LMH6611

ACTIVE

Single Supply 345 MHz Rail-to-Rail Output Amplifier

Product details

Architecture Voltage FB Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 11 GBW (typ) (MHz) 135 BW at Acl (MHz) 365 Acl, min spec gain (V/V) 1 Slew rate (typ) (V/µs) 460 Vn at flatband (typ) (nV√Hz) 10 Vn at 1 kHz (typ) (nV√Hz) 10 Iq per channel (typ) (mA) 3.3 Vos (offset voltage at 25°C) (max) (mV) 1.5 Rail-to-rail In to V-, Out Features Shutdown Rating Catalog Operating temperature range (°C) -40 to 125 CMRR (typ) (dB) 98 Input bias current (max) (pA) 10100000 Offset drift (typ) (µV/°C) 4 Iout (typ) (mA) 120 2nd harmonic (dBc) 82 3rd harmonic (dBc) 80 Frequency of harmonic distortion measurement (MHz) 5
Architecture Voltage FB Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 11 GBW (typ) (MHz) 135 BW at Acl (MHz) 365 Acl, min spec gain (V/V) 1 Slew rate (typ) (V/µs) 460 Vn at flatband (typ) (nV√Hz) 10 Vn at 1 kHz (typ) (nV√Hz) 10 Iq per channel (typ) (mA) 3.3 Vos (offset voltage at 25°C) (max) (mV) 1.5 Rail-to-rail In to V-, Out Features Shutdown Rating Catalog Operating temperature range (°C) -40 to 125 CMRR (typ) (dB) 98 Input bias current (max) (pA) 10100000 Offset drift (typ) (µV/°C) 4 Iout (typ) (mA) 120 2nd harmonic (dBc) 82 3rd harmonic (dBc) 80 Frequency of harmonic distortion measurement (MHz) 5
SOT-23-THN (DDC) 6 8.12 mm² 2.9 x 2.8
  • VS = 5V, RL = 1 kΩ, TA = 25°C and AV = +1,
    Unless Otherwise Specified.
  • Operating Voltage Range 2.7V to 11V
  • Supply Current Per Channel 3.2 mA
  • Small Signal Bandwidth 345 MHz
  • Open Loop Gain 103 dB
  • Input Offset Voltage (Limit at 25°C) ±1.5 mV
  • Slew Rate 460 V/µs
  • 0.1 dB Bandwidth 45 MHz
  • Settling Time to 0.1% 67 ns
  • Settling Time to 0.01% 100 ns
  • SFDR (f = 100 kHz, AV = 2,
    VOUT = 2 VPP) 102 dBc
  • Low Voltage Noise 10 nV/√Hz
  • Output current ±100 mA
  • CMVR −0.2V to 3.8V
  • Rail-to-Rail Output
  • −40°C to +125°C Temperature Range
  • VS = 5V, RL = 1 kΩ, TA = 25°C and AV = +1,
    Unless Otherwise Specified.
  • Operating Voltage Range 2.7V to 11V
  • Supply Current Per Channel 3.2 mA
  • Small Signal Bandwidth 345 MHz
  • Open Loop Gain 103 dB
  • Input Offset Voltage (Limit at 25°C) ±1.5 mV
  • Slew Rate 460 V/µs
  • 0.1 dB Bandwidth 45 MHz
  • Settling Time to 0.1% 67 ns
  • Settling Time to 0.01% 100 ns
  • SFDR (f = 100 kHz, AV = 2,
    VOUT = 2 VPP) 102 dBc
  • Low Voltage Noise 10 nV/√Hz
  • Output current ±100 mA
  • CMVR −0.2V to 3.8V
  • Rail-to-Rail Output
  • −40°C to +125°C Temperature Range

The LMH6611 (single, with shutdown) and LMH6612 (dual) are 345 MHz rail-to-rail output amplifiers consuming just 3.2 mA of quiescent current per channel and designed to deliver high performance in power conscious single supply systems. The LMH6611 and LMH6612 have precision trimmed input offset voltages with low noise and low distortion performance as required for high accuracy video, test and measurement, and communication applications. The LMH6611 and LMH6612 are members of the PowerWise family and have an exceptional power-to-performance ratio.

With a trimmed input offset voltage of 0.022 mV and a high open loop gain of 103 dB the LMH6611 and LMH6612 meet the requirements of DC sensitive high speed applications such as low pass filtering in baseband I and Q radio channels. These specifications combined with a 0.01% settling time of 100 ns, a low noise of 10 nV/√Hz and better than 102 dBc SFDR at 100 kHz make these amplifiers particularly suited to driving 10, 12 and 14-bit high speed ADCs. The 45 MHz 0.1 dB bandwidth (AV = 2) driving 2 VPP into 150Ω allows the amplifiers to be used as output drivers in 1080i and 720p HDTV applications.

The input common mode range extends from 200 mV below the negative supply rail up to 1.2V from the positive rail. On a single 5V supply with a ground terminated 150Ω load the output swings to within 49 mV of the ground, while a mid-rail terminated 1 kΩ load will swing to 77 mV of either rail.

The amplifiers will operate on a 2.7V to 11V single supply or ±1.35V to ±5.5V split supply. The LMH6611 single is available in 6-Pin SOT and has an independent active low disable pin which reduces the supply current to 120 µA. The LMH6612 is available in 8-Pin SOIC. Both the LMH6611 and LMH6612 are available in −40°C to +125°C extended industrial temperature grade.

The LMH6611 (single, with shutdown) and LMH6612 (dual) are 345 MHz rail-to-rail output amplifiers consuming just 3.2 mA of quiescent current per channel and designed to deliver high performance in power conscious single supply systems. The LMH6611 and LMH6612 have precision trimmed input offset voltages with low noise and low distortion performance as required for high accuracy video, test and measurement, and communication applications. The LMH6611 and LMH6612 are members of the PowerWise family and have an exceptional power-to-performance ratio.

With a trimmed input offset voltage of 0.022 mV and a high open loop gain of 103 dB the LMH6611 and LMH6612 meet the requirements of DC sensitive high speed applications such as low pass filtering in baseband I and Q radio channels. These specifications combined with a 0.01% settling time of 100 ns, a low noise of 10 nV/√Hz and better than 102 dBc SFDR at 100 kHz make these amplifiers particularly suited to driving 10, 12 and 14-bit high speed ADCs. The 45 MHz 0.1 dB bandwidth (AV = 2) driving 2 VPP into 150Ω allows the amplifiers to be used as output drivers in 1080i and 720p HDTV applications.

The input common mode range extends from 200 mV below the negative supply rail up to 1.2V from the positive rail. On a single 5V supply with a ground terminated 150Ω load the output swings to within 49 mV of the ground, while a mid-rail terminated 1 kΩ load will swing to 77 mV of either rail.

The amplifiers will operate on a 2.7V to 11V single supply or ±1.35V to ±5.5V split supply. The LMH6611 single is available in 6-Pin SOT and has an independent active low disable pin which reduces the supply current to 120 µA. The LMH6612 is available in 8-Pin SOIC. Both the LMH6611 and LMH6612 are available in −40°C to +125°C extended industrial temperature grade.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 6
Type Title Date
* Data sheet LMH6611/LMH6612 Single Supply 345 MHz Rail-to-Rail Output Amplifiers datasheet (Rev. K) 09 Oct 2013
E-book An Engineer's Guide to Current Sensing (Rev. B) 12 Apr 2022
Application brief Increase Measurement Accuracy With HS Amps for Low-Side Shunt Current Monitoring (Rev. A) 26 Aug 2019
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note AN-1803 Design Considerations for a Transimpedance Amplifier (Rev. A) 01 May 2013
EVM User's guide AN-1812 ADC Driver Evaluation Boards (Rev. A) 01 May 2013

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

551600083-001 — Single to Single ADC Driver PCB for LMH6611 and LMH6618 (SOT23 package, unstuffed)

The ADC driver evaluation boards are designed for use with Texas Instruments' high-speed operational amplifier product portfolio. These evaluation boards can be used as an aid in the design and evaluation of TI's ADC Driver product in an application, in addition to being a guide for high frequency (...)

User guide: PDF
Not available on TI.com
Evaluation board

LMH730216 — Evaluation Board for High-Speed Single Op Amp in the 5- 6-Pin SOT-23 Package

Texas Instruments offers this unpopulated Evaluation Board to aid in the evaluation and testing of high-speed Op Amps that are offered in the 5-/6-pin SOT-23 package. Resistors, capacitors, or any other surface-mount components can be easily mounted on this board in the desired circuit (...)

User guide: PDF
Not available on TI.com
Simulation model

LMH6611 PSPICE Model

SNOM125.ZIP (3 KB) - PSpice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Calculation tool

VOLT-DIVIDER-CALC — Voltage divider calculation tool

The voltage divider calculation tool (VOLT-DIVIDER-CALC) quickly determines a set of resistors for a voltage divider. This KnowledgeBase JavaScript utility can be used to find a set of resistors for a voltage divider to achieve the desired output voltage. VOLT-DIVIDER-CALC can also be used to (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
SOT-23-THN (DDC) 6 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos