SLAS734G April 2011  – April 2016 MSP430G2203 , MSP430G2233 , MSP430G2303 , MSP430G2333 , MSP430G2403 , MSP430G2433 , MSP430G2533


  1. 1Device Overview
    1. 1.1Features
    2. 1.2Applications
    3. 1.3Description
    4. 1.4Functional Block Diagrams
  2. 2Revision History
  3. 3Device Comparison
    1. 3.1Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1Pin Diagrams
    2. 4.2Signal Descriptions
  5. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Active Mode Supply Current Into VCC Excluding External Current
    5. 5.5 Typical Characteristics, Active Mode Supply Current (Into VCC)
    6. 5.6 Low-Power Mode Supply Currents (Into VCC) Excluding External Current
    7. 5.7 Typical Characteristics, Low-Power Mode Supply Currents
    8. 5.8 Thermal Resistance Characteristics
    9. 5.9 Schmitt-Trigger Inputs, Ports Px
    10. 5.10Leakage Current, Ports Px
    11. 5.11Outputs, Ports Px
    12. 5.12Output Frequency, Ports Px
    13. 5.13Typical Characteristics - Outputs
    14. 5.14Pin-Oscillator Frequency - Ports Px
    15. 5.15Typical Characteristics - Pin-Oscillator Frequency
    16. 5.16POR, BOR
    17. 5.17Main DCO Characteristics
    18. 5.18DCO Frequency
    19. 5.19Calibrated DCO Frequencies, Tolerance
    20. 5.20Wake-up Times From Lower-Power Modes (LPM3, LPM4)
    21. 5.21Typical Characteristics, DCO Clock Wake-up Time From LPM3 or LPM4
    22. 5.22Crystal Oscillator, XT1, Low-Frequency Mode
    23. 5.23Internal Very-Low-Power Low-Frequency Oscillator (VLO)
    24. 5.24Timer_A
    25. 5.25USCI (UART Mode)
    26. 5.26USCI (SPI Master Mode)
    27. 5.27USCI (SPI Slave Mode)
    28. 5.28USCI (I2C Mode)
    29. 5.2910-Bit ADC, Power Supply and Input Range Conditions (MSP430G2x33 Only)
    30. 5.3010-Bit ADC, Built-In Voltage Reference (MSP430G2x33 Only)
    31. 5.3110-Bit ADC, External Reference (MSP430G2x33 Only)
    32. 5.3210-Bit ADC, Timing Parameters (MSP430G2x33 Only)
    33. 5.3310-Bit ADC, Linearity Parameters (MSP430G2x33 Only)
    34. 5.3410-Bit ADC, Temperature Sensor and Built-In VMID (MSP430G2x33 Only)
    35. 5.35Flash Memory
    36. 5.36RAM
    37. 5.37JTAG and Spy-Bi-Wire Interface
    38. 5.38JTAG Fuse
  6. 6Detailed Description
    1. 6.1 CPU
    2. 6.2 Instruction Set
    3. 6.3 Operating Modes
    4. 6.4 Interrupt Vector Addresses
    5. 6.5 Special Function Registers (SFRs)
    6. 6.6 Memory Organization
    7. 6.7 Bootloader (BSL)
    8. 6.8 Flash Memory
    9. 6.9 Peripherals
      1. 6.9.1Oscillator and System Clock
      2. 6.9.2Calibration Data Stored in Information Memory Segment A
      3. 6.9.3Brownout
      4. 6.9.4Digital I/O
      5. 6.9.5WDT+ Watchdog Timer
      6. 6.9.6Timer_A3 (TA0, TA1)
      7. 6.9.7Universal Serial Communications Interface (USCI)
      8. 6.9.8ADC10 (MSP430G2x33 Only)
      9. 6.9.9Peripheral File Map
    10. 6.10I/O Port Diagrams
      1. 6.10.1Port P1 Pin Diagram: P1.0 to P1.2, Input/Output With Schmitt Trigger
      2. 6.10.2Port P1 Pin Diagram: P1.3, Input/Output With Schmitt Trigger
      3. 6.10.3Port P1 Pin Diagram: P1.4, Input/Output With Schmitt Trigger
      4. 6.10.4Port P1 Pin Diagram: P1.5 to P1.7, Input/Output With Schmitt Trigger
      5. 6.10.5Port P2 Pin Diagram: P2.0 to P2.5, Input/Output With Schmitt Trigger
      6. 6.10.6Port P2 Pin Diagram: P2.6, Input/Output With Schmitt Trigger
      7. 6.10.7Port P2 Pin Diagram: P2.7, Input/Output With Schmitt Trigger
      8. 6.10.8Port P3 Pin Diagram: P3.0 to P3.7, Input/Output With Schmitt Trigger (RHB and PW28 Package Only)
  7. 7Device and Documentation Support
    1. 7.1Getting Started and Next Steps
    2. 7.2Device Nomenclature
    3. 7.3Tools and Software
    4. 7.4Documentation Support
    5. 7.5Related Links
    6. 7.6Community Resources
    7. 7.7Trademarks
    8. 7.8Electrostatic Discharge Caution
    9. 7.9Glossary
  8. 8Mechanical, Packaging, and Orderable Information

1 Device Overview

1.1 Features

  • Low Supply-Voltage Range: 1.8 V to 3.6 V
  • Ultra-Low Power Consumption
    • Active Mode: 230 µA at 1 MHz, 2.2 V
    • Standby Mode: 0.5 µA
    • Off Mode (RAM Retention): 0.1 µA
  • Five Power-Saving Modes
  • Ultra-Fast Wake up From Standby Mode in Less Than 1 µs
  • 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time
  • Basic Clock Module Configurations
    • Internal Frequencies up to 16 MHz With Four Calibrated Frequencies
    • Internal Very-Low-Power Low-Frequency (LF) Oscillator
    • 32-kHz Crystal
    • External Digital Clock Source
  • Two 16-Bit Timer_A With Three Capture/Compare Registers
  • Up to 24 Capacitive-Touch Enabled I/O Pins
  • Universal Serial Communication Interface (USCI)
    • Enhanced UART Supports Automatic Baud-Rate Detection (LIN)
    • IrDA Encoder and Decoder
    • Synchronous SPI
    • I2C
  • 10-Bit 200-ksps Analog-to-Digital Converter (ADC) With Internal Reference, Sample-and-Hold, and Autoscan (See Table 3-1)
  • Brownout Detector
  • Serial Onboard Programming,
    No External Programming Voltage Needed,
    Programmable Code Protection by Security Fuse
  • On-Chip Emulation Logic With Spy-Bi-Wire Interface
  • Section 3 Summarizes Available Family Members
  • Package Options
    • TSSOP: 20 Pin, 28 Pin
    • PDIP: 20 Pin
    • QFN: 32 Pin
  • For Complete Module Descriptions, See the MSP430x2xx Family User’s Guide (SLAU144)

1.2 Applications

  • Power Management
  • Sensor Interface
  • Capacitive Touch

1.3 Description

The TI MSP family of ultra-low-power microcontrollers consists of several devices that feature different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in less than 1 µs.

The MSP430G2x03 and MSP430G2x33 devices are ultra-low-power mixed-signal microcontrollers with built-in 16-bit timers, up to 24 I/O capacitive-touch enabled pins, and built-in communication capability using the USCI. In addition, the MSP430G2x33 family members have a 10-bit ADC. See Section 3 for configuration details.

Typical applications include low-cost sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system.

Device Information(1)

MSP430G2533IRHBVQFN (32)5 mm × 5 mm
MSP430G2533IPWTSSOP (28)9.7 mm × 4.4 mm
TSSOP (20)6.5 mm × 4.4 mm
MSP430G2533INPDIP (20)24.33 mm × 6.35 mm
(1) For the most current part, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI website at
(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8.

1.4 Functional Block Diagrams

Figure 1-1 shows the functional block diagram of the MSP430G2x33 MCUs.

MSP430G2533 MSP430G2433 MSP430G2333 MSP430G2233 MSP430G2403 MSP430G2303 MSP430G2203 fbd_g2x33_las734.gif


Port P3 is available on 28-pin and 32-pin devices only.
Figure 1-1 Functional Block Diagram, MSP430G2x33

Figure 1-2 shows the functional block diagram of the MSP430G2x03 MCUs.

MSP430G2533 MSP430G2433 MSP430G2333 MSP430G2233 MSP430G2403 MSP430G2303 MSP430G2203 fbd_g2x03_las734.gif


Port P3 is available on 28-pin and 32-pin devices only.
Figure 1-2 Functional Block Diagram, MSP430G2x03