SBOS730A April 2015  – May 2015 LMH6401

PRODUCTION DATA. 

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1Absolute Maximum Ratings
    2. 7.2ESD Ratings
    3. 7.3Recommended Operating Conditions
    4. 7.4Thermal Information
    5. 7.5Electrical Characteristics
    6. 7.6SPI Timing Requirements
    7. 7.7Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1Setup Diagrams
    2. 8.2Output Measurement Reference Points
    3. 8.3ATE Testing and DC Measurements
    4. 8.4Frequency Response
    5. 8.5Distortion
    6. 8.6Noise Figure
    7. 8.7Pulse Response, Slew Rate, and Overdrive Recovery
    8. 8.8Power Down
    9. 8.9VOCM Frequency Response
  9. Detailed Description
    1. 9.1Overview
    2. 9.2Functional Block Diagram
    3. 9.3Feature Description
    4. 9.4Device Functional Modes
      1. 9.4.1Power-On Reset (POR)
      2. 9.4.2Power-Down (PD)
      3. 9.4.3Thermal Feedback Control
      4. 9.4.4Gain Control
    5. 9.5Programming
      1. 9.5.1Details of the Serial Interface
      2. 9.5.2Timing Diagrams
    6. 9.6Register Maps
      1. 9.6.1Revision ID (address = 0h, Read-Only) [default = 03h]
      2. 9.6.2Product ID (address = 1h, Read-Only) [default = 00h]
      3. 9.6.3Gain Control (address = 2h) [default = 20h]
      4. 9.6.4Reserved (address = 3h) [default = 8Ch]
      5. 9.6.5Thermal Feedback Gain Control (address = 4h) [default = 27h]
      6. 9.6.6Thermal Feedback Frequency Control (address = 5h) [default = 45h]
  10. 10Application and Implementation
    1. 10.1Application Information
      1. 10.1.1Analog Input Characteristics
      2. 10.1.2 Analog Output Characteristics
        1. 10.1.2.1Driving Capacitive Loads
      3. 10.1.3Thermal Feedback Control
        1. 10.1.3.1Step Response Optimization using Thermal Feedback Control
      4. 10.1.4Thermal Considerations
    2. 10.2Typical Application
      1. 10.2.1Design Requirements
      2. 10.2.2Detailed Design Procedure
        1. 10.2.2.1Driving ADCs
          1. 10.2.2.1.1SNR Considerations
          2. 10.2.2.1.2SFDR Considerations
          3. 10.2.2.1.3ADC Input Common-Mode Voltage Considerations—AC-Coupled Input
          4. 10.2.2.1.4ADC Input Common-Mode Voltage Considerations—DC-Coupled Input
      3. 10.2.3Application Curves
    3. 10.3Do's and Don'ts
      1. 10.3.1Do:
      2. 10.3.2Don't:
  11. 11Power-Supply Recommendations
    1. 11.1Single-Supply Operation
    2. 11.2Split-Supply Operation
  12. 12Layout
    1. 12.1Layout Guidelines
    2. 12.2Layout Examples
  13. 13Device and Documentation Support
    1. 13.1Documentation Support
      1. 13.1.1Related Documentation
    2. 13.2Community Resources
    3. 13.3Trademarks
    4. 13.4Electrostatic Discharge Caution
    5. 13.5Glossary
  14. 14Mechanical, Packaging, and Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MINMAXUNIT
Supply voltageV = (VS+) – (VS–)5.5 V
Digital input pins–0.3 VS+V
Maximum input difference voltage2.1V
Maximum input voltageVS–VS+V
TemperatureMaximum junction, TJ150°C
Maximum junction, continuous operation, long-term reliability125°C
Operating free-air, TA–4085°C
Storage, Tstg–65150°C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUEUNIT
V(ESD)Electrostatic dischargeHuman-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)±2000V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MINNOMMAXUNIT
Supply voltage 4.0 5.0 5.25 V
Minimum operating positive (VS+) supply voltage2.0V
Ambient operating air temperature, TA–40 25 85 °C
Operating junction temperature, TJ–40 125 °C

7.4 Thermal Information

THERMAL METRIC(1)LMH6401UNIT
RMZ (UQFN)
16 PINS
RθJAJunction-to-ambient thermal resistance 78°C/W
RθJC(top)Junction-to-case (top) thermal resistance 43°C/W
RθJBJunction-to-board thermal resistance 24°C/W
ψJTJunction-to-top characterization parameter 2.3°C/W
ψJBJunction-to-board characterization parameter 24°C/W
RθJC(bot)Junction-to-case (bottom) thermal resistance n/a°C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV = 26 dB, unless otherwise noted.
PARAMETERTEST CONDITIONSMINTYPMAXUNITTEST
LEVEL(1)
DYNAMIC PERFORMANCE
SSBWSmall-signal, –3-dB bandwidthAV = 26 dB, VO = 200 mVPPD4.5GHzC
LSBWLarge-signal, –3-dB bandwidth AV = 26 dB, VO = 2.0 VPPD4.5GHzC
Bandwidth for 0.1-dB flatnessAV = 26 dB, VO = 2.0 VPPD500MHzC
SRSlew rateVO = 2-V step18200V/µsC
tR, tFRise and fall timeVO = 2-V step, 10% to 90%82psC
Overdrive recoveryOverdrive = ±0.5 V600psC
Output balance errorf = 1 GHz–47dBC
tsSettling time to 1% VO = 2-V step, RL= 200 Ω700psC
HD2Second-harmonic distortionf = 200 MHz, VO = 2.0 VPPD–73dBcC
f = 500 MHz, VO = 2.0 VPPD–68dBcC
f = 1 GHz, VO = 2.0 VPPD–63dBcC
f = 2 GHz, VO = 2.0 VPPD–58dBcC
HD3Third-harmonic distortionf = 200 MHz, VO = 2.0 VPPD–80dBcC
f = 500 MHz, VO = 2.0 VPPD–72dBcC
f = 1 GHz, VO = 2.0 VPPD–63dBcC
f = 2 GHz, VO = 2.0 VPPD–54dBcC
OIP2Output second-order intercept pointf = 200 MHz, PO = –2 dBm per tone67dBmC
f = 500 MHz, PO = –2 dBm per tone65dBmC
f = 1 GHz, PO = –2 dBm per tone60dBmC
f = 2 GHz, PO = –2 dBm per tone52dBmC
OIP3Output third-order intercept pointf = 200 MHz, PO = –2 dBm per tone43dBmC
f = 500 MHz, PO = –2 dBm per tone40dBmC
f = 1 GHz, PO = –2 dBm per tone33dBmC
f = 2 GHz, PO = –2 dBm per tone27dBmC
IMD2Second-order intermodulation distortionf = 500 MHz, VO = 1.0 VPP per tone–68dBcC
IMD3Third-order intermodulation distortionf = 500 MHz, VO = 1.0 VPP per tone–83dBcC
P1dB1-dB compression pointf = 500 MHz, power measured at amplifier output18.3dBmC
NFNoise figureRS = 100 Ωf = 200 MHz7.7dBC
f = 1 GHz8dBC
Output-referred noise voltageAV = 26 dB, f > 1 MHz30.4nV/√HzC
S12 Reverse transmission (S12)f = 1 GHz–65dBC
S11 Input return loss (S11) 100-Ω system, f = 2 GHz–15dBC
GAIN PARAMETERS
Maximum voltage gain25.526.026.5dBA
Minimum voltage gain–7.5–6.0–4.5dBA
Gain range32dBC
Gain step size0.911.1dBA
Cumulative gain errorAV = 26 dB to 10 dB
(referenced to 26-dB gain)
–0.50.5dBA
AV = 26 dB to –6 dB
(referenced to 26-dB gain)
–11dBA
Gain step transition time1nsC
ANALOG INPUT CHARACTERISTICS
Ri Input resistance Differential85100112ΩA
CiInput capacitanceDifferential0.8pFC
VICMInput common-mode voltageSelf-biased to mid-supply–0.30.3VA
VICLRLow-level input common-mode voltage rangeDifferential gain shift < 1 dB(VS–) + 1.5VC
VICHR High-level input common-mode voltage rangeDifferential gain shift < 1 dB(VS+) – 1.5VC
ANALOG OUTPUT CHARACTERISTICS
Ro Output resistanceDifferential182025ΩA
VOLLow-level output voltage rangeLow-level clipping level(VS–) + 1(VS–) + 1.1VA
VOH High-level output voltage rangeHigh-level clipping level(VS+) – 1.1(VS+) – 1VA
VOM Maximum output voltage swingDifferential6.0VPPDC
CMRR Common-mode rejection ratio ±0.3-V input common-mode shift38.445dBA
POWER SUPPLY
VSSupply voltage [V = (VS+) – (VS–)]4.05.05.25VA
Minimum positive (VS+) supply voltage2.0VA
PSRRPower-supply rejection ratioVS–, measured at 1-kHz sine-wave6670dBA
VS+, measured at 1-kHz sine-wave6670dBA
IQQuiescent currentPD = 0 (device enabled)606978 mAA
PD = 1 (device disabled)1712mAA
OUTPUT COMMON-MODE CONTROL (VOCM Pin)
SSBWSmall-signal bandwidthVOCM = 200 mVPP160MHzC
VOCM voltage range lowVOCM gain < 2%–0.5VA
VOCM voltage range highVOCM gain < 2%0.5VA
VOOOutput offset voltageAll gain settings–4040mVA
VOCM gain1.0VC
VOCMCommon-mode offset voltageVOCM pin driven to GND–1010mVA
POWER DOWN (PD Pin)
Power-down quiescent current1712mAA
PD bias currentPD = 2.5 V80100µAA
Turn-on time delayTime to VO = 90% of final value70nsC
Turn-off time delayTime to VO = 10% of original value10nsC
DIGITAL INPUT/OUTPUT
VIHHigh-level input voltageReferred to GND1.2VS+VA
VILLow-level input voltageReferred to GND0.8VA
VOHHigh-level output voltage1 kΩ to GND1.4VA
VOLLow-level output voltage1 kΩ to GND 0.4VA
(1) Test levels: (A) 100% DC tested at 25°C unless otherwise specified. Over-temperature limits by characterization and simulation. (B) Limits set by bench verification and simulation. (C) Typical value only for information.
(2) Ensured by design.
(3) Reference to negative edge of SCLK.
(4) Reference to positive edge of SCLK.

7.6 SPI Timing Requirements(2)

At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV = 26 dB, unless otherwise noted. Limits set by bench verification and simulation.
MINNOMMAXUNIT
fs_cSCLK frequency50MHz
tPH SCLK pulse duration, high10ns
tPL SCLK pulse duration, low10ns
tSU SDI setup3ns
tH SDO hold3ns
tIZ SDO tri-state3ns
tODZ SDO driven to tri-state(3)5ns
tOZD SDO tri-state to driven3ns
tOD SDO output delay(3)3ns
tCSSCS setup(4)3ns
tCSHCS hold3ns
tIAG Inter-access gap20ns

7.7 Typical Characteristics

At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV = 26 dB, unless otherwise noted. Differential input and output, and input and output pins referenced to mid-supply, unless otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.
LMH6401 D013_SBOS730_LMH6401.gif
Figure 1. Voltage Gain vs Frequency (1-dB Gain Steps)
LMH6401 D027_SBOS730_LMH6401.gif
Figure 3. S-Parameters vs Frequency
LMH6401 D024_SBOS730_LMH6401.gif
Figure 5. Frequency Response vs Capacitive Load
LMH6401 D019_SBOS730_LMH6401.gif
PO = –2 dBm per tone
Figure 7. Output IP3 vs Frequency and Temperature
LMH6401 D022_SBOS730_LMH6401.gif
Figure 9. Output IP3 vs Total Output Power per Tone
LMH6401 D003_SBOS730_LMH6401.gif
Figure 11. Second-Order Harmonic Distortion vs Frequency
LMH6401 D005_SBOS730_LMH6401.gif
Figure 13. Second-Order Harmonic Distortion vs Frequency
LMH6401 D001_SBOS730_LMH6401.gif
f = 500 MHz
Figure 15. Harmonic Distortion vs Gain Settings
LMH6401 D009_SBOS730_LMH6401.gif
f = 500 MHz
Figure 17. Second-Order Harmonic Distortion vs Temperature
LMH6401 D007_SBOS730_LMH6401.gif
f = 500 MHz, (VS+) – (VS–) = 4 V
Figure 19. Second-Order Harmonic Distortion vs Temperature
LMH6401 D011_SBOS730.gif
f = 500 MHz
Figure 21. Harmonic Distortion vs
Output Common-Mode Voltage
LMH6401 D039_SBOS730_LMH6401.gif
Figure 23. Output P1dB vs Frequency
LMH6401 D014_SBOS730_LMH6401.gif
Figure 25. Noise Figure vs Frequency
LMH6401 D025_SBOS730_LMH6401.gif
Scc21 / Sdd21
Figure 27. CMRR vs Frequency
LMH6401 D029_SBOS730_LMH6401.gif
Figure 29. Overdrive Recovery (AV = 26 dB)
LMH6401 D043_SBOS730_LMH6401.gif
f = 500 MHz
Figure 31. Cumulative Gain and Phase Step Error vs
Gain Settings
LMH6401 D017_SBOS730_LMH6401.gif
Figure 33. Output Impedance vs Frequency
LMH6401 D037_SBOS730_LMH6401.gif
Figure 35. Output Step Response
LMH6401 D031_SBOS730_LMH6401.gif
Figure 37. Gain Switching Response (AV = 26 dB to 18 dB)
LMH6401 D035_SBOS730_LMH6401.gif
Figure 39. Gain Switching Response (AV = 26 dB to 10 dB)
LMH6401 D033_SBOS730_LMH6401.gif
Figure 41. Gain Switching Response (AV = 26 dB to 2 dB)
LMH6401 D021_SBOS730_LMH6401.gif
Figure 2. Maximum Gain vs Temperature
LMH6401 D042_SBOS730_LMH6401.gif
Figure 4. Input Return Loss vs Gain Settings
LMH6401 D018_SBOS730_LMH6401.gif
PO = –2 dBm per tone
Figure 6. Output IP3 vs Frequency and Gain Settings
LMH6401 D020_SBOS730_LMH6401.gif
f = 500 MHz, PO = –2 dBm per tone
Figure 8. Output IP3 vs Supply Voltage and Temperature
LMH6401 D023_SBOS730_LMH6401.gif
PO = –2 dBm per tone
Figure 10. Intermodulation Distortion vs Frequency
LMH6401 D004_SBOS730_LMH6401.gif
Figure 12. Third-Order Harmonic Distortion vs Frequency
LMH6401 D006_SBOS730_LMH6401.gif
Figure 14. Third-Order Harmonic Distortion vs Frequency
LMH6401 D002_SBOS730.gif
f = 500 MHz
Figure 16. Harmonic Distortion vs Differential VPP
LMH6401 D010_SBOS730_LMH6401.gif
f = 500 MHz
Figure 18. Third-Order Harmonic Distortion vs
Temperature
LMH6401 D008_SBOS730_LMH6401.gif
f = 500 MHz, (VS+) – (VS–) = 4 V
Figure 20. Third-Order Harmonic Distortion vs
Temperature
LMH6401 D012_SBOS730_LMH6401.gif
f = 500 MHz, gain = –6 dB
Figure 22. Harmonic Distortion vs Input CM Voltage
LMH6401 D040_SBOS730_LMH6401.gif
Figure 24. Output P1dB vs Temperature
LMH6401 D015_SBOS730_LMH6401.gif
Figure 26. Noise Figure vs Gain Settings
LMH6401 D026_SBOS730_LMH6401.gif
Sdc21/Sdd21
Figure 28. Output Balance Error vs Frequency
LMH6401 D030_SBOS730_LMH6401.gif
Figure 30. Overdrive Recovery (AV = 10 dB)
LMH6401 D016_SBOS730_LMH6401.gif
Figure 32. Input Impedance vs Frequency
LMH6401 D041_SBOS730_LMH6401.gif
Figure 34. Supply Current vs Temperature
LMH6401 D028_SBOS730_LMH6401.gif
Figure 36. Power-Down Transition Response
LMH6401 D032_SBOS730_LMH6401.gif
Figure 38. Gain Switching Response (AV = 18 dB to 26 dB)
LMH6401 D036_SBOS730_LMH6401.gif
Figure 40. Gain Switching Response (AV = 10 dB to 26 dB)
LMH6401 D034_SBOS730_LMH6401.gif
Figure 42. Gain Switching Response (AV = 2 dB to 26 dB)