SNIS159G August 1999  – August 2016 LM35

PRODUCTION DATA. 

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1Absolute Maximum Ratings
    2. 6.2ESD Ratings
    3. 6.3Recommended Operating Conditions
    4. 6.4Thermal Information
    5. 6.5Electrical Characteristics: LM35A, LM35CA Limits
    6. 6.6Electrical Characteristics: LM35A, LM35CA
    7. 6.7Electrical Characteristics: LM35, LM35C, LM35D Limits
    8. 6.8Electrical Characteristics: LM35, LM35C, LM35D
    9. 6.9Typical Characteristics
  7. Detailed Description
    1. 7.1Overview
    2. 7.2Functional Block Diagram
    3. 7.3Feature Description
      1. 7.3.1LM35 Transfer Function
    4. 7.4Device Functional Modes
  8. Application and Implementation
    1. 8.1Application Information
      1. 8.1.1Capacitive Drive Capability
    2. 8.2Typical Application
      1. 8.2.1Basic Centigrade Temperature Sensor
        1. 8.2.1.1Design Requirements
        2. 8.2.1.2Detailed Design Procedure
        3. 8.2.1.3Application Curve
    3. 8.3System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1Layout Guidelines
    2. 10.2Layout Example
  11. 11Device and Documentation Support
    1. 11.1Receiving Notification of Documentation Updates
    2. 11.2Community Resources
    3. 11.3Trademarks
    4. 11.4Electrostatic Discharge Caution
    5. 11.5Glossary
  12. 12Mechanical, Packaging, and Orderable Information

1 Features

  • Calibrated Directly in Celsius (Centigrade)
  • Linear + 10-mV/°C Scale Factor
  • 0.5°C Ensured Accuracy (at 25°C)
  • Rated for Full −55°C to 150°C Range
  • Suitable for Remote Applications
  • Low-Cost Due to Wafer-Level Trimming
  • Operates from 4 V to 30 V
  • Less than 60-μA Current Drain
  • Low Self-Heating, 0.08°C in Still Air
  • Non-Linearity Only ±¼°C Typical
  • Low-Impedance Output, 0.1 Ω for 1-mA Load

2 Applications

  • Power Supplies
  • Battery Management
  • HVAC
  • Appliances

3 Description

The LM35 series are precision integrated-circuit temperature devices with an output voltage linearly-proportional to the Centigrade temperature. The LM35 device has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from the output to obtain convenient Centigrade scaling. The LM35 device does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full −55°C to 150°C temperature range. Lower cost is assured by trimming and calibration at the wafer level. The low-output impedance, linear output, and precise inherent calibration of the LM35 device makes interfacing to readout or control circuitry especially easy. The device is used with single power supplies, or with plus and minus supplies. As the LM35 device draws only 60 μA from the supply, it has very low self-heating of less than 0.1°C in still air. The LM35 device is rated to operate over a −55°C to 150°C temperature range, while the LM35C device is rated for a −40°C to 110°C range (−10° with improved accuracy). The LM35-series devices are available packaged in hermetic TO transistor packages, while the LM35C, LM35CA, and LM35D devices are available in the plastic TO-92 transistor package. The LM35D device is available in an 8-lead surface-mount small-outline package and a plastic TO-220 package.

Device Information(1)

PART NUMBERPACKAGEBODY SIZE (NOM)
LM35TO-CAN (3)4.699 mm × 4.699 mm
TO-92 (3)4.30 mm × 4.30 mm
SOIC (8)4.90 mm × 3.91 mm
TO-220 (3)14.986 mm × 10.16 mm
  1. For all available packages, see the orderable addendum at the end of the datasheet.

Basic Centigrade Temperature Sensor
(2°C to 150°C)

LM35 basic_sensor_snis159.gif

Full-Range Centigrade Temperature Sensor

LM35 full-range_sensor_snis159.gif
Choose R1 = –VS / 50 µA
VOUT = 1500 mV at 150°C
VOUT = 250 mV at 25°C
VOUT = –550 mV at –55°C