Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.5 Rail-to-rail In, Out GBW (typ) (MHz) 8 Slew rate (typ) (V/µs) 6.5 Vos (offset voltage at 25°C) (max) (mV) 1.5 Iq per channel (typ) (mA) 0.6 Vn at 1 kHz (typ) (nV√Hz) 18 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 0.53 Features EMI Hardened CMRR (typ) (dB) 103 Iout (typ) (A) 0.05 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) 0.1 Output swing headroom (to negative supply) (typ) (V) 0.015 Output swing headroom (to positive supply) (typ) (V) -0.015
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.5 Rail-to-rail In, Out GBW (typ) (MHz) 8 Slew rate (typ) (V/µs) 6.5 Vos (offset voltage at 25°C) (max) (mV) 1.5 Iq per channel (typ) (mA) 0.6 Vn at 1 kHz (typ) (nV√Hz) 18 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 0.53 Features EMI Hardened CMRR (typ) (dB) 103 Iout (typ) (A) 0.05 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.1 Input common mode headroom (to positive supply) (typ) (V) 0.1 Output swing headroom (to negative supply) (typ) (V) 0.015 Output swing headroom (to positive supply) (typ) (V) -0.015
SOIC (D) 14 51.9 mm² 8.65 x 6 TSSOP (PW) 14 32 mm² 5 x 6.4
  • Rail-to-rail input and output
  • Low noise: 18 nV/√Hz at 1 kHz
  • Low power consumption: 550 µA (typical)
  • High-gain bandwidth: 8 MHz
  • Operating supply voltage from 2.5 V to 5.5 V
  • Low input bias current: 1 pA (typical)
  • Low input offset voltage: 1.5 mV (maximum)
  • Low offset voltage drift: ±0.5 µV/°C (typical)
  • ESD internal protection: ±4-kV human-body model (HBM)
  • Extended temperature range: –40°C to 125°C
  • Rail-to-rail input and output
  • Low noise: 18 nV/√Hz at 1 kHz
  • Low power consumption: 550 µA (typical)
  • High-gain bandwidth: 8 MHz
  • Operating supply voltage from 2.5 V to 5.5 V
  • Low input bias current: 1 pA (typical)
  • Low input offset voltage: 1.5 mV (maximum)
  • Low offset voltage drift: ±0.5 µV/°C (typical)
  • ESD internal protection: ±4-kV human-body model (HBM)
  • Extended temperature range: –40°C to 125°C

The TSV91x family, which includes single-, dual-, and quad-channel operational amplifiers (op amps), is specifically designed for general-purpose applications. Featuring rail-to-rail input and output (RRIO) swings, wide bandwidth (8 MHz), and low offset voltage (0.3 mV, typical), this family is designed for a variety of applications that require a good balance between speed and power consumption. The op amps are unity-gain stable and feature an ultra-low input bias current, which enables the family to be used in applications with high-source impedances. The low input bias current allows the devices to be used for sensor interfaces, battery-supplied and portable applications, and active filtering.

The robust design of the TSV91x provides ease-of-use to the circuit designer. Features include a unity-gain stable, integrated RFI-EMI rejection filter, no phase reversal in overdrive condition, and high electrostatic discharge (ESD) protection (4-kV HBV).

The TSV91x family, which includes single-, dual-, and quad-channel operational amplifiers (op amps), is specifically designed for general-purpose applications. Featuring rail-to-rail input and output (RRIO) swings, wide bandwidth (8 MHz), and low offset voltage (0.3 mV, typical), this family is designed for a variety of applications that require a good balance between speed and power consumption. The op amps are unity-gain stable and feature an ultra-low input bias current, which enables the family to be used in applications with high-source impedances. The low input bias current allows the devices to be used for sensor interfaces, battery-supplied and portable applications, and active filtering.

The robust design of the TSV91x provides ease-of-use to the circuit designer. Features include a unity-gain stable, integrated RFI-EMI rejection filter, no phase reversal in overdrive condition, and high electrostatic discharge (ESD) protection (4-kV HBV).

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
TLV9064 ACTIVE Quad, 5.5-V, 10-MHz, RRIO operational amplifier for cost-optimized applications Higher GBW (10 MHz), lower power (0.538 mA), lower noise (16 nV/√Hz)

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet TSV91x Rail-to-Rail Input/Output, 8-MHz Operational Amplifiers datasheet (Rev. D) PDF | HTML 01 Oct 2019

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

TSV912 PSpice Model (Rev. D)

SBOMAG6D.ZIP (22 KB) - PSpice Model
Simulation model

TSV912 TINA-TI Reference Design (Rev. C)

SBOMAG7C.ZIP (38 KB) - TINA-TI Reference Design
Simulation model

TSV912 TINA-TI Spice Model (Rev. C)

SBOMAG8C.ZIP (4 KB) - TINA-TI Spice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
SOIC (D) 14 View options
TSSOP (PW) 14 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos