SBAS815A February   2017  – June 2017 ADS114S06 , ADS114S08

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Functional Block Diagram
  4. Revision History
  5. Device Family Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Characteristics
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Noise Performance
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Multiplexer
      2. 9.3.2  Low-Noise Programmable Gain Amplifier
        1. 9.3.2.1 PGA Input-Voltage Requirements
        2. 9.3.2.2 PGA Rail Flags
        3. 9.3.2.3 Bypassing the PGA
      3. 9.3.3  Voltage Reference
        1. 9.3.3.1 Internal Reference
        2. 9.3.3.2 External Reference
        3. 9.3.3.3 Reference Buffers
      4. 9.3.4  Clock Source
      5. 9.3.5  Delta-Sigma Modulator
      6. 9.3.6  Digital Filter
        1. 9.3.6.1 Low-Latency Filter
          1. 9.3.6.1.1 Low-Latency Filter Frequency Response
          2. 9.3.6.1.2 Data Conversion Time for the Low-Latency Filter
        2. 9.3.6.2 Sinc3 Filter
          1. 9.3.6.2.1 Sinc3 Filter Frequency Response
          2. 9.3.6.2.2 Data Conversion Time for the Sinc3 Filter
        3. 9.3.6.3 Note on Conversion Time
        4. 9.3.6.4 50-Hz and 60-Hz Line Cycle Rejection
        5. 9.3.6.5 Global Chop Mode
      7. 9.3.7  Excitation Current Sources (IDACs)
      8. 9.3.8  Bias Voltage Generation
      9. 9.3.9  System Monitor
        1. 9.3.9.1 Internal Temperature Sensor
        2. 9.3.9.2 Power Supply Monitors
        3. 9.3.9.3 Burn-Out Current Sources
      10. 9.3.10 Status Register
        1. 9.3.10.1 POR Flag
        2. 9.3.10.2 RDY Flag
        3. 9.3.10.3 PGA Output Voltage Rail Monitors
        4. 9.3.10.4 Reference Monitor
      11. 9.3.11 General-Purpose Inputs and Outputs (GPIOs)
      12. 9.3.12 Low-Side Power Switch
      13. 9.3.13 Cyclic Redundancy Check (CRC)
      14. 9.3.14 Calibration
        1. 9.3.14.1 Offset Calibration
        2. 9.3.14.2 Gain Calibration
    4. 9.4 Device Functional Modes
      1. 9.4.1 Reset
        1. 9.4.1.1 Power-On Reset
        2. 9.4.1.2 RESET Pin
        3. 9.4.1.3 Reset by Command
      2. 9.4.2 Power-Down Mode
      3. 9.4.3 Standby Mode
      4. 9.4.4 Conversion Modes
        1. 9.4.4.1 Continuous Conversion Mode
        2. 9.4.4.2 Single-Shot Conversion Mode
        3. 9.4.4.3 Programmable Conversion Delay
    5. 9.5 Programming
      1. 9.5.1 Serial Interface
        1. 9.5.1.1 Chip Select (CS)
        2. 9.5.1.2 Serial Clock (SCLK)
        3. 9.5.1.3 Serial Data Input (DIN)
        4. 9.5.1.4 Serial Data Output and Data Ready (DOUT/DRDY)
        5. 9.5.1.5 Data Ready (DRDY)
        6. 9.5.1.6 Timeout
      2. 9.5.2 Data Format
      3. 9.5.3 Commands
        1. 9.5.3.1  NOP
        2. 9.5.3.2  WAKEUP
        3. 9.5.3.3  POWERDOWN
        4. 9.5.3.4  RESET
        5. 9.5.3.5  START
        6. 9.5.3.6  STOP
        7. 9.5.3.7  SYOCAL
        8. 9.5.3.8  SYGCAL
        9. 9.5.3.9  SFOCAL
        10. 9.5.3.10 RDATA
        11. 9.5.3.11 RREG
        12. 9.5.3.12 WREG
      4. 9.5.4 Reading Data
        1. 9.5.4.1 Read Data Direct
        2. 9.5.4.2 Read Data by RDATA Command
        3. 9.5.4.3 Sending Commands When Reading Data
      5. 9.5.5 Interfacing with Multiple Devices
    6. 9.6 Register Map
      1. 9.6.1 Configuration Registers
        1. 9.6.1.1  Device ID Register (address = 00h) [reset = xxh]
          1. Table 26. Device ID (ID) Register Field Descriptions
        2. 9.6.1.2  Device Status Register (address = 01h) [reset = 80h]
          1. Table 27. Device Status (STATUS) Register Field Descriptions
        3. 9.6.1.3  Input Multiplexer Register (address = 02h) [reset = 01h]
          1. Table 28. Input Multiplexer (INPMUX) Register Field Descriptions
        4. 9.6.1.4  Gain Setting Register (address = 03h) [reset = 00h]
          1. Table 29. Gain Setting (PGA) Register Field Descriptions
        5. 9.6.1.5  Data Rate Register (address = 04h) [reset = 14h]
          1. Table 30. Data Rate (DATARATE) Register Field Descriptions
        6. 9.6.1.6  Reference Control Register (address = 05h) [reset = 10h]
          1. Table 31. Reference Control (REF) Register Field Descriptions
        7. 9.6.1.7  Excitation Current Register 1 (address = 06h) [reset = 00h]
          1. Table 32. Excitation Current Register 1 (IDACMAG) Register Field Descriptions
        8. 9.6.1.8  Excitation Current Register 2 (address = 07h) [reset = FFh]
          1. Table 33. Excitation Current Register 2 (IDACMUX) Register Field Descriptions
        9. 9.6.1.9  Sensor Biasing Register (address = 08h) [reset = 00h]
          1. Table 34. Sensor Biasing (VBIAS) Register Field Descriptions
        10. 9.6.1.10 System Control Register (address = 09h) [reset = 10h]
          1. Table 35. System Control (SYS) Register Field Descriptions
        11. 9.6.1.11 Reserved Register (address = 0Ah) [reset = 00h]
          1. Table 36. Reserved Register Field Descriptions
        12. 9.6.1.12 Offset Calibration Register 1 (address = 0Bh) [reset = 00h]
          1. Table 37. Offset Calibration Register 1 (OFCAL0) Register Field Descriptions
        13. 9.6.1.13 Offset Calibration Register 2 (address = 0Ch) [reset = 00h]
          1. Table 38. Offset Calibration Register 2 (OFCAL1) Register Field Descriptions
        14. 9.6.1.14 Reserved Register (address = 0Dh) [reset = 00h]
          1. Table 39. Reserved Register Field Descriptions
        15. 9.6.1.15 Gain Calibration Register 1 (address = 0Eh) [reset = 00h]
          1. Table 40. Gain Calibration Register 1 (FSCAL0) Field Descriptions
        16. 9.6.1.16 Gain Calibration Register 2 (address = 0Fh) [reset = 40h]
          1. Table 41. Gain Calibration Register 2 (FSCAL1) Field Descriptions
        17. 9.6.1.17 GPIO Data Register (address = 10h) [reset = 00h]
          1. Table 42. GPIO Data (GPIODAT) Register Field Descriptions
        18. 9.6.1.18 GPIO Configuration Register (address = 11h) [reset = 00h]
          1. Table 43. GPIO Configuration (GPIOCON) Register Field Descriptions
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Serial Interface Connections
      2. 10.1.2 Analog Input Filtering
      3. 10.1.3 External Reference and Ratiometric Measurements
      4. 10.1.4 Establishing a Proper Input Voltage
      5. 10.1.5 Unused Inputs and Outputs
      6. 10.1.6 Pseudo Code Example
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Register Settings
      3. 10.2.3 Application Curves
    3. 10.3 Do's and Don'ts
  11. 11Power Supply Recommendations
    1. 11.1 Power Supplies
    2. 11.2 Power-Supply Sequencing
    3. 11.3 Power-On Reset
    4. 11.4 Power-Supply Decoupling
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Development Support
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Related Links
    4. 13.4 Receiving Notification of Documentation Updates
    5. 13.5 Community Resources
    6. 13.6 Trademarks
    7. 13.7 Electrostatic Discharge Caution
    8. 13.8 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RHB|32
  • PBS|32
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings(1)

MIN MAX UNIT
Power-supply voltage AVDD to AVSS –0.3 5.5 V
AVSS to DGND –2.8 0.3
DVDD to DGND –0.3 3.9
IOVDD to DGND –0.3 5.5
Analog input voltage AINx, GPIOx, REFPx, REFNx, REFCOM AVSS – 0.3 AVDD + 0.3 V
Digital input voltage CS, SCLK, DIN, DOUT/DRDY, DRDY,
START, RESET, CLK
DGND – 0.3 IOVDD + 0.3 V
Input current Continuous, AVSS-SW, REFN0, REFOUT –100 100 mA
Continuous, all other pins except power-supply pins –10 10
Temperature Junction, TJ 150 °C
Storage, Tstg –60 150
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)
MIN NOM MAX UNIT
POWER SUPPLY
Analog power supply AVDD to AVSS 2.7 5.25 V
AVSS to DGND –2.625 0 0.05
AVDD to DGND 1.5 5.25
Digital core power supply DVDD to DGND 2.7 3.6 V
Digital IO power supply IOVDD to DGND DVDD 5.25 V
ANALOG INPUTS(1)
V(AINx) Absolute input voltage(2) PGA bypassed AVSS – 0.05 AVDD + 0.05 V
PGA enabled, gain = 1 to 16 AVSS + 0.15 + |VINMAX|·(Gain – 1) / 2 AVDD – 0.15  – |VINMAX|·(Gain –1) / 2
PGA enabled, gain = 32 to 128 AVSS + 0.15 + 15.5·|VINMAX| AVDD – 0.15 – 15.5·|VINMAX|
VIN Differential input voltage VIN = VAINP – VAINN –VREF / Gain VREF / Gain V
VOLTAGE REFERENCE INPUTS(3)
VREF Differential reference input voltage VREF = V(REFPx) – V(REFNx) 0.5 AVDD – AVSS V
V(REFNx) Absolute negative reference voltage Negative reference buffer disabled AVSS – 0.05 V(REFPx) – 0.5 V
Negative reference buffer enabled AVSS V(REFPx) – 0.5 V
V(REFPx) Absolute positive reference voltage Positive reference buffer disabled V(REFNx) + 0.5 AVDD + 0.05 V
Positive reference buffer enabled V(REFNx) + 0.5 AVDD V
EXTERNAL CLOCK SOURCE(4)
fCLK External clock frequency 2 4.096 4.5 MHz
Duty cycle 40% 50% 60%
GENERAL-PURPOSE INPUTS (GPIOs)
Input voltage AVSS – 0.05 AVDD + 0.05 V
DIGITAL INPUTS (Other than GPIOs)
Input voltage DGND IOVDD V
TEMPERATURE RANGE
TA Operating ambient temperature –50 125 °C
AINP and AINN denote the positive and negative inputs of the PGA. Any of the available analog inputs (AINx) can be selected as either AINP or AINN by the input multiplexer.
VINMAX denotes the maximum differential input voltage, VIN, that is expected in the application. |VINMAX| can be smaller than VREF / Gain.
REFPx and REFNx denote one of the two available external differential reference input pairs.
An external clock is not required when the internal oscillator is used.

Thermal Information

THERMAL METRIC(1) ADS114S06, ADS114S08 UNIT
VQFN (RHB) TQFP (PBS)
32 PINS 32 PINS
RθJA Junction-to-ambient thermal resistance 45.2 75.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 28.3 17.1 °C/W
RθJB Junction-to-board thermal resistance 15.8 28.5 °C/W
ψJT Junction-to-top characterization parameter 0.4 0.4 °C/W
ψJB Junction-to-board characterization parameter 15.7 28.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.3 n/a °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

minimum and maximum specifications apply from TA = –50°C to +125°C; Typical specifications are at TA = 25°C;
all specifications are at AVDD = 2.7 V to 5.25 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, all gains, internal reference, internal oscillator, all data rates, and global chop disabled (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
Absolute input current PGA bypassed,
AVSS + 0.1 V ≤ V(AINx) ≤ AVDD – 0.1 V
0.5 nA
PGA enabled, all gains,
V(AINx)MIN ≤ V(AINx) ≤ V(AINx)MAX
–2 0.1 2
Absolute input current drift PGA bypassed,
AVSS + 0.1 V ≤ V(AINx) ≤ AVDD – 0.1 V
2 pA/°C
PGA enabled, all gains,
V(AINx)MIN ≤ V(AINx) ≤ V(AINx)MAX
2
Differential input current PGA bypassed,
VCM = AVDD / 2, –VREF ≤ VIN ≤ VREF
1 nA/V
PGA enabled, all gains,
VCM = AVDD / 2, –VREF / Gain ≤ VIN ≤ VREF / Gain
–1 0.02 1 nA
Differential input current drift PGA bypassed,
VCM = AVDD / 2, –VREF ≤ VIN ≤ VREF
3 pA/°C
PGA enabled, all gains,
VCM = AVDD / 2, –VREF / Gain ≤ VIN ≤ VREF / Gain
1
PGA
Gain settings 1, 2, 4, 8, 16,
32, 64, 128
Startup time Enabling the PGA in conversion mode 190 µs
SYSTEM PERFORMANCE
Resolution (no missing codes) 16 Bits
DR Data rate 2.5, 5, 10, 16.6,
20, 50, 60, 100,
200, 400, 800,
1000, 2000, 4000
SPS
INL Integral nonlinearity (best fit) PGA bypassed, VCM = AVDD / 2 1 10 ppmFSR
PGA enabled, gain = 1 to 8, VCM = AVDD / 2 2 15
PGA enabled, gain = 16 to 128, VCM = AVDD / 2,
TA = –40°C to +85°C
3 15
VIO Input offset voltage TA = 25°C, PGA bypassed –120 20 120 µV
TA = 25°C, PGA enabled, gain = 1 to 8 –120 / Gain 20 / Gain 120 / Gain
TA = 25°C, PGA enabled, gain = 16 to 128 –15 2 15
TA = 25°C, PGA bypassed, after internal offset calibration On the order of noisePP at the set DR and gain
TA = 25°C, PGA enabled, gain = 1 to 128, after internal offset calibration On the order of noisePP at the set DR and gain
TA = 25°C, PGA bypassed, global chop enabled –2 0.2 2
TA = 25°C, PGA enabled, gain = 1 to 128,
global chop enabled
–2 0.2 2
Offset drift TA = –40°C to +85°C, PGA bypassed –75 10 75 nV/°C
TA = –40°C to +85°C, PGA enabled, gain = 1 to 128 –100 15 100
PGA bypassed –75 10 75
PGA enabled, gain = 1 to 8 –200 15 200
PGA enabled, gain = 16 to 128 –150 15 150
PGA bypassed, global chop enabled –10 2 10
PGA enabled, gain = 1 to 128, global chop enabled –10 2 10
SYSTEM PERFORMANCE (continued)
Gain error(1) TA = 25°C, PGA bypassed 40 120 ppm
TA = 25°C, PGA enabled, gain = 1 to 32   40 120
TA = 25°C, PGA enabled, gain = 64 and 128 40 200
Gain drift(1) TA = –40°C to +85°C, PGA bypassed 0.5 1 ppm/°C
TA = –40°C to +85°C, PGA enabled, gain = 1 to 128 0.5 2
PGA bypassed 0.5 1
PGA enabled, gain = 1 to 128 1 4
Noise (input-referred) See the Noise Performance section
NMRR Normal-mode rejection ratio(2) fIN = 50 Hz or 60 Hz (±1 Hz), DR = 10 SPS,
sinc3 filter
88 dB
fIN = 50 Hz or 60 Hz (±1 Hz), DR = 10 SPS,
sinc3 filter, external fCLK = 4.096 MHz
102
fIN = 50 Hz or 60 Hz (±1 Hz), DR = 20 SPS,
low-latency filter
79
fIN = 50 Hz or 60 Hz (±1 Hz), DR = 20 SPS,
low-latency filter, external fCLK = 4.096 MHz
95
fIN = 50 Hz (±1 Hz), DR = 50 SPS, sinc3 filter 87
fIN = 50 Hz (±1 Hz), DR = 50 SPS,
sinc3 filter, external fCLK = 4.096 MHz
101
fIN = 60 Hz (±1 Hz), DR = 60 SPS, sinc3 filter 89
fIN = 60 Hz (±1 Hz), DR = 60 SPS,
sinc3 filter, external fCLK = 4.096 MHz
105
CMRR Common-mode rejection ratio At dc 110 120 dB
fCM = 50 Hz or 60 Hz (±1 Hz),
DR = 2.5 SPS to 10 SPS, sinc3 filter
120 130
fCM = 50 Hz or 60 Hz (±1 Hz),
DR = 2.5 SPS, 5 SPS, 10 SPS, 20 SPS, low-latency filter
115 125
PSRR Power-supply rejection ratio AVDD at dc 90 105 dB
AVDD at 50 Hz or 60 Hz 100 115
DVDD at dc 100 115
VOLTAGE REFERENCE INPUTS
Absolute input current Reference buffers disabled, external VREF = 2.5 V,
REFP1/REFN1 inputs
-6 4 6 µA/V
Reference buffers enabled, external VREF = 2.5 V,
REFP1/REFN1 inputs
–15 5 15 nA
INTERNAL VOLTAGE REFERENCE
VREF Output voltage 2.5 V
Accuracy TA = 25°C, TQFP package –0.05% ±0.01% 0.05%
TA = 25°C, VQFN package –0.1% ±0.01% 0.1%
Temperature drift TA = –40°C to +85°C 2.5 8 ppm/°C
TA = –50°C to +125°C 3 10
Output current AVDD = 2.7 V to 3.3 V, sink and source –5 5 mA
AVDD = 3.3 V to 5.25 V, sink and source –10 10
Short-circuit current limit Sink and source 70 100 mA
PSRR Power-supply rejection ratio AVDD at dc 85 dB
Load regulation AVDD = 2.7 V to 3.3 V,
load current = –5 mA to 5 mA
8 µV/mA
AVDD = 3.3 V to 5.25 V,
load current = –10 mA to 10 mA
8
Startup time 1-µF capacitor on REFOUT, 0.001% settling 5.9 ms
Capacitive load stability Capacitor on REFOUT 1 47 µF
Reference noise f = 0.1 Hz to 10 Hz, 1-µF capacitor on REFOUT 9 µVPP
INTERNAL OSCILLATOR
fCLK Frequency 4.096 MHz
Accuracy –1.5% 1.5%
EXCITATION CURRENT SOURCES (IDACS)
Current settings 10, 50, 100,
250, 500, 750,
1000, 1500, 2000
µA
Compliance voltage(3) 10 µA to 750 µA, 0.1% deviation AVSS AVDD – 0.4 V
1 mA to 2 mA, 0.1% deviation AVSS AVDD – 0.6
Accuracy (each IDAC) TA = 25°C, 10 µA to 100 µA –5% ±0.7% 5%
TA = 25°C, 250 µA to 2 mA –3% ±0.5% 3%
Current mismatch between IDACs TA = 25°C, 10 µA to 100 µA 0.15% 0.8%
TA = 25°C, 250 µA to 750 µA 0.10% 0.6%
TA = 25°C, 1 mA to 2 mA 0.07% 0.4%
Temperature drift (each IDAC) 10 µA to 750 µA 20 120 ppm/°C
1 mA to 2 mA 10 80
Temperature drift matching between IDACs 10 µA to 100 µA 3 25 ppm/°C
250 µA to 2 mA 2 15
Startup time With internal reference already settled. From end of WREG command to current flowing out of pin. 22 µs
BIAS VOLTAGE
VBIAS Output voltage settings (AVDD + AVSS) / 2,
(AVDD + AVSS) / 12
V
Output impedance 350 Ω
Startup time Combined capacitive load on all selected analog inputs CLOAD = 1 µF, 0.1% settling 2.8 ms
BURNOUT CURRENT SOURCES (BOCS)
Current settings 0.2, 1, 10 µA
Accuracy 0.2 µA, sinking or sourcing ±8%
1 µA, sinking or sourcing ±4%
10 µA, sinking or sourcing ±2%
PGA RAIL DETECTION
Positive rail threshold Referred to the output of the PGA AVDD – 0.15 V
Negative rail threshold Referred to the output of the PGA AVSS + 0.15 V
REFERENCE DETECTION
Threshold 1 0.3 V
Threshold 2 1/3·(AVDD – AVSS) V
Threshold 2 accuracy –3% ±1% 3%
Pull-together resistance 10
SUPPLY VOLTAGE MONITORS
Accuracy (AVDD – AVSS) / 4 monitor ±1%
DVDD / 4 monitor ±1%
TEMPERATURE SENSOR
Output voltage TA = 25°C 129 mV
Temperature coefficient 403 µV/°C
LOW-SIDE POWER SWITCH
RON On-resistance 1 3 Ω
Current through switch 75 mA
GENERAL-PURPOSE INPUT/OUTPUTS (GPIOs)
VIL Logic input level, low AVSS – 0.05 0.3 AVDD V
VIH Logic input level, high 0.7 AVDD AVDD + 0.05 V
VOL Logic output level, low IOL = 1 mA AVSS 0.2 AVDD V
VOH Logic output level, high IOH = 1 mA 0.8 AVDD AVDD V
DIGITAL INPUT/OUTPUTS
VIL Logic input level, low DGND 0.3 IOVDD V
VIH Logic input level, high 0.7 IOVDD IOVDD V
VOL Logic output level, low IOL = 1 mA DGND 0.2 IOVDD V
VOH Logic output level, high IOH = 1 mA 0.8 IOVDD IOVDD V
Input current DGND ≤ VDigital Input ≤ IOVDD –1 1 µA
ANALOG SUPPLY CURRENT (AVDD = 3.3 V, External Reference, Internal Reference Disabled, Reference Buffers Disabled, IDACs Disabled, VBIAS Disabled, Flags Disabled, Internal Oscillator, All Data Rates, VIN = 0 V)
IAVDD Analog supply current Power-down mode 0.1 1.5 µA
Standby mode, PGA bypassed 70
Conversion mode, PGA bypassed 85
Conversion mode, PGA enabled, gain = 1, 2 120 135
Conversion mode, PGA enabled, gain = 4, 8 140 155
Conversion mode, PGA enabled, gain = 16, 32 165 180
Conversion mode, PGA enabled, gain = 64 200
Conversion mode, PGA enabled, gain = 128 250
ADDITIONAL ANALOG SUPPLY CURRENTS PER FUNCTION (AVDD = 3.3 V)
IAVDD Analog supply current Internal 2.5-V reference, no external load 185 280 µA
Positive reference buffer 35 60
Negative reference buffer 25 40
VBIAS buffer, no external load 10
IDAC overhead, 10 µA to 250 µA 20 35
IDAC overhead, 500 µA to 750 µA 30
IDAC overhead, 1 mA 40
IDAC overhead, 1.5 mA 50
IDAC overhead, 2 mA 65
PGA rail detection and reference detection circuit 10
DIGITAL SUPPLY CURRENT (DVDD = IOVDD = 3.3 V, All Data Rates, SPI Not Active)
IDVDD + IIOVDD Digital supply current Power-down mode, internal oscillator 0.1 µA
Standby mode, internal oscillator 185
Conversion mode, internal oscillator 225 300
Conversion mode, external fCLK = 4.096 MHz 195
POWER DISSIPATION (AVDD = DVDD = IOVDD = 3.3 V, Internal Reference Enabled, Reference Buffers Disabled, IDACs Disabled, VBIAS Disabled, Flags Disabled, Internal Oscillator, All Data Rates, VIN = 0 V, SPI Not Active)
PD Power dissipation Conversion mode, PGA enabled, gain = 1 1.75 mW
Excluding error of voltage reference.
See the 50-Hz and 60-Hz Line Cycle Rejection section for more information.
The IDAC current does not change by more than 0.1% from the nominal value when staying within the specified compliance voltage.

Timing Characteristics

over operating ambient temperature range, DVDD = 2.7 V to 3.6 V, IOVDD = DVDD to 5.25 V, and
DOUT/DRDY load = 20 pF || 100 kΩ to DGND (unless otherwise noted)
MIN MAX UNIT(1)
SERIAL INTERFACE
td(CSSC) Delay time, first SCLK rising edge after CS falling edge 20 ns
td(SCCS) Delay time, CS rising edge after final SCLK falling edge 20 ns
tw(CSH) Pulse duration, CS high 30 ns
tc(SC) SCLK period 100 ns
tw(SCH) Pulse duration, SCLK high 40 ns
tw(SCL) Pulse duration, SCLK low 40 ns
tsu(DI) Setup time, DIN valid before SCLK falling edge 15 ns
th(DI) Hold time, DIN valid after SCLK falling edge 20 ns
td(CMD) Delay time, between bytes or commands 0 ns
RESET PIN
tw(RSL) Pulse duration, RESET low 4 tCLK
td(RSSC) Delay time, first SCLK rising edge after RESET rising edge (or 7th SCLK falling edge of RESET command) 4096 tCLK
START/SYNC PIN
tw(STH) Pulse duration, START/SYNC high 4 tCLK
tw(STL) Pulse duration, START/SYNC low 4 tCLK
tsu(STDR) Setup time, START/SYNC falling edge (or 7th SCLK falling edge of STOP command) before DRDY falling edge to stop further conversions (continuous conversion mode) 32 tCLK
READING CONVERSION DATA WITHOUT RDATA COMMAND
th(SCDR) Hold time, SCLK low before DRDY falling edge(2) 28 tCLK
td(DRSC) Delay time, SCLK rising edge after DRDY falling edge(2) 4 tCLK
tCLK = 1 / fCLK.
Only applicable when reading data without the RDATA command. All commands can be send without any SCLK to DRDY signal timing restrictions.

Switching Characteristics

over operating ambient temperature range, DVDD = 2.7 V to 3.6 V, IOVDD = DVDD to 5.25 V, and
DOUT/DRDY load = 20 pF || 100 kΩ to DGND (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT(1)
tp(CSDO) Propagation delay time, CS falling edge to DOUT driven 0 25 ns
tp(SCDO) Propagation delay time, SCLK rising edge to valid new DOUT 3 30 ns
tp(CSDOZ) Propagation delay time, CS rising edge to DOUT high impedance 0 25 ns
tp(STDR) Propagation delay time, START/SYNC rising edge (or first SCLK rising edge of any command or data read) to DRDY rising edge 2 tCLK
tw(DRH) Pulse duration, DRDY high 24 tCLK
tp(GPIO) Propagation delay time, last SCLK falling edge of WREG command to GPIOx output valid 3 100 ns
SPI timeout per 8 bit(2) 215 tCLK
tCLK = 1 / fCLK
The SPI interface resets when an entire byte is not sent within the specified timeout time.
ADS114S06 ADS114S08 tim_req_bas683.gif

NOTE:

Single-byte communication is shown. Actual communication can be multiple bytes.
Figure 1. Serial Interface Timing Requirements
ADS114S06 ADS114S08 swi_char_bas683.gif

NOTE:

Single-byte communication is shown. Actual communication can be multiple bytes.
Figure 2. Serial Interface Switching Characteristics
ADS114S06 ADS114S08 ai_reset_timing_sbas660.gif Figure 3. RESET Pin and RESET Command Timing Requirements
ADS114S06 ADS114S08 ai_start_pin_timing_sbas660.gif Figure 4. START/SYNC Pin Timing Requirements
ADS114S06 ADS114S08 ai_start_command_timing_sbas660.gif Figure 5. START Command Timing Requirements
ADS114S06 ADS114S08 ai_rd_data_drct_tim_sbas815.gif Figure 6. Read Data Direct (Without an RDATA Command) Timing Requirements
ADS114S06 ADS114S08 ai_gpio_timing_sbas660.gif Figure 7. GPIO Switching Characteristics

Typical Characteristics

at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator, and PGA enabled (unless otherwise noted)
ADS114S06 ADS114S08 D055_sbas660.gif
PGA bypassed, DR = 20 SPS, VIN = 0 V
Figure 8. Absolute Input Current vs Absolute Input Voltage
ADS114S06 ADS114S08 D053_sbas660.gif
PGA enabled, gain = 1, DR = 20 SPS, VIN = 0 V
Figure 10. Absolute Input Current vs Absolute Input Voltage
ADS114S06 ADS114S08 D051_sbas660.gif
PGA bypassed, DR = 20 SPS, VCM = 1.65 V
Figure 12. Differential Input Current vs Differential Input Voltage
ADS114S06 ADS114S08 D049_sbas660.gif
PGA enabled, DR = 20 SPS, VCM = 1.65 V
Figure 14. Differential Input Current vs Differential Input Voltage
ADS114S06 ADS114S08 D007_sbas660.gif
PGA bypassed, gain = 1
Figure 16. INL vs Differential Input Voltage
ADS114S06 ADS114S08 D020_sbas660.gif
Figure 18. INL vs Temperature
ADS114S06 ADS114S08 D022_sbas660.gif
Figure 20. Gain Error vs Temperature
ADS114S06 ADS114S08 D001_sbas660.gif
Figure 22. Internal Reference Voltage vs AVDD
ADS114S06 ADS114S08 D018_sbas660.gif
Figure 24. Internal Oscillator Frequency Histogram
ADS114S06 ADS114S08 D043_sbas660.gif
Figure 26. IDAC Accuracy vs Compliance Voltage
ADS114S06 ADS114S08 D045_sbas660.gif
IDAC output voltage = 1.65 V
Figure 28. IDAC Accuracy vs Temperature
ADS114S06 ADS114S08 D034_sbas660.gif
Figure 30. VBIAS Voltage [(AVDD – AVSS) / 2] vs Temperature
ADS114S06 ADS114S08 D032_sbas660.gif
Figure 32. PGA Rail Detection, PGAN_RAILP, PGAP_RAILP Threshold From AVDD
ADS114S06 ADS114S08 D030_sbas660.gif
Level 0 = 300 mV
Figure 34. Reference Threshold Voltage, Level 0
ADS114S06 ADS114S08 D004_sbas660.gif
Figure 36. Temperature Sensor Voltage vs Temperature
ADS114S06 ADS114S08 D060_sbas660.gif
AVDD = 3.3 V
Figure 38. GPIO Pin Output Voltage vs Sourcing Current
ADS114S06 ADS114S08 D058_sbas660.gif
DVDD = 3.3 V
Figure 40. Digital Pin Output Voltage vs Sourcing Current
ADS114S06 ADS114S08 D024_sbas660.gif
Standby and conversion mode, external VREF
Figure 42. Analog Supply Current vs Temperature
ADS114S06 ADS114S08 D029_sbas660.gif
Power-down mode
Figure 44. Analog Supply Current vs Temperature
ADS114S06 ADS114S08 D025_sbas660.gif
Standby and conversion mode
Figure 46. Digital Supply Current vs Temperature
ADS114S06 ADS114S08 D028_sbas660.gif
Power-down mode
Figure 48. Digital Supply Current vs Temperature
ADS114S06 ADS114S08 D054_sbas660.gif
PGA bypassed, DR = 4 kSPS, VIN = 0 V
Figure 9. Absolute Input Current vs Absolute Input Voltage
ADS114S06 ADS114S08 D052_sbas660.gif
PGA enabled, gain = 1, DR = 4 kSPS, VIN = 0 V
Figure 11. Absolute Input Current vs Absolute Input Voltage
ADS114S06 ADS114S08 D050_sbas660.gif
PGA bypassed, DR = 4 kSPS, VCM = 1.65 V
Figure 13. Differential Input Current vs Differential Input Voltage
ADS114S06 ADS114S08 D048_sbas660.gif
PGA enabled, DR = 4 kSPS, VCM = 1.65 V
Figure 15. Differential Input Current vs Differential Input Voltage
ADS114S06 ADS114S08 D008_sbas660.gif
PGA enabled, gain = 1
Figure 17. INL vs Differential Input Voltage
ADS114S06 ADS114S08 D021_sbas660.gif
Figure 19. Offset Voltage vs Temperature
ADS114S06 ADS114S08 D056_sbas660.gif
28 units, TQFP package
Figure 21. Internal Reference Voltage vs Temperature
ADS114S06 ADS114S08 D062_sbas660.gif
Figure 23. Internal Reference Voltage Noise
ADS114S06 ADS114S08 D057_sbas660.gif
28 units
Figure 25. Internal Oscillator Frequency vs Temperature
ADS114S06 ADS114S08 D044_sbas660.gif
Figure 27. IDAC Accuracy vs Compliance Voltage
ADS114S06 ADS114S08 D046_sbas660.gif
Figure 29. IDAC Matching vs Temperature
ADS114S06 ADS114S08 D035_sbas660.gif
Figure 31. VBIAS Voltage [(AVDD – AVSS) / 12] vs Temperature
ADS114S06 ADS114S08 D033_sbas660.gif
Figure 33. PGA Rail Detection, PGAN_RAILN, PGAP_RAILN Threshold From AVSS
ADS114S06 ADS114S08 D031_sbas660.gif
Level 1 = 1/3 · (AVDD – AVSS)
Figure 35. Reference Threshold Voltage, Level 1
ADS114S06 ADS114S08 D005_sbas660.gif
Figure 37. Low-Side Switch RON vs Temperature
ADS114S06 ADS114S08 D061_sbas660.gif
AVDD = 3.3 V
Figure 39. GPIO Pin Output Voltage vs Sinking Current
ADS114S06 ADS114S08 D059_sbas660.gif
DVDD = 3.3 V
Figure 41. Digital Pin Output Voltage vs Sinking Current
ADS114S06 ADS114S08 D023_sbas660.gif
Conversion mode, external VREF
Figure 43. Analog Supply Current vs AVDD
ADS114S06 ADS114S08 D064_sbas660.gif
Figure 45. Internal Reference AVDD Current vs Temperature
ADS114S06 ADS114S08 D036_sbas660.gif
Conversion mode
Figure 47. Digital Supply Current vs DVDD