SN65HVDA540

ACTIVE

5-V CAN Transceiver With I/O Level Shifting and Supply Optimization

A newer version of this product is available

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
TCAN1044A-Q1 ACTIVE Enhanced automotive CAN transceiver with standby Higher performance, standby mode, VIO
TCAN1057A-Q1 ACTIVE Enhanced automotive CAN transceiver with silent Higher performance, silent mode, VIO

Product details

Protocols CAN Number of channels 1 Supply voltage (V) 4.75 to 5.25 Bus fault voltage (V) -27 to 40 Signaling rate (max) (Bits) 1000000 Rating Automotive
Protocols CAN Number of channels 1 Supply voltage (V) 4.75 to 5.25 Bus fault voltage (V) -27 to 40 Signaling rate (max) (Bits) 1000000 Rating Automotive
SOIC (D) 8 29.4 mm² 4.9 x 6
  • Qualified for Automotive Applications
  • Meets or Exceeds the Requirements of ISO 11898
  • GIFT/ICT Compliant
  • ESD Protection up to ±12 kV (Human-Body Model)
    on Bus Pins
  • Level Adapting I/O Voltage Range to Support MCUs
    With Digital I/Os From 3 V to 5.25 V
  • Low-Power Standby Mode <15 µA max
    • SN65HVDA540: No Wake Up
    • SN65HVDA541: Wake Up Powered By VIO
      Supply So VCC (5 V) Supply May Be Shut
      Down to Save System Power
  • High Electromagnetic Immunity (EMI)
  • Low Electromagnetic Emissions (EME)
  • Protection
    • Undervoltage Protection on VIO and VCC
    • Bus-Fault Protection of –27 V to 40 V
    • Dominant Time-Out Function
    • Thermal Shutdown Protection
    • Power-Up/Down Glitch-Free Bus Inputs and Outputs
  • APPLICATIONS
    • SAE J2284 High-Speed CAN for Automotive Applications
    • SAE J1939 Standard Data Bus Interface
    • ISO 11783 Standard Data Bus Interface
    • NMEA 2000 Standard Data Bus Interface

(1) The signaling rate of a line is the number of voltage transitions that are made per second, expressed in the units bps (bits per second).

  • Qualified for Automotive Applications
  • Meets or Exceeds the Requirements of ISO 11898
  • GIFT/ICT Compliant
  • ESD Protection up to ±12 kV (Human-Body Model)
    on Bus Pins
  • Level Adapting I/O Voltage Range to Support MCUs
    With Digital I/Os From 3 V to 5.25 V
  • Low-Power Standby Mode <15 µA max
    • SN65HVDA540: No Wake Up
    • SN65HVDA541: Wake Up Powered By VIO
      Supply So VCC (5 V) Supply May Be Shut
      Down to Save System Power
  • High Electromagnetic Immunity (EMI)
  • Low Electromagnetic Emissions (EME)
  • Protection
    • Undervoltage Protection on VIO and VCC
    • Bus-Fault Protection of –27 V to 40 V
    • Dominant Time-Out Function
    • Thermal Shutdown Protection
    • Power-Up/Down Glitch-Free Bus Inputs and Outputs
  • APPLICATIONS
    • SAE J2284 High-Speed CAN for Automotive Applications
    • SAE J1939 Standard Data Bus Interface
    • ISO 11783 Standard Data Bus Interface
    • NMEA 2000 Standard Data Bus Interface

(1) The signaling rate of a line is the number of voltage transitions that are made per second, expressed in the units bps (bits per second).

The SN65HVDA540/SN65HVDA541 meets or exceeds the specifications of the ISO 11898 standard for use in applications employing a Controller Area Network (CAN). The device is qualified for use in automotive applications.

As a CAN transceiver, this device provides differential transmit capability to the bus and differential receive capability to a CAN controller at signaling rates up to 1 megabit per second (Mbps)(1).

Designed for operation in especially harsh environments, the SN65HVDA540/SN65HVDA541 features cross-wire, bus over voltage, loss of ground protection, over temperature thermal shut down protection, and a wide common-mode range.

The SN65HVDA540/SN65HVDA541 has an I/O supply voltage input pin (VIO , pin 5) to ratiometrically level shift the digital logic input and output levels with repsect to VIO for compatibility with protocol controllers having I/O supply voltages between 3 V and 5.25 V. The VIO supply also powers the low-power bus monitor and wake-up receiver of the SN65HVDA541 allowing the 5 V (VCC) supply to be switched off for additional power savings at the system level during standby mode for either the SN65HVDA540 or SN65HVDA541. The 5 V (VCC) supply needs to be reactivated by the local protocol controller at any time to resume high speed operation if it has been turned off for low-power standby operation. Both of the supply pins have undervoltage detection which place the device in standby mode to protect the bus during an undervoltage event on either the VCC or VIO supply pins. If VIO is undervoltage the RXD pin is 3-statedn and the device does not pass any wake-up signals from the bus to the RXD pin.

STB (pin 8) provides for two different modes of operation: normal mode or low-power standby mode. The normal mode of operation is selected by applying a low logic level to STB. If a high logic level is applied to STB, the device enters standby mode (see Figure 1 and Figure 2). In standby mode, the SN65HVDA541 provides a wake-up receiver and monitor that remains active supplied via the VIO pin so that VCC may be removed allowing a system level reduction in standby current. A dominant signal on the bus longer than the wake-up signal time (tBUS) is passed to the receiver output (RXD, pin 4) by the wake-up bus monitor circuit. The local protocol controller may then return the device to normal mode when the system needs to transmit or fully monitor the messages on the bus. If the bus has a fault condition where it is stuck dominant while the SN65HVDA541 is placed into standby mode, the device locks out the wake-up receiver output to RXD until the fault has been removed to prevent false wake-up signals in the system. Because the SN65HVDA540 does not have a low-power bus monitor and wake-up receiver, it provides a logic high output (recessive) on RXD while in standby mode.

A dominant time-out circuit prevents the driver from blocking network communication in event of a hardware or software failure. The dominant time out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is reset by the next rising edge on TXD.

The SN65HVDA540/SN65HVDA541 meets or exceeds the specifications of the ISO 11898 standard for use in applications employing a Controller Area Network (CAN). The device is qualified for use in automotive applications.

As a CAN transceiver, this device provides differential transmit capability to the bus and differential receive capability to a CAN controller at signaling rates up to 1 megabit per second (Mbps)(1).

Designed for operation in especially harsh environments, the SN65HVDA540/SN65HVDA541 features cross-wire, bus over voltage, loss of ground protection, over temperature thermal shut down protection, and a wide common-mode range.

The SN65HVDA540/SN65HVDA541 has an I/O supply voltage input pin (VIO , pin 5) to ratiometrically level shift the digital logic input and output levels with repsect to VIO for compatibility with protocol controllers having I/O supply voltages between 3 V and 5.25 V. The VIO supply also powers the low-power bus monitor and wake-up receiver of the SN65HVDA541 allowing the 5 V (VCC) supply to be switched off for additional power savings at the system level during standby mode for either the SN65HVDA540 or SN65HVDA541. The 5 V (VCC) supply needs to be reactivated by the local protocol controller at any time to resume high speed operation if it has been turned off for low-power standby operation. Both of the supply pins have undervoltage detection which place the device in standby mode to protect the bus during an undervoltage event on either the VCC or VIO supply pins. If VIO is undervoltage the RXD pin is 3-statedn and the device does not pass any wake-up signals from the bus to the RXD pin.

STB (pin 8) provides for two different modes of operation: normal mode or low-power standby mode. The normal mode of operation is selected by applying a low logic level to STB. If a high logic level is applied to STB, the device enters standby mode (see Figure 1 and Figure 2). In standby mode, the SN65HVDA541 provides a wake-up receiver and monitor that remains active supplied via the VIO pin so that VCC may be removed allowing a system level reduction in standby current. A dominant signal on the bus longer than the wake-up signal time (tBUS) is passed to the receiver output (RXD, pin 4) by the wake-up bus monitor circuit. The local protocol controller may then return the device to normal mode when the system needs to transmit or fully monitor the messages on the bus. If the bus has a fault condition where it is stuck dominant while the SN65HVDA541 is placed into standby mode, the device locks out the wake-up receiver output to RXD until the fault has been removed to prevent false wake-up signals in the system. Because the SN65HVDA540 does not have a low-power bus monitor and wake-up receiver, it provides a logic high output (recessive) on RXD while in standby mode.

A dominant time-out circuit prevents the driver from blocking network communication in event of a hardware or software failure. The dominant time out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is reset by the next rising edge on TXD.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet 5-V CAN Transceiver With I/O Level Shifting and Supply Optimization datasheet 08 May 2009

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

MMWAVEICBOOST — mmWave sensors carrier card platform

The MMWAVEICBOOST carrier card expands capabilities of select 60 GHz mmWave evaluation modules. This board provides advanced software developement, debug features such as trace and single step via TI’s Code Composers compatible debuggers. On-board Launchpad interface enables pairing with (...)

User guide: PDF | HTML
Not available on TI.com
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Reference designs

TIDEP-0091 — Power optimization for 77GHz-level transmitter reference design

TIDEP-0091 highlights strategies for power optimization of IWR14xx 76- to 81-GHz mmWave sensors in tank level-probing applications, displacement sensors, 4- to 20-mA sensors and other low-power applications for detecting range with high accuracy in a minimal power envelope. In these (...)
Design guide: PDF
Schematic: PDF
Package Pins Download
SOIC (D) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos