SBAS796 July   2017 ONET2804TLP

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 DC Electrical Characteristics
    5. 6.5 AC Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics: General
    8. 6.8 Typical Characteristics: Eye Diagrams
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Signal Path
      2. 7.3.2 Gain Adjustment
      3. 7.3.3 Amplitude Adjustment
      4. 7.3.4 Rate Select
      5. 7.3.5 Threshold Adjustment
      6. 7.3.6 Filter Circuitry
      7. 7.3.7 AGC and RSSI
    4. 7.4 Device Functional Modes
      1. 7.4.1 Pad Control
      2. 7.4.2 Two-Wire Interface Control
    5. 7.5 Programming
      1. 7.5.1 Bus Idle
      2. 7.5.2 Start Data Transfer
      3. 7.5.3 Stop Data Transfer
      4. 7.5.4 Data Transfer
      5. 7.5.5 Acknowledge
    6. 7.6 Register Maps
      1. 7.6.1  Register Descriptions
      2. 7.6.2  Register 0: Control Settings (address = 00h) [reset = 0h]
      3. 7.6.3  Register 1: Amplitude and Rate for Channel 1 (address = 01h) [reset = 0h]
      4. 7.6.4  Register 2: Threshold and Gain for Channel 1 (address = 02h) [reset = 0h]
      5. 7.6.5  Register 7: Amplitude and Rate for Channel 2 (address = 07h) [reset = 0h]
      6. 7.6.6  Register 8: Threshold and Gain for Channel 1 (address = 08h) [reset = 0h]
      7. 7.6.7  Register 13: Amplitude and Rate for Channel 3 (address = 0Dh) [reset = 0h]
      8. 7.6.8  Register 14: Threshold and Gain for Channel 3 (address = 0Eh) [reset = 0h]
      9. 7.6.9  Register 19: Amplitude and Rate for Channel 4 (address = 13h) [reset = 0h]
      10. 7.6.10 Register 20: Threshold and Gain for Channel 4 (address = 14h) [reset = 0h]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Pad Control Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Two-Wire Control Application
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
  • Y|0
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device and Documentation Support

Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

Trademarks

E2E is a trademark of Texas Instruments.

GPPO is a registered trademark of Gilbert Incorporated.

All other trademarks are the property of their respective owners.

Electrostatic Discharge Caution

esds-image

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.