Texas Instruments DSPS Fest
Houston, TX, August 4-6, 1999

Making DSP Fun for Students Using Matlab and the C31 DSK

Cameron H. G. Wright
Department of Electrical Engineering, U.S. Air Force Academy, USAFA, CO 80840

Thad B. Welch and Michael G. Morrow
Department of Electrical Engineering, U.S. Naval Academy, Annapolis, MD 21402

Abstract — This paper describes some innovative programs us-
ing a graphical user interface (GUI) for Matlab and the C31
DSK which makes DSP concepts interesting and entertain-
ing, yet educational. The programs eliminate the need to pur-
chase any expensive specialized software or hardware, relying
on the commonly available Matlab program and the inerpen-
sive Texas Instruments C31 DSK for this purpose.

The programs described in this paper are a follow-on to the
one presented at DSPS Fest ’98. The new programs are far
more capable and even easier to use than their predecessor:
one author (TBW) even managed to get 4th graders to design
real-time digital filters then run them on a C31 DSK with one
of these programs, and college students love the graphical user
interface and the ease of interfacing with the DSP hardware.
The programs have been used with great success at both the
U.S. Air Force Academy and the U.S. Naval Academy.

Keywords — DSK, TMS320C31, Matlab, education, DSP
I. INTRODUCTION

ODERN software tools such as MATLAB greatly fa-

cilitate the professor’s ability to demonstrate the
concepts of digital signal processing (DSP) in class, and to
assign realistic projects to reinforce these concepts [1-3].
An increasing number of DSP textbooks are becoming
available which take advantage of this ability [4-8], and a
growing trend is for DSP concepts to be introduced ear-
lier in the curriculum [9]. These concepts can be further
reinforced, and greater interest generated by the students,
if they can be easily implemented in real-time on modern
DSP hardware [10]. Affordable hardware is now available
to schools: Texas Instruments, for example, markets DSP
Starter Kits (DSKs) for $99 [11]. While fixed-point pro-
cessors are more prevalent in industry [12] (albeit floating
point is gaining in use), floating-point processors are be-
coming more popular for schools due to pedagogical rea-
sons. We will examine how MATLAB, already accepted
as a powerful learning tool for DSP, can be closely inte-
grated with a DSK for teaching purposes while avoiding
the tedium of manually programming the DSP processor.

A. Teaching with MATLAB

MATLAB is an excellent learning tool for DSP educa-
tion, enabling an easier transition for the student from
theory to practice. This greatly facilitates a student’s

Author e-mail addresses: CHGW: c.h.g.wright@ieee.org,
TBW: t.b.welch@ieee.org, MGM: morrow@nadn.navy.mil

ability to apply signal processing concepts to real-world
DSP hardware such as the widely-used Texas Instruments
TMS320C series of fixed-point and floating-point DSP mi-
croprocessors. In particular, the sptool program supplied
with the latest release of the student edition' of MATLAB
and also available in the latest Signal Processing Tool-
box (version 4.2, written for MATLAB 5.3 Professional)
provides an excellent interactive graphical user interface
(GUI) for designing both FIR and IIR digital filters [13].
The sptool program also allows interactive viewing and
analysis of signals and their spectra, but this paper con-
centrates on the filter design capabilities.

A discussion of how to effectively use sptool in DSP edu-
cation can be found in previous papers [14-16]. Various
filter specifications can be easily selected by the student,
with an immediate customizable display of the resulting
magnitude response. For a more complete analysis of the
filter design, the student can click the “View” button from
the filter column of the main sptool window, executing
the Filter Viewer tool, which displays magnitude, phase,
impulse response, step response, poles and zeros on the z-
plane, group delay, etc., all at the click of a button. The
student can switch back to the Filter Designer tool with
a click of the mouse to modify the design parameters and
interactively see the results. The Filter Designer tool also
includes a method to design filters by interactively plac-
ing poles and zeros on the z-plane. The student can also
process any stored signal with the desired filter and view
the resulting output signal and its associated spectrum
by clicking the “Apply” button from the filter column of
the main sptool window. The sptool program encourages
the student to pursue “what if?” explorations to satisfy
their intellectual curiosity and gain a more complete un-
derstanding of the underlying DSP concepts.

Note that sptool is simply an easy to use GUI that exe-
cutes m-file programs for filter design that existed in pre-
vious versions of both the Signal Processing Toolbox and
the Student Edition of MATLAB. The only really new
aspect is the interactive GUI. Students tend to use the
sptool GUI much more than they ever used the collection
of individual m-files from previous versions [14].

1 The Mathworks is now introducing the more powerful “Student
Version” of MATLAB which will eventually replace the “Student Edi-
tion” of MATLAB.

B. Teaching with DSKs

Another powerful tool to energize and excite students is
the ability to implement a particular signal processing
technique in real-time on a DSP microprocessor such as
one of the Texas Instruments (TT) TMS320C series. When
a student speaks into a microphone and hears their “per-
sonally designed” digital filter algorithm working in real-
time, they are often “hooked” on DSP from then on. The
recent availability of affordable DSP Starter Kits (DSKs)
has made this feasible for most schools. The C31 DSK
described in this paper costs only $99 and contains on a
single inch circuit board the following items.?

o TMS320C31 DSP microprocessor (capable of up to
50 MFLOPS) with 50 MHz clock oscillator. The C31
contains 2 K words (a word is 32 bits) of on-chip
RAM, and can also be used with external memory
on an add-on card.

o TLC32040 analog interface chip (AIC), which com-
bines a selectable cutoff frequency antialiasing filter
(which can also be bypassed), a selectable sampling
frequency (up to 20 kHz but can be used at higher fre-
quencies) 14-bit analog-to-digital converter (ADC), a
digital-to-analog converter (DAC), a reconstruction
filter, and a small output power amplifier which can
drive loads > 300 W. The analog input and output
are intended for audio line-level (+3 V peak) connec-
tions.

o Regulated power supply that accepts either 7-12 Vdc
or 6-9 Vac input.

o Host logic for the PC parallel port communication
(IEEE 1284).

o Various connectors: RCA jacks for the analog in and
out, DB25 parallel port, a 2.1 mm power jack, and
four 32-pin headers which can connect all C31 signals
to custom add-on cards.

The C31 DSK comes with an assembler, debugger, and
assorted documentation. An optimizing C compiler and
a wide variety of other development tools are available at
extra cost.

The C31 DSK is inexpensive, easy to set up, and can
greatly enhance a DSP class. There are obstacles to us-
ing DSKs, however. The learning curve for programming
modern DSP microprocessors is a significant hurdle for
most students. They must contend with specialized top-
ics such as parallel instruction execution, block-repeat,
bit-reversed addressing, and the often unfamiliar Harvard
architecture-and must usually program at the assembly
language level. This scares away many students. While
fixed-point processors are more prevalent in industry due
to their cost and speed advantages, they add further prob-
lems: coefficient quantization, scaling, and other fixed-
point ALU and register effects. From a pedagogical point
of view, fixed-point processors (such as the widely-used

2 A C33 DSK with much larger memory on board will be available
soon.

TT TMS320C5x series) tend to be harder to teach in in-
troductory courses compared to floating-point processors
such as the TMS320C3x and TMS320C4x. For this rea-
son, many schools are opting to buy floating-point DSP
hardware (such as the C31 DSK from TT described above)
for teaching purposes. While the fixed-point effects are
important concepts for students to grasp, many schools
would appreciate a way to teach and demonstrate these
topics without having to buy additional hardware. The
program described below integrates MATLAB closely with
the C31 DSK, eliminates the need to create individual as-
sembly language or C programs to manipulate the hard-
ware, and allows the primary fixed-point effects to be sim-
ulated in real-time on the floating-point DSK. If the stu-
dent desires to load and run a digital filter design on the
DSK without the added effects of fixed-point processors,
it is also easily accomplished.

II. COMBINING MATLAB WITH THE C31 DSK

The authors identified a pressing need for a GUI-based
program which would run under MATLAB, be able to
directly utilize the benefits of sptool mentioned above,
and also communicate seamlessly with the C31 DSK.
While the capabilities provided by sptool are impressive
and greatly facilitate students’ comprehension of various
DSP topics, there is no straightforward way to use it
directly with a DSK. Also lacking in sptool is the abil-
ity to simulate for teaching purposes certain fixed-point
effects, suitable for presentation to our senior-level EE
majors, such as filter coefficient quantization. MATLAB
performs double precision calculations in sptool, thus a
filter design could perform far differently than expected
if implemented on a fixed-point processor [14]. While
floating-point DSP hardware (such as Texas Instruments
TMS320C3x series) is much easier to present from a peda-
gogical standpoint, the fact remains that fixed-point DSP
hardware (such as the Texas Instruments TMS320C5x se-
ries) is still more prevalent due to it’s cost and speed
advantages. It therefore behooves the professor to ex-
pose the students to the important differences between
floating-point and fixed-point hardware. Specialized soft-
ware programs exist which address this design issue, but
they are typically expensive, require the student to learn
another interface, and/or are not written for educational
purposes.

A. A Fized-Point Simulation Using MATLAB

In response to this need, the authors wrote a MATLAB
program that takes up where sptool leaves off, adjusting
the filter coefficients to simulate fixed-point hardware, al-
lowing interactive analysis of the design effects, and seam-
lessly downloading the filter code to a C31 DSK when the
user is ready. This allows the floating-point DSK to sim-
ulate a fixed-point device as desired, and eliminating the
need for buying fixed-point hardware just for this pur-
pose. Based upon feedback received at IEEE ICASSP

'99, the authors recently addded the additional capabil-
ity to simulate fixed-point register and ALU effects. The
program allows the student to interactively compare the
theoretical filter performance with the real-world perfor-
mance that would be encountered using any fixed-point
DSP microprocessor, yet still make full use of sptool. The
actual performance of the student’s filter design can be
observed in real-time with the click of a mouse button,
which loads and runs the filter on the C31 DSK. The pro-
gram eliminates the need for the student to learn another
software interface, eliminates the need for the students
to manually program the DSK, and is perfectly suited to
educational use. While it runs outside of sptool, the pro-
gram easily exchanges information in both directions by
using the same data structure format defined by sptool.

B. A Typical Example

In order to examine the effects of digital filter coeffi-
cient quantization or other fixed-point effects, the stu-
dent merely designs a filter to the desired specifications
using sptool in the normal manner. The student then
exports the filter from sptool to the MATLAB workspace
and runs our program by typing qfilt at the MATLAB com-
mand prompt. This brings up the custom GUI shown in
Figure 1 which allows the user to select with the mouse
the simulation constraint method (rounding or truncat-
ing coefficient quantization, floating- or fixed-point ALU
and register behavior, and implementation as either a Di-
rect Form Type II transpose or as second-order cascaded
sections), number of bits (8 to 32) for the fixed-point ef-
fects, and plotting preference (magnitude vs. frequency,
phase vs. frequency, or poles and zeros on the complex
z-plane). The GUI also allows control over the DSK, and
the user can select the port to which the DSK is connected
(LPT1-LPT3), the sampling frequency of the AIC (fifty
choices from 4509 Hz to 20292 Hz), and control whether
or not the antialiasing filter is in the signal path. Note
that the previous version of this program used a command
line interface and had no ability to communicate with a
DSK; we have found the GUI version to be far more ap-
pealing to our students and the ability to run their filters
in real time on a DSK has been incredibly motivational.
When the “Apply” button is clicked with the mouse, the
program automatically generates and displays any of the
three selected plots which each compare the floating-point
vs. fixed-point filter implementations on the same plot.

To demonstrate the process a student would use, a dig-
ital filter was previously designed using sptool with the
following parameters: bandpass elliptic IIR, sample fre-
quency F's = 8117 Hz, passband 900-1400 Hz with 3 dB
ripple maximum, transition regions of < 50 Hz, and stop
band attenuation of > 70 dB. The resulting design pro-
duced by sptool is an 8th order filter with actual stopband
edges at 872 Hz and 1439 Hz. When the filter coefficients
have been quantized by dfilt to 16 bits (as would be the
case with the Texas Instruments TMS320C5x) and imple-
mented as a Direct Form Type II transpose, the result is

shown in Figure 2 through Figure 4.

The student can imediately see that with quantization ef-
fects, the filter performance is altered radically. There
are significant changes to the originally calculated magni-
tude (Figure 2) and phase (Figure 3) response of the filter,
which were predicated on the assumption of floating-point
processing. But this isn’t the whole story!

There is always a danger in relying too heavily on the re-
sults of computer simulations and blindly accepting the
results. The filter used for the example above clearly
demonstrates this, as even the filter magnitude and phase
response after quantization can be misleading. It is ev-
ident in Figure 4 that due to the quantization process,
some poles have moved outside the unit circle on the com-
plex z-plane. Assuming this is a causal filter design, this
implies that the region of convergence for the z-transform
does not contain the unit circle, meaning the filter design
is unstable. We can verify this by importing the quan-
tized filter back into sptool and examining the impulse
response. As expected, the filter “blows up” and would
be unstable. Yet the quantized filter magnitude response
in Figure 2, while no longer meeting the design specifica-
tions, doesn’t look unstable. How do we explain this dis-
crepancy? We routinely tell our students that no matter
how fast the computer simulation may be, the students
are smarter than the computer, and to always perform
a “sanity check” on any results. In this case, Figure 4
would indicate a stability problem. MATLAB evaluates
the magnitude and phase response of a discrete transfer
function by substituting z = e/ (mathematically equiva-
lent to evaluating the discrete-time Fourier transform, the
DTFT, of the filter). The student should know, however,
that if the unit circle is not contained in the region of
convergence of the z-transform, then the DTFT does not
exist, and the magnitude and phase response as calculated
by MATLAB is meaningless. Since MATLAB doesn’t check
for this condition, we added a routine in qgfilt which de-
tects it and warns the user by showing the plot with a red
background and a special plot title. If no poles move out-
side the unit circle as a result of quantization, or we are
dealing with FIR filters (which have no non-trivial poles),
then the calculated magnitude and phase response will be
valid and the plot background would be white.

The student might then explore if the same filter would
behave any differently if it was implemented as a cascaded
second order section (referred to in some DSP texts as “bi-
quads”). The student simply selects this with the mouse
and clicks the “Apply” button once again for the various
plots. As can be readily seen in Figure 5 and Figure 6, the
filter is now stable (note the plot titles and background
color) and comes so close to matching the floating point
performance that the difference is virtually indistinguish-
able. Without qfilt, the student would likely assume that
the filter design from sptool would meet the desired speci-
fications no matter how it was implemented. By using our
program, however, the student gains a better understand-

: 'l 'Figure No. 1
Fil= Edit “indow Help

=] E3

congtraint method

20
' ' ' ' ' ' ' [rounded DF I -]
plat method
ok i magnitude plat =
nurnber of bits
g -
% 20] printer port
o LFT1 -
=
o
E-r gk Ready to plot! | DSK sample frequency
o 10046 -
s
=
= (" anti-aliazing filker on
=
= B0 -
Apply
Load/Fun DSK
A0k i
It agnify
100 1 L 1 1 L 1 1 Grid an/off
] a00 1000 1500 2000 2500 3000 3500 4000
frequency (Hz) Info
End program

Fig. 1. Initial screen of the graphical user interface (GUI) for dfilt.

ing of the design ramifications of a fixed-point digital filter
realization, including the significant differences of the di-
rect form versus second-order section implementations.

When the filter design is satisfactory, the user can sim-
ply click the “Load/Run DSK” button on the GUI to
download the software to the C31 DSK and run the fil-
ter algorithm for a real-time demonstration. This down-
load and run process takes less than a quarter of a sec-
ond, which gives a feeling of immediacy to the student.
No programming is necessary, making this especially at-
tractive for introducing students to DSP hardware. The
“Load/Run DSK” button activates a 32-bit dynamic link
library (DLL) written with Microsoft Visual C++ 5.0 and
the MATLAB MEX file process to run under Windows 9x
or Windows NT; different programs execute depending
upon whether the user has selected Direct Form Type
IT transpose or cascaded second order sections. To stay
within the on-chip memory limits of the C31 DSK, the
maximum order supported is a 254 order IIR Direct Form
Type II transpose and a 256 order ITR cascaded second
order sections. By specifying a high bit number (such as
32), quantization effects are miniscule and the C31 DSK

can be used as a normal floating-point unit or, as de-
scribed above, the same floating-point DSK can be use to
simulate fixed-point unit.

A companion program called polezero with a similarly
designed GUI for teaching DSP using MATLAB and the
C31 DSK allows students to perform interactive adjust-
ment and “what if?” analysis of pole-zero plots [16]. The
polezero program allows the student to design basic digi-
tal filters by interactively placing poles and zeros on the
complex z-plane, observing the results, and immediately
running the resulting filter on the C31 DSK. The initial
screen presented to the user for polezero is shown in Fig-
ure 7.

ITII. CONCLUSIONS

The programs qfilt and polezero written by the authors
provide the educator with easy to use, inexpensive, and
interactive methods to teach various concepts of digital fil-
ter design so important in DSP classes. The programs are
completely compatible with sptool provided with version 5
of the Student Edition of MATLAB and also with version

: 'l 'Figure No. 1

=] E3

Fil= Edit “indow Help
LUMNSTABLE - poles outside the unit circle (16 Bit Filter Coeflicient Quantization Using Rounding) constraint method
20
I I I ! ! ! ! ! [rounded DF I |
| I | | | | | | plot method
of------ Do oo dheres R (R R L LR A -
! ! ! ! ! ! ! ;magnitude plat "g
o0 i : : : : : number of bits
| | | | | [5]
= P15] i _______________ E_ ____________ 4: ______ _E _______ : ______ _| printer port
i ; | | | | LPT1 x
= 1 1 1 1
o 1 1 1 1
E-r =n] = S I R R O 0 L _| DSk sample frequency
= : : : : [e17 =]
=i 1 1 1 1
= 1 1 1
'% =7 || IS NP). H My cccopfocccsadocscnad . i ______ " anti-aliasing filker on
= | :
! ! Apply
AODf---m-fr-mmmmmammm =)~ R e R - .
: : Load/Run DSE.
-120 e i B R E EEEEE oo — :
 — uantized : : : : : Sl
—_— ouble precision ! ! ! ! !
140 i i i i i i i i Grid on/aff
0 a00 1000 1500 2000 2500 3000 3500 A000 4500
frequency (Hz) I
nra
End program
Fig. 2. Magnitude plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and implemented as a Direct Form II transpose.

4.2 of the Signal Processing Toolbox. They both easily
communicate with the C31 DSK that is used by many
universities, they eliminate the need for tedious program-
ming of the DSK, and both are freely available from the
following Web site.

wseweb.ew.usna.edu/ee/links/ee_links.htm

Should the URL be changed, then navigate from the Naval
Academy home page and select Academics, Academic Di-
visions and Departments, Electrical Engineering, Links.

Note that while these programs do not require program-
ming by the student, our experiences have shown that
once most students “play” with these programs a bit, be-
come comfortable with the DSK, and start to see what
the device can do, they want to learn how to program
the DSK. This is how learning DSP can be fun for the
student.

References

(1]

R. F. Kubichek, “Using MATLAB in a speech and signal pro-
cessing class,” in Proceedings of the 1994 ASEE Annual Con-

[9]

[10]

(11]

ference, pp. 1207-1210, June 1994.

C. S. Burrus, “Teaching filter design using MATLAB,” in Pro-
ceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 20-30, Apr. 1993.

R. G. Jacquot, J. C. Hamann, J. W. Pierre, and R. F. Ku-
bichek, “Teaching digital filter design using symbolic and nu-
meric features of MATLAB,” ASEE Computers in Education,
vol. VII, pp. 811, January-March 1997.

B. Porat, A Course in Digital Signal Processing. John Wiley
& Sons, 1997.

V. K. Ingle and J. G. Proakis, Digital Signal Processing Using
MATLAB V.4. Bookware Companion Series, PWS Publishing,
1997.

S. K. Mitra, Digital Signal Processing: A Computer-Based Ap-
proach. McGraw-Hill, 1998.

A. Ambardar and C. Borghesani, Mastering DSP Concepts Us-
ing MATLAB. Prentice-Hall, 1998.

J. H. McClellan, C. S. Burrus, A. V. Oppenheim, T. W. Parks,
R. W. Schafer, and S. W. Schuessler, Computer-Based Ezer-
cises for Signal Processing Using MATLAB 5. MATLAB Curricu-
lum Series, Prentice-Hall, 1998.

M. A. Yoder, J. H. McClellan, and R. W. Schafer, “Experiences
in teaching DSP first in the ECE curriculum,” in Proceedings of
the 1997 ASEE Annual Conference, June 1997. Paper 1220-06.
R. Chassaing, Digital Signal Processing: Laboratory Experi-
ments Using C and the TMS320C31 DSK. John Wiley & Sons,
1999.

Texas Instruments, Inc., TMS320C3x DSP Starter Kit User’s
Guide, 1996.

: 'l 'Figure No. 1

=] E3

Fil= Edit “indow Help
LUMNSTABLE - poles outside the unit circle (16 Bit Filter Coeflicient Quantization Using Rounding) constraint method
a0
I I I ! ! ! ! ! [rounded DF I |
| | | | | | | | plot method
B0 f------ [S R (R R L LR A e
: : : ! ! ! ! ! [phasepior <]
: : : i i i i i nurnber of bits
A0 F------ === == |= = == —-- == ———- Fm———-- === == H- - =-=- == ==== —
: : : : : : : e -]
- : : ! ! ! ! ! inter port
? O ===t m b oo - lcooccooo booccooo bPoocococoo docococoo Joococoooo boococoo — B
= | | | | | | [ter1 =]
i | | I I I I
S 1) IR 1 U N L L __ : . L | DSK sample frequency
o 1 1 1 1 1 1
& : : : : : : [e117 =]
a 1 1 1 1 1 1
E N1 s e s R S W i_ o :_ T __ i_ o _i _______ i _______ i ______ " anti-aliasing filter on
[1 1 1 1 1
; I I I I Apply
N I it i S R R oo SRREEEE SRREEEEE RREEE -
; : : : : Load/Fun DSK
-EO0 ; S A S Hoccosos Focooo - ,
——— double precision : : : : : Sl
—— quantized ! ! ! ! !
600 ‘ ‘ ‘ : : L : : Grid an/aff
0 500 1000 1600 2000 2500 3000 3500 4000 4500
frequency (Hz) Info
End program

12]
(13]

(14]

[15]

[16]

Fig. 3. Phase plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and implemented as a Direct Form II transpose.

C. Inacio and D. Ombres, “The DSP decision: Fixed point or
floating?,” IEEE Spectrum, pp. 72-74, Sept. 1996.

The MathWorks, Inc., Natick, MA, MATLAB: The Language of
Technical Computing, 1996.

C. H. G. Wright and T. B. Welch, “Teaching real-world DSP us-
ing MATLAB,” ASEE Computers in Education Journal, vol. IX,
pp. 1-5, Jan—-Mar 1999.

C. H. G. Wright and T. B. Welch, “Teaching DSP concepts
using MATLAB and the TMS320C31 DSK,” in Proceedings of
the IEEE International Conference on Acoustics, Speech, and
Signal Processing, Mar. 1999. Paper 1778.

T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Poles,
zeros, and MATLAB, oh my!,” in Proceedings of the 1998 ASEE
Annual Conference, (Charlotte, NC), June 1999. Paper 1320-
02.

¢ Figure No. 1

Fig. 4. Pole-zero plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and implemented as a Direct Form II transpose.

: 'l 'Figure Ho. 1 =] 3
Fil= Edit “indow Help

Effects of 16 Bit Filter Coefficient Quantization Using Rounded Second Order Sections conhstraint method

20
: : : : ;raunded 2nd order zections __"_'j
| | | : plot method
Of------ L B A e -
! M ! ! ;magnitudeplot ";
| | | : nurmber of bits
| R S e -

;18 "I

printer port

;LF’T 1 "'l

DSK zample frequency

;8117" "I

" anti-aliasing filter on

Il e e e T

magnitude response [dE])
a3
(=}

-50
Apply
-100 . —
! Load/Run DSE.
20 - - — :
 — uantized : : : : Sl
—_— ouble precision ! ! ! !
140 i i i i i i i Grid on/aff
0 500 1000 1500 2000 2500 3000 3500 4000 4500
frequency (Hz) Info
End program

Fig. 5. Magnitude plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and implemented as cascaded second order sections.

¢ Figure No. 1

Fig. 6. Pole-zero plot of 8th order IIR Elliptic digital filter, quantized to 16 bits and implemented as cascaded second order sections.

Figure Ho_ 1: Interactive Pole-Zero Tool

10000

Fig. 7. Initial screen of the graphical user interface (GUI) for polezero.

