SN74LVC2G17-Q1

ACTIVE

Product details

Technology family LVC Supply voltage (min) (V) 1.65 Supply voltage (max) (V) 5.5 Number of channels 2 IOL (max) (mA) 32 Supply current (max) (µA) 10 IOH (max) (mA) -32 Input type Schmitt-Trigger Output type Push-Pull Features Balanced outputs, Over-voltage tolerant inputs, Partial power down (Ioff), Very high speed (tpd 5-10ns) Rating Automotive Operating temperature range (°C) -40 to 125
Technology family LVC Supply voltage (min) (V) 1.65 Supply voltage (max) (V) 5.5 Number of channels 2 IOL (max) (mA) 32 Supply current (max) (µA) 10 IOH (max) (mA) -32 Input type Schmitt-Trigger Output type Push-Pull Features Balanced outputs, Over-voltage tolerant inputs, Partial power down (Ioff), Very high speed (tpd 5-10ns) Rating Automotive Operating temperature range (°C) -40 to 125
SOT-SC70 (DCK) 6 4.2 mm² 2 x 2.1
  • Qualified for Automotive Applications
  • Supports 5-V VCC Operation
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 5.4 ns at 3.3 V
  • Low Power Consumption, 10-µA Max ICC
  • ±24-mA Output Drive at 3.3 V
  • Typical VOLP (Output Ground Bounce)
    <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
    >2 V at VCC = 3.3 V, TA = 25°C
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 1000-V Charged-Device Model (C101)

  • Qualified for Automotive Applications
  • Supports 5-V VCC Operation
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 5.4 ns at 3.3 V
  • Low Power Consumption, 10-µA Max ICC
  • ±24-mA Output Drive at 3.3 V
  • Typical VOLP (Output Ground Bounce)
    <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
    >2 V at VCC = 3.3 V, TA = 25°C
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 1000-V Charged-Device Model (C101)

This dual Schmitt-trigger buffer is designed for 1.65-V to 5.5-V VCC operation.

The SN74LVC2G17 contains two buffers and performs the Boolean function Y = A. The device functions as two independent buffers, but because of Schmitt action, it may have different input threshold levels for positive-going (VT+) and negative-going (VT-) signals.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

This dual Schmitt-trigger buffer is designed for 1.65-V to 5.5-V VCC operation.

The SN74LVC2G17 contains two buffers and performs the Boolean function Y = A. The device functions as two independent buffers, but because of Schmitt action, it may have different input threshold levels for positive-going (VT+) and negative-going (VT-) signals.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 29
Type Title Date
* Data sheet Dual Schmitt-Trigger Buffer datasheet (Rev. B) 09 Apr 2008
Functional safety information SN74LVC2G17-Q1 Functional Safety, FIT Rate, Failure Mode Distribution and Pin FM PDF | HTML 17 Nov 2021
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
More literature Automotive Logic Devices Brochure 27 Aug 2014
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Product overview Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits 06 Nov 2003
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) 18 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS 27 Mar 2002
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note LVC Characterization Information 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Design guide Low-Voltage Logic (LVC) Designer's Guide 01 Sep 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

5-8-LOGIC-EVM — Generic logic evaluation module for 5-pin to 8-pin DCK, DCT, DCU, DRL and DBV packages

Flexible EVM designed to support any device that has a DCK, DCT, DCU, DRL, or DBV package in a 5 to 8 pin count.
User guide: PDF
Not available on TI.com
Simulation model

SN74LVC2G17 Behavioral SPICE Model

SCEM615.ZIP (7 KB) - PSpice Model
Reference designs

TIDA-010253 — Battery control unit reference design for energy storage systems

This reference design is a central controller for a high-voltage Lithium-ion (Li-ion), lithium iron phosphate (LiFePO4) battery rack. This design provides driving circuits for high-voltage relay, communication interfaces, (including RS-485, controller area network (CAN), daisy chain, and Ethernet), (...)
Design guide: PDF
Reference designs

TIDA-01168 — Bidirectional DC/DC Converter Reference Design for 12-V/48-V Automotive Systems

The TIDA-01168 reference design is a four-phase, bidirectional DC-DC converter development platform for 12-V/48-V automotive systems. The system uses two LM5170-Q1 current controllers and a TMS320F28027F microcontroller (MCU) for the power stage control. LM5170-Q1 subsystems use average current (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-060009 — Automotive Power Trunk Lift Motor Drive Reference Design

This design describes how to drive an automotive trunk lift or rear gate lift.

In this design, a brushed BD lift motor and electromagnetic clutch drive mechanisms for a typical gear driven lift. This design includes a warning beeper, LED indicator, and directional control that uses an automotive (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00580 — Automotive-Qualified 16-Bit Rotary Quadrature Decoder Reference Design

People prefer to use knobs over touchscreens in many situations.  This solution minimizes the required connections to a microcontroller to monitor a rotary quadrature encoder's direction and distance of rotation.
Design guide: PDF
Schematic: PDF
Package Pins Download
SOT-SC70 (DCK) 6 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos