System-Level Design and Rapid Prototyping for TI DSPs

Ken Karnofsky
The MathWorks, Inc.
DSPSFest 2000
August 4, 2000
AGENDA

• DSP Design Process Challenges
• MathWorks System-Level Design Solutions
• Texas Instruments DSP Developer’s Kit
Design Challenges

• Time-to-market pressure
 • Shorter product cycles
 • Increasing complexity
 • Shortage of DSP expertise

• Traditional Process Limitations
 • Gap between algorithm research and implementation
 • Poor integration of component design teams
 • System verification/testing occurs too late
Design Flow Problem

- Ambiguous specifications
- Error-prone manual re-coding
- Design flaws detected too late
- Design failure risk too high
System-Level Design for TI DSPs

Simulink System-Level Solution

MATLAB
Algorithm Development and Analysis

SIMULINK
System-Level Design

Validated Design

EDA Tools

DSP/Embedded Software Tools

THIRD PARTY IMPLEMENTATION TOOLS

Digital, A/M-S Hardware

DSP, Control Software

Verification

Executable Spec, C
Design Team Integration Problem

- Independent design teams and tools
- Can’t simulate component interactions
- Can’t test whole system
- Expensive over-design
Simulink Integrated Design Solution

- Common tool for entire design team
- Simulate behavior of whole system
- Model component interactions
Simulink Design Environment

- Test entire system
- Model component interactions
- Reduce design risk
- Reduce time-to-market

MATLAB
Algorithm Development and Analysis

SIMULINK
System-Level Design

Validation

Validated Design

EDA Tools
DSP/Embedded Software Tools

Digital, A/M-S Hardware
DSP, Control Software

Executable Spec, C

THIRD PARTY IMPLEMENTATION TOOLS
The MathWorks System-Level Design Environment
MATLAB - The Language of DSP Algorithms

- MATLAB
 - Algorithm development
 - Analysis and visualization
 - Open and extensible

- MATLAB Toolboxes
 - Signal Processing
 - Quantized Filtering
 - Image Processing
 - Wavelet
 - Control Systems
 - Data Acquisition
 - and many more
Simulink

- Hierarchical block diagrams
- Dynamic simulation
- Digital, analog/mixed signal
- Visualize signals
- Co-develop with C code
- Rapid prototyping
- Integrated with MATLAB
Simulink Blocksets

- **DSP**
 - Filtering, math, estimation, transforms
 - Multi-rate
 - Multi-channel, frame-based

- **Fixed Point**
 - Bit-true 1-128 bits
 - Scaling, rounding and overflow
 - Include own bit-true code
 - Filter wizard

- **Communications**
 - Modulation, coding, synchronization
 - Channel models
 - BER/FER system testing

- **CDMA Reference Blockset**
 - Validated for IS-95A standard
 - Springboard for 3G designs
Stateflow

- Integrated with Simulink
- Finite state machines
- Flow diagrams
- Event driven systems
 - Control logic
 - Protocols
 - Synchronization
- Stateflow coder
 - Integer C code generation
Real-Time Workshop

- Code generation from Simulink
 - ANSI C
 - Target-specific customization
- Real-time rapid prototyping
- High performance standalone simulations
The Next Challenge: Concept-to-Code Integration for eXpressDSP
TI DSP Developer’s Kit

• Integrates MATLAB and Simulink with eXpressDSP tools
• Unified top-down design flow for TI DSPs
• Ideal environment for DSP education
• MathWorks is 100% committed to eXpressDSP
TI DDK Key Features

• **Real-time codegen and rapid prototyping with Simulink**
 - EVM67x Target
 - Code Composer Studio Target
 - Benefits
 - Design graphically in Simulink, deploy and test on TI DSPs
 - Minimize manual algorithm re-coding

• **Real-time analysis and debugging with MATLAB**
 - Code Composer Studio Automation Interface
 - RTDX Interface
 - Benefits
 - Simplify verification and debugging
 - Customize and automate testing, analysis
EVM67x Target

- One-button build & run on C6701 EVM
- Real-time algorithm testing
- Full control of board settings
- Includes codec, LED blocks with source code
Code Composer Studio Target

- Automatically generate C code from Simulink
- Automatically build CCS project
- Integrate with custom code
- Re-target to other development boards
MATLAB - eXpressDSP Plug-ins

• Code Composer Studio Plug-in
 • Access CCS API from MATLAB
 • Compare target outputs to MATLAB or Simulink results
 • Integer and floating point data formats

• RTDX Plug-in
 • Programmatic access to RTDX API from MATLAB
 • Real-time analysis and visualization of TI DSP applications
 • Create custom tools and GUIs in MATLAB
Plug-in Example

% Activate Link to Code Composer
target=ccsdsp;
target.cccd('D:\Work\RTDX\Target\DemoFIR');
target.ccdir;
% Load Workspace and Target Code
target.open('DemoFIR.wks');
target.open('DemoFIR.out');

[...]
% Use Matlab to design a low-pass filter and transfer to DSP
new_coeff = fir1(20,0.2);
target.write(addr_coeff{2},new_coeff);

% Run the filter and read the results
target.run('runtohalt',20.0);
filt_dout =
target.read(addr_dout{2},size(test_din),'double');
plot(1:100,test_din,'b-',1:100,filt_dout,'r-');
Summary

• Simulink system-level DSP design solutions
• New eXpressDSP plug-in shipping in Q4
• Top-down design flow for TI DSPs
• Integrates tools from industry leaders
• Bridges the gap between algorithm development and implementation