UCD7242-EP

ACTIVE

Digital Dual Synchronous-Buck Power Driver, UCD7242-EP

Product details

Operating temperature range (°C) -55 to 125 Rating HiRel Enhanced Product
Operating temperature range (°C) -55 to 125 Rating HiRel Enhanced Product
VQFN-HR (RSJ) 32 36 mm² 6 x 6
  • Fully Integrated Power Switches With Drivers for
    Dual Synchronous Buck Converters
  • Full Compatibility With TI Fusion Digital Power Supply
    Controllers, Such as the UCD92xx Family
  • Wide Input Voltage Range: 4.75 V to 18 V
    Operational Down to 2.2-V Input With an
    External Bias Supply
  • Up to 10-A Output Current per Channel
  • Operational to 2-MHz Switching Frequency
  • High Side Current Limit With Current Limit Flag
  • Onboard Regulated 6 V Driver Supply From VIN
  • Thermal Protection
  • Temperature Sense Output – Voltage Proportional
    to Chip Temperature
  • UVLO and OVLO Circuits Ensure Proper Drive Voltage
  • RoHS Compliant
  • Accurate On-Die Current Sensing (±5%)
  • Fully Integrated Power Switches With Drivers for
    Dual Synchronous Buck Converters
  • Full Compatibility With TI Fusion Digital Power Supply
    Controllers, Such as the UCD92xx Family
  • Wide Input Voltage Range: 4.75 V to 18 V
    Operational Down to 2.2-V Input With an
    External Bias Supply
  • Up to 10-A Output Current per Channel
  • Operational to 2-MHz Switching Frequency
  • High Side Current Limit With Current Limit Flag
  • Onboard Regulated 6 V Driver Supply From VIN
  • Thermal Protection
  • Temperature Sense Output – Voltage Proportional
    to Chip Temperature
  • UVLO and OVLO Circuits Ensure Proper Drive Voltage
  • RoHS Compliant
  • Accurate On-Die Current Sensing (±5%)

The UCD7242 is a complete power system ready to drive two independent buck power supplies. High side MOSFETs, low side MOSFETs, drivers, current sensing circuitry and necessary protection functions are all integrated into one monolithic solution to facilitate minimum size and maximum efficiency. Driver circuits provide high charge and discharge current for the high-side NMOS switch and the low-side NMOS synchronous rectifier in a synchronous buck circuit. The MOSFET gates are driven to +6.25 V by an internally regulated VGG supply. The internal VGG regulator can be disabled to permit the user to supply an independent gate drive voltage. This flexibility allows a wide power conversion input voltage range of 2.2 V to 18 V. Internal under voltage lockout (UVLO) logic ensures VGG is good before allowing chip operation.

The synchronous rectifier enable (SRE) pin controls whether or not the low-side MOSFET is turned on when the PWM signal is low. When SRE is high the part operates in continuous conduction mode for all loads. In this mode the drive logic block uses the PWM signal to control both the high-side and low-side gate drive signals. Dead time is also optimized to prevent cross conduction. When SRE is low, the part operates in discontinuous conduction mode at light loads. In this mode the low-side MOSFET is always held off.

On-board comparators monitor the current through the high side switch to safeguard the power stage from sudden high current loads. Blanking delay is set for the high side comparator to avoid false reports coincident with switching edge noise. In the event of an over-current fault, the high-side FET is turned off and the Fault Flag (FLT) is asserted to alert the controller.

MOSFET current is measured and monitored by a precision integrated current sense element. This method provides an accuracy of ±5% over most of the load range. The amplified signal is available for use by the controller on the IMON pin.

An on-chip temperature sense converts the die temperature to a voltage at the TMON pin for the controller’s use. If the die temperature exceeds 170°C, the temperature sensor initiates a thermal shutdown that halts output switching and sets the FLT flag. Normal operation resumes when the die temperature falls below the thermal hysteresis band.

The UCD7242 is a complete power system ready to drive two independent buck power supplies. High side MOSFETs, low side MOSFETs, drivers, current sensing circuitry and necessary protection functions are all integrated into one monolithic solution to facilitate minimum size and maximum efficiency. Driver circuits provide high charge and discharge current for the high-side NMOS switch and the low-side NMOS synchronous rectifier in a synchronous buck circuit. The MOSFET gates are driven to +6.25 V by an internally regulated VGG supply. The internal VGG regulator can be disabled to permit the user to supply an independent gate drive voltage. This flexibility allows a wide power conversion input voltage range of 2.2 V to 18 V. Internal under voltage lockout (UVLO) logic ensures VGG is good before allowing chip operation.

The synchronous rectifier enable (SRE) pin controls whether or not the low-side MOSFET is turned on when the PWM signal is low. When SRE is high the part operates in continuous conduction mode for all loads. In this mode the drive logic block uses the PWM signal to control both the high-side and low-side gate drive signals. Dead time is also optimized to prevent cross conduction. When SRE is low, the part operates in discontinuous conduction mode at light loads. In this mode the low-side MOSFET is always held off.

On-board comparators monitor the current through the high side switch to safeguard the power stage from sudden high current loads. Blanking delay is set for the high side comparator to avoid false reports coincident with switching edge noise. In the event of an over-current fault, the high-side FET is turned off and the Fault Flag (FLT) is asserted to alert the controller.

MOSFET current is measured and monitored by a precision integrated current sense element. This method provides an accuracy of ±5% over most of the load range. The amplified signal is available for use by the controller on the IMON pin.

An on-chip temperature sense converts the die temperature to a voltage at the TMON pin for the controller’s use. If the die temperature exceeds 170°C, the temperature sensor initiates a thermal shutdown that halts output switching and sets the FLT flag. Normal operation resumes when the die temperature falls below the thermal hysteresis band.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 2
Type Title Date
* Data sheet Digital Dual Synchronous-Buck Power Driver, UCD7242-EP datasheet 30 Oct 2013
* VID UCD7242-EP VID V6214601 21 Jun 2016

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins Download
VQFN-HR (RSJ) 32 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos