SN74LVC138A-EP

ACTIVE

Product details

Technology family LVC Number of channels 1 Operating temperature range (°C) -55 to 125 Rating HiRel Enhanced Product Supply current (max) (µA) 10
Technology family LVC Number of channels 1 Operating temperature range (°C) -55 to 125 Rating HiRel Enhanced Product Supply current (max) (µA) 10
SOIC (D) 16 59.4 mm² 9.9 x 6 TSSOP (PW) 16 32 mm² 5 x 6.4
  • ESD Protection Exceeds 2000 V Per
    MIL-STD-883, Method 3015; Exceeds 200 V
    Using Machine Model (C = 200 pF, R = 0)
  • Operates From 2 V to 3.6 V
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 5.8 ns at 3.3 V
  • Typical VOLP (Output Ground Bounce)
    < 0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
    > 2 V at VCC = 3.3 V, TA = 25°C
  • SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS
    • Controlled Baseline
    • One Assembly/Test Site
    • One Fabrication Site
    • Available in Military (–55°C/125°C) Temperature Range(1)
    • Extended Product Life Cycle
    • Extended Product-Change Notification
    • Product Traceability

(1) Custom temperature ranges available

  • ESD Protection Exceeds 2000 V Per
    MIL-STD-883, Method 3015; Exceeds 200 V
    Using Machine Model (C = 200 pF, R = 0)
  • Operates From 2 V to 3.6 V
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 5.8 ns at 3.3 V
  • Typical VOLP (Output Ground Bounce)
    < 0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
    > 2 V at VCC = 3.3 V, TA = 25°C
  • SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS
    • Controlled Baseline
    • One Assembly/Test Site
    • One Fabrication Site
    • Available in Military (–55°C/125°C) Temperature Range(1)
    • Extended Product Life Cycle
    • Extended Product-Change Notification
    • Product Traceability

(1) Custom temperature ranges available

The SN74LVC138A 3-line to 8-line decoder/demultiplexer is designed for 2.7-V to 3.6-V VCC operation.

The device is designed for high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder minimizes the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, delay times of this decoder and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The conditions at the binary-select inputs and the three enable inputs select one of eight output lines. Two active-low enable inputs and one active-high enable input reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

The SN74LVC138A 3-line to 8-line decoder/demultiplexer is designed for 2.7-V to 3.6-V VCC operation.

The device is designed for high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder minimizes the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, delay times of this decoder and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The conditions at the binary-select inputs and the three enable inputs select one of eight output lines. Two active-low enable inputs and one active-high enable input reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 29
Type Title Date
* Data sheet 3-Line to 8-Line Decoder/Demultiplexer datasheet (Rev. D) 04 Nov 2008
* VID SN74LVC138A-EP VID V6204657 21 Jun 2016
* Radiation & reliability report SN74LVC138AQPWREP Reliability Report 08 Jan 2016
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Product overview Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits 06 Nov 2003
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) 18 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS 27 Mar 2002
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note LVC Characterization Information 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Design guide Low-Voltage Logic (LVC) Designer's Guide 01 Sep 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins Download
SOIC (D) 16 View options
TSSOP (PW) 16 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos