at power levels up to 200 Watts. The Forward topology is a good choice for high output current designs. The Active Clamp Forward topology is a further improvement of the Forward topology which uses an additional switch and a clamp capacitor to recycle and reset the transformer.

Learn more

Forward for PWM controller IC


The Push-pull topology is a Forward design with two primary windings to utilize the transformer core more efficiently. Push-pull topologies can scale to higher output power than Flyback and Forward designs, but the design is more complicated to carefully control MOSFET switching to avoid shoot through and to reduce the inherently high switching stress.

Learn more

Push Pull for PWM controller


Derived from the Forward design, the Half-bridge topology can be scaled to high power levels. The power stage switching stress is lower than a Push-pull topology and well suited to high-line. However, similar to the Push-pull, careful management of the MOSFET switching dead-time is required to avoid shoot-through current.

Learn more

Half Bridge for PWM controller

Resonant LLC

An increasingly popular Half-bridge topology with zero-voltage switching on the primary side using resonant techniques to reduce switching losses, EMI and offer very good efficiency. The Resonant LLC scales to high power output levels. Complexity, efficient operation in light load conditions and system cost are the traditional challenges associated with this topology.

Learn more


The Full-bridge topology is used for high power applications, with output power typically in the kW range. Four MOSFETs are switched so that the current through the transformer primary reverses every alternate half cycle so it operates in two quadrants of the B-H curve. This efficient use of the transformer results in greater power density than in a Forward configuration. A further improvement of the Full-bridge topology is Phase-shifted full-bridge control which achieves zero-voltage switching to reducing switching losses, reduce EMI and increasing overall system efficiency.

Learn more

Full Bridge for PWM controller

Read PWM controller blogs

Read all PWM controller blogs

PWM reference designs

TI Designs for PWM controller IC

View featured PWM reference designs below, or see all PWM designs in TI's reference design library.

  • PMP10783 - AC/DC Buck Converter with 85VAC - 318VAC Input and 15V at 0.8A Output Reference Design
  • PMP7797 - 6V-42V Input 12V/5A SEPIC for Automotive Applications

View all PWM designs

PWM controller design support

TI E2E Community

Ask questions, share knowledge, solve problems with fellow engineers.

AC/DC and isolated DC/DC power