
1

C6000 Compile Tools / PBC Agenda

! CCS 1.2 Announcement
! C6000 Release 4.0
! Profile Based Compiler
! Roadmap

2

For the embedded software developer, TI’s DSP
Compile Tools - co-developed with TI’s DSPs -
offer the highest performance and code density in
the industry due to architecture-specific
optimizations as well as application-level analysis
including interactive feedback, tuning, profiling,
and system memory allocation.

TI DSP Compile Tools Value Proposition

3

TI Compile Tools Current Focus
! Architecture Co-development - Compiler and architecture work

in unison
! High performance - alleviates the need to hand code assembly
! High code density - reduces system cost by minimizing memory

requirements
! Architecture Specific Optimizations - Compiler possesses the

knowledge of the expert hand coded assembly writer.
! Unique Interactive Tuning and Feedback
! Application-level optimizations - Utilizes knowledge of entire

application to optimize key components
! Profile Based Compiler - Makes the right tradeoff along a two

dimensional codesize vs performance graph
! Visual Linker - Eases System Memory Allocation
! Moving Forward " Unified Build Environment and Alchemy

4

Compiler Status/Roadmap - Platforms

! C6000

Industry’s Best Tuned and Out of the Box C performance

4.0 Meets Internal Goals - 65% NatC, >80% OptC, >95%
LinASM

Take C64x performance to C62x Levels

Continue to improve “out of the box” C performance

! C5000

Code Size better than Arm with Thumb mode

Mnemonic Assembler ensures compatibility

Need to add more functionality into Assembler

Initial Benchmarks in place end of March

Will use to drive 2.0 Goals

5
Development Time

Slash product development time over 50%

Industry leading real-time tools
reduce cost, risk and development time

Enhancements
In Code Composer Studio 1.2

Flexibility, scalability and ease of implementation
DSP/BIOS IIIIIIII

Visualize and optimize for maximum productivity
New Compiler Tools

All customers can start today!
New Cores

6

! Achieves 80-90% performance
vs. hand coded assembly

! Performance statistics backed
up with real code examples
downloadable today

! Out-of-the-box C code focus
has produced more that 20%
performance improvement

! Support for C+ +

www.ti.com/sc/c6000compiler

Out-of-the-box Compiler
Performance Improvement

VERSION
1 2 3 4

Code Composer StudioTM 1.2

#1 DSP Compiler
Extends Performance Lead

New C6000TM Compile Tools

20%
Performance

Increase

! Unique compiler feedback

7

Continuation of Speaker Notes

8

! Code size increases with
increasing parallelism

! Users have to manually
experiment with different
builds across multiple blocks
of code

! Experimentation takes weeks

SYSTEM CHALLENGES PROFILE-BASED COMPILER
SOLUTIONS

Visualize and optimize code size and
performance trade-offs

! Build and profile multiple
build option sets

! Automatically plot a 2D graph
of code size vs performance

! Graphically select the optimum
combination of size and speed
for your application

New C6000TM Compile Tools
Code Composer StudioTM 1.2

! Click to build desired
performance and code size
trade-off in seconds

9

Continuation of Speaker Notes

10

PROFILE-BASED COMPILER
SOLUTIONS

Visualize and optimize code size and
performance trade-offs

! Express Assistant to Start

! On-line Tutorial

! Includes Ready to Run Demo

Profile Based Compiler Details
Code Composer StudioTM 1.2

! File Overrides for ISR, etc.

11

PBC Results on EFR GSM

• 288Kcycles at 60 Kbytes

• 311Kcycles at 56 Kbytes

• Fastest -

276Kcycles at 65 Kbytes

• Lowest Code Size -

45Kbytes at 1.25 Mcycles
300
310
320
330
340
350
360

2.0 2.1 3.0 4.0
w/PBC

Release

Kc
yc

les

54.0

59.0

64.0

69.0

74.0

KB
yte

s

Cycle Count

Code Size

12

Performance Roadmap - Two Vectors

! Compiler gathers system/application-level information

Use profiling to get run-time behavior knowledge

Feed the compiler more system details (memory maps,
libraries) to gain more contextual knowledge

Continue to develop optimizations to utilize these new
sources of information

Continue to drive Architecture Specific Optimizations

! Interactive Visual tuning tools for the User

Identify performance critical code and provide suggestions
for improvement

Graphical System Optimization

Automatically choose the best compiler optimization levels
for an application based on user criteria

13

Driving Performance! Driving Performance! Driving Performance! Driving Performance! Driving Performance! Driving Performance! Driving Performance! Driving Performance!
BenchmarkingBenchmarking
! Methodology

Representative benchmarks created with
both C and optimal hand coded assembly
implementations

Each benchmark wrapped in a process that
self checks correctness and reports timing

Performance of the compiler output
compared to the optimal assembly

Process automated for nightly update
! Benefits

Benchmark analysis provides direction for
compiler improvements

Measurable way to track compiler progress
Gives developers immediate feedback on

impact of potential optimizations
Enables competitive benchmarking

C6200 Compiler

0

10

20

30

40

50

60

70

80

90

100

0.0 1.0 2.0 3.0 4.0
Release

Pe
rc

en
t o

f o
pt

im
al

C Tuned C

4/00

14

Full Algorithms

! Provides large pieces of DSP code to validate - improves
compiler robustness

! Tracks out of the box algorithm performance

! Tracks code size vs performance

! Run on large data sets

! Run on small data sets with many option combinations

! Adding more control applications to grade code size

15

Algorithms
http://www.micro.ti.com/asp/sds/c6x/metrics/release_results.html

Normalized Application Performance

0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90

1.1 2.0 2.1 3.0 4.0

Release

x I
m

pr
ov

em
en

t v
s.

1.1
0

GSM EFR 5.1

G.723.1

G.723.1 (float)

G.729

EVRC

GSM FR 5.1

Normalized Application Size

0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90

1.1 2.0 2.1 3.0 4.0

Release

x I
m

pr
ov

em
en

t v
s.

1.1
0

GSM EFR 5.1

G.723.1

G.723.1 (float)

G.729

EVRC

GSM FR 5.1

16

Algorithm Used in Assembly
Cycles

Assembly
Time
(µµµµs)

C
Cycles
(Rel
4.0)

C
Time
(µµµµs)

%
Efficiency
vs Hand
Coded

Block Mean Square Error
MSE of a 20 column
image matrix

For motion
compensation
of image data

348 1.16 402 1.34 87%

Codebook Search CELP based
voice coders

977 3.26 961 3.20 100+%

Vector Max
40 element input vector

Search
Algorithms

61 0.20 59 0.20 100+%

All-zero FIR Filter
40 samples, 10
coefficients

VSELP based
voice coders

238 0.79 280 0.93 85%

Minimum Error Search
Table Size = 2304

Search
Algorithms

1185 3.95 1318 4.39 90%

IIR Filter
16 coefficients

Filter 43 0.14 38 0.13 100+%

IIR – cascaded biquads
10 Cascaded biquads
(Direct Form II)

Filter 70 0.23 75 0.25 93%

MAC
Two 40 samples vector

VSELP based
voice coders

61 0.20 58 0.19 100+%

Vector Sum
Two 44 sample vectors

51 0.17 47 0.16 100+%

MSE
MSE between two 256
element vectors

Mean Square
Error
computation in
Vector
Quantizer

279 0.93 274 0.91 100+%

TI ‘C62x Compiler Performance Rel 4.0 : Execution Time in µs @ 300 MHz

C6000 Benchmarks (on the TI Website)

17

Compiler Status/Roadmap

! C6000

Industry’s Best Tuned and Out of the Box C
performance

4.0 Met Internal Goals

$ 65% NatC, >80% OptC, >95% LinASM

Take C64x performance to C62x Levels

Continue to improve “out of the box” C performance

