

Dennis Buss Si Technology Development Dallas, Texas

SOC INTEGRATION IN INTERNET ERA

Dawn of Internet Era

DSPS Fest

Transistor Scaling will continue to be an important Technology Driver in the Internet Era. But it will no longer be the sole driver: SOC Integration will be increasingly important.

CMOS Scaling Roadmap (ITRS'99)

THE WORLD LEADER IN DSP AND ANALOG

🜵 Texas Instruments

DSP Integration Through the Years

Typical Device Capabilities

	<u>1980</u>	<u>1990</u>	<u>2000</u>	<u>2005</u>	<u>2010</u>
Die size (mm)	• 50	• 50	• 50	• 50	• 50
Technology (µm)	•3	• 0.8	•0.18	• 0.05	• 0.01
MIPS	•5	• 40	•2000	•20K	•50K
MHZ	•20	• 80	• 500	•2,000	• 10,000
RAIVI (Dytes)	•256	•2K	•32K	•5M	•10M
Power	•\$150.00	•\$15.00	•\$1.50	•\$1.50	•\$1.50
(mW/MIPS)	•250	•12.5	•0.1	• 0.01	• 0.001
Transistors	•50K	•500K	• 5M	• 50M	•100M
Wafer size	• 3"	• 6"	•12"	• 12"	•12"

Gene Frantz, IEDM 99

THE WORLD LEADER IN DSP AND ANALOG

DSPS Fest

TEXAS INSTRUMENTS

Today's Cell Phone

DSPS Fest

ICs	12
Discretes	16
Passives	214
Other	8
Total	250

- Transistor scaling is not the most significant enabler for cost reduction
- SOC integration requires technologies for
 - DSP
 Radio RF/IF
 - SRAM
 Analog functions
 - FLASH Power management

DSPS Fest 70nm Leaders On Moore's TRAN Law Curve 0.18µm Generation 0.18µm Since Sept. 99 40.00 nm C035-9267175-24-NM0S-162 ▶ 0.13µm Currently Cu in Sept. 00 Flas na 0.13µm Generation 0.11µm in March 01 0.085µm in June 01 SOI in June 02 Core CMOS **i G**e Bipolar assives KFAB 5.0kV 5.4mm x11.0k 1/20/00

Six Level Cu Interconnect

Differentiated Technology for SOC Integration

AGENDA

Introduction Grand Challenges of Scaling SOC Integration TI Strategy

TEXAS INSTRUMENTS

Lithography

THE WORLD LEADER IN DSP AND ANALOG

DSPS Fest

TEXAS INSTRUMENTS

Lithography Beyond the Wavelength of Light

THE WORLD LEADER IN DSP AND ANALOG

DSPS Fest

Lithography Beyond the Wavelength of Light

THE WORLD LEADER IN DSP AND ANALOG

DSPS Fest

Grand Challenges of Moore's Law Scaling

Lithography

Gate insulator

Transistor leakage in "off" state

AGENDA

Introduction Grand Challenges of Scaling SOC Integration TI Strategy

SOC Integration: Cell Phone

SOC Integration: Cell Phone

SOC Integration

- Technology Strategy also needs to support SOC Integration strategies for
 - Mass Storage
 - ADSL Modems
 - Short Distance Wireless
 - Cable Modems
 - ► VoIP/VoDSL
 - Digital Still Camera

Technologies Required for SOC Integration

- High performance, high density digital CMOS logic having low active power, and in portable applications, low standby power
- Embedded RAM: SRAM or DRAM
- FLASH EEPROM or non-volatile memory replacement such as FeRAM
- Analog CMOS for Analog Baseband functions
- RF BiCMOS or CMOS for radio or tuner functions
- Extended Drain CMOS capable of withstanding 5-10V voltage surges
- Technologies to enable passive integration: capacitors, inductors, varactors

Shrinking Analog Functions

Analog SOC Integration

- SOC integration does not always mean integration of "digital functions" together with analog functions
- Analog functions benefit from shrinking feature size
- New architectures for "analog functions" use extensive digital logic
 - Digital compensation for fractional-N PLLs
 - On channel modulation for phase modulated systems (GSM)
 - Digital error correction in ADCs
 - Digital linearization of amplifiers and tuners

Analog SOC Integration: #1 Problem

TECHNOLOGY IN THE INTERNET ERA Analog SOC Integration

- In some cases, a higher voltage MOSFET is required: 3.3V → 2.5V
- This in general costs three masking steps
- Food for thought

Texas Instruments

Other SOC Technologies

AGENDA

Introduction Grand Challenges of Scaling SOC Integration TI Strategy

In order to be the leader in DSP & Analog Internet Access Products, internal technology and manufacturing are essential

- Differentiated Technology
- Lowest Cost
- Rapid Ramp to Volume

TECHNOLOGY ENTITLEMENT

Lowest Cost

THE WORLD LEADER IN DSP AND ANALOG

V TEXAS INSTRUMENTS

300 mm

Did you know...

DSPS Fest

Roughly the size of three football fields, DMOS6 will be TI's largest fab

Fast Facts:

300mm Project Capital: \$2.2B Final Wafer Size: 300mm Final Capacity: 30K wfs/month Final Tech Mix: C035/C027 Cu Clean Room Space: 135K sq ft **Key dates:** Shell constructed: 1996 Cleanroom complete: 7/2000 300mm production: 11/2001 Location: Dallas

Lowest Cost

DSPS Fest

- Fabless + Foundry model is successful for new/niche products.
- Internal manufacturing provides cost structure for profitability for high volume products.

SiTD Vision

World Class Technology for the World's Premier Company in DSP/Analog Internet Access Products

- State-of-the-art feature size
- Lowest cost manufacturing
- Technology matched to DSP & Analog product needs
- Rapid ramp of newest technology: First to 100M units

IEXAS INSTRU

Dawn of Internet Era

In order to be the leader in DSP & Analog Internet Access Products, internal technology and manufacturing are essential.

