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C6000 Compile Tools / PBC Agenda

! CCS 1.2 Announcement
! C6000 Release 4.0
! Profile Based Compiler
! Roadmap
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For the embedded software developer, TI’s DSP 
Compile Tools - co-developed with TI’s DSPs -
offer the highest performance and code density in 
the industry due to architecture-specific 
optimizations as well as application-level analysis 
including interactive feedback, tuning, profiling, 
and system memory allocation.

TI DSP Compile Tools Value Proposition
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TI Compile Tools Current Focus
! Architecture Co-development - Compiler and architecture work 

in unison
! High performance - alleviates the need to hand code assembly
! High code density - reduces system cost by minimizing memory 

requirements
! Architecture Specific Optimizations - Compiler possesses the 

knowledge of the expert hand coded assembly writer.
! Unique Interactive Tuning and Feedback
! Application-level optimizations - Utilizes knowledge of entire 

application to optimize key components
! Profile Based Compiler - Makes the right tradeoff along a two 

dimensional codesize vs performance graph
! Visual Linker - Eases System Memory Allocation
! Moving Forward " Unified Build Environment and Alchemy
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Compiler Status/Roadmap - Platforms

! C6000

# Industry’s Best Tuned and Out of the Box C performance

# 4.0 Meets Internal Goals - 65% NatC, >80% OptC, >95% 
LinASM

# Take C64x performance to C62x Levels

# Continue to improve “out of the box” C performance

! C5000

# Code Size better than Arm with Thumb mode

# Mnemonic Assembler ensures compatibility

# Need to add more functionality into Assembler

# Initial Benchmarks in place end of March

# Will use to drive 2.0 Goals
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Development Time

Slash product development time over 50%

Industry leading real-time tools 
reduce cost, risk and development time

Enhancements
In Code Composer Studio 1.2

Flexibility, scalability and ease of implementation
DSP/BIOS IIIIIIII

Visualize and optimize for maximum productivity
New Compiler Tools

All customers can start today!
New Cores
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! Achieves 80-90% performance 
vs. hand coded assembly

! Performance statistics backed 
up with real code examples 
downloadable today

! Out-of-the-box C code focus 
has produced more that 20% 
performance improvement

! Support for C+ +

www.ti.com/sc/c6000compiler

Out-of-the-box Compiler 
Performance Improvement

VERSION
1 2 3 4

Code Composer StudioTM 1.2

#1 DSP Compiler 
Extends Performance Lead

New C6000TM Compile Tools

20%
Performance

Increase

! Unique compiler feedback
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Continuation of Speaker Notes



8

! Code size increases with 
increasing parallelism

! Users have to manually 
experiment with different 
builds across multiple blocks 
of code

! Experimentation takes weeks

SYSTEM CHALLENGES PROFILE-BASED COMPILER 
SOLUTIONS

Visualize and optimize code size and 
performance trade-offs

! Build and profile multiple 
build option sets

! Automatically plot a 2D graph 
of code size vs performance

! Graphically select the optimum 
combination of size and speed 
for your application

New C6000TM Compile Tools
Code Composer StudioTM 1.2

! Click to build desired 
performance and code size 
trade-off in seconds
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Continuation of Speaker Notes
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PROFILE-BASED COMPILER 
SOLUTIONS

Visualize and optimize code size and 
performance trade-offs

! Express Assistant to Start

! On-line Tutorial

! Includes Ready to Run Demo

Profile Based Compiler Details
Code Composer StudioTM 1.2

! File Overrides for ISR, etc.
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PBC Results on EFR GSM

• 288Kcycles at 60 Kbytes

• 311Kcycles at 56 Kbytes

• Fastest -

276Kcycles at 65 Kbytes

• Lowest Code Size -

45Kbytes at 1.25 Mcycles
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Performance Roadmap - Two Vectors

! Compiler gathers system/application-level information

# Use profiling to get run-time behavior knowledge

# Feed the compiler more system details (memory maps, 
libraries) to gain more contextual knowledge

# Continue to develop optimizations to utilize these new 
sources of information

# Continue to drive Architecture Specific Optimizations

! Interactive Visual tuning tools for the User

# Identify performance critical code and provide suggestions 
for improvement

# Graphical System Optimization

# Automatically choose the best compiler optimization levels 
for an application based on user criteria
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Driving Performance! Driving Performance! Driving Performance! Driving Performance! Driving Performance! Driving Performance! Driving Performance! Driving Performance! 
BenchmarkingBenchmarking
! Methodology

# Representative benchmarks created with 
both C and optimal hand coded assembly 
implementations

# Each benchmark wrapped in a process that 
self checks correctness and reports timing

# Performance of the compiler output 
compared to the optimal assembly 

# Process automated for nightly update
! Benefits

# Benchmark analysis provides direction for 
compiler improvements

# Measurable way to track compiler progress
# Gives developers immediate feedback on 

impact of potential optimizations
# Enables competitive benchmarking

C6200 Compiler
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Full Algorithms

! Provides large pieces of DSP code to validate - improves 
compiler robustness

! Tracks out of the box algorithm performance

! Tracks code size vs performance

! Run on large data sets

! Run on small data sets with many option combinations

! Adding more control applications to grade code size
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Algorithms
http://www.micro.ti.com/asp/sds/c6x/metrics/release_results.html
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Algorithm Used in Assembly
Cycles

Assembly
Time
(µµµµs)

C
Cycles
(Rel
4.0)

C
Time
(µµµµs)

%
Efficiency
vs Hand
Coded

Block Mean Square Error
MSE of a 20 column
image matrix

For motion
compensation
of image data

348 1.16 402 1.34 87%

Codebook Search CELP based
voice coders

977 3.26 961 3.20 100+%

Vector Max
40 element input vector

Search
Algorithms

61 0.20 59 0.20 100+%

All-zero FIR Filter
40 samples, 10
coefficients

VSELP based
voice coders

238 0.79 280 0.93 85%

Minimum Error Search
Table Size = 2304

Search
Algorithms

1185 3.95 1318 4.39 90%

IIR Filter
16 coefficients

Filter 43 0.14 38 0.13 100+%

IIR – cascaded biquads
10 Cascaded biquads
(Direct Form II)

Filter 70 0.23 75 0.25 93%

MAC
Two 40 samples vector

VSELP based
voice coders

61 0.20 58 0.19 100+%

Vector Sum
Two 44 sample vectors

51 0.17 47 0.16 100+%

MSE
MSE between two 256
element vectors

Mean Square
Error
computation in
Vector
Quantizer

279 0.93 274 0.91 100+%

TI ‘C62x Compiler Performance Rel 4.0 : Execution Time in µs @ 300 MHz

C6000 Benchmarks (on the TI Website)
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Compiler Status/Roadmap

! C6000

# Industry’s Best Tuned and Out of the Box C 
performance

# 4.0 Met Internal Goals 

$ 65% NatC, >80% OptC, >95% LinASM

# Take C64x performance to C62x Levels

# Continue to improve “out of the box” C performance


