Product details

Technology family LVC Supply voltage (min) (V) 1.65 Supply voltage (max) (V) 5.5 Number of channels 2 Inputs per channel 2 IOL (max) (mA) 32 IOH (max) (mA) -32 Input type Standard CMOS Output type Push-Pull Features Over-voltage tolerant inputs, Partial power down (Ioff), Ultra high speed (tpd <5ns) Data rate (max) (Mbps) 100 Rating Catalog Operating temperature range (°C) -40 to 125
Technology family LVC Supply voltage (min) (V) 1.65 Supply voltage (max) (V) 5.5 Number of channels 2 Inputs per channel 2 IOL (max) (mA) 32 IOH (max) (mA) -32 Input type Standard CMOS Output type Push-Pull Features Over-voltage tolerant inputs, Partial power down (Ioff), Ultra high speed (tpd <5ns) Data rate (max) (Mbps) 100 Rating Catalog Operating temperature range (°C) -40 to 125
DSBGA (YZP) 8 2.8125 mm² 2.25 x 1.25 SSOP (DCT) 8 11.8 mm² 2.95 x 4 VSSOP (DCU) 8 6.2 mm² 2 x 3.1
  • Available in the Texas Instruments
    NanoStar™ and NanoFree™ Package
  • Supports 5-V VCC Operation
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 4.7 ns at 3.3 V
  • Low Power Consumption, 10-µA Maximum ICC
  • ±24-mA Output Drive at 3.3 V
  • Typical VOLP (Output Ground Bounce)
    <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
    >2 V at VCC = 3.3 V, TA = 25°C
  • Ioff Supports Live Insertion, Partial-Power-Down
    Mode, and Back-Drive Protection
  • Can Be Used as a Down Translator to Translate
    Inputs From a Maximum of 5.5 V Down to the VCC
    Level
  • Latch-Up Performance Exceeds 100 mA Per
    JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human Body Model (A114-A)
    • 1000-V Charged-Device Model (C101)
  • Available in the Texas Instruments
    NanoStar™ and NanoFree™ Package
  • Supports 5-V VCC Operation
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 4.7 ns at 3.3 V
  • Low Power Consumption, 10-µA Maximum ICC
  • ±24-mA Output Drive at 3.3 V
  • Typical VOLP (Output Ground Bounce)
    <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
    >2 V at VCC = 3.3 V, TA = 25°C
  • Ioff Supports Live Insertion, Partial-Power-Down
    Mode, and Back-Drive Protection
  • Can Be Used as a Down Translator to Translate
    Inputs From a Maximum of 5.5 V Down to the VCC
    Level
  • Latch-Up Performance Exceeds 100 mA Per
    JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human Body Model (A114-A)
    • 1000-V Charged-Device Model (C101)

This dual 2-input positive-AND gate is designed for 1.65-V to 5.5-V VCC operation.

The SN74LVC2G08 device performs the Boolean function A × B or Y = A\ + B\ in positive logic.

NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

For all available packages, see the orderable addendum at the end of the data sheet.

This dual 2-input positive-AND gate is designed for 1.65-V to 5.5-V VCC operation.

The SN74LVC2G08 device performs the Boolean function A × B or Y = A\ + B\ in positive logic.

NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

For all available packages, see the orderable addendum at the end of the data sheet.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
SN74AUP2G08 ACTIVE 2-ch, 2-input 0.8-V to 3.6-V low power (< 1uA) AND gate Smaller voltage range (0.8V to 3.6V), longer average propagation delay (8ns), lower average drive strength (4mA)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 28
Type Title Date
* Data sheet SN74LVC2G08 Dual 2-Input Positive-AND Gate datasheet (Rev. N) PDF | HTML 31 Dec 2015
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Application brief Simplifying Solid-State Relay Designs With Logic PDF | HTML 08 Jan 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Product overview Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits 06 Nov 2003
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) 18 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS 27 Mar 2002
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note LVC Characterization Information 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Design guide Low-Voltage Logic (LVC) Designer's Guide 01 Sep 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

5-8-LOGIC-EVM — Generic logic evaluation module for 5-pin to 8-pin DCK, DCT, DCU, DRL and DBV packages

Flexible EVM designed to support any device that has a DCK, DCT, DCU, DRL, or DBV package in a 5 to 8 pin count.
User guide: PDF
Not available on TI.com
Simulation model

HSPICE MODEL OF SN74LVC2G08

SCEJ207.ZIP (90 KB) - HSpice Model
Simulation model

SN74LVC2G08 Behavioral SPICE Model

SCEM620.ZIP (7 KB) - PSpice Model
Simulation model

SN74LVC2G08 IBIS Model (Rev. A)

SCEM285A.ZIP (45 KB) - IBIS Model
Reference designs

TIDA-01487 — Isolated CAN Flexible Data (FD) Rate Repeater Reference Design

CAN and CANopen are legacy Fieldbus protocols used in many applications in factory automation. Whenever high voltage can damage the end equipment, there is need for isolation. This isolated CAN flexible data (FD) rate repeater reference design adds electrical isolation between two CAN (...)
Design guide: PDF
Schematic: PDF
Reference designs

PMP22125 — Battery back-up switch, charger and monitor reference design

A complete battery back-up, charger and monitoring is implemented with this reference design.  It includes switching between a 12/24-Vdc source and 12/24-V lead acid battery, constant current battery charging at 1A typical, battery maintenance float charge and monitoring circuits for the (...)
Test report: PDF
Schematic: PDF
Package Pins Download
DSBGA (YZP) 8 View options
SSOP (DCT) 8 View options
VSSOP (DCU) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos