SN74AVC4T774

ACTIVE

Four-bit dual-supply bus transceiver with configurable voltage-level shifting and tri-state outputs

A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
SN74AXC4T774 ACTIVE 4-bit dual-supply bus transceiver with 3-state outputs and independent direction control inputs Pin-to-pin upgrade with a wider voltage range and improved performance

SN74AVC4T774

ACTIVE

Product details

Technology family AVC Applications JTAG, SPI, UART Bits (#) 4 High input voltage (min) (V) 0.78 High input voltage (max) (V) 3.6 Vout (min) (V) 1.2 Vout (max) (V) 3.6 Data rate (max) (Mbps) 380 IOH (max) (mA) -12 IOL (max) (mA) 12 Supply current (max) (µA) 16 Features Output enable, Overvoltage tolerant inputs, Partial power down (Ioff) Input type Standard CMOS Output type Balanced CMOS, Push-Pull Rating Catalog Operating temperature range (°C) -40 to 85
Technology family AVC Applications JTAG, SPI, UART Bits (#) 4 High input voltage (min) (V) 0.78 High input voltage (max) (V) 3.6 Vout (min) (V) 1.2 Vout (max) (V) 3.6 Data rate (max) (Mbps) 380 IOH (max) (mA) -12 IOL (max) (mA) 12 Supply current (max) (µA) 16 Features Output enable, Overvoltage tolerant inputs, Partial power down (Ioff) Input type Standard CMOS Output type Balanced CMOS, Push-Pull Rating Catalog Operating temperature range (°C) -40 to 85
TSSOP (PW) 16 32 mm² 5 x 6.4 UQFN (RSV) 16 4.68 mm² 2.6 x 1.8 VQFN (RGY) 16 14 mm² 4 x 3.5
  • Each Channel Has an Independent DIR Control Input
  • Control Inputs VIH/VIL Levels are Referenced to VCCA Voltage
  • Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.1-V to 3.6-V Power-Supply Range
  • I/Os are 4.6-V Tolerant
  • Ioff Supports Partial Power-Down-Mode Operation
  • Typical Data Rates
    • 380 Mbps (1.8-V to 3.3-V Translation)
    • 200 Mbps (<1.8-V to 3.3-V Translation)
    • 200 Mbps (Translate to 2.5 V or 1.8 V)
    • 150 Mbps (Translate to 1.5 V)
    • 100 Mbps (Translate to 1.2 V)
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds the Following Levels (Tested Per JESD 22)
    • ±8000-V Human-Body Model (A114-A)
    • 250-V Machine Model (A115-A)
    • ±1500-V Charged-Device Model (C101)
  • Each Channel Has an Independent DIR Control Input
  • Control Inputs VIH/VIL Levels are Referenced to VCCA Voltage
  • Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.1-V to 3.6-V Power-Supply Range
  • I/Os are 4.6-V Tolerant
  • Ioff Supports Partial Power-Down-Mode Operation
  • Typical Data Rates
    • 380 Mbps (1.8-V to 3.3-V Translation)
    • 200 Mbps (<1.8-V to 3.3-V Translation)
    • 200 Mbps (Translate to 2.5 V or 1.8 V)
    • 150 Mbps (Translate to 1.5 V)
    • 100 Mbps (Translate to 1.2 V)
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds the Following Levels (Tested Per JESD 22)
    • ±8000-V Human-Body Model (A114-A)
    • 250-V Machine Model (A115-A)
    • ±1500-V Charged-Device Model (C101)

This 4-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.1 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.1 to 3.6 V. The SN74AVC4T774 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. This allows for universal low-voltage bi-directional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVC4T774 is designed for asynchronous communication between data buses. The logic levels of the direction-control (DIR) input and the output-enable ( OE) input activate either the B-port outputs or the A-port outputs or place both output ports in the high-impedance mode. The device transmits data from the A bus to the B bus when the B outputs are activated, and from the B bus to the A bus when the A outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

This 4-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.1 V to 3.6 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.1 to 3.6 V. The SN74AVC4T774 is optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB as low as 1.2 V. This allows for universal low-voltage bi-directional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVC4T774 is designed for asynchronous communication between data buses. The logic levels of the direction-control (DIR) input and the output-enable ( OE) input activate either the B-port outputs or the A-port outputs or place both output ports in the high-impedance mode. The device transmits data from the A bus to the B bus when the B outputs are activated, and from the B bus to the A bus when the A outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 17
Type Title Date
* Data sheet SN74AVC4T774 4-Bit Dual-Supply Bus Transceiver With Configurable Voltage-Level Shifting and 3-State Outputs With Independent Direction Control Inputs datasheet (Rev. G) PDF | HTML 03 May 2021
Selection guide Voltage Translation Buying Guide (Rev. A) 15 Apr 2021
Application note Optimizing Video Doorbell Designs with Common Logic Use Cases (Rev. A) PDF | HTML 01 Apr 2021
Application note Low Voltage Translation for SPI, UART, RGMII, JTAG Interfaces (Rev. B) PDF | HTML 29 Mar 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
White paper Solving CMOS Transition Rate Issues Using Schmitt Trigger Solution (Rev. A) 01 May 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
Application note Voltage Translation Between 3.3-V, 2.5-V, 1.8-V, and 1.5-V Logic Standards (Rev. B) 30 Apr 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
More literature LCD Module Interface Application Clip 09 May 2003
User guide AVC Advanced Very-Low-Voltage CMOS Logic Data Book, March 2000 (Rev. C) 20 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Dynamic Output Control (DOC) Circuitry Technology And Applications (Rev. B) 07 Jul 1999
Application note AVC Logic Family Technology and Applications (Rev. A) 26 Aug 1998

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin D, DB, DGV, DW, DYY, NS and PW packages

The 14-24-LOGIC-EVM evaluation module (EVM) is designed to support any logic device that is in a 14-pin to 24-pin D, DW, DB, NS, PW, DYY or DGV package,

User guide: PDF | HTML
Not available on TI.com
Evaluation board

14-24-NL-LOGIC-EVM — Logic product generic evaluation module for 14-pin to 24-pin non-leaded packages

14-24-NL-LOGIC-EVM is a flexible evaluation module (EVM) designed to support any logic or translation device that has a 14-pin to 24-pin BQA, BQB, RGY, RSV, RJW or RHL package.

User guide: PDF | HTML
Not available on TI.com
Evaluation board

AVCLVCDIRCNTRL-EVM — Generic EVM for Direction-Controlled Bidirectional Translation Device Supporting AVC and LVC

The generic EVM is designed to support one, two, four and eight channel LVC and AVC direction-controlled translation devices. It also supports the bus hold and automotive -Q1 devices in the same number of channels. The AVC are low voltage translation devices with lower drive strength of 12mA. LVC (...)

User guide: PDF
Not available on TI.com
Simulation model

IBIS Model for SN74AVC4T774

SCEM539.ZIP (63 KB) - IBIS Model

Many TI reference designs include the SN74AVC4T774

Use our reference design selection tool to review and identify designs that best match your application and parameters.

Package Pins Download
TSSOP (PW) 16 View options
UQFN (RSV) 16 View options
VQFN (RGY) 16 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos