
1

A Real-Time Resource Allocation Scheme for

Broadband Access

Krishnamurthy Nagarajan and G. Tong Zhou�

Abstract| Access to broadband networks has to be de-

signed intelligently to maximize the utilization of network

resources while avoiding congestion. In order to provide ser-

vice guarantees, the network access node �rst computes the

required resources before admitting the connection. Re-

source allocation algorithms based on simpli�ed assump-

tions are commonly employed to facilitate real-time imple-

mentation. The network tra�c however exhibits complex

behavior and resources allocated based on simpli�ed as-

sumptions may be excessive or fail to maintain the speci�ed

guarantees. In this paper, we describe a novel resource allo-

cation algorithm that is based on a log-normal fractional Au-

toregressive Integrated Moving Average (fARIMA) model.

We implemented the algorithm on a Texas Instruments

TMS320C6701 DSP processor and evaluated its perfor-

mance on MPEG tra�c streams. The results show that

although our algorithm is more sophisticated than existing

ones (because it allocates resources more e�ciently), real-

time implementation is feasible.

I. Introduction

Broadband networks have to share the available band-

width among di�erent classes of network tra�c (e.g., voice,

video and data). In order to improve the utilization level,

network resources (bandwidth, bu�er size etc.) have to be

shared intelligently among the users based on the statisti-

cal characteristics of the tra�c they o�er. Multimedia ap-

plications, while requiring strict transport guarantees, can

tolerate infrequent losses. In such cases, the network can

further improve e�ciency by providing statistical guaran-

tees on the quality of service (QoS). Based on the nature of

the QoS requested by the application and its tra�c charac-

teristics, the network access node decides whether to accept

or reject the user connection. The mechanism which makes

the accept/reject decision is called Connection Admission

Control (CAC).

CAC runs as a software module on a switch-control pro-

cessor. It is important that the hardware and processing

overhead of the resource allocation algorithm be minimal.

Ideally, one would like to have a simple closed-form analyt-

ical expression to compute the required resources. But in

practice, the network tra�c exhibits complex behavior. For

example, an MPEG tra�c stream can exhibit both short-

term and long-term memory characteristics. Short-term

memory (or short-range dependent) means that the autoco-

variance function (ACF) de�ned as c2x(�) = Efx(n)x(n+
�)g � E

2fx(n)g, decays faster than j� j�1 as � ! 1. On

the other hand, long-term memory (or long-range depen-
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dent) implies that c2x(�) � K � j� j�m for � large, with

0 < m < 1 and K 6= 0. Resource allocation algorithms

that are based on short-term memory assumptions fail to

provide guarantees on the QoS for MPEG tra�c data.

Recently, we proposed a novel parametric CAC algo-

rithm [8] for MPEG video tra�c based on the e�ective

bandwidth theory [5], which provides guarantees on the

loss probability. In this paper, we will evaluate the real-

time performance of our CAC algorithm using the Texas

Instruments TMS320C6701 
oating-point DSP processor.

The processor's dedicated multiplier-accumulator circuitry,

multiple access and special memory addressing modes de-

signed to speed up repetitive operations make it an ideal

platform for CAC algorithm implementation.

The rest of the paper is organized as follows: Section II

provides background materials on our MPEG tra�c model

and the e�ective bandwidth theory. Section III presents

a resource allocation framework for log-normal fARIMA

tra�c sources. Section IV provides the real-time implemen-

tation details and results of performance evaluation using

real MPEG tra�c traces. Finally, conclusions are drawn

in Section V.

II. Resource Allocation Framework

A. MPEG Video Tra�c Model

An MPEG video stream consists of I, P and B frames.

A deterministic ordering of the I, P and B frames is called

a Group of Picture (GOP) which gives rise to a random

process x(n) (assumed stationary) studied in this paper. In

[6], we showed that x(n) is approximately log-normal; i.e.,

its marginal probability density function (PDF) is given

by:

fX(x) =
1

x�y

p
2�

exp

�
� (lnx� �y)

2

2�2
y

�
; (1)

where the parameters �y and �
2
y
represent respectively,

the mean and variance of the Gaussian process y(n) =

lnfx(n)g. To capture both the short-term and long-term

memory characteristics of x(n), we model x(n) as a log-

normal fARIMA process; i.e., y(n) is a Gaussian fARIMA

process. An fARIMA process is a natural extension of the

familiar ARMA process. In the z-domain, the relation be-

tween the fARIMA(p, d, q) process y(n) and the driving

noise w(n) is as follows

A(z)Y (z) = (1�z�1)�d B(z)W (z); �0:5 < d < 0:5; (2)

where A(z) = 1 + a(1)z�1 + � � � + a(p)z�p, B(z) =

1 + b(1)z�1 + � � � + b(q)z�q and w(n) is i.i.d. Gaussian.

The presence of a fractional pole at z = 1 introduces



2

long-memory. The AR and MA parameters faigpi=1 and

fbjgqj=1 give rise to short memory characteristics in the

process. Whittle's method ([1] and references therein) is

the most reliable way to estimate the model parameters

of the fARIMA process y(n). Once the parameters d,

a = [1; a(1); � � � ; a(p)] and b = [1; b(1); � � � ; b(q)] are

found, the theoretical c2y(�) can be calculated as follows:

c2y(�) =

�
(�1)��(1� 2d)

�(� � d+ 1)�(1� � � d)

�
?"X

t

h(t)h(t+ �)

#
; (3)

where ? denotes convolution, H(z) = B(z)=A(z) and �(�)
is the familiar Gamma function.

Note that we do not directly model the MPEG data x(n),

but instead model the log transformed data y(n). We then

infer the autocovariance structure of x(n) through that of

y(n). The relationship between the autocovariance func-

tion c2x(�) of x(n) and that of y(n) is [6]

c2x(�) = expf2�y + �
2
y
g � (expfc2y(�)g � 1) : (4)

Therefore, by parametrically modeling the Gaussian

fARIMA process y(n), we can characterize completely the

correlation structure of x(n) using (3)-(4).

B. E�ective Bandwidth Theory

The e�ective bandwidth theory attempts to provide a

measure of bandwidth and bu�er size, which adequately

represents the trade-o� between sources of di�erent types,

and takes into account their statistical characteristics and

QoS requirements [2]. We only study one type of QoS

constraint here, which is the loss probability.

When x(n) is short-range dependent (
P

�
c2x(�) < 1)

with mean �, the required capacity or e�ective bandwidth

C is obtained as [2]

C = �+
�

2

X
�

c2x(�); � =
� ln(�)

B
: (5)

When x(n) is white with variance �2, we have C = � +

(�=2)�2 as a special case of (5). Therefore, for a given loss

probability � and bu�er size B, one can �rst compute �

and then �nd the e�ective bandwidth C using (5). Alter-

natively, if the network can only a�ord a service rate C,

then � can be found and subsequent substitution of � into

(5) gives the required bu�er size B.

Several recent studies have con�rmed that Variable Bit

Rate (VBR) video tra�c (such as MPEG) exhibits both

short-term and long-term memory characteristics [1], [6],

which implies that
P

�
c2x(�) = 1 and hence (5) cannot

be used. In [9], a fractional Gaussian Noise (fGN) model

was used for network tra�c data, which is capable of cap-

turing only the long-term memory characteristics. In [7],

we proposed a resource allocation framework for Gaussian

sources exhibiting both short-term and long-term memory

characteristics by modeling the tra�c source as a Gaus-

sian fARIMA process. In the next section, we present

X
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Fig. 1. A single-server queue.

a CAC strategy that allocates network resources for log-

normal data such as the MPEG video tra�c.

III. Resource Allocation Scheme for

Log-Normal fARIMA Processes

In general, if a user o�ers a bursty tra�c x(n) to a server

having a bu�er size B and capacity C (Figure 1), then a

burst of size k starting when the bu�er is empty, will cause

over
ow if fx(1) + � � � + x(k)g > k � C + B: Denote the

sample mean of fx(n)gk
n=1 by

�Xk =
1
k
fx(1) + � � �+ x(k)g.

According to the large deviation theory [4], if the user de-

mands a loss probability no larger than �, the capacity C

and bu�er size B should be such that

Pr

�
�Xk > C +

B

k

�
� �; 8 k: (6)

Rigorous calculation of the network resources B and/or C

based on (6) requires the knowledge of the PDF of �Xk, the

sample mean of a burst tra�c of size k.

Unfortunately for x(n) log-normal, the true PDF of the

k-sample mean �Xk does not have a closed form expression.

In the context of communications theory, several authors

have approximated the average of log-normal random vari-

ables by another log-normal random variable with appro-

priately chosen parameters. A simple and e�ective method

that matches the �rst two moments of �Xk was developed by

Fenton [3]. Following Fenton's approach, we approximate
�Xk by a log-normal random variable ~Xk for which ln ~Xk is

Gaussian with mean ~�k and variance ~�2
k
. The parameter

values can be obtained by equating (matching) the mean

and variance of �Xk and ~Xk; i.e.,

��k = Ef �Xkg = Ef ~Xkg = exp

�
~�k +

~�2
k

2

�
; (7)

��2
k

= Varf �Xkg = Varf ~Xkg =

exp
�
2~�k + ~�2

k

	 �
expf~�2

k
g � 1

�
: (8)

Since ��k = Ef �Xkg = Efx(n)g = �, ��k can be estimated

directly from the MPEG data x(n). The variance of �Xk

can be shown to be

��2
k
=

1

k

X
j� j<k

�
1� j� j

k

�
c2x(�): (9)

Based on (7)-(8), we can express ~�k and ~�2
k
in terms of

��k and ��2
k
as follows:

~�2
k
= ln

�
��2
k

��2
k

+ 1

�
; ~�k = ln (��k)� ~�2

k

2
: (10)
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Fig. 2. Plot of J(B;C)(k) for di�erent (B;C) pairs .

Now going back to our resource allocation framework (6),

we replace �Xk by ~Xk and write

Pr

n
ln ~Xk > ln(C +B=k)

o
� �; 8 k:

Since ln ~Xk is a Gaussian random variable with mean ~�k
and variance ~�2

k
, we can utilize a known upper bound on

the Gaussian tail probability,

Pr

�
ln ~Xk > ln(C +

B

k
)

�
�

1

2
exp

(
(ln(C + B

k
)� ~�k)

2

2~�2
k

)
: (11)

If we select C and B such that the r.h.s. of (11) satis�es

1

2
exp

�
� (ln(C +B=k)� ~�k)

2

2~�2
k

�
� �; 8 k; (12)

then the QoS condition (6) is satis�ed.

Taking the logarithm on both sides of equation (12) and

rearranging, we obtain

J(B;C)(k)
4

=
(ln(C +B=k)� ~�k)

2

2~�2
k

+ln(2�) � 0; 8 k: (13)

Figure 2 shows a plot of J(B;C)(k) for di�erent (B;C) pairs

obtained for an MPEG video source. It is seen that for each

(B;C) pair, J(B;C)(k) has a unique minimum at k = ko. If

J(B;C)(ko) � 0, then (13) is satis�ed 8 k. A (B;C) pair is

optimum if mink J(B;C)(k) = J(B;C)(ko) = 0.

IV. Real-Time Implementation

Resource allocation algorithms typically runs as a soft-

ware module in a network device such as a switch. It is

desirable that the hardware and processing overhead re-

quired to implement the algorithm be minimal. In order to

analyze the real-time performance of the proposed resource

allocation algorithm, we selected the Texas Instruments

(TI) TMS320C6701 
oating point DSP processor. We op-

erated the processor at a clock frequency of 133 MHz. The

processor's on-chip program and data memory (64 K-Bytes

each) were found to be su�cient for implementing our al-

gorithm. The entire algorithm was implemented in the

C-programming language. We compiled the program using

the level-3 optimization provided by the TI C-compiler.

A. Implementation Details

Figure 3 shows the 
owchart of the algorithm. The al-

gorithm �rst obtains the QoS requirement and the tra�c

model parameters from the user. Then, it calculates the

autocovariance function c2x(�) of the tra�c based on (3).

In our current implementation, we �xed the maximum lag

value (�max) at 1024. The correlation values are stored in

a double-precision 
oating-point array. An implication of

using an upper limit on � is that the algorithm can only

compute those optimal (B, C) pairs for which the burst

size ko = argmink J(B;C)(k) is less than �max.

Based on the QoS parameter speci�ed by the user and ex-

isting tra�c conditions in that class of service, the network

�xes an operating load for the user tra�c. The operating

load is de�ned as the ratio between the mean tra�c rate

(�) and the alloted bandwidth C. Once the load is �xed,

the optimal bu�er size Bopt needed to support the connec-

tion is computed. Recall that when B = Bopt, we have

mink J(B;C)(k) = 0. From equation (13), we observe that

J(B;C)(k) is monotonically increasing with B. Therefore

if B > Bopt, we have that mink J(B;C)(k) > 0 whereas if

B < Bopt, we have that mink J(B;C)(k) < 0. This prompts

us to employ an iterative search algorithm to �nd Bopt.

We �rst pick B1 and B2 such that mink J(B1;C)(k) > 0

and mink J(B2;C)(k) < 0. We can be sure that Bopt

lies between B1 and B2, i.e., B1 > Bopt > B2, and we

call B1 and B2 the bracket points. Next, we would like

to narrow down this bracket. At the i
th iteration, pick

B1 > Bi > B2. If mink J(Bi;C)(k) > 0, then we infer

that Bi > Bopt > B2 and we replace B1 with Bi. On

the other hand, if mink J(Bi;C)(k) < 0, then we must have

B1 > Bopt > Bi and we replace B2 with Bi. By suc-

cessively narrowing down the range, we bring the bracket

points together and soon they converge to Bopt. Brent's

method in particular provides superlinear convergence to

the optimal solution [10].

In the process of searching for an optimal bu�er size, the

algorithm needs to repeatedly search for the burst size ko
that results in the minimum cost function. For a given

bu�er size B, the algorithm �rst obtains a three point

bracket (ka; kb; kc) that captures the minimum [10, page

400]. Then, applying the \Golden Search" method, it iden-

ti�es the burst size ko within the interval (ka; kc).

If the network can a�ord to allocate Bopt to the user, it

goes ahead and accepts the user connection. If it does not

have the required bu�er size, the algorithm provides the

user with an option to renegotiate its QoS requirement.
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B. Performance Evaluation

We experimented with three real MPEG video traces

\Dino", \Term", and \Mtv" which were obtained from [11].

Table I shows their fARIMA parameter estimates and traf-

�c statistics based on 2,048 samples of GOP. Suppose these

sources are to be admitted to the network with a desired

loss probability � = 10�5. Based on this QoS parameter,

the CAC algorithm allocates bu�er size B and bandwidth

C according to the assumed tra�c model (c.f. Section III).

The speed with which the algorithm converges depends

on the following factors:

� Operating load (�) - higher values of � require a large

bu�er size to support the connection. The algorithm has

to �nd the optimal bu�er size from a larger search space

thereby increasing the execution time.

� Bracketing strategy - the rate of convergence is a�ected

by the number of times the algorithm evaluates di�erent

bu�er sizes to obtain the bracket points.

� Strategy for obtaining Bopt within the bracket points.

� Strategy for obtaining the minimum of J(B;C)(k).

It must be noted that the number of computations re-

quired to evaluate J(B;C)(k) is proportional to the burst

size k. This is because the algorithm has to �rst calculate

the values of ~�k and ~�k using (10). These parameters can

be either computed a priori for all k or can be dynamically

computed on an as needed basis. In our current implemen-

tation, we �nd that dynamic computation of ~�k and ~�k is

more e�cient.

Tables II shows the computational resources required to

calculate the optimal bu�er sizes for MPEG traces under

di�erent operating loads. The index `Bu�erCount' rep-

resents the number of di�erent bu�er sizes tried by the

algorithm before converging to the optimal value. The

index `CostCount' represents the number of times the

cost function J(B;C)(k) was evaluated. Together, the in-

dexes `Bu�erCount' and `CostCount' provide a measure

of the e�ciency of the resource allocation algorithm and

can be used to benchmark di�erent bracketing and search

strategies respectively. The table also presents the to-

tal CPU cycles required for the algorithm to converge

and the corresponding execution time in seconds using the

TMS320C6701 DSP processor operated at 133 MHz clock

frequency.

From these results, we observe the following:

� As the operating load is decreased, the algorithm con-

verges faster since the search space for an optimal bu�er

size is now smaller.

� For a given load, Bopt is proportional to the mean, stan-

dard deviation, long-term and short-term memory char-

acteristics. For example, \MTV" has the largest mean,

variance and long-term memory parameter d. For a load

of 0:35, the network requires a bu�er size of 3 M-Bytes to

support a loss probability of 10�5 whereas for \Dino" and

\Term" the required bu�er size for the same operating load

is considerably smaller.

� Due to delay constraints, the operating loads are re-

stricted to the range of 0:2 to 0:4. In this range, it is

seen that the proposed resource allocation algorithm typi-

cally converges within 300 milli-seconds if Bopt lies within

1 M-Bytes.

The execution time can be further reduced by (i) in-

creasing the clock frequency (the new generation of TI

TMS320C67X DSP processors operate at higher clock fre-

quencies), (ii) identifying modules that can be implemented

in parallel and (iii) developing better bracketing and search

strategies. We are currently looking into the problem of ex-

tending our CAC framework to exploit the statistical mul-

tiplexing phenomena seen in ATM networks and study its

e�ects on the algorithm execution times.

V. Conclusions

In our earlier work, we proposed a log-normal fARIMA

model for MPEG traces which is more e�cient than exist-

ing closed form resource allocation algorithms. The price

paid is the increase in computation load. In this paper, we

demonstrate that it is feasible to implement our more so-

phisticated algorithm in real-time using TI TMS320C6701

processor. At 133 MHz clock frequency, our algorithm con-

verges within 300 milli-seconds. Therefore, high perfor-

mance DSP processors make complex algorithms practical

and the focus should be to devise e�cient resource alloca-

tion algorithms that satisfy QoS requirements.
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Trace p d q ARMA Parameters Mean Standard Deviation

Dino 1 d̂ = 0:3462 0 â = [1; � 0:5586] 21 8

Term 0 d̂ = 0:3886 1 b̂ = [1; 0:2817] 16:36 5:86

MTV 1 d̂ = 0:4064 0 â = [1; � 0:2090] 37:6 18:13

TABLE I

fARIMA parameter estimates for three MPEG video traces. Mean and standard deviation are represented in K-Bytes.

(a) \Dino"

Load Bopt Bu�erCount CostCount CPU Cycles Execution Time

(� = �=C) (K-Bytes) (Seconds)

0:35 168 9 70 20689022 0:156

0:40 341 12 118 23670956 0:178

0:45 675 14 163 33573985 0:252

0:50 1361 15 211 69922970 0:526

0:55 2860 14 185 97560423 0:733

(b) \Term"

Load Bopt Bu�erCount CostCount CPU Cycles Execution Time

(� = �=C) (K-Bytes) (Seconds)

0:30 17 8 52 20007470 0:15

0:35 49 8 54 20160583 0:152

0:40 131 9 79 21438244 0:161

0:45 358 14 177 38211701 0:287

0:50 1021 15 211 91081901 0:684

(c) \MTV"

Load Bopt Bu�erCount CostCount CPU Cycles Execution Time

(� = �=C) (K-Bytes) (Seconds)

0:20 61 7 46 19923789 0:15

0:25 260 11 93 21075742 0:158

0:30 911 12 121 25182707 0:189

0:35 3076 15 206 71302621 0:536

TABLE II

Real-time implementation of the resource allocation algorithm for MPEG video traffic traces

.
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Fig. 3. Flowchart of the resource allocation algorithm.


