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9.1 CPU Registers

All of the MSP430 CPU registers can be used with all instructions.

9.1.1 The Program Counter PC

One of the main differences from other microcomputer architectures relates
to the Program Counter (CPU register R0) that can be used as a normal regis-
ter with the MSP430. This means that all of the instructions and addressing
modes can be used with the Program Counter too. A branch, for example, is
made by simply moving an address into the PC:

MOV #LABEL,PC ; Branch to address LABEL
MOV LABEL,PC ; Branch to the address contained in address LABEL
MOV @R14,PC ; Branch indirect, indirect R14

Note:

The Program Counter always points to even addresses. This means that the
LSB is always zero. The software has to ensure that no odd addresses are
used if the Program Counter is involved. Odd PC addresses will result in non-
predictable behavior.

9.1.2 Stack Processing

9.1.2.1 Use of the System Stack Pointer (SP)

The system stack pointer (CPU register R1) is a normal register like the others.
This means it can use the same addressing modes. This gives good access
to all items on the stack, not only to the one on the top of the stack.

The system stack pointer (SP) is used for the storage of the following items:

� Interrupt return addresses and status register contents
� Subroutine return addresses
� Intermediate results
� Variables for subroutines, floating point package etc.

When using the system stack, remember that the microcomputer hardware
also uses the stack pointer for interrupts and subroutine calls. To ensure the
error-free running of the program it is necessary to do exact housekeeping for
the system stack.

Note:

The Stack Pointer always points to even addresses. This means the LSB is
always zero. The software has to ensure that no odd addresses are used if
the Stack Pointer is involved. Odd SP addresses will end up in non-predict-
able results.
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If bytes are pushed on the system stack, only the lower byte is used, the upper
byte is not modified.

PUSH #05h ; 0005h –> TOS
PUSH.B #05h ; xx05h –> TOS
MOV.B 1(SP),R5 ; Address odd byte

9.1.2.2 Software Stacks

Every register from R4 to R15 can be used as a software stack pointer. This
allows independent stacks for jobs that have a need for this. Every part of the
RAM can be used for these software stacks.

EXAMPLE: R4 is to be used as a software stack pointer.

MOV #SW_STACK,R4 ; Init. SW stack pointer
...
DECD R4 ; Decrement stack pointer
MOV item,0(R4) ; Push item on stack
... ; Proceed
MOV @R4+,item2 ; Pop item from stack

Software stacks can be organized as byte stacks also. This is not possible for
the system stack, which always uses 16-bit words. The example shows R4
used as a byte stack pointer:

MOV #SW_STACK,R4 ; Init. SW stack pointer
...
DEC R4 ; Decrement stack pointer
MOV.B item,0(R4) ; Push item on stack
... ; Proceed
MOV.B @R4+,item2 ; Pop item from stack

9.1.3 Byte and Word Handling

Every memory word is addressable by three addresses as shown in the
Figure 9–1:

� The word address: An even address N
� The lower byte address: An even address N
� The upper byte address: An odd address N+1

If byte addressing is used, only the addressed byte is affected. No carry or
overflow can affect the other byte.

Note:

Registers  R0 to R15 do not have an address but are treated in a special way.
Byte addressing always uses the lower byte of the register. The upper byte
is set to zero if the instruction modifies the destination. Therefore, all instruc-
tions clear the upper byte of a destination register except CMP.B, TST.B,
BIT.B and PUSH.B. The source is never affected.
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The way an instruction treats data is defined with its extension:

� The extension .B means byte handling
� The extension .W (or none) means word handling

EXAMPLES: The next two software lines are equivalent. The 16-bit values
read in absolute address 050h are added to the value in R5.

ADD &050h,R5 ; ADD 16–BIT VALUE TO R5

ADD.W &050h,R5 ; ADD 16–BIT VALUE TO R5

The 8-bit value read in the lower byte of absolute address 050h is added to the
value contained in the lower byte of R5. The upper byte of R5 is set to zero.

ADD.B &050h,R5 ; ADD 8–BIT VALUE TO R5

Upper Byte Lower Byte

Bit 15 8 7 0

Odd Address N+1

Word Address N

Even Address N

 

 

 

Figure 9–1. Word and Byte Configuration

If registers are used with byte instructions the upper byte of the destination reg-
ister is set to zero for all instructions except CMP.B, TST.B, BIT.B and PUSH.B.
It is therefore necessary to use word instructions if the range of calculations
can exceed the byte range.

EXAMPLE: The two signed bytes OP1 and OP2 have to be added together
and the result stored in word OP3.

MOV.B OP1,R4 ; Fetch 1st operand

SXT R4 ; Change to word format

MOV.B OP2,OP3 ; Fetch 2nd operand

SXT OP3 ; Change to word format

ADD.W R4,OP3 ; 16–bit result to OP3

9.1.4 Constant Generator

A statistical look at the numbers used with the Immediate Mode shows that a
few small numbers are in use most often. The six most often used numbers
can be addressed with the four addressing modes of R3 (constant generator
2) and with the two not usable addressing modes of R2 (status register). The
six constants that do not need an additional 16-bit word when used with the
immediate mode are:
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Table 9–1. Constant Generator
NUMBER EXPLANATION HEXADECIMAL REGISTER FIELD AD

+0 Zero 0000h R3 00

+1 Positive one 0001h R3 01

+2 Positive two 0002h R3 10

+4 Positive four 0004h R2 10

+8 Positive eight 0008h R2 11

–1 Negative one FFFFh R3 11

The assembler inserts these ROM-saving addressing modes automatically
when one of the previously described immediate constants is encountered.
But, only immediate constants are replaceable this way, not (for example) in-
dex values.

If an immediate constant out of the constant generator is used, the execution
time is equal to the execution time of the register mode.

The most often used bits of the peripheral registers are located in the bits ad-
dressable by the constant generator whenever possible.

9.1.5 Addressing

The MSP430 allows seven addressing modes for the source operand and four
addressing modes for the destination. The addressing modes used are:

Table 9–2. Addressing Modes
ADDRESS BITS

src           dst
SOURCE MODES DESTINATION MODES EXAMPLE

00 0 Register Register R5

01 1 Indexed Indexed TAB(R5)

01 1 Symbolic Symbolic TABLE

01 1 Absolute Absolute &BTCTL

10 – Indirect – @R5

11 – Indirect autoincrement – @R5+

11 – Immediate – #TABLE

The three missing addressing modes for the destination operand are not of
much concern for the programming. The reason is:

Immediate Mode : Not necessary for the destination; immediate operands can
always be placed into the source. Only in a very few cases it is necessary to
have two immediate operands in one instruction
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Indirect Mode : If necessary, the Indexed Mode with an index of zero is usable.
For example:

ADD #16,0(R6) ; @R6 + 16 –> @R6

CMP R5,0(SP) ; R5 equal to TOS?

The second previously shown example can be written in the following way,
saving 2 bytes of ROM:

CMP @SP,R5 ; R5 equal to TOS? (R5–TOS)

Indirect Autoincrement Mode : With table processing, a method that saves
ROM space and reduces the number of used registers to one can be used:

EXAMPLE: The content of TAB1 is to be written into TAB2. TAB1 ends at the
word preceding TAB1END.

MOV #TAB1,R5 ; Initialize pointer

LOOP MOV.B @R5+,TAB2–TAB1–1(R5) ; Move TAB1 –> TAB2

CMP #TAB1END,R5 ; End of TAB1 reached?

JNE LOOP ; No, proceed

... ; Yes, finished

The previous example uses only one register instead of two and saves three
words due to the smaller initialization part. The normally written, longer loop
is shown in the following

MOV #TAB1,R5 ;Initialize pointers

MOV #TAB2,R6

LOOP MOV.B @R5+,0(R6) ;Move TAB1 –> TAB2

INC R6

CMP #TAB1END,R5 ;End of TAB1 reached?

JNE LOOP ;No, proceed

... ;Yes, finished

In other cases it can be possible to exchange source and destination operands
to have the auto increment feature available for a pointer.

Each of the seven addressing modes has its own features and advantages:

Register Mode : Fastest mode, least ROM requirements

Indexed Mode : Random access to tables

Symbolic Mod e: Access to random addresses without overhead by loading
of pointers

Absolute Mod e: Access to absolute addresses independent of the current
program address
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Indirect Mode : Table addressing via register; code saving access to often ref-
erenced addresses

Indirect Autoincrement Mode : Table addressing with code saving automatic
stepping; for transfer routines

Immediate Mode : Loading of pointers, addresses or constants within the in-
struction,

With the use of the symbolic mode an interrupt routine can be as short as pos-
sible. An interrupt routine is shown that has to increment a RAM word COUNT-
ER and to do a comparison if a status byte STATUS has reached the value 5.
If this is the case, the status byte is cleared. Otherwise, the interrupt routine
terminates:

INTRPT INC COUNTER ;Increment counter

CMP.B #5,STATUS ;STATUS = 5?

JNE INTRET ;

CLR.B STATUS ;STATUS = 5: clear it

INTRET RETI

No loading of pointers or saving and restoring of registers is necessary. The
action is done immediately, without any overhead.

9.1.6 Program Flow Control

9.1.6.1 Computed Branches and Calls

The branch instruction is an emulated instruction that moves the destination
address into the program counter:

MOV dst,PC ; EMULATION FOR BR @dst

The ability to access the program counter in the same way as all other registers
provides interesting options:

1) The destination address can be taken from tables: see Section 9.2.5
2) The destination address can be calculated
3) The destination address can be a constant. This is  the usual method of

getting the address.

9.1.6.2 Nesting of Subroutines

Due to the stack orientation of the MSP430, one of the main problems of other
architectures does not play a role here at all. Subroutine nesting can proceed
as long as RAM is available. There is no need to keep track of the subroutine
calls as long as all subroutines terminate with the Return from Subroutine in-
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struction RET. If subroutines are left without the RET instruction, some house-
keeping is necessary; popping of the return address or addresses from the
stack.

9.1.6.3 Nesting of Interrupts

Nesting of interrupts gives no problem at all, provided there is enough RAM
for the stack. For every occurring interrupt, two words on the stack are needed
for the storage of the status register and the return address. To enable nested
interrupts, it is necessary to only include an EINT instruction into the interrupt
handler. If the interrupt handlers are as short as possible (a good real-time
practice), nesting may not be necessary.

EXAMPLE: The basic timer interrupt handler is woken-up with 1 Hz only, but
has to do a lot of things. The interrupt nesting is therefore used. The latency
time is 8 clock cycles only.

; Interrupt handler for Basic Timer: Wake–up with 1Hz

;

BT_HAN EINT ; Enable interrupt for nesting

INC.B SECCNT ; Counter for seconds +1

CMP.B #60,SECCNT ; 1 minute elapsed?

JHS MIN1 ; Yes, do necessary tasks

RETI ; No return to LPM3

;

; One minute elapsed: Return is removed from stack, a branch to

; the necessary tasks is made. There it is decided how to proceed

;

MIN1 INC MINCNT ; Minute counter +1

CLR SECCNT ; 0 –> SECCNT

... ; Start of necessary tasks

RETI ; Tasks completed

9.1.6.4 Jumps

Jumps allow the conditional or unconditional leaving of the linear program flow.
Jumps cannot reach every address of the address space. But they have the
advantage of needing only one word and only two MCLK cycles. The 10-bit
offset field allows jumps of 512 words maximum forward and 511 words, maxi-
mum, backwards. This is four to eight times the normal reach of a jump. Only
in a few cases, the 2-word branch is necessary.

Eight Jumps are possible with the MSP430; four of them have two mnemonics
to allow better readability:
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Table 9–3. Jump Usage
MNEMONIC CONDITION APPLICATIONS

JMP label Unconditional Jump Program control transfer

JEQ label Jump if Z = 1 After comparisons: src = dst

JZ label Jump if Z = 1 Test for zero contents

JNE label Jump if Z = 0 After comparisons: src # dst

JNZ label Jump if Z = 0 Test for nonzero contents

JHS label Jump if C = 1 After unsigned comparisons: dst ≥ src

JC label Jump if C = 1 Test for a set carry

JLO label Jump if C = 0 After unsigned comparisons dst < src

JNC label Jump if C = 0 Test for a reset carry

JGE label Jump if N .XOR. V = 0 After signed comparisons: dst ≥ src

JLT label Jump if N .XOR. V = 1 After signed comparisons: dst < src

JN label Jump if N = 1 Test for the sign of a result: dst < 0

Note:

It is important to use the appropriate conditional jump for signed and un-
signed data. For positive data (0 to 07FFFh or 0 to 07Fh) both signed and
unsigned conditional jumps operate similarly. This changes completely
when used with negative data (08000h to 0FFFFh or 080h to 0FFh): the
signed conditional jumps treat negative data as smaller numbers than the
positive ones, and the unsigned conditional jumps treat them as larger num-
bers than the positive ones.

No Jump if Positive is provided, only a Jump if Negative. But after several in-
structions, it is possible to use the Jump if Greater Than or Equal for this pur-
pose. It must be ensured that only the instruction preceding the JGE resets the
overflow bit V. The following instructions ensure this:

AND src,dst ; V <– 0

BIT src,dst ; V <– 0

RRA dst ; V <– 0

SXT dst ; V <– 0

TST dst ; V <– 0

If this feature is used, it should be noted within the comment for later software
modifications. For example:

MOV ITEM,R7 ; FETCH ITEM

TST R7 ; V <– 0, ITEM POSITIVE?

JGE ITEMPOS ; V=0: JUMP IF >= 0



CPU Registers

 9-10

Note:

If addresses are computed only the unsigned jumps are adequate. Address-
es are always unsigned, positive numbers.

No Jump if Overflow is provided. If the status of the overflow bit is needed from
the software, a simple bit test can be used (the BIT instruction clears the over-
flow bit, but its state is read correctly before):

OV .EQU 0100h ; Bit address in SR

;

BIT #OV,SR ; Test Overflow Bit and clear it

JNZ OVFL ; If OV = 1 branch to label OVFL

... ; If OV = 0 continue here



Special Coding Techniques

9-11CPU Registers

9.2 Special Coding Techniques

The flexibility of the MSP430 CPU together with a powerful assembler allows
coding techniques not available with other microcomputers. The most impor-
tant ones are explained in the following sections.

9.2.1 Conditional Assembly

For a detailed description of the syntax please refer to MSP430 Family Assem-
bler Language Tools User’s Guide.

Conditional assembly provides the ability to compile different lines of source
into the object file depending on the value of an expression that is defined in
the source program. This makes it easy to alter the behavior of the code by
modifying one single line in the source.

The following example shows how to use of conditional assembly. The exam-
ple allows easy debugging of a program that processes input from the ADC
by pretending that the input of the ADC  is always 07FFh. The following is the
routine used for reading the input of the ADC. It returns the value read from
ADC input A0 in R8.

DEBUG .set 1 ;1= debugging mode; 0= normal mode
ACTL .set 0114h
ADAT .set 0118h
IFG2 .set 3
ADIFG .set 4

; get_ADC_value:
;

.IF DEBUG=1
MOV #07FFh,R8
.ELSE
BIC #60,&ACTL ; Input channel is A0
BIC.B #ADIFG,&IFG2
BIS #1,&ACTL ; Start conversion

WAIT BIT.B #ADIFG,&IFG2
JZ WAIT ; Wait until conversion is ready
MOV &ADAT,R8
.ENDIF
RET

;

With a little further refining of  the code, better results can be achieved. The
following piece of code shows more built-in ways to debug the written code.
The second debug code, where debug=2, returns 0700h and 0800h alternat-
ing.
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DEBUG .SET 1 ; 1= debug mode 1; 2= deb. mode 2; 0=
; normal mode

ACTL .SET 0114h
ADAT .SET 0118h
IFG2 .SET 3
ADIFG .SET 4

; get_ADC_value:
;
VAR .SECT ”VAR”’0200h
OSC .WORD 0700h

.IF DEBUG=1 ; Return a  constant value
MOV #07FFh,R8
.ELSEIF DEBUG=2 ; Return alternating values
MOV #0F00h,R8
SUB OSC,R8
MOV R8,OSC
.ELSE
BIC #60h,&ACTL ; Input channel is A0
BIC #ADIFG,&IFG2
BIS #1,&ACTL ; Start conversion

WAIT BIT #ADIFG,&IFG2
JZ WAIT ; Wait until conversion is ready
MOV &ADAT,R8
.ENDIF
RET

Conditional assembly is not restricted to the debug phase of software develop-
ment. The main use is normally to get different software versions out of one
source. For every version only the necessary software parts are assembled
and the unneeded parts are left out by conditional assembly. The big advan-
tage is the single source that is maintained.

An example of this is the MSP430 floating point package with two different
number lengths (32 and 48 bits) contained in one source. Before assembly the
desired length is defined by an .EQU directive. See Section 5.6, The Floating
Point Package for details.

9.2.2 Position Independent Code

 The architecture of the MSP430 allows the easy implementation of position
independent code (PIC). This is a code, which may run anywhere in the ad-
dress space of a computer without any relocation needed. PIC is possible with
the MSP430 because of the allocation of the PC inside of the register bank.
The addressability of the PC is often used. Links to other PIC blocks are pos-
sible only by references to absolute addresses (pointers).
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EXAMPLE: Code is transferred to the RAM from an outside storage (EPROM,
ROM, or EEPROM) and executed there at full speed. This code needs to be
PIC. The loaded code may have several purposes:

� Application specific software that is different for some versions
� Additional code that was not anticipated before mask generation
� Test routines for manufacturing purposes

9.2.2.1 Referencing of Code Inside Position Independent Code

The referenced code or data is located in the same block of PIC as the program
resides.

Jumps

Jumps are position independent anyway: their address information is an offset
to the destination address.

Branches

ADD @PC,PC ; Branch to label DESTINATION

.WORD DESTINATION–$ ; Address pointer

Subroutine Calls
;  Calling a subroutine starting at the label SUBR:

;

SC MOV PC,Rn ; Address SC+2 –> Rn

ADD #SUBR–$,Rn ; Add offset (SUBR – (SC+2))

CALL Rn ; SC+2+SUBR–(SC+2)) = SUBR

Operations on Data

The symbolic addressing mode is position independent. An offset to the PC
is used. No special addressing is necessary

MOV DATA,Rn ; DATA is addressed

CMP DATA1,DATA2 ; symbolically

Jump Tables

The status contained in Rstatus decides where the SW continues. Rstatus
contains a multiple of 2 (0, 2, 4 ... 2n). Range: +512 words, –511 words

ADD Rstatus,PC ; Rstatus = (2x status)

JMP STATUS0 ; Code for status = 0

JMP STATUS2 ; Code for status = 2

...

JMP STATUSn ; Code for status = 2n
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Branch Tables

The status contained in Rstatus decides where the SW continues. Rstatus
contains a multiple of 2 (0, 2, 4 ... 2n). Range: complete 64K

ADD TABLE(Rstatus),PC ; Rstatus = status

TABLE .WORD STATUS0–TABLE ; Offset for status = 0

.WORD STATUS2–TABLE ; Offset for status = 2

...

.WORD STATUSn–TABLE ; Offset for status = 2n

9.2.2.2 Referencing of Code Outside of PIC (Absolute)

The referenced code or data is located outside the block of PIC. These ad-
dresses can be absolute addresses only (e.g. for linking to other blocks or pe-
ripheral addresses).

Branches

Branching to the absolute address DESTINATION:

BR #DESTINATION ; #DESTINATION –> PC

Subroutine Calls

Calling a subroutine starting at the absolute address SUBR:

CALL #SUBR ; #SUBR –> PC

Operations on Data

Absolute mode (indexed mode with status register SR = 0). SR does not loose
its information!

CMP &DATA1,&DATA2 ; DATA1 + 0 = DATA1

ADD &DATA1,Rn

PUSH &DATA2 ; DATA2 –> stack

Branch Tables

The status contained in Rstatus decides where the SW continues. Rstatus
steps in increments of 2. The table is located in absolute address space:

MOV TABLE(Rstatus),PC ; Rstatus = status

...

.sect xxx ; Table in absolute address space

TABLE .WORD STATUS0 ; Code for status = 0
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.WORD STATUS2 ; Code for status = 2

...

.WORD STATUSn ; Code for status = 2n

Table is located in PIC address space, but addresses are absolute:

MOV Rstatus,Rhelp ; Rstatus contains status

ADD PC,Rhelp ; Status + L$1 –> Rhelp

L$1 ADD #TABLE–L$1,Rhelp  ; Status+L$1+TABLE–L$1

MOV @Rhelp,PC ; Computed address to PC

TABLE .WORD STATUS0 ; Code for status = 0

.WORD STATUS1 ; Code for status = 2

...

.WORD STATUSn ; Code for status = 2n

The previously shown program examples can be implemented as MACROs
if needed. This would ease the usage and enhance the legibility.

9.2.3 Reentrant Code

If the same subroutine is used by the background program and interrupt rou-
tines, then two copies of this subroutine are necessary with normal computer
architectures. The stack gives a method of programming that allows many
tasks to use a single copy of the same routine. This ability of sharing a subrou-
tine for several tasks is called reentrancy.

 Reentrancy allows the calling of a subroutine despite the fact that the current
task has not yet finished using the subroutine.

The main difference of a reentrant subroutine from a normal one is that the re-
entrant routine contains only pure code. That is, no part of the routine is modi-
fied during the usage. The linkage between the routine itself and the calling
software is possible only via the stack (i.e. all arguments during calling and all
results after completion have to be placed on the stack and retrieved from
there). The following conditions must be met for reentrant code:

�  No usage of dedicated RAM; only stack usage
� If registers are used, they need to be saved on the stack and restored from

there.

EXAMPLE: A conversion subroutine Binary to BCD needs to be called from
the background and the interrupt part. The subroutine reads the input number
from TOS and places the 5-digit result also on TOS (two words). The subrou-
tines save all registers used on the stack and restore them from there or com-
pute directly on the stack.
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PUSH R7 ; R7 CONTAINS THE BINARY VALUE

CALL #BINBCD ; TO BE CONVERTED TO BCD

MOV @SP+,LSD ; BCD–LSDs FROM STACK

MOV @SP+,MSD ; BCD–MSD  FROM STACK

...

9.2.4 Recursive Code

Recursive subroutines are subroutines that call themselves. This is not pos-
sible with typical architectures; stack processing is necessary for this often
used feature. A simple example for recursive code is a line printer handler that
calls itself for the inserting of a form feed after a certain number of printed lines.
This self-calling allows the use all of the existent checks and features of the
handler without the need to write it more than once. The following conditions
must be met for recursive code:

� No use of dedicated RAM; only stack usage

� A termination item must exist to avoid infinite nesting (e.g., the lines per
page must be greater than 1 with the above line printer example)

� If registers are used, they need to be saved and restored on the stack

EXAMPLE: The line printer handler inserts a form feed after 70 printed lines

;

LPHAND PUSH R4 ; Save R4

...

CMP #70,LINES ; 70 lines printed?

JLT L$500 ; No, proceed

CALL #LPHAND ;

.BYTE CR,FF ; Yes, output Carriage Return

... ; and Form Feed
L$500 ...

9.2.5 Flag Replacement by Status Usage

Flags have several disadvantages when used for program control:

� Missing transparency (flags may depend on other flags)
� Possibility of nonexistent flag combinations if not handled very carefully
� Slow speed: the flags can be tested only serially

The MSP430 allows the use of a status (contained in a RAM byte or register),
which defines the current program part to be used. This status is very descrip-
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tive and prohibits nonexistent combinations. A second advantage is the high
speed of the decision. Only one instruction is needed to get to the start of the
appropriate handler (see Branch Tables).

The program parts that are used currently define the new status dependent on
the actual conditions. Normally the status is only incremented, but it can be
changed to be more random too.

EXAMPLE: The status contained in register Rstatus decides where the soft-
ware continues. Rstatus contains a multiple of 2 (0, 2, 4 ... 2n)

; Range: Complete 64K

;

MOV TABLE(Rstatus),PC ;Rstatus = status

TABLE .WORD STATUS0 ; Address handler for status = 0

.WORD STATUS2 ; Address handler for status = 2

...

.WORD STATUSn ; Address handler for status = 2n

;
STATUS0 .... ; Start handler status 0

INCD Rstatus ; Next status is 2

JMP HEND ; Common end

The previous solution has the disadvantage of using words even if the dis-
tances to the different program parts are small. The next example shows the
use of bytes for the branch table. The SXT instruction allows backward refer-
ences (handler starts at lower addresses than TABLE4).

; BRANCH TABLES WITH BYTES: Status in R5 (0, 1, 2, ..n)
; Usable range: TABLE4–128 to TABLE4+126

PUSH.B TABLE4(R5) ; STATUSx–TABLE4 –> STACK
SXT @SP ; Forward/backward references. . . . . 
ADD @SP+,PC ; TABLE4+STATUSx–TABLE4 –> PC

TABLE4 .BYTE STATUS0–TABLE4 ; DIFFERENCE TO START OF
   HANDLER

.BYTE STATUS1–TABLE4

....

.BYTE STATUSn–TABLE4 ; Offset for status = n

If only forward references are possible (normal case), the addressing range
can be doubled. The next example shows this:

; Stepping is forward only (with doubled forward range)
; Status is contained in R5 (0, 1, ..n)
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; Usable range: TABLE5 to TABLE5+254

PUSH.B TABLE5(R5) ; STATUSx–TABLE –> STACK
CLR.B 1(SP) ; Hi byte <– 0. . . . . 
ADD @SP+,PC ; TABLE+STATUSx–TABLE –> PC

TABLE5 .BYTE STATUS0–TABLE5 ; DIFFERENCE TO START OF
    HANDLER

.BYTE STATUS1–TABLE5

....

.BYTE STATUSn–TABLE5 ; Offset for status = n
;

The previous example can be made shorter and faster if a register can be
used:

; Stepping is forward only (with doubled forward range)
; Status is contained in R5 (0, 1, 2..n)
; Usable range: TABLE5 to TABLE5+254
;

MOV.B TABLE5(R5),R6 ; STATUSx–TABLE5 –> R6
ADD R6,PC ; TABLE5+STATUSx–TABLE5 –> PC. . . . . 

TABLE5 .BYTE STATUS0–TABLE5 ; DIFFERENCE TO START OF
    HANDLER

.BYTE STATUS1–TABLE5

....

.BYTE STATUSn–TABLE5 ; Offset for status = n

The addressable range can be doubled once more with the following code.
The status (0, 1, 2, ..n) is doubled before its use.

; The addressable range may be doubled with the following code:
; The ”forward only” version with an available register (R6) is
; shown: Status 0, 1, 2 ...n
; Usable range: TABLE6 to TABLE6+510
;

MOV.B TABLE6(R5),R6 ; (STATUSx–TABLE6)/2
RLA R6 ; STATUSx–TABLE6
ADD R6,PC ; TABLE6+STATUSx–TABLE6 –> PC

TABLE6 .BYTE (STATUS0–TABLE6)/2 ; Offset for Status = 0
.BYTE (STATUS1–TABLE6)/2 ;
...
.BYTE (STATUSn–TABLE6)/2 ; Offset for Status = n

9.2.6 Argument Transfer With Subroutine Calls

Subroutines often have arguments to work with. Several methods exist for the
passing of these arguments to the subroutine:
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� On the stack
� In the words (bytes) after the subroutine call
� In registers
� The address is contained in the word after the subroutine call

The passed information itself may be numbers, addresses, counter contents,
upper and lower limits etc. It only depends on the application.

9.2.6.1 Arguments on the Stack

The arguments are pushed on the stack and read afterwards by the called sub-
routine. The subroutine is responsible for the necessary housekeeping (here,
the transfer of the return address to the top of the stack).

� Advantages:

� Usable generally; no registers have to be freed for argument passing

� Variable arguments are possible

� Disadvantages:

� Overhead due to necessary housekeeping

� Not easy to understand

EXAMPLE: The subroutine SUBR gets its information from two arguments
pushed onto the stack before being called. No information is given back and
a normal return from subroutine is used.

PUSH argument0 ; 1st ARGUMENT FOR SUBROUTINE

PUSH argument1 ; 2nd ARGUMENT

CALL #SUBR ; SUBROUTINE CALL

...

SUBR MOV 4(SP),Rx ; COPY ARGUMENT0 TO Rx

MOV 2(SP),Ry ; COPY ARGUMENT1 TO Ry

MOV @SP,4(SP) ; RETURN ADDRESS TO CORRECT LOC.

ADD #4,SP ; PREPARE SP FOR NORMAL RETURN

... ; PROCESSING OF DATA

RET ; NORMAL RETURN
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After the subroutine call, the stack looks as follows:                       After the RET, it looks like this:

  SP

Argument0

Argument1

Return Address

TOS before CALL

Address N

Address N+4

Address N+2

SP

 

 

 

Figure 9–2. Argument Allocation on the Stack

EXAMPLE: The subroutine SUBR gets its information from two arguments
pushed onto the stack before being called. Three result words are returned on
the stack. It is the responsibility of the calling program to pop the results from
the stack.

PUSH argument0 ; 1st ARGUMENT FOR SUBROUTINE

PUSH argument1 ; 2nd ARGUMENT

CALL #SUBR ; SUBROUTINE CALL

POP R15 ; RESULT2 –> R15

POP R14 ; RESULT1 –> R14

POP R13 ; RESULT0 –> R13

...

SUBR MOV 4(SP),Rx ; COPY ARGUMENT0 TO Rx

MOV 2(SP),Ry ; COPY ARGUMENT1 TO Ry

... ; PROCESSING CONTINUES

PUSH 2(SP) ; SAVE RETURN ADDRESS

MOV RESULT0,6(SP) ; 1st RESULT ON STACK

MOV RESULT1,4(SP) ; 2nd RESULT ON STACK

MOV RESULT2,2(SP) ; 3rd RESULT ON STACK

RET
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After the subroutine call, the stack looks as follows:                        After the RET, it looks like this:

  SP

Argument0

Argument1

Return Address

TOS before CALL

Address N

Address N+4

Address N+2

SP

Result0

Result1

Result2  

 

 

Figure 9–3. Argument and Result Allocation on the Stack

Note:

If the stack is involved during data transfers, it is very important to have in
mind that only data at or above the top of stack (TOS, the word the SP points
to) is protected against overwriting by enabled interrupts. This does not allow
the SP to move above the last item on the stack. Indexed addressing is need-
ed instead.

9.2.6.2 Arguments Following the Subroutine Call

The arguments follow the subroutine call and are read by the called subrou-
tine. The subroutine is responsible for the necessary housekeeping (here, the
adaptation of the return address on the stack to the 1st word after the argu-
ments).

� Advantages:

� Very clear and easily readable interface

� Disadvantages:

� Overhead due to necessary housekeeping

� Only fixed arguments possible

EXAMPLE: The subroutine SUBR gets its information from two arguments fol-
lowing the subroutine call. Information can be given back on the stack or in reg-
isters.

CALL #SUBR ; SUBROUTINE CALL

.WORD START ; START OF TABLE

.BYTE 24,0 ; LENGTH OF TABLE, FLAGS
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... ; 1st instruction after CALL

SUBR MOV @SP,R5 ; COPY ADDRESS 1st ARGUMENT TO R5

MOV @R5+,R6 ; MOVE 1st ARGUMENT TO R6

MOV @R5+,R7 ; MOVE ARGUMENT BYTES TO R7

MOV R5,0(SP) ; ADJUST RETURN ADDRESS ON STACK

... ; PROCESSING OF DATA

RET ; NORMAL RETURN

9.2.6.3 Arguments in Registers

The arguments are moved into defined registers and used afterwards by the
subroutine.

� Advantages:

� Simple interface and easy to understand
� Very fast
� Variable arguments are possible

� Disadvantages:

� Registers have to be freed

EXAMPLE: The subroutine SUBR gets its information from two registers which
are loaded before the calling. Information can be given back, or not with the
same registers.

MOV arg0,R5 ; 1st ARGUMENT FOR SUBROUTINE

MOV arg1,R6 ; 2nd ARGUMENT

CALL #SUBR ; SUBROUTINE CALL

...

SUBR ... ; PROCESSING OF DATA

RET ; NORMAL RETURN

9.2.7 Interrupt Vectors in RAM

If the destination address of an interrupt changes with the program run, it is
valuable to have the ability to modify the pointer. The vector itself (which re-
sides in ROM) cannot be changed but a second pointer residing in RAM can
be used for this purpose.

EXAMPLE: The interrupt handler for the basic timer starts at location BTHAN1
after initialization and at BTHAN2 when a certain condition is met (for example,
when a calibration is made).

; BASIC TIMER INTERRUPT GOES TO ADDRESS BTVEC. THE INSTRUCTION
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; ”MOV @PC,PC” WRITES THE ADDRESS IN BTVEC+2 INTO THE PC:

; THE PROGRAM CONTINUES AT THAT ADDRESS

;

.sect ”VAR”,0200h ; RAM START

BTVEC .word 0 ; OPCODE ”MOV @PC,PC”

.word 0 ; ACTUAL HANDLER START ADDR.

; THE SOFTWARE VECTOR BTVEC IS INITIALIZED:

;

INIT MOV #04020h,BTVEC ; OPCODE ”MOV @PC,PC

MOV #BTHAN1,BTVEC+2 ; START WITH HANDLER BTHAN1

... ; INITIALIZATION CONTINUES

;

; THE CONDITION IS MET: THE BASIC TIMER INTERRUPT IS HANDLED

; AT ADDRESS BTHAN2 STARTING NOW

MOV #BTHAN2,BTVEC+2 ; CONT. WITH ANOTHER HANDLER

...

;

; THE INTERRUPT VECTOR FOR THE BASIC TIMER CONTAINS THE RAM

; ADDRESS OF THE SOFTWARE VECTOR BTVEC:

.sect ”BTVect”,0FFE2h ; VECTOR ADDRESS BASIC TIMER

.WORD BTVEC ; FETCH ACTUAL VECTOR THERE
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9.3 Instruction Execution Cycles

9.3.1 Double Operand Instructions

With the following scheme, it is relatively easy to remember how many cycles
a double operand instruction will need to execute. Figure 9–4 shows the num-
ber of cycles for all 28 possible combinations of the source and destination ad-
dressing modes. All similar addressing modes are condensed.

Argument0

Argument1

Rdst

X(Rdst)

1†

 2†

3

4

5

6

Rsrc

@Rsrc,  @Rsrc+,  #N

SYMBOLIC
&ABSOLUT

 

 

X(Rsrc),  SYMBOLIC,  &ABSOLUT

 †: Add one cycle if Rdst is PC

Figure 9–4. Execution Cycles for Double Operand Instructions

EXAMPLE: the instruction    ADD  #500h,16(R5)  needs 5 cycles for the
execution.

9.3.2 Single Operand Instructions

The simple and clear scheme of the double operand instructions is not applica-
ble to the six single operand instructions. They differ too much. Figure 9–5
gives an overview.
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Argument0

Argument1

RRx CALL

1

3

3

3

4

4

Rdst

@Rdst

PUSH

 

 

X(Rdst),  SYMBOLIC,  &ABSOLUT

SXT
SWPB

4 5

@Rdst+,  #N

4

4

5

5

Figure 9–5. Execution Cycles for Single Operand Instructions

EXAMPLE: the instruction  PUSH  #500h    needs 4 cycles for the execution.

9.3.3 Jump Instructions

All seven conditional jump instructions need two cycles for execution, inde-
pendent if the jump condition is met or not. The same is true for the uncondi-
tional jump instruction, JMP.

9.3.4 Interrupt Timing

An enabled interrupt sequence needs eleven cycles overhead:

� Six cycles for the storage of the PC and the SR on the stack until the first
instruction of the interrupt handler is started

� Five cycles for the return from interrupt—by the instruction RETI—until the
first instruction of the interrupted program is started.

If the interrupt is requested during the low power modes 3 or 4, then additional
two cycles are needed.
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