

Rapid Developmnt of High-Quality Customizable and Adaptable
Software for Digital Signal Processors

Farokh B. Bastani1, John Linn2, Kashi Rao3, I-Ling Yen1, Simeon Ntafos1

1 Department of Computer Science MS EC-31, University of Texas at Dallas, Richardson, TX 75083-0688.
2 Texas Instruments, Systems and Software Lab.
3 Alcatel Corporate Research Center, Richardson

Abstract
Dramatic advances in computer and communication technologies
have greatly promoted the growth of embedded telecommunication
systems. The software for these applications is becoming
increasingly sophisticated and complex and this trend will
accelerate over the next few years with the development of
"software-defined telephony". We present an approach for
developing rigorous techniques for rapidly constructing highly
dependable embedded applications. It emphasizes the use of
standard software frameworks, down-loadable and updatable code
modules, and commercial-off-the-shelf components to construct
complex and dynamically changing embedded software systems.
Our domain-specific focus is used to leverage the special
characteristics of real-time embedded programs to develop deep
knowledge bases, tools, and techniques for achieving accelerated
development schedules and high-quality assurance.

1. Introduction

Dramatic advances in computer and communication
technologies have greatly reduced hardware costs and
improved their performance and reliability. This has made it
economically feasible to extend the reach of automation to
more and more critical services, such as banking and
financial services, remote patient monitoring systems,
transportation, etc. The market for these embedded
computer systems is huge and is expected to grow rapidly
over the next few years. For example, 260 million cellular
phones were sold in 1999, and this pace will continue with
the introduction of new 3G cellular infrastructure starting in
2001. Some other emerging embedded computer
applications include television/settop box and blending of
TV & Internet, Internet and digital communications
infrastructure, and residential gateway and Internet in the
home.

Meanwhile, software continues to become more and more
complex due to the growing sophistication and complexity
of modern applications. For example, consider
telecommunication systems. Just a few years ago, all that
a switching system had to do was to establish a route for a
call, monitor the call for billing purposes, and release the
resources dedicated to the call after it was completed. In
recent years, this simple scenario has become extremely
complex with an explosive growth in the number of features
and capabilities. Telecommunications systems must now
handle stationary and mobile calls (both cellular and
satellite wireless systems), handle various failure modes
(switches, trunk-lines, satellites), support voice and data
transmissions, handle different service plans, and provide
numerous user-oriented features (call forwarding, speed

dialing, caller id, 911 service, etc.). The role of software in
telecommunication systems is expected to explode
dramatically over the next few years with the development
of “software-defined telephony.” These smart mobile
phones will shift communication functions to programmable
components in order to add features and functions on-the-
fly and adapt instantly to different frequencies and
transmission standards.

At the same time, telecommunications systems are
becoming crucial links in mission-critical applications
(banking, stock-exchange, electronic commerce, etc.) and
even safety-critical applications (tele-medicine services,
defense systems, early warning systems, etc.). For these
critical applications, it is necessary to be able not only to
achieve high quality but also to rigorously demonstrate that
high quality has in fact been achieved. In today’s highly
competitive business environment, it is also essential to
have accelerated development schedules to exploit
windows of opportunity. Furthermore, success in today’s
global marketplace requires the capability to quickly
customize and adapt products for niche markets and to
satisfy diverse regional standards and procedures.

To meet all these challenges, software development
technology is rapidly shifting away from low-level
programming issues to automated code generation and
integration of systems from components, either
Commercial-Off-The-Shelf (COTS) components or
specially developed in-house components. This is made
possible by numerous recent breakthroughs in software
technology, including web-based cooperative software
development, in-process monitoring, agents, Java, scripting
languages, and, especially, industry-driven standardization
efforts, such as CORBA, TINA, TL 9000, and XDAIS. The
use of COTS components can significantly reduce software
development time and cost. However, the downside is loss
of control over the quality of the system, especially with the
use of third party software components. Rigorous
techniques for rapidly constructing highly reliable software
for embedded systems must emphasize modular design &
software engineering principles, use of standard software
frameworks, downloadable and updatable code modules,
and complex and dynamically changing software
configurations.

The Embedded Software Center is developing APEX
(Advanced Programming Environment for Embedded
Computer Systems), an infrastructure for enabling the rapid
development of embedded software from third party and
COTS components. APEX is a distributed web-based.

Concept
COTS
Aware

Require.
Spec.

CARE DICE

EASiQAAutoMAIC

FSL Frame Spec. Frameware

HARDEn

Developer Site – Technical Data

Vendor Site – Source Code

Specification
and

performance/
reliability

data
Design patterns,
code templates

Customize
component

Behavior
specification,
operational profile

Instrument
component Transform component

Behavior
specification

AutoMAIC

AutoMAIC

EASiQA

EASiQA

Field
Data

Fig. 1. The APEX Infrastructure.

system that helps acquire data for software components,
customize the components, integrate them together, perform
testing and quality assurance, and enhance the security and
fault tolerance of embedded applications. Section 2 presents
an overview of APEX while Section 3 discusses the
quantitative objectives of APEX and Section 4 gives the details
of the various tools and techniques that are provided by APEX.
Finally, Section 5 summarizes the paper.

2. APEX – An Infrastructure for Software Reuse

A lot of work has been initiated recently on component-based
software engineering, including middleware (CORBA),
“design-by-contract,” and certification of COTS software. ESC
is developing the APEX (Advanced Programming
Environment for Embedded Computer Systems) infrastructure
to facilitate the use of COTS components and third party
software. The APEX infrastructure includes automated code
transformation and synthesis, automated qualification, and a
framework for adapting a system to changes in its
environment without sacrificing performance. APEX is sharply
focused on embedded applications and DSPs, but the
infrastructure encompasses a comprehensive, integrated
solution that spans the entire product life-cycle

At the heart of APEX is the Online Repository for Embedded
Software (ORES), a distributed collaborative web-based
repository system connecting application developers with
component vendors. A vendor’s site offers support for
component customization while a developer’s site contains
technical data regarding the components. The development
process starts with a new COTS Aware Requirements
Engineering (CARE) methodology to adapt a product concept
to maximize the use of available COTS components in its
implementation. A novel design method, DICE (Design for
Independent Composition and Evaluation), is used to
decompose the application into a set of independent
subsystems and a framework for composing them together.
Each subsystem is developed using the APEX AutoMAIC
(Automated Modification And Integration of Components)
utilities. These utilities interact with the vendor’s web-site to
customize components and mine the developer’s ORES to

generate glue code from existing design patterns and code
templates. Each subsystem is then tested using a set of
powerful simulation and analysis tools in EASiQA
(Environment for Automated Simulation and Quality Analysis).
EASiQA interacts with the vendor’s web-site to generate
instrumented versions of the components for performing
coverage and other quality analysis. Once the subsystems
have been independently validated, they are automatically
composed together by the APEX Frameware, a compiler that
generates a customized real-time operating system for the
application based on its FSL (Framework Specification
Language) specification. The final step in the development
life-cycle is to apply the APEX High-assurance Automated
Requirements and Design Enhancement (HARDEn) system
to strengthen the reliability and security of the application.

The APEX infrastructure is unique in several ways.

• Think COTS from the first step. It is very difficult to try to
achieve a good COTS-based design for an arbitrary set of
requirements. Instead, APEX emphasizes the “front-end”
aspects of software engineering to facilitate the effective use
of COTS components and quality assurance during the later
stages. An application-specific knowledge base of COTS
components is being developed to guide the selection of
functional and nonfunctional requirements that are
amenable to implementation using the currently available
suite of COTS components.

• Think COTS throughout. There has been some work on
different aspects of COTS components, such as how to
harden COTS components and how to assess the reliability
of COTS components. The problem is that this type of focus
makes it difficult to assure that any assumptions made will
be satisfied in practice. For example, reliability assessment
models usually assume that the COTS components have
independent failure rates, but this may not be true in
practice. Instead, APEX is focused on a narrow application
area (embedded software) but encompass all aspects of the
life-cycle process, including requirements specification and
analysis, design, implementation, refinement, and
evaluation. In this way, APEX ensures that, for example, the

assumptions made by an analysis technique will be
guaranteed during the design and implementation steps.

• Shift from a monolithic design to multiple,
composable designs. We are developing a method of
decomposing embedded software systems into a set of
Independently Developable End-user Assessable Logical
(IDEAL) “micro-services” that can be automatically
composed together to form the system. The micro-services
will span both functional as well as nonfunctional aspects
(repository, privacy, secrecy, authentication, etc.) and will be
designed to insulate the application from changes in the set
of available COTS components. The composition
framework will be designed to guarantee that the properties
of a system of micro-services can be inferred easily from the
corresponding properties of the micro-services.

Consider the design of a system corresponding to a
requirements specification that defines user-visible features
A, B, …, X. A monolithic s system consists of a number of
components, P0, P1, P2, etc. These components are
organized in a hierarchical structure. For example,
component P0 may achieve its goal (specification) by using
components P1, P2, P3, and P4. Similarly, P1 may be
implemented using components a, b, and c. This type of a
hierarchical structure or layered organization has several
advantages. It enables bottom-up validation of the system
and speeds up fault location. It also enhances system
modularity since components can be encapsulated to hide
their implementation details from the upper-level
components.

Such a hierarchical (or contractor-subcontractor) design
structure is well suited to long-lived, well-understood,
completely specified applications. However, it has
limitations in handling rapidly changing applications. One
reason is that it is very difficult to relate a component in a
hierarchical system to specific user-visible features; hence, it
is difficult to rapidly modify the software to adapt to changes
in some feature, say feature B in the example discussed
above. Similarly, it is difficult to assess the reliability of the
system from the reliability of the components. Suppose the
reliability of P0 is 1.0 and the reliability of P1, P2, P3, and
P4 is 0.999. It is not possible to deduce the reliability of the
system from this information. In fact, the overall reliability
can be 0 (if P0 always triggers a defect in one of the lower-
level components) to 1 (if P0 never triggers any defects in
the lower-level components).

To overcome these deficiencies of the hierarchical model,
APEX incorporates a novel design methodology, DICE
(Design for Independent Composition and Ervaluation), for
decomposing embedded software systems into vertically-
structured or orthogonal components. In this design, the
specification is decomposed into separate pieces, A, B, …,
X, such that (a) each piece can be developed independently
and (b) each piece can be assessed independently at the
end-user level. These two properties greatly enhance the
customizability and quality of the system. Since each user
requirement can be traced to a particular component, it is
easy to identify the affected component and make changes
to it. Similarly, since each component sees the same input
distribution, it is possible to infer the reliability of the system
from the reliability of its components.

• Quantitative reliability assessment. APEX emphasizes
quantitative reliability assurance techniques. Models will be
developed to strengthen the statistical reliability analysis by
incorporating structural and functional information to achieve
high confidence bounds. A framework will be developed to
allow system-level properties to be inferred from component-
level properties.

• Application-specific focus. APEX is a powerful, scalable
technology for a specific but important application domain,
namely, embedded telecommunications software for DSP-
based platforms. This narrow focus enables us the special
characteristics of DSP-based telecommunications software
to be leveraged to develop deep knowledge bases, tools,
and techniques for achieving accelerated development
schedules and high quality assurance. The technology will
address the special characteristics of DSP-based software,
especially performance/real-time emphasis, low cost, small
footprint solutions, heterogeneous dual/multi processor
implementations, use of DSP Media accelerators, use of
attached special purpose processors.

3. Quantitative Objectives of APEX

The goal of APEX is to achieve highly reliable and low cost
embedded software systems without compromising
performance. The quantitative expectations of APEX are to
achieve 10-fold or more increase in productivity, 100-fold
increase in customizability, 100-fold improvement in quality,
high-assurance of critical requirements, and dynamically
adaptable to changing environments and user requirements.
These are discussed further in the following subsections.

3.1. 10-fold or more increase in productivity

This is being achieved by using tools and techniques to
compress labor-intensive portions of the software lifecycle in
order to narrow the gap between the output of domain experts
(requirements specification) and the final software (code). A
typical phase in a software lifecycle consists of requirements
specification, design, implementation, qualification, and
maintenance/operation. The most labor-intensive portions of
this lifecycle are the implementation and qualification phases.
APEX includes tools to reduce the implementation and
qualification effort, thus resulting in accelerated product
development. This compression of the software life-cycle also
reduces the gap between domain experts, who draw up the
requirements, and the final product. This allows domain
experts to quickly evaluate the behavior of the implementation
against their intentions and can lead to superior products due to
fewer specification faults.

The APEX DICE methodology can reduce the implementation
effort by enabling embedded applications to be decomposed
into independently developable, end-user assessable logical
(IDEAL) components and assembling each subsystem from
COTS components and third party software. The use of COTS
components carries with it the risk of failures due to the
possibility of defects in the components and intentional or
unintentional security breaches. Specialized automated code
generation techniques (HARDEn) are used to enhance critical
quality attributes of the resulting product, especially its
reliability, security, and performance (Fig. 1). A framework is

being developed to allow the subsystems to be automatically
composed together to obtain the system.

To assure high reliability, APEX includes methods of
automating the qualification of the individual subsystems (Fig.
1) and an approach for composing the components together to
guarantee certain key properties of the system. The underlying
framework is designed to be simple and application-
independent so that its reliability can be determined to a high
degree of confidence and to ensure that it does not
compromise the performance of the system.

3.2. 100-fold speedup in customization

This is achieved by ensuring that there is a one-to-one, end-
user visible correspondence between the requirements and the
IDEAL subsystems. Then, when a given piece of the
specification changes, the affected subsystem can be rapidly
identified, modified, and qualified. This approach also allows a
software subsystem to be replaced by a hardware component.
This capability can be used to develop products that have
different price/performance characteristics, with a high-end
version of the product being more hardware intensive than a
lower cost version.

3.3. 100-fold improvement in quality

This is achieved by augmenting the framework to allow the
reliability, resource requirements, and real-time performance of
the embedded software to be determined from the
corresponding properties of the IDEAL subsystems. Each
IDEAL subsystem can have a much smaller state space than
the entire application and, hence, its reliability can be assured
to a higher degree of confidence. Also, techniques are being
developed to harden COTS components used in the system to
mask known as well as unknown defects in the components.

3.4. High assurance of critical requirements

This is achieved by augmenting the framework to ensure that
defects in lower priority subsystems can never impact the
functioning of more critical subsystems. The framework
enables fault detection, isolation, and confinement. Since the
behavior of each IDEAL subsystem is directly traceable to the
requirements specification, it serves as a complete fault
containment unit. Faulty components can be identified directly
by analyzing the system output. Repair/recovery actions are
also confined within each component separately.

3.5. Dynamically adaptable to changing environments
and user requirements

This is achieved by enhancing the framework to allow an
IDEAL component to be replaced or augmented by other
components, including downloadable third party software. This
also enables multi-paradigm implementations. For example,
each IDEAL component can be implemented using the
technology that is most suitable for it if the components can be
composed dynamically. Some components can be
implemented in software while others can be implemented in
hardware.

4. APEX Tools and Methodologies

APEX includes an integrated set of tools and techniques to
facilitate software reuse. These include ORES, CARE, DICE,
AutoMAIC, EASiQA, and HARDEn. These are discussed
briefly in the following subsections.

4.1. ORES

ORES contains the specification and categorization of COTS
components and a web-based system for tracking information
related to the components in the database, especially failure
and dependency information that will be useful for assessing
the reliability of the system. The information in the system is
organized along multiple views. ORES provides advanced
capabilities to help the programmer use the component.
ORES also provides capabilities for acquiring and maintaining
the information in the system.

4.2. CARE

This has two related aspects. One aspect of the methodology
deals with tradeoff analysis between different nonfunctional
requirements, such as non-recurring development costs,
recurring development costs (customizability, maintainability),
non-recurring usage (e.g., spatial) costs, recurring usage (e.g.,
performance, quality) costs. The second aspect incorporates a
method of using the knowledge of the available components
and their characteristics to guide the selection of functional
requirements in order to ensure maximum usage of the COTS
components, ensure good performance or reliability, etc.

4.3. DICE

Decomposing the requirements specification for a software
system into separate views is a crucial step in simplifying the
software and assuring high quality by making the specification
more amenable to rigorous analysis. One of the earliest works
was done by Zave [ZAV85]. The concept of multiple views has
also been used in StateCharts which was developed by Harel
in the mid-1980's [HAR87], Objectcharts which was developed
by Coleman in the early 1990's [COL92], and other related
methods. In the mid-1990's, Jackson applied this type of
decomposition to an existing specification language, namely, Z
[JAC95]. RSML, developed by Heimdahl and Leveson in the
early 1990's [Hei96], is a significant extension to StateCharts
with the goal of achieving more easily understandable and
reviewable specifications. Decomposition methods that persist
over the life-cycle include separation using rely-guarantee
assertions (Lam, at UT-Austin [LAM94]), behavioral inheritance
(Atkinson [ATK91]), and Aspect-Oriented Programming
(Kiczales at Xerox PARC [KIC97]). There is substantial overlap
between the philosophy of Aspect Oriented Programming and
IDEAL components. However, there are also some important
differences. For example, besides the emphasis on end-user
assessability requirement for IDEAL components, another
difference is that IDEAL components can be executed as
separate processes in addition to being statically "woven"
together to obtain one program.

The DICE methodology in APEX is focusing on identification of
IDEAL subsystems and development of a suite of useful design
patterns. DICE includes strategies for decomposing a given
requirements specification into a set of IDEAL components that
can be composed together to form the application. DICE
includes a suite of useful domain-specific design patterns to
speed up the design of embedded software systems.

4.4. AutoMAIC

AutoMAIC consists of a set of utilities for transforming
components as well as for automatically generating the “glue”
needed to compose software components together to
implement a given subsystem. This step will also explore the
use of code fragments and special purpose program
generators in order to speed up the implementation process

Program transformation [ALM92] provides the means to
statically compose the different components together.
Transformation has also been used for improving software
performance and portability and for transforming specifications
into code, e.g., KIDS [SMI90] and MAPS. Transformation
systems are becoming more and more sophisticated [MAT97].

4.5. EASiQA

EASiQA consists of two major tools. One is an automated
system that generates application-specific test data generators
for a given COTS component. The second tool is an
environment simulator that allows individual subsystems or
components to be tested independently. EASiQA also includes
a set of tools and techniques for analyzing embedded software,
especially the timing, security, and other properties. Several
techniques have been developed for analyzing models of
reactive systems, especially model checking [HOL97] and
[BUR92] and partial-order methods [GOD96]. While these
types of checks and proofs enhance the confidence in the
correctness of the model, it is difficult to quantify the confidence
level. Ebrahimi has developed a method of statistically
evaluating software designs using the distribution of faults
found separately by different reviewers [EBR97]. ESC is
developing methods of achieving rigorous quantitative
assessment of the reliability of the system. A variety of
software reliability models have been developed over the past
25 years [LYU96], [MUS90]. One major impediment to the use
of statistical software reliability models is the lack of rigorous
techniques for deducing the reliability of a system from the
reliability of its components. A key property of IDEAL
components is that every component has the same state
space, except for differences in goals and constraints; hence,
every component sees the same operational profile. Hence,
the IDEAL component has the important (and unique) property
that the component reliability estimates can be statistically
combined to obtain the system reliability [BAS99b,BAS99c].

4.6. Frameware

A problem with decomposition of a specification into simpler
components is how to compose the components to obtain a
system with assessable properties. One difficult problem is
how to assure the consistency of the different views.

Nonmonotonic logic, especially paraconsistent nonmonotonic
logic, provides some support, but it cannot handle all types of
inconsistencies. Finklestein [FIN94] and others have
developed formal techniques to tag inconsistent specifications
and remove them either manually or by using rule-based
methods. This difficulty is compounded when different
specification methods are used to specify different views, as
proposed by Zave and Jackson [ZAV96].

The APEX Frameware allows micro-services to be
implemented and evaluated independently and then be either
composed dynamically or statically. Each component will be
designed to be directly assessable at the end-user level and
can be traced back to the requirements specification. This
property facilitates fault-confinement, isolation, and
reconfiguration. Methods will be developed to detect
inconsistencies during relational composition and resolve them
by assigning priorities to components.

The APEX Frameware provides one or more frameworks for
composing the set of IDEAL subsystems together in order to
obtain the final system. The Frameware ensures that the
system properties can be inferred from the components
properties. This includes the reliability and security of the
system. It also includes methods of assuring that the real-time
performance of the system can be inferred from those of its
components. The Frameware also includes methods of
identifying various environment conditions and adapting the
system to operate optimally in a given environment. The
conditions can range from device status, such as the energy
remaining in the battery or the user settings, to network
conditions, such as the available bandwidth or operating
conditions.

4.7. HARTDEn

The HARDEn utilities provide a set of tools and techniques for
enhancing the quality of the application. This includes
wrappers to confine COTS components (security
enhancement), wrappers to tolerate known and unknown faults
in COTS components, and code analysis and optimization
methods to improve the performance of the system.

Several approaches have been developed for handling failures
dynamically after the software has been deployed, such as
design diversity [AVI77], roll-forward recovery [PRA94],
recovery blocks [RAN75], distributed and look-ahead
executions [KIM89], data diversity [Amm87], defensive
programming, exception handling, and forward recovery.

5. Summary

In this paper, we have presented an overview of an
infrastructure for substantially increasing the likelihood of
reusing existing software components in the development of
highly reliable and customizable real-time embedded
telecommunications applications. The APEX infrastructure
encompasses a whole life-cycle approach, starting from the
requirements engineering phase to design, implementation,
quality assurance, enhancement, and operation. APEX
consists of a collection of tools and techniques that access and
mine code and related information from a collaborative web-
based Online Repository for Embedded Software (ORES).

Information in ORES comes from the source code of the
components, program templates and design patterns from
existing applications, views and experience reports from field
engineers, and operational reliability information from
automated error logging and reporting utilities. Effort is now
proceeding towards the development of interoperability
standards for ORES as well as the tools and techniques in
APEX.

6. Acknowledgment

This research was supported in part by the National Science
Foundation under Award No. CCR-9900922 and by Alcatel and
Texas Instruments.

7. References

[Amm87] P.E. Ammann and J.C. Knight, "Data diversity: An
approach to software fault tolerance," Proc. 17th Intl.
Symp. on Fault-Tolerant Computing (FTCS-17),
Pittsburgh, PA, June 1987, pp. 122-126.

[AlM92] T. Al-Marzooq and F.B. Bastani, "Program
transformation in massively parallel systems," Frontiers of
Massively Parallel Computation, McLeans, Virginia, Oct.
1992, pp. 498-501.

[Atk91] C. Atkinson, Object-Oriented Reuse, Concurrency and
Distribution, Addison-Wesley, New York, NY, 1991.

[Avi77] A. Avizienis and L. Chen, "On the implementation of N-
version programming for software fault tolerance during
program execution," Proc. COMPSAC'77, 1977, pp. 149-
155.

[BAS99a] F.B. Bastani, "Relational programs: An architecture
for robust process-control programs," Ann. of Software
Engineering, Vol. 7, 1999, pp. 5-24.

[BAS99b] F.B. Bastani, V. Reddy, P. Srigiriraju, and I.-L. Yen,
"A relational program architecture for the Bay Area Rapid
Transit System," Conf. on High Integrity Systems,
Albuquerque, New Mexico, Nov. 1999.

[BAS99c] F.B. Bastani, V.L. Winter, and I-.L. Yen,
"Dependability of relational safety-critical programs," IEEE
Intl. Symp. on Software Reliability Engineering - Fast
Abstract, Boca Raton, Florida, Nov. 1999.

[Bur92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and
L.J. Hwang, "Symbolic model checking: 10**20 states and
beyond," Info. and Comp., Vol. 98, No. 2, June 1992, pp.
142-170.

[Col92] D. Cooleman, F. Hayes, and S. Bear "Introducing
Objectcharts or How to use Statecharts in object-oriented
design," IEEE Trans. on Softw. Eng., Vol. 18, No. 1, Jan.
1992, pp. 9-18.

[Ebr97] N.B. Ebrahimi, "On the statistical analysis of the
number of errors remaining in a software design document
after inspection," IEEE Trans. on Softw. Eng., Vol. 23, No.
8. Aug. 1997, pp. 529-532.

[Fin94] A.C.W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer,
and B. Nuseibeh, "Inconsistency handling in
multiperspective specifications," IEEE Trans. on Softw.
Eng., Vol. 20, No. 8, Aug. 1994, pp. 569-578.

[God96] P. Godefroid, D. Peled, and M. Staskauskas, "Using
partial-order methods in the formal validation of industrial
concurrent programs," IEEE Trans. on Softw. Eng., Vol.
22, No. 7, July 1996, pp. 496-507.

[Har87] D. Harel, "Statecharts: A visual formalism for complex
systems," Sci. of Comput. Prog., Vol. 8, 1987, pp. 231-
274.

[Hei96] M. Heimdahl and N.G. Leveson, "Completeness and
consistency in hierarchical state-bed requirements," IEEE
Trans. Softw. Eng., Vol. 22, No. 6, June 1996, pp. 363-
376.

[Hol97] G.J. Holzmann, "The model checker SPIN," IEEE
Trans. on Softw. Eng., Vol. 23, No. 5, May 1997, pp. 279-
295.

[Jac95a] D. Jackson, "Structuring Z specifications with views,"
ACM trans. Softw. Eng. and Meth., Vol. 4, No. 4, Oct.
1995, pp. 365-389.

[Kic97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V.
Lopes, J.-M. Loigtier, J. Irwin, "Aspect-Oriented
Programming," Prof. European Cong. on Object-Oriented
Programming (ECOOP), Finland, June 1997.

[Kim89] K.H. Kim and S.M. Yang, "Performance impacts of
look-ahead execution in the conversation scheme," IEEE
Trans. Comp., Vol. C-38, No. 8, Aug. 1989, pp. 1188-
1202.

[Lam94] S.S. Lam and A.U. Shankar, "A theory of interfaces
and modules: I --- Composition Theorem," IEEE Trans. on
Softw. Eng., Vol. 20, No. 1, Jan. 1994, pp. 55-71.

[Lyu96] M. Lyu, (Ed.), Handbook of Software Reliability
Engineering, McGraw-Hill and IEEE Comp. Soc. Press,
1996.

[Mat97] S. Matsuura, H. Kuruma, and S. Honiden, "EVA: A
flexible programming method for evolving systems," IEEE
Trans. on Softw. Eng., Vol. 23, No. 5, May 1997, pp. 296-
312.

[Mus90] J. D. Musa, A. Iannino, K. Okumoto, Software
Reliability: Measurement, Prediction, Applications,
(professional edition), McGraw-Hill, 1990, pp. 178-180.

[Pra94] D.J. Pradhan and N.H. Vaidya, "Roll-forward and
rollback recovery: Performance-reliability trade-off," Intl.
Symp. on Fault-Tolerant Comp. (FTCS-24), Austin, TX,
June 1994, pp. 186-195.

[Ran75] B. Randell, "System structure for software fault
tolerance," IEEE Trans. on Softw. Eng., Vol. SE-1, June
1975, pp. 220-232.

[Smi90] D.R. Smith, "KIDS: A semiautomatic program
development system," IEEE Trans. on Softw. Eng., Vol.
16, No. 9, Sep. 1990, pp. 1024-1043.

[Zav85] P. Zave, "A distributed alternative to Finite-State-
Machine specifications," ACM Trans. on Prog. Lang. and
Sys., Vol. 7, No. 1, Jan. 1985, pp. 10-36.

[Zav96] P. Zave and M. Jackson, "Where do operations come
from? A multiparadigm specification technique," IEEE
Trans. on Softw. Eng., Vol. 22, No. 7, July 1996, pp. 508-
528.

	Rapid Developmnt of High-Quality Customizable and Adaptable
	Software for Digital Signal Processors
	Introduction
	APEX – An Infrastructure for Software Reuse
	Quantitative Objectives of APEX
	3.1. 10-fold or more increase in productivity
	3.2. 100-fold speedup in customization
	3.3. 100-fold improvement in quality
	3.4. High assurance of critical requirements
	3.5. Dynamically adaptable to changing environments and user requirements
	APEX Tools and Methodologies
	ORES
	CARE
	DICE
	AutoMAIC
	EASiQA
	Frameware
	HARTDEn
	Summary
	Acknowledgment
	References

