The Evolution of Mobile Technology

Part 1:
Designing for High-Performance and All-Day Battery Life

January 28, 2009

Moderated by Jim McGregor
Chief Technology Strategist
In-Stat
Introduction

◆ Welcome to the Evolution of Mobile Technology webinar series featuring:
 • Designing of High-Performance and All-Day Battery life – 1/28/08
 • Increasing Performance and Design Reuse with Advanced Processing Architectures
 • Creating Flexible Designs for Future Features and Applications
 • Designing Challenges of Coexistent Wireless Technologies
 • The Impact of the Cloud on Mobile Devices
 • The Future of Wireless Technologies

◆ Today’s host:
 • Jim McGregor, Chief Technology Strategist, In-Stat

◆ Agenda
 • 5-minute overview
 • 30-minute discussion by panelists
 • 25-minute live Q&A

◆ Archive of webinar available at:
 • www.ti.com/wirelesspresentations
 • www.instat.com
Panelists

◆ Doug Phillips – System Challenges
 • Product Line Manager, TI’s Portable Consumer Analog business
 • More than 10 years of design and marketing experience in battery management and power management semiconductors
 • Possess deep understanding of power design requirements and battery considerations in a smart phone environment

◆ Steve Jahnke – Processor Challenges
 • Chief architect, OMAP platform
 • Member of TI’s Group Technical Staff
 • More than 10 years focusing on System-on-a-Chip (SoC) and software design at TI for the automotive, communication and consumer electronic markets
 • Oversees the entire production, from architecture and design to testing and release for OMAP processor Linux support
Performance is Inherent

Improvements
- Communication speeds
- Display resolution
- Graphics
- Storage capacity
- Processor performance
 - Applications

Enhancements
- Touch screens
- Wi-Fi connectivity
- Key boards
- Motion control
- Other enhanced features
 - Pico projectors

Higher Performance/More Features = More Power
Battery Life is Constrained

Battery Capacity! = materials, size, thermal limits

Estimated Battery Life =

\[
\frac{\text{Battery Capacity [mAh]}}{\text{Device Current Consumption [mA]}} \times 0.7
\]

Improving Battery Life

- Increase battery capacity or size
- Reduce power consumption
 - Design using the most efficient components
 - Complete tasks as efficiently as possible
 - Turn off system components (HW/SW controls)
All-Day Battery Life

Those that can
- MP3 Player
- Cell Phone
- Smart Phone
- Digital Cameras
- e-Books

Those that can’t
- Notebook PCs
- Mini-notes/Netbooks
- MIDs
- Digital Camcorders
- GPS/Navigation

The Real Difference
100s of million units/yr vs. Billions of units/yr
Consumer Value

Ideal Cell Phone Features

- GPS
- Bluetooth
- Still camera
- Extra-large screen
- "Real web" Internet surfing
- Wi-Fi
- "World phone"
- QWERTY keyboard
- 3G
- External antenna
- Music file player
- Video camera
- Video file player
- FM radio
- WiMAX
- Video conferencing
- Mobile TV receiver/tuner
- None of above

Desired Improvements (write-in)

- Larger Size
- PDA.smartphone
- Battery improvements
- Coverage improvements
- Sync with PC
- Basic phone
- GPS and location
- More rugged
- Smaller size
- Wireless modem for PC

InStat

Texas Instruments
System Challenges

Doug Phillips
Product Line Manager, Portable Consumer Analog business
Texas Instruments
Customers demand better power and battery management

- Number of mobile users increasing
- Functionality increasing
- More power applications
- Power demand increasing faster than battery improvements
- Efficiency increasing
- Cost
- Portable consumers demand more out of their battery
Portable power overview

Battery Pack
- Li-Ion/Poly
- Fuel Gauge
- Security
- Safety

Charger
- CFE
- PMU Options
- Supervisor

OMAP™

Buck/Boost
- LDO
- RF LDO
- Boost Converter
- Charge Pump
- Buck Converter

Supervisor

Texas Instruments
Know the battery source

Longer battery life can be achieved
With good battery management
• Accurate Charging for full capacity
• Nominal C rate profile (Charge / Discharge)
• Limiting temperature extremes
What fuel gauging provides

- **Predicts battery capacity** under all system active and inactive conditions
- **Battery capacity** can be reported in terms of accurate percentage, time to empty/full, milliamp-hours or watt-hours, talk time, idle time, # of pictures, etc.
- **Other data** can be obtained for battery health and safety diagnostics.
 - # of charge/discharge cycles
 - Maximum operating temperature
 - Current I, V & T conditions
 - Fully charged, empty conditions
 - Near empty warnings
 - Over- / under-charge conditions

Run Time 6:23
Charge Time Comparison
Switch-Mode Charger vs Linear Charger

- Assume Battery capacity is 1.2AH and 1AH is charged during constant current mode
- Battery is charged from 2.4V to maximum battery voltage (4.2V)
- For switch-mode charge, $f_{SW}=3$MHz, $L_0=1.0\mu$H, $C_0=10\mu$F

- Input current is 500mA
- $V_{IN}=5V$
- $T_{AMB}=25^\circ C$
Power OS: Enabling the system

Layer 4: User Interface/Software Application Layer

Layer 3: Power / System Management Resources / Routines

Layer 2: Physical Communication Protocols (PMBUS, Smart Reflex, etc.)

Layer 1: Hardware / Integrated Circuits with Power Management Capabilities

Device Hardware (I/O and Communications Ports)

Communication Routines / Commands

Power Management / System Management

System Software

User Software

System Firmware

Device
DC/DC considerations

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution Size</td>
<td>Switching Frequency</td>
<td>Power</td>
</tr>
<tr>
<td></td>
<td>(Switching Converter)</td>
<td></td>
</tr>
</tbody>
</table>

Which set of attributes is the most important?
Dynamic Voltage Scaling (DVS)

Basic circuit diagram for the TPS780xx LDO and MSP430 MCU

MSP430 “F Version” Active Mode Current (I_{AM})
V_{CC} vs. Operating Frequency

- $V_{CC} = 3.6V$
- $V_{CC} = 3.3V$
- $V_{CC} = 2.7V$
- $V_{CC} = 2.2V$
- $V_{CC} = 1.8V$

InStat
Dynamic Voltage Scaling (DVS)

Dynamic Voltage & Frequency Scaling (DVFS)
Consume less energy/power in low performance modes by lowering the voltage

<table>
<thead>
<tr>
<th>OMAP 3530 processor</th>
<th>IVA MHz</th>
<th>ARM MHz</th>
<th>VDD_MPU_IVA</th>
<th>L3 MHz</th>
<th>VDD_CORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>430</td>
<td>600</td>
<td>1.35</td>
<td>166</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>550</td>
<td>1.27</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>500</td>
<td>1.20</td>
<td>41.5</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>250</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>125</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OMAP™

In-Stat
Summary

- Know the power source
- Design for all usage conditions
- Give users power management flexibility
Processor Challenges

Steve Jahnke
Chief Architect, OMAP Platform
Texas Instruments
Integration and segmentation in silicon

- In a large SOC, not all the device logic will be used in all use cases.
- It is not enough anymore to just turn clocks off to the unused logic, the entire power supply must be cut.
 - Needed for leakage control.
- Control to external power IC also is on its own power domain, and its logic is kept as small as possible.
- Memories and logic are on separate power domains:
 - Physical structures are different.
 - Voltage requirements differ.
Active cores in embedded systems

- Existing technology and software algorithms for dual-core processors is to always keep both cores active, and scale frequency only.

- In order to reach ultra-low power consumption, it is necessary to be able to shut a core off:
 - Only a single core is active at a low clock rate.

- However, there will be some low power apps that thread well. In this case, we will want to keep all cores on at an even lower clock rate.

- SW algorithms need to be employed that can understand the system behavior and make a decision on what basic approach to take:
 - Single core at a lower clock rate
 - Multiple cores at an even lower clock rate.
Hardware vs. software control

- Hardware control offers speed and no-burden to the programmer, but at the expense of silicon area
 - Automatic clock gating when there is no bus activity.
 - AVS (Automatic Voltage Scaling) based on silicon process strength and ambient temperature

- Software control is used for complex decisions, but at the expense of CPU overhead and programming complexity
 - Policy management for use cases (application level control)
 - Silicon resource management based on device driver needs (driver level control)

- In general, power management done at the fundamental transistor level up to clock gating is done in hardware. Decisions made on what to power domains to cut, what operating frequency is used, up to application needs is done in software

In-Stat

Texas Instruments
Clock rate on power and user experience

- Clock rate is obviously an important contributor to power consumption
 - Whenever possible, want to run the CPUs at the lowest clock rate for the desired usecase, and shut off unnecessary clocks.

- However, battery life is only one component of the consumer care-about in a mobile product
 - Boot up, how fast to switch between apps, how fast is the web browser, etc.

- If clock control is too aggressive for a specific use-case (such as MP3 playback), it will affect the user experience on other, key functions.
 - Time it takes to turn on and re-sync any disabled clocks

- Clock control architecture must allow the lowest possible clock settings at steady-state for a usecase, but offer a means to quickly scale when performance is required
 - Do not disable key clocks, even if it is not required in a specific usecase
Summary

◆ Physics will continue to challenge enhancements in battery technology

◆ Consumers usage patterns combined with increased features and performance are driving a need for battery efficient devices

◆ Power management must be a critical decision driving all aspects of the mobile system design

◆ Power management must be done at all levels from silicon to system to software
 • External power management tools address system level usage
 • Integrated power management tools deliver additional power efficiencies
Q & A

• To participate, click on the Ask a Question link on the left side of the interface; enter your question in the box on the screen; hit “Submit.” We’ll answer them during the Q&A session or after the webcast.

www.ti.com/wirelesspresentations
community.ti.com/blogs/moblemomentum
Contact information

Doug Phillips
General Manager
Product Line Manager, Portable Consumer Analog business
Texas Instruments
dphillips@ti.com

Steve Jahnke
Chief Architect, OMAP Platform
Texas Instruments
s-jahnke1@ti.com

Jim McGregor
Chief Technology Strategist
In-Stat
jim.mcgregor@reedbusiness.com