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Abstract 
 This paper addresses real-time adaptive PID (Proportional-Integral-Derivative) 
controller using the TMS320C31 DSK. With an adaptive PID controller, the C31 
automatically updates the PID controller parameters to achieve the desired system output. 
The controller is applied to a DC motor system for speed control. Different adaptation 
rates were tested. Test results show that PID parameters converged to expected values 
and motor speeds reach desired output speeds corresponding to different setpoints. Future 
work includes extending the results to the C6x.  
 
 
I. Introduction 
 

Due to the recent and remarkable progress in power electronics and 
microelectronics it is possible to apply modern control technology to the area of motor 
and motion control. The use of digital signal processors (DSPs) has permitted the 
increasingly stringent performance requirements and fast, efficient, and accurate control 
of servo motor and motion control systems. DSPs, such as the TMS320C31 (C31) from 
Texas Instruments, are currently used for a wide range of applications from controls and 
communications to speech processing. They continue to be more and more successful 
because of available low-cost support tools. DSP-based systems can be readily 
reprogrammed for a different application. 

The term adaptive system has a variety of specific meanings, but it usually 
implies that the system is capable of accommodating unpredictable environmental 
changes, whether these changes arise within the system or external to it [1]. This concept 
has a great deal of appeal to the systems designer since a highly adaptive system, besides 
accommodating environmental changes, would also accommodate engineering design 
errors or uncertainties and would compensate for the failure of minor system 
components, thereby increasing system reliability.   

The C31-based $99 DSK includes Texas Instruments' C31 floating-point digital 
signal processor, and an analog interface circuit (AIC) chip with A/D and D/A 



converters, input (anti-aliasing) and output (reconstruction) filters, all on a single chip. 
The A/D converter can accommodate two multiplexed inputs, a key feature that is 
required for adaptive control with an error signal input and a reference signal input. The 
DSK also includes an assembler, a debugger, and many application examples [2]. 

This paper addresses real-time DC motor speed control with an adaptive PID 
controller using the C31 DSK. A PID controller has one fixed pole at the origin of the 
complex s-plane (or at 1 in z-plane) and two flexible zeros. Since the pole is fixed, all we 
have to do is to make the two zeros adaptive. Code Explorer was used to run the program 
on the C31 DSK and monitor initial and final values of the PID parameters. Test results 
show that the adaptive process converges, the final PID parameters are reasonable, and 
the system response is as expected. 

In Section II, design of the adaptive scheme for the PID controller is discussed. 
Implementation of the adaptive PID controller using the C31 is addressed in Section III. 
Test results of the motor system and comparison with theoretical calculations are 
presented in Section IV.  Finally conclusion and future work are given in Section V. 
 
II. Design of the Adaptive Scheme for the PID Controller 
 

The block diagram of the adaptive control system is as follows: 
 
 

 
 

Fig. 1. The adaptive motor control system 
 

In Fig. 1, r(t) is the input (or set point), c(t) is the output, D(z) is the digital PID 
controller, G(s) is the plant transfer function, and H(s) is the sensor transfer function. The 
adaptive control scheme consists of two parts: the first part is using initial or updated PID 
parameters, the controller will be taking in input samples, processing them, and sending 
them out to the motor through the D/A converter; the second part is updating the 
controller parameters. This process continues until the error signal e2 is approaching 
zero.  

A digital non-adaptive PID controller has the following form [3]:               
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where ,PK  ,IK  and DK  are the proportional, integral, and derivative parameters of the 
controller, and T is the sampling period. It is clear from equation (1) that the PID 
controller has one fixed pole and two flexible zeros. For programming convenience, let 
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where X(z) and Y(z) are the input and output of the controller in the z-domain, 
respectively, then 
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Using the inverse z-transformation, 
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As mentioned in section I, the C31 DSK has two multiplexed inputs. One is the 
primary input and the other is the auxiliary input.  Denoting the primary input as IOPRI 
and the auxiliary as IOAUX, the detailed portion of the C31 DSK in Fig.1 is shown in 
Fig. 2, where E1 and y are input and output of the PID controller, respectively. 



Fig. 2. Detailed portion of the adaptive PID controller 
 
 
E2 is then:    
     

 
     

A quadratic objective function is created based on minimizing E2 with respect to 
the controller parameters: 

                                                           

            
                                                                                                                     

Taking the first order partial derivative with respect to the controller parameter a’s: 
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 Using the first order approximation, the negative gradient is basically the product 
of reference signal R and error signal E1. Tests show that using E1 and E2 actually has a 
better convergence Therefore, a modified gradient method was used as the search 
direction in updating the PID parameters. This also agrees with the general adaptive 
mechanism mentioned in [4]: new parameter = old parameter + (bounded step size) X 
(function of input) X (function of error). More specifically 

 

 
III. Implementation of the adaptive PID Controller Using the C31 DSK 
 
      Following is the assembly language program ADAPTPID.ASM implementing the 
adaptive PID controller. 
  
*ADAPTPID.ASM - Adaptive PID controller using the C31 DSK 
        .start   ".text", 0x809900 ;starting address of text 
        .start   ".data", 0x809C00 ;starting address of data 
        .include "AICCOM31.ASM"    ;include AIC comm routines 
        .entry  BEGIN              ;start of code 
        .text                      ;assemble into text 
BEGIN   LDP     @COEFF_ADDR        ;init to data page 128 
        CALL    AICSET             ;initialize AIC 
        LDI     @ERF_ADDR,AR6      ;error function address  
        LDI     @XNB_ADDR,AR2      ;AR2=bottom addr of input xn to filter  
        LDI     LENGTH,BK          ;BK=length of circular buffer 
PID     CALL    IOAUX              ;get input error signal 
        FLOAT   R6,R3              ;stage input 
        STF     R3,*AR2++%         ;store newest sample 
        LDI     @COEFF_ADDR,AR0    ;AR0 points to coefficients address 
        LDI     @DLY_ADDR,AR1      ;AR1 points to addr of delay samples 
        MPYF3   *AR0++,*AR1++,R0   ;b[0]*dly[0]=b1u(n-1) 
        MPYF3   *AR0++,*AR1--,R1   ;b[1]*dly[1]=b2u(n-2) 
||      SUBF3   R0,R3,R3           ;input-b[0]*dly[0];R3=x(n)-b1u(n-1) 
        MPYF3   *AR0++,*AR1++,R0   ;a[1]*dly[0];R0=a1u(n-1) 
||      SUBF3   R1,R3,R2;u(n)=xn-b[0]*dly[0]-b[1]*dly[1]=x(n)-b1u(n-1)-b2u(n-2) 
        MPYF3   *AR0++,*AR1--,R1   ;a[2]*dly[1]=R1=a2u(n-2) 
        ADDF3   R0,R1,R3          ;a[2]*dly[1]+a[1]*dly[0];R3=a1u(n-1)+a2u(n-2) 
        LDF     *AR1,R4            ;dly[0];R4=u(n-1) 
||      STF     R2,*AR1++          ;dly[0] = dly; u(n-1)updated to ->u(n) 
        MPYF3   R2,*AR0--,R2       ;dly*a[0];R2=a0u(n);point to a2 to adapt 
||      STF     R4,*AR1++          ;dly[1] = dly[0];u(n-2)->u(n-1) to update 
        ADDF3   R2,R3,R3           ;controller out;y=a0u(n)+a1u(n-1)+a2u(n-2) 
        FIX     R3,R7              ;convert to integer for output 
        CALL    IOPRI              ;get reference desired signal d 
        FLOAT   R6,R4              ;R4=reference desired signal d 
        SUBF3   R3,R4,R0           ;R0=error signal=d-y 
        MPYF    @BETA,R0           ;ERR function=e*beta 
        STF     R0,*AR6            ;store error function 
  CALL    ADAPT                ;call ADAPT subroutine 
        BR      PID                ;branch back/repeat with new input sample 
;ADAPTATION ROUTINE 
ADAPT   MPYF3   *AR6,*AR2++%,R0    ;error function*x(n-(N-1)) ->R0=erfx(n-2) 
        LDF     *AR0,R3            ;w(N-1) -> R3=a2 
        ADDF3   R3,R0,R2           ;w(n-1-i)+erf*x(n-(N-1-i));R2=a2+erfx(n-2) 
        STF     R2,*AR0--          ;store/upgrade a2 coeff 
        MPYF3   *AR6,*AR2++%,R0    ;erf*x(n-(N-1-i))->R0=erfx(n-1) 

( )92,1,0)()()1( 12 =−+=+ nnkekeaka nn β



        LDF     *AR0,R3            ;load subsequent w(k) ->R3=a1 
        ADDF3   R3,R0,R2           ;w(n+1)=w(n)+erf*x(n);R2=a1+erfx(n-1) 
        STF     R2,*AR0++(2)       ;store/upgrade a1 coeff;then points to a0 
        MPYF3   *AR6,*AR2++%,R0    ;R0=erfx(n);erf*newest sample in circ buffer 
        LDF     *AR0,R3            ;R3=a0 
        ADDF3   R3,R0,R2           ;R2=a0+erfx(n) 
        STF     R2,*AR0            ;store/upgrade a0 
        RETS 
        .data  ;b[0]       b[1]        a[1]        a[2]       a[0] 
COEFF  .float  -1.0000E+0, 0.0000E+0, -0.0000E+0, 0.0000E+0, 1.0000E+0 
DLY        .float  0, 0               ;init delay var for each stage       
COEFF_ADDR .word   COEFF              ;address of COEFF 
DLY_ADDR   .word   DLY                ;address of DELAY 
XNB_ADDR   .word   XN+LENGTH-1   ;bottom addr of cir buffer for error signal xn 
ERF_ADDR   .word   ERR_FUNC           ;address of error function 
ERR_FUNC   .float  0                  ;initialize error function 
BETA       .float  10E-14             ;rate of adaptation constant 
AICSEC     .word   162Ch,1h,244Ah,73h ;AIC config data, Fs = 16/2 kHz 
LENGTH     .set    3                  ;Length of circular buffer for xn 
           .brstart "XN_BUFF",16      ;align on 16-word boundary 
XN         .sect   "XN_BUFF"          ;section for buffer 
           .loop   LENGTH             ;loop length (3) times 
           .float  0                  ;initialize buffer to zero 
           .endloop                   ;end of loop 
           .end                       ;end 
    

 
Fig. 3. ADAPTPID.ASM for the adaptive PID controller 

 
 

This program is based on the combination of the IIR filter program and the 
adaptive filter for noise cancellation program in [2]. It consists of two major subroutines. 
Subroutine PID takes in input samples and calculates outputs of the PID controller, using 
existing PID parameters. It also calculates the error between desired output and actual 
output of the system. Subroutine ADAPT updates the PID parameters ,,, 210 aaa  using 
equation (9). Two inputs are required in this application, available on the AIC on board 
the DSK. While the primary input IOPRI is through an RCA jack, a secondary input  
IOAUX to the AIC is available on the DSK board from pin 3 of the 32-pin connector JP3. 
The secondary input is enabled from the setting in AICSEC in the program. The AIC 
communication subroutine in AICCOM31.ASM, included in the ADAPTPID.ASM 
program, are set so that the extended precision registers R6 and R7 are used for input and 
output, respectively. The program was assembled using the assembler included in the 
C31 DSK package, and was run using Code Explorer. For initial conditions, 0b  and 1b  
are fixed at -1 and 0, respectively, because they represent the fixed pole of the PID 
controller (see equation (1) in section II). Therefore they are not updated. Parameters 

210 ,, aaa are selected to be 1, 0, 0. Note that one can not select zeros for all three a’s 
otherwise the control loop would be open.   

Figure 4 shows the C-version of the assembly-coded PID adaptation program. 



/*ADAPTPID.C -Real-Time Adaptive PID controller algorithm */ 
#include "aiccomc2.c"        /*Include AIC comm routines*/ 
int AICSEC[4] = {0x162C,0x1,0x244A,0x73 };  /*AIC config data, Fs = 16/2 kHz */ 
#define beta 10e-14    /* Rate of convergence */ 
float a[3]={1,0,0};     /* Numerator coefficients */ 
float b[2]= {-1,0} ;       /* Denominator coefficients*/ 
float dly[2] = {0}, input[2]={0},yn=0;  /* Global variables */ 
void pid(float xn) /* Standard PID controller based on a real-time IIR algorithm*/ 
{ 
  float un; 
  un = xn - b[0] * dly[0] - b[1] * dly[1];  /* Calculate yn*/ 
  yn = a[2]*dly[1] + a[1]*dly[0] + a[0]*un;  
  dly[1] = dly[0];    /* Update the delay samples*/ 
  dly[0] = un; 
} 
void adapt(float error_function, float xn) /* Adaptation routine */ 
{ 
  a[2] = a[2] + (error_function * input[1]); /* Update the numerator coefficients */ 
  a[1] = a[1] + (error_function * input[0]); 
  a[0] = a[0] + (error_function * xn); 
  input[1]=input[0];    /* Update the adaptors delays */ 
  input[0]=xn; 
} 
void c_int05()  /* Interrupt routine to service incoming and outgoing CODEC data */ 
{ 
  float control_error,desired,error_func; 
  control_error = ((float) UPDATE_AUXSAMPLE(yn)); /* Get sample from IOAUX*/ 
  desired = (float) UPDATE_PRISAMPLE(yn); /* Get sample from IOPRI */ 
  pid(control_error);    /* Call standard real-time PID */ 
  error_func = (desired - yn) * beta;  /* Calculate error function */  
  adapt(error_func,control_error);  /* Call adaptation routine */ 
} 
void main() 
{ 
  AICSET_I();     /* Setup CODEC and wait for interrupt */ 
  while (1) {}     /*infinite loop*/ 
} 

 
Fig. 4. C-version of Adaptive PID 

 
 

IV. Test Results 
 

The test was performed on a motor system of Figure 1.  The actual circuit diagram 
is shown in Figure 5. 

 



 
    Fig. 5. Circuit diagram of the system 
 
 
The mathematical model of the motor is derived first. Using a data acquisition system, 
the rise time of the motor is about 0.24 seconds (or a time constant of 0.08 seconds). 
Also, the DC gain (steady-state gain) of the motor is about 5.8. Based on this 
information, the motor model is calculated to be  
 

   
5.12

5.72)(
+

=
+

=
sBs

AsG      

 
where 1/B is the time constant and A/B is the DC gain. In other words, the motor has a 
pole at –12.5. The setpoint applied to the system is 2 volts, corresponding to an output 
speed of 1200 rpm. The step size (adaptation rate) in equation (9) is set to be 12105.2 −∗ .  

The final PID parameters are: 
 

)10(.33114.0,33278.0,66443.0 210 −=−== aaa  
 

With this set of coefficients, the steady-state error ( 1E  at steady state) is about 0.025 volts 
(should be zero ideally), or 15 rpm. This indicates that the adaptation process is doing 
very well in converging to the optimal parameters. Almost identical system response was 
obtained when the PID parameters of equation (10) were used in a non-adaptive PID 
program in [5]. 
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 In order to make sure that the PID parameters in equation (10) make sense. The 
following theoretical analysis was performed. Parameters 21,0 ,aaa  are converted into 

DIP kkk ,,  using the inverse bilinear transform [5]. With a sampling frequency of 8 KHz, it 
turns out that Pk =0.99532, Ik =4.08, and Dk = -0.0004125. Parameter Dk  can be 
approximated with 0, which also makes sense. This is because the D-part is mainly for 
reducing overshoot but there is no overshoot for a first-order system. With  Dk  omitted, 
the only zero remained is .08.4−=−

P
I

k
k  With the adaptive PID controller added to the 

system, the root locus plot is shown in Figure 6 below. Notice that the two loci are 
located on the real axis, indicating no overshoot in the system. Because of the addition of 
a pole at the origin from the adaptive PID controller, however, the system type is 
increased by 1 and the steady-state error is reduced to zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 

 
 
 
 
 
 
 
 

Fig. 6. Root locus plot of the system 
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V. Conclusion and Future Work 
 

An adaptive PID controller has been designed and implemented using the C31 
DSK. The controller is applied to a DC motor system for speed control. Test results show 
that controller parameters have converged to optimal ones and system output is as 
expected. The system is stable with different adaptation rates. Future work includes 
improving the control circuitry to have forward and reverse rotation, extending the 
system to position control, and the results to the C6x-based processor. 
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