TLV9052

ACTIVE

Dual, 5.5-V, 5-MHz, 15-V/μs slew rate, RRIO operational amplifier for cost-optimized applications

Product details

Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.8 Rail-to-rail In, Out GBW (typ) (MHz) 5 Slew rate (typ) (V/µs) 15 Vos (offset voltage at 25°C) (max) (mV) 1.6 Iq per channel (typ) (mA) 0.33 Vn at 1 kHz (typ) (nV√Hz) 20 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 0.5 Features Cost Optimized, EMI Hardened, Shutdown, Small Size CMRR (typ) (dB) 96 Iout (typ) (A) 0.05 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) 0.1 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -0.03
Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 1.8 Rail-to-rail In, Out GBW (typ) (MHz) 5 Slew rate (typ) (V/µs) 15 Vos (offset voltage at 25°C) (max) (mV) 1.6 Iq per channel (typ) (mA) 0.33 Vn at 1 kHz (typ) (nV√Hz) 20 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 0.5 Features Cost Optimized, EMI Hardened, Shutdown, Small Size CMRR (typ) (dB) 96 Iout (typ) (A) 0.05 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) 0.1 Output swing headroom (to negative supply) (typ) (V) 0.03 Output swing headroom (to positive supply) (typ) (V) -0.03
SOIC (D) 8 29.4 mm² 4.9 x 6 SOT-23-THN (DDF) 8 8.12 mm² 2.9 x 2.8 TSSOP (PW) 8 19.2 mm² 3 x 6.4 VSSOP (DGK) 8 14.7 mm² 3 x 4.9 VSSOP (DGS) 10 14.7 mm² 3 x 4.9 WSON (DSG) 8 4 mm² 2 x 2 X2QFN (RUG) 10 3 mm² 1.5 x 2
  • High slew rate: 15V/µs
  • Low quiescent current: 330µA
  • Rail-to-rail input and output
  • Low input offset voltage: ±0.33mV
  • Unity-gain bandwidth: 5MHz
  • Low broadband noise: 15nV/√ Hz
  • Low input bias current: 2pA
  • Unity-gain stable
  • Internal RFI and EMI filter
  • Scalable family of CMOS op amps for low-cost applications
  • Operational at supply voltages as low as 1.8V
  • Extended temperature range: –40°C to 125°C
  • High slew rate: 15V/µs
  • Low quiescent current: 330µA
  • Rail-to-rail input and output
  • Low input offset voltage: ±0.33mV
  • Unity-gain bandwidth: 5MHz
  • Low broadband noise: 15nV/√ Hz
  • Low input bias current: 2pA
  • Unity-gain stable
  • Internal RFI and EMI filter
  • Scalable family of CMOS op amps for low-cost applications
  • Operational at supply voltages as low as 1.8V
  • Extended temperature range: –40°C to 125°C

The TLV9051, TLV9052, and TLV9054 devices are single, dual, and quad operational amplifiers, respectively. The devices are designed for low voltage operation from 1.8V to 6.0V. The inputs and outputs can operate from rail to rail at a very high slew rate. These devices are an excellent choice for cost-constrained applications where low-voltage operation, high slew rate, and low quiescent current is needed. The capacitive-load drive of the TLV905x family is 150pF, and the resistive open-loop output impedance makes stabilization easier with much higher capacitive loads.

The TLV905xS devices include a shutdown mode that allow the amplifiers to be switched off into a standby mode with typical current consumption less than 1µA.

The TLV905x family is easy to use due to the devices being unity-gain stable, including a RFI and EMI filter, and being free from phase reversal in an overdrive condition.

The TLV9051, TLV9052, and TLV9054 devices are single, dual, and quad operational amplifiers, respectively. The devices are designed for low voltage operation from 1.8V to 6.0V. The inputs and outputs can operate from rail to rail at a very high slew rate. These devices are an excellent choice for cost-constrained applications where low-voltage operation, high slew rate, and low quiescent current is needed. The capacitive-load drive of the TLV905x family is 150pF, and the resistive open-loop output impedance makes stabilization easier with much higher capacitive loads.

The TLV905xS devices include a shutdown mode that allow the amplifiers to be switched off into a standby mode with typical current consumption less than 1µA.

The TLV905x family is easy to use due to the devices being unity-gain stable, including a RFI and EMI filter, and being free from phase reversal in an overdrive condition.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
OPA2310 ACTIVE Dual-channel, 5.5-V, 3-MHz high-output-current (150-mA) fast-shutdown (1-μs) operational amplifier Lower offset voltage (1 mV), lower power (0.3 mA), lower noise (18 nV/√Hz), higher output current (150 mA)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 7
Type Title Date
* Data sheet TLV9051 / TLV9052 / TLV9054 5MHz, 15V/µs High Slew-Rate, RRIO Op Amp datasheet (Rev. J) PDF | HTML 28 Feb 2024
Application note Designing for TLV90xxS Operational Amplifiers With Shutdown (Rev. B) PDF | HTML 08 Jun 2022
Circuit design Sine wave generator circuit PDF | HTML 21 Jul 2021
Application note AN-31 Amplifier Circuit Collection (Rev. D) 21 Oct 2020
Technical article Taking the family-first approach to op amp selection PDF | HTML 18 Oct 2019
Application brief Low Voltage, High Slew Rate Op-amps for Motor Drive Circuits 23 Jul 2018
Analog Design Journal Second-sourcing options for small-package amplifiers 26 Mar 2018

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP adapter evaluation module (DIP-ADAPTER-EVM), which provides a fast, easy and inexpensive way to interface with small surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them (...)

User guide: PDF
Not available on TI.com
Evaluation board

DUAL-DIYAMP-EVM — Dual-channel universal do-it-yourself (DIY) amplifier circuit evaluation module

The DUAL-DIYAMP-EVM is an evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling quick evaluation of design concepts and verify simulations. It is designed specifically for dual package op amps in the (...)

User guide: PDF
Not available on TI.com
Evaluation board

SMALL-AMP-DIP-EVM — Evaluation module for operational amplifiers with small-size packages

The SMALL-AMP-DIP-EVM speeds up small-package operational-amplifier prototyping by providing a fast and easy way to interface with many industry-standard small-size packages. SMALL-AMP-DIP-EVM supports eight small package options including DPW-5 (X2SON), DSG-8 (WSON), DCN-8 (SOT), DDF-8 (...)

User guide: PDF
Not available on TI.com
Simulation model

TLV9052 PSpice Model (Rev. D)

SBOMAO0D.ZIP (22 KB) - PSpice Model
Simulation model

TLV9052 TINA-TI Reference Design (Rev. B)

SBOMAN8B.ZIP (29 KB) - TINA-TI Reference Design
Simulation model

TLV9052 TINA-TI SPICE Model (Rev. B)

SBOMAO1B.ZIP (4 KB) - TINA-TI Spice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060042 — Sine wave oscillator circuit

This circuit uses a quad channel op amp with ±2.5-V supplies to generate a 10-kHz, low-distortion sine wave. The amplifiers buffer each RC filter stage, which yields a low-distortion output.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Design tool

SBOC536 Simulation for Two-Stage Inverting Amplifier with High Input Impedance in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV9052 Dual, 5.5-V, 5-MHz, 15-V/μs slew rate, RRIO operational amplifier for cost-optimized applications
Design tool

SBOC570 Simulation for Fast Half Wave Rectifier in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV9052 Dual, 5.5-V, 5-MHz, 15-V/μs slew rate, RRIO operational amplifier for cost-optimized applications
Design tool

SBOC574 Simulation for Sample and Hold I in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV9052 Dual, 5.5-V, 5-MHz, 15-V/μs slew rate, RRIO operational amplifier for cost-optimized applications
Design tool

SBOC575 Simulation for Sample and Hold II in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV9052 Dual, 5.5-V, 5-MHz, 15-V/μs slew rate, RRIO operational amplifier for cost-optimized applications
Design tool

SBOC578 Simulation for Sallen-Key Two-Stage Bandpass Filter in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV9052 Dual, 5.5-V, 5-MHz, 15-V/μs slew rate, RRIO operational amplifier for cost-optimized applications
Design tool

SBOC582 Simulation for High Pass Sallen-Key Active Filter in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV9052 Dual, 5.5-V, 5-MHz, 15-V/μs slew rate, RRIO operational amplifier for cost-optimized applications
Design tool

SBOC583 Simulation for Low Pass Sallen-Key Active Filter in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV9052 Dual, 5.5-V, 5-MHz, 15-V/μs slew rate, RRIO operational amplifier for cost-optimized applications
Design tool

SBOC588 Simulation for Amplifier for Piezoelectric Stability in AN-31

Supported products & hardware

Supported products & hardware

Products
General-purpose op amps
TLV9052 Dual, 5.5-V, 5-MHz, 15-V/μs slew rate, RRIO operational amplifier for cost-optimized applications
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
SOIC (D) 8 View options
SOT-23-THN (DDF) 8 View options
TSSOP (PW) 8 View options
VSSOP (DGK) 8 View options
VSSOP (DGS) 10 View options
WSON (DSG) 8 View options
X2QFN (RUG) 10 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos