TLV8544

ACTIVE

Quad, 3.6-V, 8-kHz, ultra low quiescent current (500-nA), RRIO operational amplifier

Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 3.6 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.7 Rail-to-rail In, Out GBW (typ) (MHz) 0.008 Slew rate (typ) (V/µs) 0.0035 Vos (offset voltage at 25°C) (max) (mV) 3.1 Iq per channel (typ) (mA) 0.0005 Vn at 1 kHz (typ) (nV√Hz) 264 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 0.8 Features Cost Optimized, EMI Hardened CMRR (typ) (dB) 75 Iout (typ) (A) 0.015 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) 0.00064 Input common mode headroom (to positive supply) (typ) (V) 0.0005 Output swing headroom (to negative supply) (typ) (V) 0.012 Output swing headroom (to positive supply) (typ) (V) -0.012
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 3.6 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.7 Rail-to-rail In, Out GBW (typ) (MHz) 0.008 Slew rate (typ) (V/µs) 0.0035 Vos (offset voltage at 25°C) (max) (mV) 3.1 Iq per channel (typ) (mA) 0.0005 Vn at 1 kHz (typ) (nV√Hz) 264 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 0.8 Features Cost Optimized, EMI Hardened CMRR (typ) (dB) 75 Iout (typ) (A) 0.015 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) 0.00064 Input common mode headroom (to positive supply) (typ) (V) 0.0005 Output swing headroom (to negative supply) (typ) (V) 0.012 Output swing headroom (to positive supply) (typ) (V) -0.012
SOIC (D) 14 51.9 mm² 8.65 x 6 TSSOP (PW) 14 32 mm² 5 x 6.4
  • For Cost-Optimized Systems
  • Nanopower Supply Current: 500 nA per Channel
  • Offset Voltage: 3.1 mV (maximum)
  • TcVos: 0.8 µV/°C
  • Gain Bandwidth: 8 kHz
  • Unity-Gain Stable
  • Low Input-Bias Current: 100 fA
  • Wide Supply Range: 1.7 V to 3.6 V
  • Rail-to-Rail Input and Output (RRIO)
  • Temperature Range –40°C to +125°C
  • Industry Standard Package
    • Quad in 14-pin TSSOP and SOIC
    • Dual in 8-pin SOIC
    • Single in 5-pin SOT-23
  • Leadless Package
    • Dual in 8-Pin X2QFN
  • For Cost-Optimized Systems
  • Nanopower Supply Current: 500 nA per Channel
  • Offset Voltage: 3.1 mV (maximum)
  • TcVos: 0.8 µV/°C
  • Gain Bandwidth: 8 kHz
  • Unity-Gain Stable
  • Low Input-Bias Current: 100 fA
  • Wide Supply Range: 1.7 V to 3.6 V
  • Rail-to-Rail Input and Output (RRIO)
  • Temperature Range –40°C to +125°C
  • Industry Standard Package
    • Quad in 14-pin TSSOP and SOIC
    • Dual in 8-pin SOIC
    • Single in 5-pin SOT-23
  • Leadless Package
    • Dual in 8-Pin X2QFN

The TLV854x ultra-low-power operational amplifiers (op amps) are intended for cost-optimized sensing applications in wireless and low-power wired equipment. The TLV854x family of op amps minimize power consumption in equipment such as motion detecting security systems (like microwave and PIR motion sensing) where operational battery life is critical. They also have a carefully designed CMOS input stage, enabling very low, femto-ampere bias currents, thereby reducing IBIAS and IOS errors that would otherwise impact sensitive applications. Examples of these include transimpedance amplifier (TIA) configurations with megaohm feedback resistors, and high source impedance sensing applications. Additionally, built-in EMI protection reduces sensitivity to unwanted RF signals from sources such as mobile phones, WiFi, radio transmitters and tab readers.

The TLV854x op amps operates with a single supply voltage down to 1.7 V supply, providing continuous performance in low battery situations over the extended temperature range of –40°C to +125°C. All versions are specified for operation from –40°C to 125°C. The TLV8541 (single version) is available in the 5-pin SOT-23 while the TLV8542 (dual version) is available in the 8-pin SOIC package. The 4-channel TLV8544 (quad version) is available in the industry standard 14-pin TSSOP package.

The TLV854x ultra-low-power operational amplifiers (op amps) are intended for cost-optimized sensing applications in wireless and low-power wired equipment. The TLV854x family of op amps minimize power consumption in equipment such as motion detecting security systems (like microwave and PIR motion sensing) where operational battery life is critical. They also have a carefully designed CMOS input stage, enabling very low, femto-ampere bias currents, thereby reducing IBIAS and IOS errors that would otherwise impact sensitive applications. Examples of these include transimpedance amplifier (TIA) configurations with megaohm feedback resistors, and high source impedance sensing applications. Additionally, built-in EMI protection reduces sensitivity to unwanted RF signals from sources such as mobile phones, WiFi, radio transmitters and tab readers.

The TLV854x op amps operates with a single supply voltage down to 1.7 V supply, providing continuous performance in low battery situations over the extended temperature range of –40°C to +125°C. All versions are specified for operation from –40°C to 125°C. The TLV8541 (single version) is available in the 5-pin SOT-23 while the TLV8542 (dual version) is available in the 8-pin SOIC package. The 4-channel TLV8544 (quad version) is available in the industry standard 14-pin TSSOP package.

Download View video with transcript Video

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

BOOSTXL-TLV8544PIR — TLV8544 Quad Nanopower Op amp PIR Motion Detector Demonstration Module

The BOOSTXL-TLV8544PIR demonstration board is a BoosterPack intended to be used with the LAUNCHXL-CC2650 multi-frequency 2.4GHz wireless LaunchPad. The BOOSTXL-TLV8544PIR demonstrates the quad tiny, nanopower op amp (TLV8544) operating as an analog front end (AFE) in a PIR motion detection system. (...)
User guide: PDF
Not available on TI.com
Simulation model

TLV8544 TINA-TI Reference Design (Rev. B)

SNOM613B.TSC (54 KB) - TINA-TI Reference Design
Simulation model

TLV8544 TINA-TI Spice Model (Rev. A)

SNOM614A.ZIP (15 KB) - TINA-TI Spice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Reference designs

TIDA-01398 — Ultra Low-Power Wireless PIR Motion Detector for Cost-Optimized Systems Reference Design

This reference design uses a quad-channel nano-power operational amplifier and the SimpleLink™ ultra-low power 2.4-GHz wireless microcontroller (MCU) platform to demonstrate a low-power cost-optimized wireless motion detector implementation.  These technologies lead to an extremely (...)
Design guide: PDF
Schematic: PDF
Package Pins Download
SOIC (D) 14 View options
TSSOP (PW) 14 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos