SBOS730A April 2015  – May 2015 LMH6401

PRODUCTION DATA. 

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1Absolute Maximum Ratings
    2. 7.2ESD Ratings
    3. 7.3Recommended Operating Conditions
    4. 7.4Thermal Information
    5. 7.5Electrical Characteristics
    6. 7.6SPI Timing Requirements
    7. 7.7Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1Setup Diagrams
    2. 8.2Output Measurement Reference Points
    3. 8.3ATE Testing and DC Measurements
    4. 8.4Frequency Response
    5. 8.5Distortion
    6. 8.6Noise Figure
    7. 8.7Pulse Response, Slew Rate, and Overdrive Recovery
    8. 8.8Power Down
    9. 8.9VOCM Frequency Response
  9. Detailed Description
    1. 9.1Overview
    2. 9.2Functional Block Diagram
    3. 9.3Feature Description
    4. 9.4Device Functional Modes
      1. 9.4.1Power-On Reset (POR)
      2. 9.4.2Power-Down (PD)
      3. 9.4.3Thermal Feedback Control
      4. 9.4.4Gain Control
    5. 9.5Programming
      1. 9.5.1Details of the Serial Interface
      2. 9.5.2Timing Diagrams
    6. 9.6Register Maps
      1. 9.6.1Revision ID (address = 0h, Read-Only) [default = 03h]
      2. 9.6.2Product ID (address = 1h, Read-Only) [default = 00h]
      3. 9.6.3Gain Control (address = 2h) [default = 20h]
      4. 9.6.4Reserved (address = 3h) [default = 8Ch]
      5. 9.6.5Thermal Feedback Gain Control (address = 4h) [default = 27h]
      6. 9.6.6Thermal Feedback Frequency Control (address = 5h) [default = 45h]
  10. 10Application and Implementation
    1. 10.1Application Information
      1. 10.1.1Analog Input Characteristics
      2. 10.1.2 Analog Output Characteristics
        1. 10.1.2.1Driving Capacitive Loads
      3. 10.1.3Thermal Feedback Control
        1. 10.1.3.1Step Response Optimization using Thermal Feedback Control
      4. 10.1.4Thermal Considerations
    2. 10.2Typical Application
      1. 10.2.1Design Requirements
      2. 10.2.2Detailed Design Procedure
        1. 10.2.2.1Driving ADCs
          1. 10.2.2.1.1SNR Considerations
          2. 10.2.2.1.2SFDR Considerations
          3. 10.2.2.1.3ADC Input Common-Mode Voltage Considerations—AC-Coupled Input
          4. 10.2.2.1.4ADC Input Common-Mode Voltage Considerations—DC-Coupled Input
      3. 10.2.3Application Curves
    3. 10.3Do's and Don'ts
      1. 10.3.1Do:
      2. 10.3.2Don't:
  11. 11Power-Supply Recommendations
    1. 11.1Single-Supply Operation
    2. 11.2Split-Supply Operation
  12. 12Layout
    1. 12.1Layout Guidelines
    2. 12.2Layout Examples
  13. 13Device and Documentation Support
    1. 13.1Documentation Support
      1. 13.1.1Related Documentation
    2. 13.2Community Resources
    3. 13.3Trademarks
    4. 13.4Electrostatic Discharge Caution
    5. 13.5Glossary
  14. 14Mechanical, Packaging, and Orderable Information

1 Features

  • 3-dB Bandwidth: 4.5 GHz at 26-dB Gain
  • Gain Range: –6 dB to 26 dB in 1-dB Steps
  • Differential Input Impedance: 100 Ω
  • Differential Output with Common-Mode Control
  • Distortion at Max Gain (VO = 2 VPPD, RL = 200 Ω):
    • 200 MHz: HD2 at –73 dBc, HD3 at –80 dBc
    • 500 MHz: HD2 at –68 dBc, HD3 at –72 dBc
    • 1 GHz: HD2 at –63 dBc, HD3 at –63 dBc
    • 2 GHz: HD2 at –58 dBc, HD3 at –54 dBc
  • Output IP3:
    • 43 dBm at 200 MHz
    • 33 dBm at 1 GHz
    • 27 dBm at 2 GHz
  • Output IP2:
    • 67 dBm at 200 MHz
    • 60 dBm at 1 GHz
    • 52 dBm at 2 GHz
  • 8-dB Noise Figure at 1 GHz, RS = 100 Ω
  • 82-ps Rise, Fall Time Pulse Response
  • Supply Operation: 5.0 V at 69 mA
  • Supports Single- and (±) Split-Supply Operation:
    • DC- and AC-Coupled Applications
  • Fabricated on an Advanced Complementary BiCMOS Process
  • 3-mm × 3-mm UQFN-16 Package

2 Applications

  • Test and Measurement
  • Ultra-Wideband ADC Drivers
  • Communications Receivers
  • RF Sampling Subsystems
  • SAW Filter Buffers and Drivers
  • Defense and Radar

3 Description

The LMH6401 is a wideband, digitally-controlled, variable-gain amplifier (DVGA) designed for dc to radio frequency (RF), intermediate frequency (IF), and high-speed time-domain applications. The device is an ideal analog-to-digital converter (ADC) driver for dc- or ac-coupled applications that require an automatic gain control (AGC).

Noise and distortion performance is optimized to drive ultra-wideband ADCs. The amplifier has an 8-dB noise figure at maximum gain and a –63-dBc harmonic distortion at 1 GHz for full-scale signal levels. The device supports both single- and split-supply operation for driving an ADC. A common-mode reference input pin is provided to align the amplifier output common-mode with the ADC input requirements.

Gain control is performed via an SPI™ interface, allowing a 32-dB gain range from –6 dB to 26 dB in 1-dB steps. A power-down feature is also available through the external PD pin or SPI control.

This level of performance is achieved at a low power level of 345 mW. The operating ambient temperature range is –40°C to 85°C.

Device Information(1)

PART NUMBERPACKAGEBODY SIZE (NOM)
LMH6401UQFN (16)3.00 mm × 3.00 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Harmonic Distortion vs Frequency (VO = 2 VPPD)

LMH6401 D038_SBOS730_LMH6401.gif

IF Sampling Receiver Application

LMH6401 fbd_sbos730.gif