SNOSCZ3B August 2016  – November 2016 LPV801 , LPV802


  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1Absolute Maximum Ratings
    2. 6.2ESD Ratings
    3. 6.3Recommended Operating Conditions
    4. 6.4Thermal Information
    5. 6.5Electrical Characteristics
    6. 6.6Typical Characteristics
  7. Detailed Description
    1. 7.1Overview
    2. 7.2Functional Block Diagram
    3. 7.3Feature Description
    4. 7.4Device Functional Modes
      1. 7.4.1Negative-Rail Sensing Input
      2. 7.4.2Rail to Rail Output Stage
      3. 7.4.3Design Optimization for Nanopower Operation
      4. 7.4.4Driving Capacitive Load
  8. Application and Implementation
    1. 8.1Application Information
    2. 8.2Typical Application: Three Terminal CO Gas Sensor Amplifier
      1. 8.2.1Design Requirements
      2. 8.2.2Detailed Design Procedure
      3. 8.2.3Application Curve
    3. 8.3Do's and Don'ts
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1Layout Guidelines
    2. 10.2Layout Example
  11. 11Device and Documentation Support
    1. 11.1Device Support
      1. 11.1.1Development Support
    2. 11.2Receiving Notification of Documentation Updates
    3. 11.3Community Resources
    4. 11.4Related Links
    5. 11.5Trademarks
    6. 11.6Electrostatic Discharge Caution
    7. 11.7Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Power Supply Recommendations

The LPV80x is specified for operation from 1.6 V to 5.5 V (±0.8 V to ±2.75 V) over a –40°C to 125°C temperature range. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the Typical Characteristics.


Supply voltages larger than 6 V can permanently damage the device.

For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines it is suggested that 100 nF capacitors be placed as close as possible to the operational amplifier power supply pins. For single supply, place a capacitor between V+ and V supply leads. For dual supplies, place one capacitor between V+ and ground, and one capacitor between V and ground.

Low bandwidth nanopower devices do not have good high frequency (> 1 kHz) AC PSRR rejection against high-frequency switching supplies and other 1 kHz and above noise sources, so extra supply filtering is recommended if kilohertz or above noise is expected on the power supply lines.