SNOSD33B November 2016  – November 2016 LPV811 , LPV812

PRODUCTION DATA. 

  1. Features
  2. Applications
  3. Description
    1. 3.1Nanopower CO Sensor
    2. 3.2LPV812 Offset Voltage Distribution Front page O2 Sens circuit to Vos Disty Graph
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1Absolute Maximum Ratings
    2. 6.2ESD Ratings
    3. 6.3Recommended Operating Conditions
    4. 6.4Thermal Information
    5. 6.5Electrical Characteristics
    6. 6.6Typical Characteristics
  7. Detailed Description
    1. 7.1Overview
    2. 7.2Functional Block Diagram
    3. 7.3Feature Description
    4. 7.4Device Functional Modes
      1. 7.4.1Negative-Rail Sensing Input
      2. 7.4.2Rail to Rail Output Stage
      3. 7.4.3Design Optimization for Nanopower Operation
      4. 7.4.4Driving Capacitive Load
  8. Application and Implementation
    1. 8.1Application Information
    2. 8.2Typical Application: Three Terminal CO Gas Sensor Amplifier
      1. 8.2.1Design Requirements
      2. 8.2.2Detailed Design Procedure
      3. 8.2.3Application Curve
    3. 8.3Do's and Don'ts
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1Layout Guidelines
    2. 10.2Layout Example
  11. 11Device and Documentation Support
    1. 11.1Device Support
      1. 11.1.1Development Support
    2. 11.2Documentation Support
      1. 11.2.1Related Documentation
    3. 11.3Related Links
    4. 11.4Receiving Notification of Documentation Updates
    5. 11.5Community Resources
    6. 11.6Trademarks
    7. 11.7Electrostatic Discharge Caution
    8. 11.8Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Specifications

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)
MINMAXUNIT
Supply voltage, Vs = (V+) - (V-)–0.36 V
Input pinsVoltage (2) (3) Common mode(V-) - 0.3(V+) + 0.3V
Differential(V-) - 0.3(V+) + 0.3V
Input pinsCurrent-1010mA
Output short current (4) ContinuousContinuous
Storage temperature, Tstg –65150°C
Junction temperature150°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Not to exceed -0.3V or +6.0V on ANY pin, referred to V-
Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current-limited to 10 mA or less.
Short-circuit to Vs/2, one amplifier per package. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

ESD Ratings

VALUEUNIT
V(ESD) Electrostatic dischargeHuman-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±750 V may actually have higher performance.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MINMAXUNIT
Supply voltage (V+ – V–) 1.6 5.5 V
Specified temperature -40 125 °C

Thermal Information

THERMAL METRIC(1) LPV811
DBV
(SOT-23)
5 PINS
LPV812
DGK
(VSSOP)
8 PINS
UNIT
θJA Junction-to-ambient thermal resistance177.4177.6ºC/W
θJCtop Junction-to-case (top) thermal resistance133.968.8
θJB Junction-to-board thermal resistance36.398.2
ψJT Junction-to-top characterization parameter23.612.3
ψJB Junction-to-board characterization parameter35.796.7
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Electrical Characteristics

TA = 25°C, VS = 1.8 V to 5 V, VCM = VOUT = VS/2, and RL≥ 10 MΩ to VS / 2, unless otherwise noted .
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
OFFSET VOLTAGE
VOS Input offset voltage, LPV811 VS = 1.8V and 3.3V, VCM = V-±60±370µV
Input offset voltage, LPV812 VS = 1.8V and 3.3V, VCM = V-±55±300µV
ΔVOS/ΔTInput offset drift VCM = V-TA = –40°C to 125°C±1µV/°C
PSRRPower-supply rejection ratioVS = 1.8V to 3.3V,  VCM = V-±1.6±60µV/V
INPUT VOLTAGE RANGE
VCM Common-mode voltage range VS = 3.3V02.4V
CMRRCommon-mode rejection ratio, LPV811 (V–) ≤ VCM ≤ (V+) – 0.9 V, VS = 3.3V7795dB
Common-mode rejection ratio, LPV812 (V–) ≤ VCM ≤ (V+) – 0.9 V, VS = 3.3V8098dB
INPUT BIAS CURRENT
IB Input bias currentVS = 1.8V±100fA
IOS Input offset currentVS = 1.8V±100fA
INPUT IMPEDANCE
Differential7pF
Common mode3pF
NOISE
En Input voltage noiseƒ = 0.1 Hz to 10 Hz6.5 µVp-p
en Input voltage noise densityƒ = 100 Hz340nV/√Hz
ƒ = 1 kHz420
OPEN-LOOP GAIN
AOL Open-loop voltage gain(V–) + 0.3 V ≤ VO ≤ (V+) – 0.3 V, RL = 100 kΩ120dB
OUTPUT
VOH Voltage output swing from positive railVS = 1.8V, RL = 100 kΩ to V+/2103.5 mV
VOL Voltage output swing from negative railVS = 1.8V, RL = 100 kΩ to V+/22.510
ISC Short-circuit current VS = 3.3V, Short to VS/24.7mA
ZO Open loop output impedanceƒ = 1 KHz, IO = 0 A90
FREQUENCY RESPONSE
GBPGain-bandwidth product CL = 20 pF, RL = 10 MΩ, VS = 5V8kHz
SRSlew rate (10% to 90%)G = 1, Rising Edge, CL = 20 pF, VS = 5V2 V/ms
G = 1, Falling Edge, CL = 20 pF, VS = 5V2.1
POWER
SUPPLY
IQQuiescent Current, LPV811VCM = V-, IO = 0, VS = 3.3V450540nA
Quiescent Current,
Per Channel, LPV812
VCM = V-, IO = 0, VS = 3.3V425495

Typical Characteristics

at TA = 25°C, RL = 10MΩ to VS/2 ,CL = 20pF, VCM = VS / 2V unless otherwise specified.
LPV811 LPV812 811_Dist_1p8.png
VS = 1.8V LPV811
TA = 25°CVCM = V-RL=No Load
Figure 1. Offset Distribution of LPV811
LPV811 LPV812 812A_Dist_1p8.png
VS = 1.8V LPV812, Channel A
TA = 25°CVCM = V-RL=No Load
Figure 3. Offset Distribution of LPV812, CH A
LPV811 LPV812 812A_Dist_1p8.png
VS =1.8V LPV812, Channel B
TA = 25°CVCM = V-RL=No Load
Offset Distribution of LPV812, CH B
LPV811 LPV812 TG_811_Iq_Vs_Vs.png
VCM = V- LPV811 RL=No Load
Figure 6. Supply Current vs. Supply Voltage, LPV811
LPV811 LPV812 TG_Vos_Vcm_1p8.png
VS= 1.8V RL= 10MΩ
Figure 8. Typical Offset Voltage vs. Common Mode Voltage
LPV811 LPV812 TG_812_Vos_Vcm_5V.png
VS= 5V RL= 10MΩ
Figure 10. Typical Offset Voltage vs. Common Mode Voltage
LPV811 LPV812 IB_VCM_1p8V_m40.png
VS= 1.8V TA = -40°C
Figure 12. Input Bias Current vs. Common Mode Voltage
LPV811 LPV812 IB_VCM_1p8V_25C.png
VS= 1.8V TA = 25°C
Figure 14. Input Bias Current vs. Common Mode Voltage
LPV811 LPV812 IB_VCM_1p8V_125C.png
VS= 1.8V TA = 125°C
Figure 16. Input Bias Current vs. Common Mode Voltage
LPV811 LPV812 TG_Isrc_Vo_18V.png
VS= 1.8V RL= No Load
Figure 18. Output Swing vs. Sourcing Current, 1.8V
LPV811 LPV812 TG_Isrc_Vo_3p3.png
VS= 3.3V RL= No Load
Figure 20. Output Swing vs. Sourcing Current, 3.3V
LPV811 LPV812 TG_Isrc_Vo_5V.png
VS= 5V RL= No Load
Figure 22. Output Swing vs. Sourcing Current, 5V
LPV811 LPV812 TG_SSPULSE_1p8.png
TA = 25 RL= 10MΩ Vout = 200mVpp
VS= ±0.9V CL= 20pF AV = +1
Figure 24. Small Signal Pulse Response, 1.8V
LPV811 LPV812 TG_LSPULSE_1p8.png
TA = 25 RL= 10MΩ Vout = 1Vpp
VS= ±0.9V CL= 20pF AV = +1
Figure 26. Large Signal Pulse Response, 1.8V
LPV811 LPV812 802_CMRR_vs_Freq.png
TA = 25 RL= 10MΩ ΔVCM = 0.5Vpp
VS= 5V CL= 20p
VCM = Vs/2 AV = +1
Figure 28. CMRR vs Frequency
LPV811 LPV812 AVPH_5V_10M.png
TA = -40, 25, 125°C RL= 10MΩ VOUT = 200mVPP
VS= 5V CL= 20pF VCM = Vs/2
Figure 30. Open Loop Gain and Phase, 5V, 10 MΩ Load
LPV811 LPV812 AVPH_1p8V_1M.png
TA = -40, 25, 125°C RL= 1MΩ VOUT = 200mVPP
VS= 5V CL= 20pF VCM = Vs/2
Figure 32. Open Loop Gain and Phase, 5V, 1 MΩ Load
LPV811 LPV812 AVPH_5V_100k.png
TA = -40, 25, 125°C RL= 100kΩ VOUT = 200mVPP
VS= 5V CL= 20pF VCM = Vs/2
Figure 34. Open Loop Gain and Phase, 5V, 100kΩ Load
LPV811 LPV812 AVPH_1p8V_10M.png
TA = -40, 25, 125°C RL= 10MΩ VOUT = 200mVPP
VS= 1.8V CL= 20pF VCM = Vs/2
Figure 36. Open Loop Gain and Phase, 1.8V, 10 MΩ Load
LPV811 LPV812 AVPH_1p8V_1M.png
TA = -40, 25, 125°C RL= 1MΩ VOUT = 200mVPP
VS= 1.8V CL= 20pF VCM = Vs/2
Figure 38. Open Loop Gain and Phase, 1.8V, 1 MΩ Load
LPV811 LPV812 AVPH_1p8V_100k.png
TA = -40, 25, 125°C RL= 100kΩ VOUT = 200mVPP
VS= 1.8V CL= 20pF VCM = Vs/2
Figure 40. Open Loop Gain and Phase, 1.8V, 100kΩ Load
LPV811 LPV812 811_Dist_3p3.png
VS = 3.3V LPV811
TA = 25°CVCM = V-RL=No Load
Figure 2. Offset Distribution of LPV811
LPV811 LPV812 812A_Dist_3p3.png
VS = 3.3V LPV812, Channel A
TA = 25°CVCM = V-RL=No Load
Figure 4. Offset Distribution of LPV812, CH A
LPV811 LPV812 812B_Dist_3p3.png
VS = 3.3V LPV812, Channel B
TA = 25°CVCM = V-RL=No Load
Figure 5. Offset Distribution of LPV812, CH B
LPV811 LPV812 TG_812_Iq_Vs_Vs.png
VCM = V- LPV812 RL=No Load
Figure 7. Supply Current vs. Supply Voltage, LPV812
LPV811 LPV812 TG_Vos_Vcm_3p3V.png
VS= 3.3V RL= 10MΩ
Figure 9. Typical Offset Voltage vs. Common Mode Voltage
LPV811 LPV812 Ib_vs_Temp.png
VS= 5V TA = -40 to 125 VCM = Vs/2
Figure 11. Input Bias Current vs. Temperature
LPV811 LPV812 IB_VCM_5V_m40.png
VS= 5V TA = -40°C
Figure 13. Input Bias Current vs. Common Mode Voltage
LPV811 LPV812 IB_VCM_5V_25C.png
VS= 5V TA = 25°C
Figure 15. Input Bias Current vs. Common Mode Voltage
LPV811 LPV812 IB_VCM_5V_125C.png
VS= 5V TA = 125°C
Figure 17. Input Bias Current vs. Common Mode Voltage
LPV811 LPV812 TG_Isnk_Vo_18V.png
VS= 1.8V RL= No Load
Figure 19. Output Swing vs. Sinking Current, 1.8V
LPV811 LPV812 TG_Isnk_Vo_3V.png
VS= 3.3V RL= No Load
Figure 21. Output Swing vs. Sinking Current, 3.3V
LPV811 LPV812 TG_Isnk_Vo_5V.png
VS= 5V RL= No Load
Figure 23. Output Swing vs. Sinking Current, 5V
LPV811 LPV812 TG_SSPULSE_5.png
TA = 25 RL= 10MΩ Vout = 200mVpp
VS= ±2.5V CL= 20pF AV = +1
Figure 25. Small Signal Pulse Response, 5V
LPV811 LPV812 TG_LSPULSE_5.png
TA = 25 RL= 10MΩ Vout = 2Vpp
VS= ±2.5V CL= 20pF AV = +1
Figure 27. Large Signal Pulse Response, 5V
LPV811 LPV812 PSRR_VS_FREQ.png
TA = 25 RL= 10MΩ ΔVS = 0.5Vpp
VS= 3.3V CL= 20p
VCM = Vs/2 AV = +1
Figure 29. ±PSRR vs Frequency
LPV811 LPV812 AVPH_3V_10M.png
TA = -40, 25, 125°C RL= 10MΩ VOUT = 200mVPP
VS= 3.3V CL= 20pF VCM = Vs/2
Figure 31. Open Loop Gain and Phase, 3.3V, 10 MΩ Load
LPV811 LPV812 AVPH_3V_1M.png
TA = -40, 25, 125°C RL= 1MΩ VOUT = 200mVPP
VS= 3.3V CL= 20pF VCM = Vs/2
Figure 33. Open Loop Gain and Phase, 3.3V, 1 MΩ Load
LPV811 LPV812 AVPH_3V_100k.png
TA = -40, 25, 125°C RL= 100kΩ VOUT = 200mVPP
VS= 3.3V CL= 20pF VCM = Vs/2
Figure 35. Open Loop Gain and Phase, 3.3V, 100kΩ Load
LPV811 LPV812 TG_Zout.png
TA = 25°C VS= 5 V RL= 10MΩ
Figure 37. Open Loop Output Impedance
LPV811 LPV812 Noise.png
TA = 25 RL= 1MΩ VCM = Vs/2
VS= 5V CL= 20pF AV = +1
Figure 39. Input Voltage Noise vs Frequency
LPV811 LPV812 EMIRR_3p3V.png
TA = 25 RL= 1MΩ VCM = Vs/2
VS= 3.3VCL= 20pF AV = +1
Figure 41. EMIRR Performance