Galvanic Isolation of a 1394 Node

Burke Henehan
Texas Instruments
bhenehan@ti.com
Can I Teach What You Need to Know in 1/2 Hour?

- NO
- Need to Read App Note and Sections of 1394-1995 & P1394a (in app note)
- Will Cover the Most Asked Questions & Newly Added Information
 - When Might I Need Isolation?
 - How Does Bus Holder Isolation Work?
 - What Signals Do I Need to Initialize?
 - Do I need a large Cap to Decouple GNDS?
 - How Do I Check Isolation?
The Problem:

- All PHYs on a single 1394 bus must be at the same GND potential for speed signaling (and other thresholds & levels) to function correctly.
 - In the 6-pin cable this is accomplished by connecting all PHY GNDs together using the cable GND of the cable power-GND pair.
 - In the 4 pin cable this is done using the cable shields.
Does a 1394 Std. Require Isolation?

- 1394-1995 can be construed to require Isolation. But industry interpretation is that it is NOT required.
- 1394a Explicitly states isolation is NOT required by the Standard and removes most mention of it.
- The Microsoft/Intel PC99 specification does NOT require isolation.
A Node MAY require Isolation if it can be connected to another non-isolated node that COULD connect its PHY ground to its chassis ("green wire") GND. OR if the second node’s PHY GND could be connected to another device that could be connected to chassis GND; OR if that device could have its GND connected to another device’s chassis GND; OR ...
No Galvanic Isolation

Figure 1. No Galvanic Isolation
nf - Penalties of Ground Loops

- Degradation of data signals on the cable
- EMI from the cable
- Ground currents high enough to damage components in the system
- If the potential difference is large enough, a personal shock hazard.
Node Only Powered by Cable with No External Connections - No Isolation Needed

Figure 3. Leaf Node Not Requiring Isolation
Example: When Might I Need Galvanic Isolation of the 1394 Bus?
Laptop PC Example Assumptions:
1. No 1394 Galvanic Isolation Used
2. Laptops Use Isolating Transformers
Actually 3 Possible Distinct GND Domains

Wall Power

1394 Cable

Wall Power
Now What about Peripherals!

Wall Power

1394 Cable

Wall Power
Fine Until Plug in Peripherals

- 1394 Cable
- Video Cable
- Printronix Cable
- Wall Power
Ground Domains Will Try to Equalize. May Get GND Currents in all 3 cables

Wall Power

1394 Cable

Printronix Cable

Video Cable
If Add Isolation to 1394, Solve Isolation Problem... For THIS Configuration

- Video Cable
- Printronix Cable
- Wall Power
- Isolated 1394 (Cable + PHYs)
Even With 1394 Isolation a Problem is Possible with Legacy Connections
Only if All Connections are Isolated are GND Currents Prevented
If Isolation is Required, What Must be Done?

- **Cable Power Isolation**
 - Must be 8- >33V relative to PHY GND, floating relative to chassis GND

- **Cable Shield Termination Isolation**
 - DC Isolated via capacitive network

- **Signal Line Isolation**
 - TI Proprietary Bus Holder Isolation
 - Other Solutions Available
Implementation of Isolation Using Bus Holder Isolation (see app note)
Implementation of Isolation Using Bus Holder Isolation - GND Domains

Figure 8. Internal Bus-Holder Isolation
Bus Holder Functionality

- Local GND relative to reference GND = 30V
- Local GND relative to reference GND = 20V

Difference between GNDs is 30 - 20 = 10V

- Voltage Level = 30V
- Logic Level = Low

- Voltage Level = 20V
- Logic Level = Low

Signal Level ———————— Signal Level ————————
Time- > Time- >

Isolation Boundary

Reference GND = 0.0 V
No Bus Holders

Local GND relative to reference GND = 30V

Local GND relative to reference GND = 20V

Voltage Level = 33V
Logic Level = High

Voltage Level = 23V- >20V
Logic Level = High to Low

Signal Level Time- >

Signal Level Time- >

Isolation Boundary

Reference GND = 0.0 V
With Bus Holders

Local GND relative to reference GND = 30V

Voltage Level = 33V
Logic Level = High

Signal Level Time->

Isolation Boundary

Reference GND = 0.0 V
Initialization of Capacitive Isolation
After Power-Up, GND Bounce, etc

Local GND relative to reference GND = 30V

Voltage Level = 30V
Logic Level = low

Signal Level ____________ Time- >

Local GND relative to reference GND = 20V

Voltage Level = 23V
Logic Level = High

Signal Level ____________ Time- >

Isolation Boundary

Reference GND = 0.0 V
Assume “Left” Side Begins by Driving a 0 (low), Bit Propogated is Wrong!

Local GND relative to reference GND = 30V

Voltage Level = 30V
Logic Level = low

Signal Level Time- >

Local GND relative to reference GND = 20V

Voltage Level = 23V
Logic Level = High

Reference GND = 0.0 V

Isolation Boundary
Assume “Left” Side Then Drives a 1 (High), Interface Now Synchronized

Local GND relative to reference GND = 30V
Voltage Level = 33V
Logic Level = High

Local GND relative to reference GND = 20V
Voltage Level = 23.6V
Logic Level = High

Signal Level
Time- >

Signal Level
Time- >

Isolation Boundary

Reference GND = 0.0 V
Assume “Left” Side Then Drives a 0 (Low)

Local GND relative to reference GND = 30V

Voltage Level = 30V
Logic Level = Low

Signal Level
Time- >

Isolation Boundary

Reference GND = 0.0 V
Oscillating Signal Driven to 5V tolerant Device, Initial State out of Sync

Local GND relative to reference GND = 30V
Voltage Level = 30V
Logic Level = low
Signal Level ———— Time- >

Local GND relative to reference GND = 20V
Voltage Level = 23. V
Logic Level = High
Signal Level ———— Threshold High
——— Threshold Low
Local GND Level Time- >

Isolation Boundary

Reference GND = 0.0 V
Now Left Side Drives Oscillating Signal Which Never Crosses Low Threshold

Local GND relative to reference GND = 30V

Voltage Level = 30V
Logic Level = low

Signal Level

Time - >

Isolation Boundary

Reference GND = 0.0 V

Local GND relative to reference GND = 20V

Voltage Level = 23.V
Logic Level = High

Signal Level

Threshold High
Threshold Low

+5V

Local GND Level

Time - >
So What Signals do I Need to Initialize?

ALL OF THEM

- Every Signal must have HW that initializes both sides of the isolation barrier to the same state upon:
 - Powerup
 - Command from the Microprocessor (Link) side of the PHY-Link Interface (in case of wrong state induced during normal operation)
How May Initialization Be Done?

- 1394a Link and Phy
- External Buffers on Each Side of Isolation Barrier (to drive a state)
- Opto-isolators (active drivers to establish states)
 - Currently there are no known opto-isolators fast enough and with low enough latency to operate on the data, control, SCLK, or LREQ signals
- Etc.
When SCLK is valid the PHY drives Data & CTL low for 7 clocks while the link drives Data, CTL, & LREQ low for 1 clock then makes them high impedance.

On the 8th Cycle the PHY drives Receive on CTL & Data Prefix on Data.
External Bus Holder, Non-1394a PHY-Link Interface Initialization
Internal Bus Holder, No 1394a PHY-Link Interface Initialization

LVCH244

Output_Enable

LinkIF_RESET*

1394 Link

TIL191B

Output_Enable

1394 PHY

PHYIF_RESET*
What Happens when plug top node into bottom network?
Implementing Isolated Nodes

- Putting in isolation adds unknowns to board debug

- Build Enough Boards to:
 - Build the first set of nodes with the isolation shorted out (replace caps with 0 Ohm resistors) to get 1394 working
 - Keep “known good set” (or give to SW team)
 - Build up Isolated boards one step at a time
Implementing Isolated Nodes - Continued

- Take Task in Steps
 - Isolate signals, but leave all GND domains the same (install signal isolation caps, leave GND isolation caps shorted)
 - After this functions install GND caps
 - Offset floating domain to verify isolated
- Need access to both sides of isolated interface
- Be Aware of Different GND Domains!
Advantages of Bus Holder Isolation

Example Comparison for 400–Mbits/s Node (DATA, CTL, LREQ, SYSCLK)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Annex J Method</th>
<th>TI Method</th>
<th>TI Bus–Holder Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>External capacitors</td>
<td>22</td>
<td>12</td>
<td>Reduced PWB area</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced cost</td>
</tr>
<tr>
<td>External resistors</td>
<td>76</td>
<td>2</td>
<td>Reduced PWB area</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced power</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced cost</td>
</tr>
<tr>
<td>Voltage swing V<sub>DD</sub>/2</td>
<td>Required</td>
<td>None</td>
<td>Reduced complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced cost</td>
</tr>
<tr>
<td>Digital differentiators on outputs</td>
<td>Required</td>
<td>None</td>
<td>Reduced complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced cost</td>
</tr>
<tr>
<td>Special threshold requirements</td>
<td>Required</td>
<td>None</td>
<td>Reduced complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced cost</td>
</tr>
<tr>
<td>Isolation network power drain</td>
<td>Holds input cells at V<sub>DD</sub>/2</td>
<td>Method causes no impact</td>
<td>Minimal quiescent power drain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No special input cell requirement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced cost</td>
</tr>
<tr>
<td>Hysteresis on inputs</td>
<td>Requires Schmitt triggers on inputs</td>
<td>None</td>
<td>Reduced complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced cost</td>
</tr>
</tbody>
</table>
References

- IEEE P1394a Draft 2.0 Standard for a High Performance Serial Bus (Supplement)