SN74AVCB164245-Q1

ACTIVE

Product details

Technology family AVC Bits (#) 16 High input voltage (min) (V) 0.91 High input voltage (max) (V) 3.6 Vout (min) (V) 1.4 Vout (max) (V) 3.6 Data rate (max) (Mbps) 200 IOH (max) (mA) -12 IOL (max) (mA) 12 Supply current (max) (µA) 80 Features Output damping resistors, Output enable, Overvoltage tolerant inputs, Partial power down (Ioff) Input type Standard CMOS Output type 3-State, Balanced CMOS, Push-Pull Rating Automotive Operating temperature range (°C) -40 to 125
Technology family AVC Bits (#) 16 High input voltage (min) (V) 0.91 High input voltage (max) (V) 3.6 Vout (min) (V) 1.4 Vout (max) (V) 3.6 Data rate (max) (Mbps) 200 IOH (max) (mA) -12 IOL (max) (mA) 12 Supply current (max) (µA) 80 Features Output damping resistors, Output enable, Overvoltage tolerant inputs, Partial power down (Ioff) Input type Standard CMOS Output type 3-State, Balanced CMOS, Push-Pull Rating Automotive Operating temperature range (°C) -40 to 125
TSSOP (DGG) 48 101.25 mm² 12.5 x 8.1
  • Qualified for Automotive Applications
  • Member of the Texas Instruments Widebus™ Family
  • DOC™ Circuitry Dynamically Changes Output Impedance,
    Resulting in Noise Reduction Without Speed Degradation
  • Dynamic Drive Capability Is Equivalent to Standard Outputs
    With IOH and IOL of ±24 mA at 2.5-V VCC
  • Control Inputs VIH/VIL Levels Are
    Referenced to VCCB Voltage
  • If Either VCC Input Is at GND, Both Ports
    Are in the High-Impedance State
  • Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode
    Data Communications
  • Ioff Supports Partial-Power-Down Mode Operation
  • Fully Configurable Dual-Rail Design Allows Each Port to Operate
    Over Full 1.4-V to 3.6-V Power-Supply Range
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 750-V Charged-Device Model (C101)

Widebus is a trademark of Texas Instruments.
DOC is a trademark of Texas Instruments

  • Qualified for Automotive Applications
  • Member of the Texas Instruments Widebus™ Family
  • DOC™ Circuitry Dynamically Changes Output Impedance,
    Resulting in Noise Reduction Without Speed Degradation
  • Dynamic Drive Capability Is Equivalent to Standard Outputs
    With IOH and IOL of ±24 mA at 2.5-V VCC
  • Control Inputs VIH/VIL Levels Are
    Referenced to VCCB Voltage
  • If Either VCC Input Is at GND, Both Ports
    Are in the High-Impedance State
  • Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode
    Data Communications
  • Ioff Supports Partial-Power-Down Mode Operation
  • Fully Configurable Dual-Rail Design Allows Each Port to Operate
    Over Full 1.4-V to 3.6-V Power-Supply Range
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 750-V Charged-Device Model (C101)

Widebus is a trademark of Texas Instruments.
DOC is a trademark of Texas Instruments

This 16-bit (dual-octal) noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.4 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.4 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVCB164245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are effectively isolated.

The SN74AVCB164245 is designed so that the control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by VCCB.

To ensure the high-impedance state during power up or power down, OE should be tied to VCCB through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. If either VCC input is at GND, both ports are in the high-impedance state.

This 16-bit (dual-octal) noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.4 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.4 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVCB164245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are effectively isolated.

The SN74AVCB164245 is designed so that the control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by VCCB.

To ensure the high-impedance state during power up or power down, OE should be tied to VCCB through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. If either VCC input is at GND, both ports are in the high-impedance state.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 15
Type Title Date
* Data sheet SN74AVCB164245-Q1 16-Bit Dual-Supply Bus Transceiver datasheet (Rev. A) 26 May 2010
Selection guide Voltage Translation Buying Guide (Rev. A) 15 Apr 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
Application note Voltage Translation Between 3.3-V, 2.5-V, 1.8-V, and 1.5-V Logic Standards (Rev. B) 30 Apr 2015
More literature Automotive Logic Devices Brochure 27 Aug 2014
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
More literature LCD Module Interface Application Clip 09 May 2003
User guide AVC Advanced Very-Low-Voltage CMOS Logic Data Book, March 2000 (Rev. C) 20 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Dynamic Output Control (DOC) Circuitry Technology And Applications (Rev. B) 07 Jul 1999
Application note AVC Logic Family Technology and Applications (Rev. A) 26 Aug 1998

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins Download
TSSOP (DGG) 48 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos