
Real-Time Adaptive PID Controller Using the TMS320C31 DSK

Jianxin Tang
Div. of Electrical Engineering

Alfred University
Alfred, NY 14802

Rulph Chassaing, Walter J. Gomes III
Dept. of Electrical and Computer Engineering

University of Massachusetts Dartmouth
North Dartmouth, MA 02747

Abstract
 This paper addresses real-time adaptive PID (Proportional-Integral-Derivative)
controller using the TMS320C31 DSK. With an adaptive PID controller, the C31
automatically updates the PID controller parameters to achieve the desired system output.
The controller is applied to a DC motor system for speed control. Different adaptation
rates were tested. Test results show that PID parameters converged to expected values
and motor speeds reach desired output speeds corresponding to different setpoints. Future
work includes extending the results to the C6x.

I. Introduction

Due to the recent and remarkable progress in power electronics and
microelectronics it is possible to apply modern control technology to the area of motor
and motion control. The use of digital signal processors (DSPs) has permitted the
increasingly stringent performance requirements and fast, efficient, and accurate control
of servo motor and motion control systems. DSPs, such as the TMS320C31 (C31) from
Texas Instruments, are currently used for a wide range of applications from controls and
communications to speech processing. They continue to be more and more successful
because of available low-cost support tools. DSP-based systems can be readily
reprogrammed for a different application.

The term adaptive system has a variety of specific meanings, but it usually
implies that the system is capable of accommodating unpredictable environmental
changes, whether these changes arise within the system or external to it [1]. This concept
has a great deal of appeal to the systems designer since a highly adaptive system, besides
accommodating environmental changes, would also accommodate engineering design
errors or uncertainties and would compensate for the failure of minor system
components, thereby increasing system reliability.

The C31-based $99 DSK includes Texas Instruments' C31 floating-point digital
signal processor, and an analog interface circuit (AIC) chip with A/D and D/A

converters, input (anti-aliasing) and output (reconstruction) filters, all on a single chip.
The A/D converter can accommodate two multiplexed inputs, a key feature that is
required for adaptive control with an error signal input and a reference signal input. The
DSK also includes an assembler, a debugger, and many application examples [2].

This paper addresses real-time DC motor speed control with an adaptive PID
controller using the C31 DSK. A PID controller has one fixed pole at the origin of the
complex s-plane (or at 1 in z-plane) and two flexible zeros. Since the pole is fixed, all we
have to do is to make the two zeros adaptive. Code Explorer was used to run the program
on the C31 DSK and monitor initial and final values of the PID parameters. Test results
show that the adaptive process converges, the final PID parameters are reasonable, and
the system response is as expected.

In Section II, design of the adaptive scheme for the PID controller is discussed.
Implementation of the adaptive PID controller using the C31 is addressed in Section III.
Test results of the motor system and comparison with theoretical calculations are
presented in Section IV. Finally conclusion and future work are given in Section V.

II. Design of the Adaptive Scheme for the PID Controller

The block diagram of the adaptive control system is as follows:

Fig. 1. The adaptive motor control system

In Fig. 1, r(t) is the input (or set point), c(t) is the output, D(z) is the digital PID
controller, G(s) is the plant transfer function, and H(s) is the sensor transfer function. The
adaptive control scheme consists of two parts: the first part is using initial or updated PID
parameters, the controller will be taking in input samples, processing them, and sending
them out to the motor through the D/A converter; the second part is updating the
controller parameters. This process continues until the error signal e2 is approaching
zero.

A digital non-adaptive PID controller has the following form [3]:

 Tz
z

Dz
zT

IP KKKzD 1
1
1

2)(−
−
+ ++=

 1

2
2

1
10

1 −

−−

−
++=

z
zazaa (1)

with

 T

KTK
P

DIKa ++= 20

 T

KTK
P

DIKa 2
21 −+−=

 T

K Da =2 ,

where ,PK ,IK and DK are the proportional, integral, and derivative parameters of the
controller, and T is the sampling period. It is clear from equation (1) that the PID
controller has one fixed pole and two flexible zeros. For programming convenience, let

)(

)(
)(
)()()(zX

zY
zM
zMzDzD ==

where X(z) and Y(z) are the input and output of the controller in the z-domain,
respectively, then

)()()(2

2
1

10 zMzazaazY −− ++= (2)
and

)()1()(1 zMzzX −−= . (3)

Using the inverse z-transformation,

)2()1()()(210 −+−+= kmakmakmaky (4)

and

)1()()(−+= kmkxkm . (5)

As mentioned in section I, the C31 DSK has two multiplexed inputs. One is the
primary input and the other is the auxiliary input. Denoting the primary input as IOPRI
and the auxiliary as IOAUX, the detailed portion of the C31 DSK in Fig.1 is shown in
Fig. 2, where E1 and y are input and output of the PID controller, respectively.

Fig. 2. Detailed portion of the adaptive PID controller

E2 is then:

A quadratic objective function is created based on minimizing E2 with respect to
the controller parameters:

Taking the first order partial derivative with respect to the controller parameter a’s:

−=−=)()()()(2 zRzYzRzE)6()(
1

11

2
2

1
10 zE

z
zazaa

−
++
−

−−

()2
2
1

210 2),,(EaaaJ =

)7(1
1

)(
2

1

2
2

1
10

2
1

−
++

−=
−

−−

E
z

zazaa
zR

())8(1
1

1
1

212 2
11

2
2

1
10

1
1

1
0

aE
zz

zazaa
ER

za
J

−

−
++

+−=
−−

−−

−∂
∂

−

())8(1
11

212 2
1

1

1

2
2

1
10

1 1

1

1
bE

z
z

z
zazaa

ER
z

z
a
J

−

−
++

+−=
−

−

−

−−

−∂
∂

−

−

())8(1
11

212 2
1

2

1

2
2

1
10

1 1

2

2
cE

z
z

z
zazaa

ER
z

z
a
J

−

−
++

+−=
−

−

−

−−

−∂
∂

−

−

 Using the first order approximation, the negative gradient is basically the product
of reference signal R and error signal E1. Tests show that using E1 and E2 actually has a
better convergence Therefore, a modified gradient method was used as the search
direction in updating the PID parameters. This also agrees with the general adaptive
mechanism mentioned in [4]: new parameter = old parameter + (bounded step size) X
(function of input) X (function of error). More specifically

III. Implementation of the adaptive PID Controller Using the C31 DSK

 Following is the assembly language program ADAPTPID.ASM implementing the
adaptive PID controller.

*ADAPTPID.ASM - Adaptive PID controller using the C31 DSK
 .start ".text", 0x809900 ;starting address of text
 .start ".data", 0x809C00 ;starting address of data
 .include "AICCOM31.ASM" ;include AIC comm routines
 .entry BEGIN ;start of code
 .text ;assemble into text
BEGIN LDP @COEFF_ADDR ;init to data page 128
 CALL AICSET ;initialize AIC
 LDI @ERF_ADDR,AR6 ;error function address
 LDI @XNB_ADDR,AR2 ;AR2=bottom addr of input xn to filter
 LDI LENGTH,BK ;BK=length of circular buffer
PID CALL IOAUX ;get input error signal
 FLOAT R6,R3 ;stage input
 STF R3,*AR2++% ;store newest sample
 LDI @COEFF_ADDR,AR0 ;AR0 points to coefficients address
 LDI @DLY_ADDR,AR1 ;AR1 points to addr of delay samples
 MPYF3 *AR0++,*AR1++,R0 ;b[0]*dly[0]=b1u(n-1)
 MPYF3 *AR0++,*AR1--,R1 ;b[1]*dly[1]=b2u(n-2)
|| SUBF3 R0,R3,R3 ;input-b[0]*dly[0];R3=x(n)-b1u(n-1)
 MPYF3 *AR0++,*AR1++,R0 ;a[1]*dly[0];R0=a1u(n-1)
|| SUBF3 R1,R3,R2;u(n)=xn-b[0]*dly[0]-b[1]*dly[1]=x(n)-b1u(n-1)-b2u(n-2)
 MPYF3 *AR0++,*AR1--,R1 ;a[2]*dly[1]=R1=a2u(n-2)
 ADDF3 R0,R1,R3 ;a[2]*dly[1]+a[1]*dly[0];R3=a1u(n-1)+a2u(n-2)
 LDF *AR1,R4 ;dly[0];R4=u(n-1)
|| STF R2,*AR1++ ;dly[0] = dly; u(n-1)updated to ->u(n)
 MPYF3 R2,*AR0--,R2 ;dly*a[0];R2=a0u(n);point to a2 to adapt
|| STF R4,*AR1++ ;dly[1] = dly[0];u(n-2)->u(n-1) to update
 ADDF3 R2,R3,R3 ;controller out;y=a0u(n)+a1u(n-1)+a2u(n-2)
 FIX R3,R7 ;convert to integer for output
 CALL IOPRI ;get reference desired signal d
 FLOAT R6,R4 ;R4=reference desired signal d
 SUBF3 R3,R4,R0 ;R0=error signal=d-y
 MPYF @BETA,R0 ;ERR function=e*beta
 STF R0,*AR6 ;store error function
 CALL ADAPT ;call ADAPT subroutine
 BR PID ;branch back/repeat with new input sample
;ADAPTATION ROUTINE
ADAPT MPYF3 *AR6,*AR2++%,R0 ;error function*x(n-(N-1)) ->R0=erfx(n-2)
 LDF *AR0,R3 ;w(N-1) -> R3=a2
 ADDF3 R3,R0,R2 ;w(n-1-i)+erf*x(n-(N-1-i));R2=a2+erfx(n-2)
 STF R2,*AR0-- ;store/upgrade a2 coeff
 MPYF3 *AR6,*AR2++%,R0 ;erf*x(n-(N-1-i))->R0=erfx(n-1)

()92,1,0)()()1(12 =−+=+ nnkekeaka nn β

 LDF *AR0,R3 ;load subsequent w(k) ->R3=a1
 ADDF3 R3,R0,R2 ;w(n+1)=w(n)+erf*x(n);R2=a1+erfx(n-1)
 STF R2,*AR0++(2) ;store/upgrade a1 coeff;then points to a0
 MPYF3 *AR6,*AR2++%,R0 ;R0=erfx(n);erf*newest sample in circ buffer
 LDF *AR0,R3 ;R3=a0
 ADDF3 R3,R0,R2 ;R2=a0+erfx(n)
 STF R2,*AR0 ;store/upgrade a0
 RETS
 .data ;b[0] b[1] a[1] a[2] a[0]
COEFF .float -1.0000E+0, 0.0000E+0, -0.0000E+0, 0.0000E+0, 1.0000E+0
DLY .float 0, 0 ;init delay var for each stage
COEFF_ADDR .word COEFF ;address of COEFF
DLY_ADDR .word DLY ;address of DELAY
XNB_ADDR .word XN+LENGTH-1 ;bottom addr of cir buffer for error signal xn
ERF_ADDR .word ERR_FUNC ;address of error function
ERR_FUNC .float 0 ;initialize error function
BETA .float 10E-14 ;rate of adaptation constant
AICSEC .word 162Ch,1h,244Ah,73h ;AIC config data, Fs = 16/2 kHz
LENGTH .set 3 ;Length of circular buffer for xn
 .brstart "XN_BUFF",16 ;align on 16-word boundary
XN .sect "XN_BUFF" ;section for buffer
 .loop LENGTH ;loop length (3) times
 .float 0 ;initialize buffer to zero
 .endloop ;end of loop
 .end ;end

Fig. 3. ADAPTPID.ASM for the adaptive PID controller

This program is based on the combination of the IIR filter program and the
adaptive filter for noise cancellation program in [2]. It consists of two major subroutines.
Subroutine PID takes in input samples and calculates outputs of the PID controller, using
existing PID parameters. It also calculates the error between desired output and actual
output of the system. Subroutine ADAPT updates the PID parameters ,,, 210 aaa using
equation (9). Two inputs are required in this application, available on the AIC on board
the DSK. While the primary input IOPRI is through an RCA jack, a secondary input
IOAUX to the AIC is available on the DSK board from pin 3 of the 32-pin connector JP3.
The secondary input is enabled from the setting in AICSEC in the program. The AIC
communication subroutine in AICCOM31.ASM, included in the ADAPTPID.ASM
program, are set so that the extended precision registers R6 and R7 are used for input and
output, respectively. The program was assembled using the assembler included in the
C31 DSK package, and was run using Code Explorer. For initial conditions, 0b and 1b
are fixed at -1 and 0, respectively, because they represent the fixed pole of the PID
controller (see equation (1) in section II). Therefore they are not updated. Parameters

210 ,, aaa are selected to be 1, 0, 0. Note that one can not select zeros for all three a’s
otherwise the control loop would be open.

Figure 4 shows the C-version of the assembly-coded PID adaptation program.

/*ADAPTPID.C -Real-Time Adaptive PID controller algorithm */
#include "aiccomc2.c" /*Include AIC comm routines*/
int AICSEC[4] = {0x162C,0x1,0x244A,0x73 }; /*AIC config data, Fs = 16/2 kHz */
#define beta 10e-14 /* Rate of convergence */
float a[3]={1,0,0}; /* Numerator coefficients */
float b[2]= {-1,0} ; /* Denominator coefficients*/
float dly[2] = {0}, input[2]={0},yn=0; /* Global variables */
void pid(float xn) /* Standard PID controller based on a real-time IIR algorithm*/
{
 float un;
 un = xn - b[0] * dly[0] - b[1] * dly[1]; /* Calculate yn*/
 yn = a[2]*dly[1] + a[1]*dly[0] + a[0]*un;
 dly[1] = dly[0]; /* Update the delay samples*/
 dly[0] = un;
}
void adapt(float error_function, float xn) /* Adaptation routine */
{
 a[2] = a[2] + (error_function * input[1]); /* Update the numerator coefficients */
 a[1] = a[1] + (error_function * input[0]);
 a[0] = a[0] + (error_function * xn);
 input[1]=input[0]; /* Update the adaptors delays */
 input[0]=xn;
}
void c_int05() /* Interrupt routine to service incoming and outgoing CODEC data */
{
 float control_error,desired,error_func;
 control_error = ((float) UPDATE_AUXSAMPLE(yn)); /* Get sample from IOAUX*/
 desired = (float) UPDATE_PRISAMPLE(yn); /* Get sample from IOPRI */
 pid(control_error); /* Call standard real-time PID */
 error_func = (desired - yn) * beta; /* Calculate error function */
 adapt(error_func,control_error); /* Call adaptation routine */
}
void main()
{
 AICSET_I(); /* Setup CODEC and wait for interrupt */
 while (1) {} /*infinite loop*/
}

Fig. 4. C-version of Adaptive PID

IV. Test Results

The test was performed on a motor system of Figure 1. The actual circuit diagram
is shown in Figure 5.

 Fig. 5. Circuit diagram of the system

The mathematical model of the motor is derived first. Using a data acquisition system,
the rise time of the motor is about 0.24 seconds (or a time constant of 0.08 seconds).
Also, the DC gain (steady-state gain) of the motor is about 5.8. Based on this
information, the motor model is calculated to be

5.12

5.72)(
+

=
+

=
sBs

AsG

where 1/B is the time constant and A/B is the DC gain. In other words, the motor has a
pole at –12.5. The setpoint applied to the system is 2 volts, corresponding to an output
speed of 1200 rpm. The step size (adaptation rate) in equation (9) is set to be 12105.2 −∗ .

The final PID parameters are:

)10(.33114.0,33278.0,66443.0 210 −=−== aaa

With this set of coefficients, the steady-state error (1E at steady state) is about 0.025 volts
(should be zero ideally), or 15 rpm. This indicates that the adaptation process is doing
very well in converging to the optimal parameters. Almost identical system response was
obtained when the PID parameters of equation (10) were used in a non-adaptive PID
program in [5].

DC MOTOR DC MOTOR

DIGITAL DISPLAY

Readout
Speed

OUT

C31DSK

RCA JACKS

J3 PIN 3

AUX IN

PRI IN

T CA0372

2

4

7

8
1TCA0372

T CA0372

2

4

6

5
3TCA0372

WP

R
1

R
2

78M05CT

OUTPUTINPUT GND

+5V REG.

T CA0372

2

4

7

8
1TCA0372

+
+

R2

2.7K

R1

2.7K

C1

470U

C2

47U
R7

1K

R6

1.5K

U2

31 2

U3

2

1
3

R10
U1

R4

2.7K

R5

2.7K

R8

2.7K
U1

R9

2.7K

R3

2.7K

SET POINT

+12V

+12V

+5V

+5V

+12V

-12V

-12V
-12V

SET POINT

SET _POINT

+12V +5V

 In order to make sure that the PID parameters in equation (10) make sense. The
following theoretical analysis was performed. Parameters 21,0 ,aaa are converted into

DIP kkk ,, using the inverse bilinear transform [5]. With a sampling frequency of 8 KHz, it
turns out that Pk =0.99532, Ik =4.08, and Dk = -0.0004125. Parameter Dk can be
approximated with 0, which also makes sense. This is because the D-part is mainly for
reducing overshoot but there is no overshoot for a first-order system. With Dk omitted,
the only zero remained is .08.4−=−

P
I

k
k With the adaptive PID controller added to the

system, the root locus plot is shown in Figure 6 below. Notice that the two loci are
located on the real axis, indicating no overshoot in the system. Because of the addition of
a pole at the origin from the adaptive PID controller, however, the system type is
increased by 1 and the steady-state error is reduced to zero.

Fig. 6. Root locus plot of the system

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

V. Conclusion and Future Work

An adaptive PID controller has been designed and implemented using the C31
DSK. The controller is applied to a DC motor system for speed control. Test results show
that controller parameters have converged to optimal ones and system output is as
expected. The system is stable with different adaptation rates. Future work includes
improving the control circuitry to have forward and reverse rotation, extending the
system to position control, and the results to the C6x-based processor.

References

1. K. Astrom, B. Wittenmark, Adaptive Control, Addison Wesley, 1995.
2. R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the

TMS320C31 DSK, Wiley, 1999.
3. C. Phillips, H. Nagle, Digital Control Systems Analysis and Design, Prentice Hall,

1995.
4. Y. Dote, Servo Motor and Motion Control Using Digital Signal Processors, Prentice

Hall, 1990.
5. J. Tang, R. Chassaing, “PID Controller Using the TMS320C31 DSK for Real-Time

DC Motor Control,” Proc. of the 1999 Texas Instruments DSPS Fest,
http://www.ti.com/sc/docs/general/dsp/fest99/poster/ltangchassaing.pdf, Houston, Texas, August,
1999.

6. B. Widrow, S. Stearns, Adaptive Signal Processing, Prentice Hall, 1985

http://www.ti.com/sc/docs/general/dsp/fest99/poster/ltangchassaing.pdf

	Alfred, NY 14802
	
	
	
	Abstract

	Introduction

	Fig. 2. Detailed portion of the adaptive PID controller
	
	Implementation of the adaptive PID Controller Using the C31 DSK

	Fig. 3. ADAPTPID.ASM for the adaptive PID controller
	
	
	Test Results

	Fig. 6. Root locus plot of the system
	
	
	Conclusion and Future Work
	References

	K. Astrom, B. Wittenmark, Adaptive Control, Addison Wesley, 1995.

