SNVS483H January   2007  – August 2017 LM25574

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Application Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 High Voltage Start-Up Regulator
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown and Stand-by Mode
      2. 7.4.2 Oscillator and Sync Capability
      3. 7.4.3 Error Amplifier and PWM Comparator
      4. 7.4.4 Ramp Generator
      5. 7.4.5 Maximum Duty Cycle and Input Drop-out Voltage
      6. 7.4.6 Current Limit
      7. 7.4.7 Soft-Start
      8. 7.4.8 Boost Pin
      9. 7.4.9 Thermal Protection
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  External Components
      2. 8.1.2  R3 (RT)
      3. 8.1.3  L1
      4. 8.1.4  C3 (CRAMP)
      5. 8.1.5  C9
      6. 8.1.6  C1
      7. 8.1.7  C8
      8. 8.1.8  C7
      9. 8.1.9  C4
      10. 8.1.10 R5, R6
      11. 8.1.11 R1, R2, C2
      12. 8.1.12 R4, C5, C6
      13. 8.1.13 Bias Power Dissipation Reduction
    2. 8.2 Typical Application
      1. 8.2.1 Typical Schematic for High Frequency (1MHz) Application
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
  9. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 PCB Layout and Thermal Considerations
    2. 9.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Developmental Support
        1. 10.1.1.1 Custom Design With WEBENCH® Tools
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Community Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

External Components

The procedure for calculating the external components is illustrated with the following design example. The Bill of Materials for this design is listed in Table 1. The circuit shown in Functional Block Diagram is configured for the following specifications:

  • VOUT = 5 V
  • VIN = 7 V to 42 V
  • Fs = 300 kHz
  • Minimum load current (for CCM) = 100 mA
  • Maximum load current = 0.5 A

R3 (RT)

RT sets the oscillator switching frequency. Generally, higher frequency applications are smaller but have higher losses. Operation at 300 kHz was selected for this example as a reasonable compromise for both small size and high efficiency. The value of RT for 300 kHz switching frequency can be calculated in Equation 5:

Equation 5. LM25574 20214109.gif

The nearest standard value of 21 kΩ was chosen for RT.

L1

The inductor value is determined based on the operating frequency, load current, ripple current, and the minimum and maximum input voltage (VIN(min), VIN(max)).

LM25574 20214110.gif Figure 14. Inductor Current Waveform

To keep the circuit in continuous conduction mode (CCM), the maximum ripple current IRIPPLE should be less than twice the minimum load current, or 0.2 Ap-p. Using this value of ripple current, the value of inductor (L1) is calculated using the following:

Equation 6. LM25574 20214111.gif
Equation 7. LM25574 20214112.gif

This procedure provides a guide to select the value of L1. The nearest standard value (100µH) will be used. L1 must be rated for the peak current (IPK+) to prevent saturation. During normal loading conditions, the peak current occurs at maximum load current plus maximum ripple. During an overload condition the peak current is limited to 0.7A nominal (0.85A maximum). The selected inductor (see Table 1) has a conservative 1.0 Amp saturation current rating. For this manufacturer, the saturation rating is defined as the current necessary for the inductance to reduce by 30%, at 20°C.

C3 (CRAMP)

With the inductor value selected, the value of C3 (CRAMP) necessary for the emulation ramp circuit is:

Equation 8. CRAMP = L × 5 × 10-6

Where L is in Henrys

With L1 selected for 100µH the recommended value for C3 is 470pF (nearest standard value).

C9

The output capacitor, C9 smoothes the inductor ripple current and provides a source of charge for transient loading conditions. For this design a 22 µF ceramic capacitor was selected. The ceramic capacitor provides ultra low ESR to reduce the output ripple voltage and noise spikes. An approximation for the output ripple voltage is:

Equation 9. LM25574 20214113.gif

C1

The regulator supply voltage has a large source impedance at the switching frequency. Good quality input capacitors are necessary to limit the ripple voltage at the VIN pin while supplying most of the switch current during the on-time. When the buck switch turns on, the current into the VIN pin steps to the lower peak of the inductor current waveform, ramps up to the peak value, then drops to zero at turn-off. The average current into VIN during the on-time is the load current. The input capacitance should be selected for RMS current rating and minimum ripple voltage. A good approximation for the required ripple current rating necessary is IRMS > IOUT / 2.

Quality ceramic capacitors with a low ESR should be selected for the input filter. To allow for capacitor tolerances and voltage effects, one 1.0 µF, 100 V ceramic capacitor will be used. If step input voltage transients are expected near the maximum rating of the LM25574, a careful evaluation of ringing and possible spikes at the device VIN pin should be completed. An additional damping network or input voltage clamp may be required in these cases.

C8

The capacitor at the VCC pin provides noise filtering and stability for the VCC regulator. The recommended value of C8 should be no smaller than 0.1 µF, and should be a good quality, low ESR, ceramic capacitor. A value of 0.47 µF was selected for this design.

C7

The bootstrap capacitor between the BST and the SW pins supplies the gate current to charge the buck switch gate at turn-on. The recommended value of C7 is 0.022 µF, and should be a good quality, low ESR, ceramic capacitor.

C4

The capacitor at the SS pin determines the soft-start time, that is the time for the reference voltage and the output voltage, to reach the final regulated value. The time is determined from Equation 10:

Equation 10. LM25574 20214127.gif

For this application, a C4 value of 0.01µF was chosen which corresponds to a soft-start time of 1ms.

R5, R6

R5 and R6 set the output voltage level, the ratio of these resistors is calculated from Equation 11:

Equation 11. R5/R6 = (VOUT / 1.225V) - 1

For a 5 V output, the R5 and R6 ratio calculates to 3.082. The resistors should be chosen from standard value resistors, a good starting point is selection in the range of 1.0 kΩ - 10 kΩ. Values of 5.11 kΩ for R5, and 1.65 kΩ for R6 were selected.

R1, R2, C2

A voltage divider can be connected to the SD pin to set a minimum operating voltage Vin(min) for the regulator. If this feature is required, the easiest approach to select the divider resistor values is to select a value for R1 (between 10 kΩ and 100 kΩ recommended) then calculate R2 from Equation 12:

Equation 12. LM25574 20214114.gif

Capacitor C2 provides filtering for the divider. The voltage at the SD pin should never exceed 8 V, when using an external set-point divider it may be necessary to clamp the SD pin at high input voltage conditions. The reference design utilizes the full range of the LM25574 (6 V to 42 V); therefore these components can be omitted. With the SD pin open circuit the LM25574 responds once the Vcc UVLO threshold is satisfied.

R4, C5, C6

These components configure the error amplifier gain characteristics to accomplish a stable overall loop gain. One advantage of current mode control is the ability to close the loop with only two feedback components, R4 and C5. The overall loop gain is the product of the modulator gain and the error amplifier gain. The DC modulator gain of the LM25574 is as follows:

Equation 13. DC Gain(MOD) = Gm(MOD) x RLOAD = 0.5 x RLOAD

The dominant low frequency pole of the modulator is determined by the load resistance (RLOAD,) and output capacitance (COUT). The corner frequency of this pole is:

Equation 14. fp(MOD) = 1 / (2π RLOAD COUT)

For RLOAD = 20Ω and COUT = 22µF then fp(MOD) = 362Hz

DC Gain(MOD) = 0.5 x 20 = 20dB

For the design example of Functional Block Diagram the following modulator gain vs. frequency characteristic was measured as shown in Figure 15.

LM25574 20214115.gif Figure 15. Gain and Phase of Modulator RLOAD = 20 Ohms and COUT = 22µF

Components R4 and C5 configure the error amplifier as a type II configuration which has a pole at DC and a zero at fZ = 1 / (2πR4C5). The error amplifier zero cancels the modulator pole leaving a single pole response at the crossover frequency of the loop gain. A single pole response at the crossover frequency yields a very stable loop with 90 degrees of phase margin.

For the design example, a target loop bandwidth (crossover frequency) of 25kHz was selected. The compensation network zero (fZ) should be selected at least an order of magnitude less than the target crossover frequency. This constrains the product of R4 and C5 for a desired compensation network zero 1 / (2π R4 C5) to be less than 2 kHz. Increasing R4, while proportionally decreasing C5, increases the error amp gain. Conversely, decreasing R4 while proportionally increasing C5, decreases the error amp gain. For the design example C5 was selected for 0.022 µF and R4 was selected for 24.9 kΩ. These values configure the compensation network zero at 290 Hz. The error amp gain at frequencies greater than fZ is: R4 / R5, which is approximately 5 (14dB).

LM25574 20214116.gif Figure 16. Error Amplifier Gain and Phase

The overall loop can be predicted as the sum (in dB) of the modulator gain and the error amp gain.

LM25574 20214117.gif Figure 17. Overall Loop Gain and Phase

If a network analyzer is available, the modulator gain can be measured and the error amplifier gain can be configured for the desired loop transfer function. If a network analyzer is not available, the error amplifier compensation components can be designed with the guidelines given. Step load transient tests can be performed to verify acceptable performance. The step load goal is minimum overshoot with a damped response. C6 can be added to the compensation network to decrease noise susceptibility of the error amplifier. The value of C6 must be sufficiently small since the addition of this capacitor adds a pole in the error amplifier transfer function. This pole must be well beyond the loop crossover frequency. A good approximation of the location of the pole added by C6 is: fp2 = fz x C5 / C6.

Bias Power Dissipation Reduction

Buck regulators operating with high input voltage can dissipate an appreciable amount of power for the bias of the IC. The VCC regulator must step-down the input voltage VIN to a nominal VCC level of 7V. The large voltage drop across the VCC regulator translates into a large power dissipation within the Vcc regulator. There are several techniques that can significantly reduce this bias regulator power dissipation. Figure 18 and Figure 19 depict two methods to bias the IC from the output voltage. In each case the internal Vcc regulator is used to initially bias the VCC pin. After the output voltage is established, the VCC pin potential is raised above the nominal 7 V regulation level, which effectively disables the internal VCC regulator. The voltage applied to the VCC pin should never exceed 14 V. The VCC voltage should never be larger than the VIN voltage.

LM25574 20214118.gif Figure 18. VCC Bias from VOUT for 8V < VOUT < 14V
LM25574 20214119_nvs483.gif Figure 19. VCC Bias with Additional Winding on the Output Inductor

Typical Application

Typical Schematic for High Frequency (1MHz) Application

LM25574 20214140.gif

Detailed Design Procedure

Custom Design With WEBENCH® Tools

Click here to create a custom design using the LM25574 device with the WEBENCH® Power Designer.

  1. Start by entering the input voltage ( VIN), output voltage (VOUT), and output current (IOUT) requirements.
  2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
  3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

  • Run electrical simulations to see important waveforms and circuit performance
  • Run thermal simulations to understand board thermal performance
  • Export customized schematic and layout into popular CAD formats
  • Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.