
1

C6000
Compiler
Tutorial

2

Compiler Tutorial: Goals and Capabilities
! Teach new customers the easiest way to get good

out-of-the-box performance

! Prevent simple user errors from creating bad
first impressions

! Provide instructions on how to tune C code in an easy way

! Provide new tuning advice with the Feedback Solution
Table to aid both the novice and experienced user

! Provide an example that walks the user through 4 easy
steps to tune their code

Available on external web at:
http://www.ti.com/sc/c6000compiler

3

Compiler Tutorial Sections
! Getting Started

" Provides instructions on how to get up and running
" Tips on data types
" Compiler switches section - very important

! Refining C code
" Basically a collection of different C optimization steps

already included in various places in the user's guides
! Feedback Solution Table

" Helps user to tune C code somewhat interactively
! C Tuning Tutorial

" Walks user through 4 key areas of simple C tuning

4

C6000 Types
long 40 bits
int 32 bits
short 16 bits
byte 8 bits

Getting Started - Tips on Data Types
! Goal - Avoid out-of-the-box mistakes from new users

! Not all architectures have the same data widths for
C types (long, int, short and byte)

! Standard 16 x 16 multiply on 'C5000 require int
data types

! An integer multiply on the 'C6000 requires 32 x 32
operation

! Tutorial provides detail on 'C6000 sizes for long, int, short
and byte

5

Getting Started - Compiler Switches
! Goal - Avoid out-of-the-box mistakes from

new users
! Gives user “preferred option set” for best

performance
-o3 -pm -op2 -oi0 -k -mw -mh -mi -mt

! Warns user about options to avoid for best
performance
-g -s -ss -mu -o0/o1 -mz

! Gives user alternative control code option set
-o3 -pm -op2 -oi0 -ms2

6

Understanding Feedback

! Unique in industry - a real differentiator!

! Used with Feedback Solutions to tune C code

! Provides detailed feedback on each loop

"Dependency graph info

"Resource requirements

"How well the compiler did

7

Loop label: LOOP
Known Minimum Trip Count: 16
Known Max Trip Count Factor: 4
Loop Carried Dependency Bound(^): 8
Unpartitioned Resource Bound: 10
Partitioned Resource Bound(*): 11
Resource Partition: A-side B-side
.L units 6 4
.S units 3 6
.D units 8 8
.M units 11* 9
.X cross paths 7 7
.T address paths 8 8
Long read paths 4 4
Long write paths 0 0
Logical ops (.LS) 0 0 (.L or .S unit)
Addition ops (.LSD) 11 12 (.L or .S or .D unit)
Bound(.L .S .LS) 5 15
Bound(.L .S .D .LS .LSD) 10 10
Searching for software pipeline schedule at ...

ii = 11 Schedule found with 3 iterations in parallel

Done
Speculative load threshold : 12
Collapsed Epilog Stages : 3
Prolog not entirely removed : Stage contains branch
Collapsed Prolog Stages : 1

Software Pipeline Feedback

Unique in Industry
Key Information

for Loops

Resource Utilization
Information

ii - iteration interval
cycles in loop

8

Compiler Tutorial Example
! Demonstrates 'C6000 C compiler optimization
! Single example that steps through 4 key areas of

optimization
! It's all about passing more information to the compiler
! There are 4 key areas:

" Pointer Aliasing Info
" Loop Count Info

Minimum loop count info
Loop count factor - ex: count is a multiple of 2 or 4

" Pointer Alignment Info - example: word alignment
" Program Level Optimization

9

void lesson_c(short *xptr, short *yptr, short *zptr,
short *w_sum, int N) {

int i, w_vec1, w_vec2;
short w1,w2;

w1 = zptr[0];
w2 = zptr[1];
for (i = 0; i < N; i++){

w_vec1 = xptr[i] * w1;
w_vec2 = yptr[i] * w2;
w_sum[i] = (w_vec1 + w_vec2) >> 15;
}

}

Inner Loop
Requires:

2 LDs from mem
2 MPYs
1 ADD
1 SHR
1 ST to mem

Lesson 1 - Pointer Aliasing Info

10

Known Minimum Trip Count : 1
Known Max Trip Count Factor : 1
Loop Carried Dependency Bound(^) : 10
Unpartitioned Resource Bound : 2
Partitioned Resource Bound(*) : 2
Resource Partition:

A-side B-side
.L units 0 0
.S units 1 1
.D units 2* 1
.M units 1 1
.X cross paths 1 0
.T address paths 2* 1
Long read paths 1 0
Long write paths 0 0
Logical ops (.LS) 1 0 (.L or .S unit)
Addition ops (.LSD) 0 1 (.L or .S or .D unit)
Bound(.L .S .LS) 1 1
Bound(.L .S .D .LS .LSD) 2* 1

Searching for software pipeline schedule at ...
ii = 10 Schedule found with 1 iterations in parallel

Done

Lesson 1 - Software Pipeline Feedback

11

LDH *A4++,A0 ;^ |32|
|| LDH *B4++,B5 ;^ |32|

NOP 2

[B0] SUB B0,1,B0 ; |33|

[B0] B L2 ; |33|

MPY A0,A5,A0 ;^ |32|
|| MPY B5,B6,B ;^ |32|

NOP

ADD B5,A0,A0 ;^ |32|

SHR A0,15,A0 ;^ |32|

STH A0,*A3++ ;^ |32|

xptr[i] yptr[i]

+

>>15

w_sum[i]

* w1 * w2

LDH LDH

MPY MPY

ADD

SHR

STH

5 5

2 2

1

1

1

5+2+1+1+1 = 10 cycle loop carry path

Assembly created by Compiler

Lesson 1 - Loop Carry Path

12

void lesson1_c(short *restrict xptr, short *restrict yptr, short *zptr,
short *w_sum, int N) {

int i, w_vec1, w_vec2;
short w1,w2;

w1 = zptr[0];
w2 = zptr[1];
for (i = 0; i < N; i++){

w_vec1 = xptr[i] * w1;
w_vec2 = yptr[i] * w2;
w_sum[i] = (w_vec1 + w_vec2) >> 15;
}

}

Adding restrict removes
dependency between
xptr/yptr and w_sum:

restrict says that no two
pointers with a different
name will alias the same
me mory location

Lesson 1 - Pointer Aliasing Info

13

Known Minimum Trip Count : 1
Known Max Trip Count Factor : 1
Loop Carried Dependency Bound(^) : 0
Unpartitioned Resource Bound : 2
Partitioned Resource Bound(*) : 2
Resource Partition:

A-side B-side
.L units 0 0
.S units 1 1
.D units 2* 1
.M units 1 1
.X cross paths 1 0
.T address paths 2* 1
Long read paths 1 0
Long write paths 0 0
Logical ops (.LS) 1 0 (.L or .S unit)
Addition ops (.LSD) 0 1 (.L or .S or .D unit)
Bound(.L .S .LS) 1 1
Bound(.L .S .D .LS .LSD) 2* 1

Searching for software pipeline schedule at ...
ii = 2 Schedule found with 3 iterations in parallel

Done

Loop carried
dependency bound
now equal to 0.

.D and .T are
bottlenecks and are
unbalanced between
A and B side

Lesson 1 - Software Pipeline Feedback

14

void lesson2_c(const short *xptr, const short *yptr, short *zptr,
short *w_sum, int N) {

int i, w_vec1, w_vec2;
short w1,w2;

#pragma MUST_ITERATE(10,40,2);

w1 = zptr[0];
w2 = zptr[1];
for (i = 0; i < N; i++){

w_vec1 = xptr[i] * w1;
w_vec2 = yptr[i] * w2;
w_sum[i] = (w_vec1 + w_vec2) >> 15;
}

}

Allows compiler to unroll and
balance resources

MUST_ITERATE is a way to
pass more info to compiler

Co mpiler must know loop
count is a multiple of 2 to
unroll

Co mpiler must know loop
count is large enough to
unroll and still be efficient

Lesson 2 - Loop Count Info

15

Loop Unroll Multiple : 2x
Known Minimum Trip Count : 11
Known Max Trip Count Factor : 1
Loop Carried Dependency Bound(^) : 0
Unpartitioned Resource Bound : 3
Partitioned Resource Bound(*) : 3
Resource Partition:

A-side B-side
.L units 0 0
.S units 2 1
.D units 3* 3*
.M units 2 2
.X cross paths 1 1
.T address paths 3* 3*
Long read paths 1 1
Long write paths 0 0
Logical ops (.LS) 1 1 (.L or .S unit)
Addition ops (.LSD) 0 1 (.L or .S or .D unit)
Bound(.L .S .LS) 2 1
Bound(.L .S .D .LS .LSD) 2 2

Searching for software pipeline schedule at ...
ii = 3 Schedule found with 5 iterations in parallel

Done

.D and .T are balanced
between A and B side
because the loop has
been unrolled.

.D and .T are the
bottleneck of the loop
with 6 memory
accesses

Lesson 2 - Software Pipeline Feedback

16

void lesson3_c(const short *xptr, const short *yptr, short *zptr,
short *w_sum, int N) {

int i, w_vec1, w_vec2;
short w1,w2;

#pragma MUST_ITERATE(10,40,2);

_nassert((int)(xptr) % 4) == 0);
_nassert((int)(yptr) % 4) == 0);

w1 = zptr[0];
w2 = zptr[1];
for (i = 0; i < N; i++){

w_vec1 = xptr[i] * w1;
w_vec2 = yptr[i] * w2;
w_sum[i] = (w_vec1 + w_vec2) >> 15;
}

}

Allows compiler to use LDW
for two accesses

_nassert is used to tell the
compiler that xptr and yptr
are word aligned.

Co mpiler can now use LD W
to load two xptr and two
yptr values at a time

Lesson 3 - Pointer Alignment Info

17

Continuation of Speaker Notes for Previous Slide,

Lesson 3, Pointer Alignment Info

18

Loop Unroll Multiple : 2x
Known Minimum Trip Count : 12
Known Max Trip Count Factor : 2
Loop Carried Dependency Bound(^) : 0
Unpartitioned Resource Bound : 2
Partitioned Resource Bound(*) : 2
Resource Partition:

A-side B-side
.L units 0 0
.S units 2* 1
.D units 2* 2*
.M units 2* 2*
.X cross paths 1 1
.T address paths 2* 2*
Long read paths 1 1
Long write paths 0 0
Logical ops (.LS) 1 1 (.L or .S unit)
Addition ops (.LSD) 0 1 (.L or .S or .D unit)
Bound(.L .S .LS) 2* 1
Bound(.L .S .D .LS .LSD) 2* 2*

Searching for software pipeline schedule at ...
ii = 2 Schedule found with 6 iterations in parallel

Done

.D and .T are now only
needing 4 memory
accesses due to LD Ws

Lesson 3 - Software Pipeline Feedback

19

Lesson 4 - Program Level Optimization
! Compiler option -pm enables program level optimization

! Previous three key areas for C tuning:

" Pointer Aliasing info to reduce loop carry paths

" Loop count info

Minimum loop count info

Loop count factor - ex: count is a multiple of 2 or 4

" Pointer alignment info - ex: word alignment

! Program level optimization automates all
three key areas

" Gives compiler a full program view

" Automatically extracts pointer, loop count, and alignment info

" Key for large applications

20

Loop Unroll Multiple : 2x
Known Minimum Trip Count : 12
Known Max Trip Count Factor : 2
Loop Carried Dependency Bound(^) : 0
Unpartitioned Resource Bound : 2
Partitioned Resource Bound(*) : 2
Resource Partition:

A-side B-side
.L units 0 0
.S units 2* 1
.D units 2* 2*
.M units 2* 2*
.X cross paths 1 1
.T address paths 2* 2*
Long read paths 1 1
Long write paths 0 0
Logical ops (.LS) 1 1 (.L or .S unit)
Addition ops (.LSD) 0 1 (.L or .S or .D unit)
Bound(.L .S .LS) 2* 1
Bound(.L .S .D .LS .LSD) 2* 2*

Searching for software pipeline schedule at ...
ii = 2 Schedule found with 6 iterations in parallel

Done

Feedback of original
unmodified C Code
•No intrinsics
•No pragmas
•No nassert statements
•No restrict qualifiers
•Nothing C6000 specific

Lesson 4 - Program Level Optimization

21

Performance Summary

Tutorial Example Initial
Lesson

Lesson
1

Lesson
2

Lesson
3

Pointer Aliasing Info ×××× $ $ $
Loop Count Info ×××× ×××× $ $
Pointer Alignment Info ×××× ×××× ×××× $
Cycles per Iteration 10 2 1.5 1
Cycles per Iteration w/
Program Level Optimization 1 1 1 1

22

Unrolling Example: FIR Filter C Function (FIR.C)
void firFilter(short *x, int f, short *y, int N, int M, QScale)

{ int i, j, sum;

for (j = 0; j < M; j++) {

sum = 0;

for (i = 0; i < N; i++)

sum += x[i + j] * filterCoeff[f][i];

y[j] = sum >> QScale;

y[j] &= 0xfffe;

}

}

Number of Output Samples

Number of Coefficients in Filter

Multiply and Accumulate

(Convolution)

Scale and Tailor
Filter Output

23

Selecting Compiler Options

Speed most critical

Highest optimization - level 3

High MIPS code
requires high
performance

options

24

Compiler Feedback
%Unique in Industry

%Shows Performance Achieved

;*--*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Known Minimum Trip Count : 1
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound(^) : 0
;* Unpartitioned Resource Bound : 1
;* Partitioned Resource Bound(*) : 1
;* Resource Partition:
;* A-side B-side
;* .L units 0 0
;* .S units 0 1*
;* .D units 1* 1*
;* .M units 1* 0
;* .X cross paths 1* 0
;* .T address paths 1* 1*
;* Long read paths 0 0
;* Long write paths 0 0
;* Logical ops (.LS) 0 0 (.L or .S unit)
;* Addition ops (.LSD) 1 1 (.L or .S or .D unit)
;* Bound(.L .S .LS) 0 1*
;* Bound(.L .S .D .LS .LSD) 1* 1*
;*
;* Searching for software pipeline schedule at ...
;* ii = 1 Schedule found with 8 iterations in parallel
;* done
;*
;* Collapsed epilog stages : 7
;* Prolog not entirely removed
;* Collapsed prolog stages : 2
;*
;*--*

Full details on compiler
feedback covered in

Compiler Tutorial at:
www.ti.com/sc/c6000compiler

Key Information for
Our Loop

ii = 1 (iteration interval = 1 cycle)
Means: Single Cycle Inner Loop

B side .M unit not used

Means: Only one MPY per cycle

25

Resulting Inner Loop
! Performs All Inner Loop Instructions in parallel

! Achieves one multiply accumulate every cycle

! C62x Maximum of 2 Loads performed every cycle

LDH *A3++,A4 ; Load x input data
|| LDH *B4++,B5 ; Load coefficient
|| MPY B5,A4,A5 ; Multiply x and coeff
|| ADD A5,A0,A0 ; Accumulate result
|| [B0] SUB B0,1,B0 ; Decrement loop counter
|| [B0] B L3 ; Branch inner loop

Compiler Output

Since the C62x has 2 Multipliers, can we do better?
Yes, Let’s Unroll the Loop...

26

Imposed Unroll of Loops

void firFilter(short *x, int f, short *y, int N, int M, QScale)
{ int i, j, sum;

#pragma UNROLL(2)
for (j = 0; j < M; j++) {

sum = 0;
#pragma UNROLL(2)
for (i = 0; i < N; i++)

sum += x[i + j] * filterCoeff[f][i];
y[j] = sum >> QScale;
y[j] &= 0xfffe;

}}

Unroll outer loop

Unroll inner loop

Loop unrolling is usually automatically implemented, but can be
forced with the UNROLL pragma, as seen below

27

New Unrolled Inner Loop
Achieves 2 multiply accumulates every cycle

[!B1] ADD A5,A4,A4 ; running accumulator 1
||[!B1] ADD B8,B4,B4 ; running accumulator 2
|| MPYHL B0,A6,A5 ; h1*x1
|| MPY A6,B0,B8 ; h0*x1
|| [A1] B L14 ; Branch for inner loop
|| LDH *B7++(4),B9 ; Load x0
|| LDH *++A3(4),A5 ; Load x2

[B1] SUB B1,1,B1 ; dec conditional counter
||[!B1] ADD B8,B5,B5 ; running accumulator 3
||[!B1] ADD A6,A0,A0 ; running accumulator 4
|| MPY B9,B0,B8 ; h0*x0
|| MPYHL B0,A5,A6 ; h1*x2
|| [A1] SUB A1,1,A1 ; dec loop counter
|| LDW *B6++,B0 ; Load h0 & h1
|| LDH *+A3(2),A6 ; Load x1

28

Algorithm Used in Assembly
Cycles

Assembly
Time
(µµµµs)

C
Cycles
(Rel
4.0)

C
Time
(µµµµs)

%
Efficiency
vs Hand
Coded

Block Mean Square Error
MSE of a 20 column
image matrix

For motion
compensation
of image data

348 1.16 402 1.34 87%

Codebook Search CELP based
voice coders

977 3.26 961 3.20 100+%

Vector Max
40 element input vector

Search
Algorithms

61 0.20 59 0.20 100+%

All-zero FIR Filter
40 samples, 10
coefficients

VSELP based
voice coders

238 0.79 280 0.93 85%

Minimum Error Search
Table Size = 2304

Search
Algorithms

1185 3.95 1318 4.39 90%

IIR Filter
16 coefficients

Filter 43 0.14 38 0.13 100+%

IIR – cascaded biquads
10 Cascaded biquads
(Direct Form II)

Filter 70 0.23 75 0.25 93%

MAC
Two 40 samples vector

VSELP based
voice coders

61 0.20 58 0.19 100+%

Vector Sum
Two 44 sample vectors

51 0.17 47 0.16 100+%

MSE
MSE between two 256
element vectors

Mean Square
Error
computation in
Vector
Quantizer

279 0.93 274 0.91 100+%

TI ‘C62x Compiler Performance Rel 4.0 : Execution Time in µs @ 300 MHz

C6000 Benchmarks (on the TI Website)

