Home Power management DC/DC switching regulators Step-up (boost) regulators Boost converters (integrated switch)

TPS61029-Q1

ACTIVE

0.9-V to 5.5-V input range, 1.8-A boost converter, AEC-Q100 qualified

Product details

Topology Boost Vin (min) (V) 0.9 Vin (max) (V) 5.5 Vout (min) (V) 1.8 Vout (max) (V) 5.5 Switch current limit (typ) (A) 1.8 Type Converter Regulated outputs (#) 1 Switching frequency (min) (kHz) 480 Switching frequency (max) (kHz) 600 Iq (typ) (mA) 0.025 Features Enable, Light Load Efficiency, Load Disconnect, Power good, Synchronous Rectification Duty cycle (max) (%) 100 Operating temperature range (°C) -40 to 125 Rating Automotive Thermal resistance θJA (°C/W) 47.2
Topology Boost Vin (min) (V) 0.9 Vin (max) (V) 5.5 Vout (min) (V) 1.8 Vout (max) (V) 5.5 Switch current limit (typ) (A) 1.8 Type Converter Regulated outputs (#) 1 Switching frequency (min) (kHz) 480 Switching frequency (max) (kHz) 600 Iq (typ) (mA) 0.025 Features Enable, Light Load Efficiency, Load Disconnect, Power good, Synchronous Rectification Duty cycle (max) (%) 100 Operating temperature range (°C) -40 to 125 Rating Automotive Thermal resistance θJA (°C/W) 47.2
VSON (DPN) 10 9 mm² 3 x 3 VSON (DRC) 10 9 mm² 3 x 3
  • Qualified for Automotive Applications
  • 96% Efficient Synchronous Boost Converter
  • Output Voltage Remains Regulated When Input
    Voltage Exceeds Nominal Output Voltage
  • Device Quiescent Current: 25 µA (Typ)
  • Input Voltage Range: 0.9 V to 6.5 V
  • Fixed and Adjustable Output Voltage Options
    Up to 5.5 V
  • Power Save Mode for Improved Efficiency at
    Low Output Power
  • Low Battery Comparator
  • Low EMI-Converter (Integrated Anti-ringing
    Switch)
  • Load Disconnect During Shutdown
  • Over-Temperature Protection
  • Small 3-mm × 3-mm QFN-10 Package
  • Qualified for Automotive Applications
  • 96% Efficient Synchronous Boost Converter
  • Output Voltage Remains Regulated When Input
    Voltage Exceeds Nominal Output Voltage
  • Device Quiescent Current: 25 µA (Typ)
  • Input Voltage Range: 0.9 V to 6.5 V
  • Fixed and Adjustable Output Voltage Options
    Up to 5.5 V
  • Power Save Mode for Improved Efficiency at
    Low Output Power
  • Low Battery Comparator
  • Low EMI-Converter (Integrated Anti-ringing
    Switch)
  • Load Disconnect During Shutdown
  • Over-Temperature Protection
  • Small 3-mm × 3-mm QFN-10 Package

The TPS6102x devices provide a power supply solution for products powered by either a one-cell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-polymer battery. Output currents can go as high as 200 mA while using a single-cell alkaline, and discharge it down to 0.9 V. It can also be used for generating 5 V at 500 mA from a 3.3-V rail or a Li-Ion battery. The boost converter is based on a fixed frequency, pulse-width-modulation (PWM) controller using a synchronous rectifier to obtain maximum efficiency. At low load currents, the converter enters the Power Save Mode to maintain a high efficiency over a wide load current range. The Power Save Mode can be disabled, forcing the converter to operate at a fixed switching frequency. The maximum peak current in the boost switch is limited to a value of 800 mA, 1500 mA or 1800 mA depending on the device version.

The TPS6102x devices keep the output voltage regulated even when the input voltage exceeds the nominal output voltage. The output voltage can be programmed by an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected from the battery. A low-EMI mode is implemented to reduce ringing and, in effect, lower radiated electromagnetic energy when the converter enters the discontinuous conduction mode. The device is packaged in a 10-pin VSON PowerPAD™ package.

The TPS6102x devices provide a power supply solution for products powered by either a one-cell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-polymer battery. Output currents can go as high as 200 mA while using a single-cell alkaline, and discharge it down to 0.9 V. It can also be used for generating 5 V at 500 mA from a 3.3-V rail or a Li-Ion battery. The boost converter is based on a fixed frequency, pulse-width-modulation (PWM) controller using a synchronous rectifier to obtain maximum efficiency. At low load currents, the converter enters the Power Save Mode to maintain a high efficiency over a wide load current range. The Power Save Mode can be disabled, forcing the converter to operate at a fixed switching frequency. The maximum peak current in the boost switch is limited to a value of 800 mA, 1500 mA or 1800 mA depending on the device version.

The TPS6102x devices keep the output voltage regulated even when the input voltage exceeds the nominal output voltage. The output voltage can be programmed by an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected from the battery. A low-EMI mode is implemented to reduce ringing and, in effect, lower radiated electromagnetic energy when the converter enters the discontinuous conduction mode. The device is packaged in a 10-pin VSON PowerPAD™ package.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
TPS61033 ACTIVE 5-V, 5-A boost converter with power good, output discharge and PFM/PWM control 5A/1.5A valley switch current limit and SOT583 packge with size of 2.1 x 1.2mm

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 9
Type Title Date
* Data sheet TPS6102x 96% Efficient Synchronous Boost Converters datasheet (Rev. A) PDF | HTML 08 Dec 2014
Application note QFN and SON PCB Attachment (Rev. C) PDF | HTML 06 Dec 2023
Application note 스트컨버터의 전력계 기본 계산 (Rev. D) PDF | HTML 21 Nov 2022
Application note Basic Calculation of a Boost Converter's Power Stage (Rev. D) PDF | HTML 28 Oct 2022
Application note Performing Accurate PFM Mode Efficiency Measurements (Rev. A) 11 Dec 2018
Analog Design Journal Design considerations for a resistive feedback divider in a DC/DC converter 26 Apr 2012
Application note Choosing an Appropriate Pull-up/Pull-down Resistor for Open Drain Outputs 19 Sep 2011
Analog Design Journal IQ: What it is, what it isn’t, and how to use it 17 Jun 2011
EVM User's guide TPS61020EVM: High-Efficiency Synchronous Boost Converters 17 Nov 2003

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Reference designs

PMP30003 — TPS61029 Automotive Booster Reference Design

This automotive boost converter provides 5 V at 350 mA from an input voltage of 3.3 V.
Test report: PDF
Schematic: PDF
Package Pins Download
VSON (DPN) 10 View options
VSON (DRC) 10 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos