SBOS518E May   2011  – April 2015 TMP006

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Spectral Responsivity
      2. 8.3.2 Field of View and Angular Response
      3. 8.3.3 Thermopile Principles and Operation
      4. 8.3.4 Object Temperature Calculation
      5. 8.3.5 Calibration
      6. 8.3.6 Sensor Voltage Format
      7. 8.3.7 Temperature Format
      8. 8.3.8 Serial Interface
        1. 8.3.8.1 Serial Bus Address
        2. 8.3.8.2 Read and Write Operations
        3. 8.3.8.3 Two-Wire Timing Diagrams
    4. 8.4 Device Functional Modes
    5. 8.5 Register Maps
      1. 8.5.1 Sensor Voltage Result (VSENSOR) Register (address = 00h) [reset = 0000000000000000]
      2. 8.5.2 Temperature (TDIE) Register (address = 01h) [reset = 0000000000000000]
      3. 8.5.3 Configuration Register (address = 02h) [reset = 0111010000000000]
      4. 8.5.4 Manufacturer and Device ID Registers
        1. 8.5.4.1 Manufacturer ID Register (address = FEh) [reset = 0101010001001001]
        2. 8.5.4.2 Device ID Register (address = FFh) [reset = 0000000001100111]
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Wide-Range Calibration Example: TOBJ = 0°C to 60°C, Common vs Unit Calibration
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Wide-Range Calibration
          2. 9.2.1.2.2 Verifying the Calibration
        3. 9.2.1.3 Application Curves
    3. 9.3 System Examples
      1. 9.3.1 Use of NEP, NETD, and Responsivity in Estimating System Performance
  10. 10Power-Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

11 Layout

11.1 Layout Guidelines

The IR thermopile sensor in the TMP006 and TMP006B is as susceptible to conducted and radiant IR energy from below the sensor on the PCB as it is to the IR energy from objects in its forward-looking field of view. When the area of PCB below the TMP006 or TMP006B is at the same temperature as the die or substrate of the TMP006 or TMP006B, heat is not transferred between the IR sensor and the PCB. However, temperature changes on a closely-placed target object or other events that lead to changes in system temperature can cause the PCB temperature and the TMP006 or TMP006B temperature to drift apart from each other. This drift in temperatures can cause a heat transfer between the IR sensor and the PCB to occur. Because of the small distance between the PCB and the bottom of the sensor, this heat energy will be conducted (as opposed to radiated) through the thin layer of air between the IR sensor and the PCB below it. This heat conduction causes offsets in the IR sensor voltage readings and ultimately leads to temperature calculation errors. To prevent and minimize these errors, the TMP006 and TMP006B layouts must address critical factors:

Thermally isolate the TMP006 and TMP006B from the rest of the PCB and any heat sources on it. Provide a stable thermal environment to reduce the noise in the measurement readings

Figure 22 illustrates the concept of thermally isolating the TMP006 and TMP006B from the PCB and external heat sources such as other components, air currents, and so on.

TMP006 TMP006B ai_thermal_isolation_sbos518.gifFigure 22. Principle of TMP006 and TMP006B Thermal Isolation

11.2 Layout Examples

For more detailed information, refer to SBOU108TMP006 Layout and Assembly Guidelines.

TMP006 TMP006B pcb01_evm_layer1_bou108.gifFigure 23. Top Layer
TMP006 TMP006B enlarged_view_bos685.gifFigure 24. Enlarged View

Use a 12-mil pad and 15-mil solder balls for A1, A2, A3, B1, B3, C1, C2 and C3.

TMP006 TMP006B pcb05_evm_layer4_bou108.gifFigure 25. Bottom Layer