- CCS 1.2 Announcement
- C6000 Release 4.0
- Profile Based Compiler
- Roadmap

Ъ,

THE WORLD LEADER IN DSP AND ANALOG

TI DSP Compile Tools Value Proposition

For the embedded software developer, TI's DSP Compile Tools - co-developed with TI's DSPs offer the highest performance and code density in the industry due to architecture-specific optimizations as well as application-level analysis including interactive feedback, tuning, profiling, and system memory allocation.

TI Compile Tools Current Focus

- Architecture Co-development Compiler and architecture work in unison
- High performance alleviates the need to hand code assembly
- High code density reduces system cost by minimizing memory requirements
- Architecture Specific Optimizations Compiler possesses the knowledge of the expert hand coded assembly writer.
- Unique Interactive Tuning and Feedback

X.

- Application-level optimizations Utilizes knowledge of entire application to optimize key components
- Profile Based Compiler Makes the right tradeoff along a two dimensional codesize vs performance graph
- Visual Linker Eases System Memory Allocation
- Moving Forward \rightarrow Unified Build Environment and Alchemy

Compiler Status/Roadmap - Platforms

C6000

ti di

- Industry's Best Tuned and Out of the Box C performance
- 4.0 Meets Internal Goals 65% NatC, >80% OptC, >95% LinASM

■ Take C64x performance to C62x Levels

Continue to improve "out of the box" C performance

- C5000
 - Code Size better than Arm with Thumb mode
 - Mnemonic Assembler ensures compatibility
 - Need to add more functionality into Assembler
 - Initial Benchmarks in place end of March
 - Will use to drive 2.0 Goals

Industry leading real-time tools reduce cost, risk and development time Enhancements

In Code Composer Studio 1.2

DSP/BIOS II

Flexibility, scalability and ease of implementation

New Compiler Tools

Visualize and optimize for maximum productivity

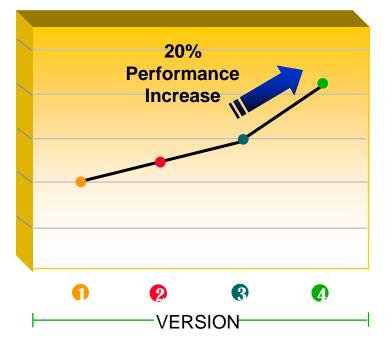
New Cores

All customers can start today!

Slash product development time over 50%

Development Time

THE WORLD LEADER IN DSP AND ANALOG



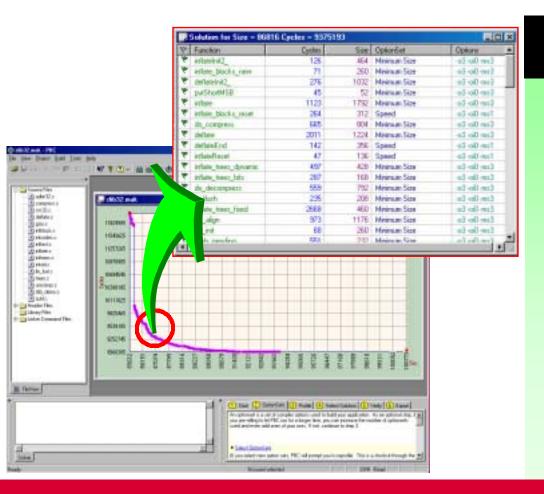
New C6000™ Compile Tools

#1 DSP Compiler Extends Performance Lead

www.ti.com/sc/c6000compiler

Out-of-the-box Compiler Performance Improvement

- Achieves 80-90% performance vs. hand coded assembly
- Performance statistics backed up with real code examples downloadable today
- Out-of-the-box C code focus has produced more that 20% performance improvement
- Unique compiler feedback
- Support for C+ +


Continuation of Speaker Notes

THE WORLD LEADER IN DSP AND ANALOG

TEXAS INSTRUMENTS

New C6000™ Compile Tools

Visualize and optimize code size and performance trade-offs

PROFILE-BASED COMPILER SOLUTIONS

- Build and profile multiple build option sets
- Automatically plot a 2D graph of code size vs performance
- Graphically select the optimum combination of size and speed for your application
- Click to build desired performance and code size trade-off in seconds

THE WORLD LEADER IN DSP AND ANALOG

Continuation of Speaker Notes

THE WORLD LEADER IN DSP AND ANALOG

Profile Based Compiler Details

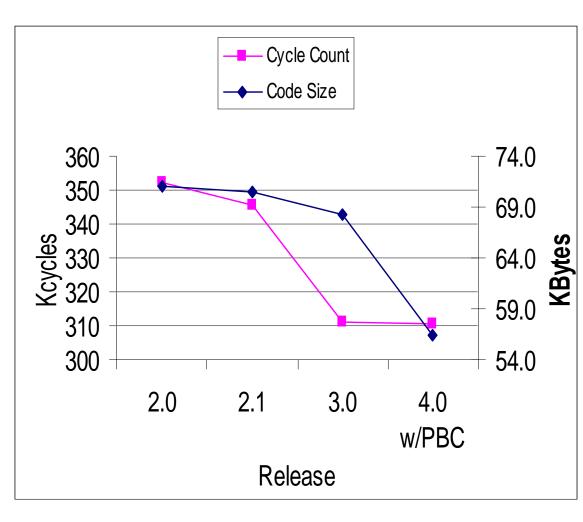
Visualize and optimize code size and performance trade-offs

📲 zlib32.orf - O X Overrides Rule ♥ Function OptionSet/Rule A (* Fastest C Smallest C. None tr_align Maximun tr flush block Speed 2 zib32.mak - PBC tr init Fasted File Edit View ٣ tr stored block None **OptionSet** Size Options Cycles 😂 🖬 🕾 tr tally None Maximum Speed 31 268 -03-00 adler32 None Aggresive Spe. 31 276 -o3-oi0-mi0 bi Bush None Speed 31 27B -a3-ai0-ma1 🚞 Source Files bi reverse None 31 Sine 292 -o3-oi0-m2 adler32.c 🔻 bi_windup None Minimum Size 68 260 -o3-oi0-ms3 compress.c build bit tree None 🗈 ox32.c 👻 build bee None defiate.c check_header None 🔊 gzio.c compress None infblock.c compress block None infcodes.c capy block None 🗈 inflast.c ٠ crc32 None inflate.c dbi hut init. infrees.c 🗈 intutil c INCOME OF THE OWNER 🔄 lin_but.c * 4832 5982 7132 **M32** CSS FileView 1) Stat (2) OptionSets (3) Profile (4) Select Solution (5) Verity (6) Export solving. overrides applied to Once profiling is complete, PBC will present a graph that plots the best ways to compile 🛋 solver run complete your application. To narrow down on a particular speed/size region, a zoom facility is provided: 4 Solver Maximum 4 Zoon Readu No point selected **DVR** Read

PROFILE-BASED COMPILER SOLUTIONS

- Express Assistant to Start
- On-line Tutorial
- Includes Ready to Run Demo
- File Overrides for ISR, etc.

THE WORLD LEADER IN DSP AND ANALOG


PBC Results on EFR GSM

- 288Kcycles at 60 Kbytes
- 311Kcycles at 56 Kbytes
- <u>Fastest -</u>

276Kcycles at 65 Kbytes

• Lowest Code Size -

45Kbytes at 1.25 Mcycles

Performance Roadmap - Two Vectors

- Compiler gathers system/application-level information
 - Use profiling to get run-time behavior knowledge
 - Feed the compiler more system details (memory maps, libraries) to gain more contextual knowledge
 - Continue to develop optimizations to utilize these new sources of information
 - Continue to drive Architecture Specific Optimizations
- Interactive Visual tuning tools for the User

SU.

- Identify performance critical code and provide suggestions for improvement
- Graphical System Optimization
- Automatically choose the best compiler optimization levels for an application based on user criteria

Driving Performance!

100

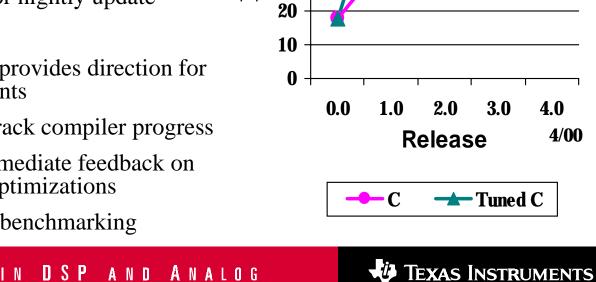
90

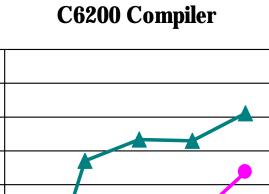
80

70

60

50


40


30

Percent of optimal

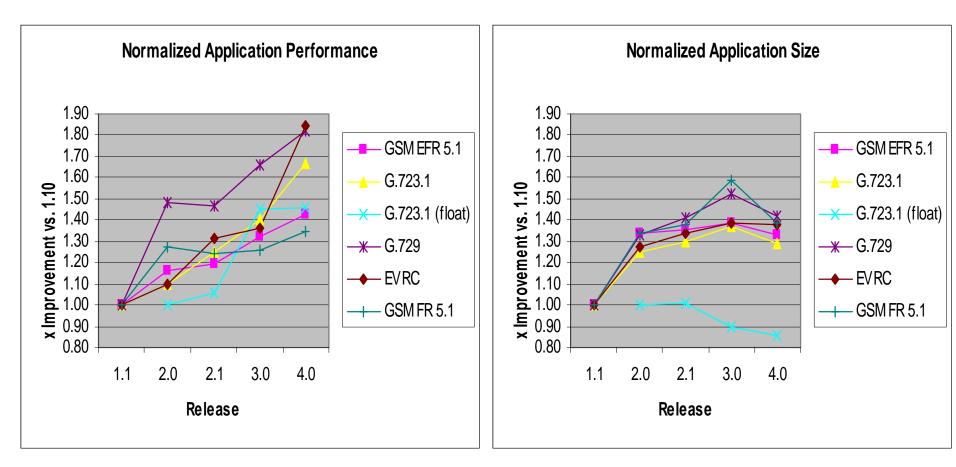
Benchmarking

- Methodology
 - Representative benchmarks created with both C and optimal hand coded assembly implementations
 - Each benchmark wrapped in a process that self checks correctness and reports timing
 - Performance of the compiler output compared to the optimal assembly
 - Process automated for nightly update
- **Benefits**
 - Benchmark analysis provides direction for compiler improvements
 - Measurable way to track compiler progress
 - Gives developers immediate feedback on impact of potential optimizations
 - Enables competitive benchmarking

3.0

4.0

4/00


DSP ANALOG ТНЕ WORLD A N D LEADER

Full Algorithms

- Provides large pieces of DSP code to validate improves compiler robustness
- Tracks out of the box algorithm performance
- Tracks code size vs performance
- Run on large data sets
- Run on small data sets with many option combinations
- Adding more control applications to grade code size

Algorithms

http://www.micro.ti.com/asp/sds/c6x/metrics/release_results.html

C6000 Benchmarks (on the TI Website)

Algorithm	Used in	Assembly Cycles	Assembly Time (µs)	C Cycles (Rel 4.0)	C Time (µs)	% Efficiency vs Hand Coded
Block Mean Square Error MSE of a 20 column image matrix	For motion compensation of image data	348	1.16	402	1.34	87%
Codebook Search	CELP based voice coders	977	3.26	961	3.20	100+%
Vector Max 40 element input vector	Search Algorithms	61	0.20	59	0.20	100+%
All-zero FIR Filter 40 samples, 10 coefficients	VSELP based voice coders	238	0.79	280	0.93	85%
Minimum Error Search Table Size = 2304	Search Algorithms	1185	3.95	1318	4.39	90%
IIR Filter 16 coefficients	Filter	43	0.14	38	0.13	100+%
IIR – cascaded biquads 10 Cascaded biquads (Direct Form II)	Filter	70	0.23	75	0.25	93%
MAC Two 40 samples vector	VSELP based voice coders	61	0.20	58	0.19	100+%
Vector Sum Two 44 sample vectors		51	0.17	47	0.16	100+%
MSE MSE between two 256 element vectors	Mean Square Error computation in Vector Quantizer	279	0.93	274	0.91	100+%

TI 'C62x Compiler Performance Rel 4.0 : Execution Time in µs @ 300 MHz

THE WORLD LEADER IN DSP AND ANALOG

Compiler Status/Roadmap

C6000

- Industry's Best Tuned and Out of the Box C performance
- 4.0 Met Internal Goals
 - 65% NatC, >80% OptC, >95% LinASM
- Take C64x performance to C62x Levels
- Continue to improve "out of the box" C performance