TLV172

ACTIVE

Single, 36-V, 10-MHz, low-power operational amplifier for cost-sensitive applications

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TLV9361 ACTIVE Single, 40-V, 10.6-MHz rail-to-rail output operational amplifier Wider supply range (4.5 V to 40 V), higher GBW (10.6 MHz), faster slew rate (25 V/us), lower noise (8.5 nV/√Hz)

Product details

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 36 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4.5 Rail-to-rail In to V-, Out GBW (typ) (MHz) 10 Slew rate (typ) (V/µs) 10 Vos (offset voltage at 25°C) (max) (mV) 1.7 Iq per channel (typ) (mA) 1.6 Vn at 1 kHz (typ) (nV√Hz) 9 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 1 Features Cost Optimized, EMI Hardened CMRR (typ) (dB) 116 Iout (typ) (A) 0.075 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) -2 Output swing headroom (to negative supply) (typ) (V) 0.07 Output swing headroom (to positive supply) (typ) (V) -0.07
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 36 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4.5 Rail-to-rail In to V-, Out GBW (typ) (MHz) 10 Slew rate (typ) (V/µs) 10 Vos (offset voltage at 25°C) (max) (mV) 1.7 Iq per channel (typ) (mA) 1.6 Vn at 1 kHz (typ) (nV√Hz) 9 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 1 Features Cost Optimized, EMI Hardened CMRR (typ) (dB) 116 Iout (typ) (A) 0.075 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) -2 Output swing headroom (to negative supply) (typ) (V) 0.07 Output swing headroom (to positive supply) (typ) (V) -0.07
SOIC (D) 8 29.4 mm² 4.9 x 6 SOT-23 (DBV) 5 8.12 mm² 2.9 x 2.8 SOT-SC70 (DCK) 5 4.2 mm² 2 x 2.1
  • Supply Range: 4.5 V to 36 V, ±2.25 V to ±18 V
  • Low Noise: 9 nV/√Hz
  • Low Offset Drift: ±1 µV/°C (Typical)
  • EMI-Hardened
  • Input Range Includes Negative Supply
  • Rail-to-Rail Output
  • Gain Bandwidth: 10 MHz
  • Slew Rate: 10 V/µs
  • Low Quiescent Current: 1.6 mA per Amplifier
  • High Common-Mode Rejection: 116 dB (Typical)
  • Low Input Bias Current: 10 pA
  • Supply Range: 4.5 V to 36 V, ±2.25 V to ±18 V
  • Low Noise: 9 nV/√Hz
  • Low Offset Drift: ±1 µV/°C (Typical)
  • EMI-Hardened
  • Input Range Includes Negative Supply
  • Rail-to-Rail Output
  • Gain Bandwidth: 10 MHz
  • Slew Rate: 10 V/µs
  • Low Quiescent Current: 1.6 mA per Amplifier
  • High Common-Mode Rejection: 116 dB (Typical)
  • Low Input Bias Current: 10 pA

The TLVx172 family of electromagnetic interference (EMI)-hardened, 36-V, single-supply, low-noise operational amplifiers (op amps) features a THD+N of 0.0002% at 1 kHz with the ability to operate on supplies ranging from 4.5 V (±2.25 V) to 36 V (±18V). These features, along with low noise and very high PSRR, enable the TLVx172 to amplify microvolt-level signals in applications such as HEV and EV automobiles and power trains, medical instrumentation, and more. The TLVx172 device offers good offset and drift, a high bandwidth of 10 MHz, and a slew rate of 10 V/µs with only 2.3 mA of quiescent current over temperature (maximum).

Unlike most op amps that are specified at only one supply voltage, the TLVx172 device is specified from 4.5 V to 36 V. Input signals beyond the supply rails do not cause phase reversal. TLVx172 device is stable with capacitive loads up to 300 pF. The input can operate 100 mV below the negative rail and within 2 V of the positive rail for normal operation. Note that the device can operate with a full rail-to-rail input 100 mV beyond the positive rail, but with reduced performance within 2 V of the positive rail.

The TLVx172 op amp is specified from –40°C to +125°C.

The TLVx172 family of electromagnetic interference (EMI)-hardened, 36-V, single-supply, low-noise operational amplifiers (op amps) features a THD+N of 0.0002% at 1 kHz with the ability to operate on supplies ranging from 4.5 V (±2.25 V) to 36 V (±18V). These features, along with low noise and very high PSRR, enable the TLVx172 to amplify microvolt-level signals in applications such as HEV and EV automobiles and power trains, medical instrumentation, and more. The TLVx172 device offers good offset and drift, a high bandwidth of 10 MHz, and a slew rate of 10 V/µs with only 2.3 mA of quiescent current over temperature (maximum).

Unlike most op amps that are specified at only one supply voltage, the TLVx172 device is specified from 4.5 V to 36 V. Input signals beyond the supply rails do not cause phase reversal. TLVx172 device is stable with capacitive loads up to 300 pF. The input can operate 100 mV below the negative rail and within 2 V of the positive rail for normal operation. Note that the device can operate with a full rail-to-rail input 100 mV beyond the positive rail, but with reduced performance within 2 V of the positive rail.

The TLVx172 op amp is specified from –40°C to +125°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 3
Type Title Date
* Data sheet TLVx172 36-V, single-supply, low-power operational amplifier for cost-sensitive systems datasheet (Rev. C) PDF | HTML 21 Jan 2019
Circuit design Full-wave rectifier circuit (Rev. A) 01 Feb 2019
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP adapter evaluation module (DIP-ADAPTER-EVM), which provides a fast, easy and inexpensive way to interface with small surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them (...)

User guide: PDF
Not available on TI.com
Evaluation board

DIYAMP-EVM — Universal do-it-yourself (DIY) amplifier circuit evaluation module

The DIYAMP-EVM is an evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is available in three industry-standard packages (SC70, SOT-23 and SOIC) (...)

User guide: PDF | HTML
Simulation model

TLVX172 PSpice Model (Rev. C)

SBOMA92C.ZIP (22 KB) - PSpice Model
Simulation model

TLVX172 TINA-TI Spice Model (Rev. A)

SBOMA93A.ZIP (8 KB) - TINA-TI Spice Model
Simulation model

TLVx172 TINA-TI Reference Design (Rev. A)

SBOMA94A.TSC (338 KB) - TINA-TI Reference Design
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060008 — Full-wave rectifier circuit

This absolute value circuit can turn alternating current (AC) signals to single polarity signals. This circuit functions with limited distortion for ±10-V input signals at frequencies up to 50kHz and for signals as small as ±25mV at frequencies up to 1kHz.
User guide: PDF
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Design tool

SBOC507 Simulation for Full-Wave Rectifier

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV172 Single, 36-V, 10-MHz, low-power operational amplifier for cost-sensitive applications
Precision op amps (Vos<1mV)
OPA197 Single, 36-V, precision, rail-to-rail input output, low offset voltage op amp
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Reference designs

TIDA-010237 — AC and DC current fault detection reference design

This reference design detects mA-level AC and DC ground fault currents. An auto-oscillation circuit is implemented using a DRV8220 H-bridge that drives the magnetic core in and out of saturation. In addition, an active filter circuit is implemented to identify fault current signal and level.
Design guide: PDF
Package Pins Download
SOIC (D) 8 View options
SOT-23 (DBV) 5 View options
SOT-SC70 (DCK) 5 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos