

ptimisation
techiques
 using TI DSP TMS320C55x.

Authors:
Ajay Gupta

Prabindh Sundareson
Krishna Kumar G

Internet Audio Group
TI - India

O

Optimization techniques using TI DSP C55x

Abstract With increasing penetration of the Internet and availability of music in
compressed formats, Personal Internet Audio (PIA) players have carved their own niche in
the consumer electronics market. PIA players place a heavy premium on power consumption
because lower power consumption gives the user the benefit of more battery life. In this
paper, an advanced DSP architecture solution from TI is described, which enables the user to
reap the benefits of a highly parallel system. The TMS320C55x family has been tailor-made
for applications that require efficient algorithmic implementations, compact code storage,
and low power consumption. A case study is presented in this paper, based on implementation
of an audio decoder on the C55x DSP platform. Results indicate that due to the optimisation
levels achieved, the power consumption can reduce by as much as 50% compared to other
implementations. Further applications and improvements that can lead to higher
optimisations are described. Other value adding features of the TI solution are OEM
customisable security plug-ins, programmability for a number of different algorithms and fast
turnout times.

ntroduction
Within the last year, the popularity of
downloadable, compressed audio formats via
the Internet has skyrocketed. The top
requirement of the consumer has always been

high quality of music and long continuous playtime.
This paper discusses our efforts in using the power of
TI's TMS320C55x DSP to offer an edge in high
quality music and extremely low power consumption.
The paper covers:

1. A description of the DSP platform for
developing audio devices.

2. Power figures of a typical audio player.
3. Technical features of the C55x, which

contribute to increased computing efficiency
as well as power efficiency.

4. Detailed discussion about the features in the
optimisation methods section.

5. Two case studies, which help us to
understand how these features can be
applied in a practical system.

latform Description
The target processor for development
was the TMS320C55x, TI’s low-power,
16-bit fixed-point DSP.
For code development, the TI C5409

Internet Audio EVM, developed within the Internet

Audio Group at TI, was used. This board is a single
DSP design with a compact flash for holding music
and a user interface for controlling playback. Support
is provided for audio decompression, sample rate
conversion, graphic equalization, and digital volume
control. The DSP also handles user interface
operations and compact flash I/O.

System Overview

Flash
Card

Interface

Batteries

Voltage
Regulator

and
Monitor

C5000
Family
DSP

Manual
Input

Device

Stereo
DAC

Amplifier

Display

A typical solid state audio system utilizes a Texas
Instruments TMS320C5000 family digital signal
processor (DSP) as its processing engine and a
Compact Flash card for media storage (Ref fig
above). In the system, the DSP responds to events

I

P

from human input devices and updates a display to
provide visual feedback to the user. When the user
plays an audio track, the DSP accesses the
compressed audio samples on the flash card,
decompresses the samples in its internal memory,
verifies the digital watermark, and passes the
uncompressed audio samples to a D/A. The analog
signal is then fed through the amplifier to drive stereo
headphones.

ower Consumption
This solid state audio player improves on
current portable players by offering
longer battery life, ruggedness, large data

capacity, and small size.

Battery Life
To compute the typical battery life of the system,
some assumptions about the flash operation must be
made. An uncompressed 48kHz, 16-bit data stream is
equivalent to a data rate of 1.526 Mbits/s. For CD-
quality audio, an MPEG-2 AAC compressed data
stream requires only 128kbits/s. The MPEG-2 AAC
algorithm requires a new frame of less than 688 bytes
every 43ms. Assuming the flash sleeps for 40ms,
consuming 200µA, and is running for 3ms,
consuming 45mA, the average current would be
3.3mA (or 11mW).

 Table 1
Power Consumption for typical system.

SanDisk SDCFB-48-101 CompactFlash 11mW
Texas Instruments TMS320C5409 DSP 58mW
AKM AKM4350 DAC 8mW
Texas Instruments TPA152 Stereo
Amplifier

32mW

Densitron LM4012-TN 16x1 LCD Display 5mW
Device I/O 1mW
Voltage Regulators (80% efficiency) 23mW
Total 138mW

Table 1 shows the power consumption for the individual
components in the solid state audio system. For a 3V
system, two “AA” batteries would be needed. For the
138mW system shown here, this would offer about 39
operating hours. For comparison, a typical CD player
consumes 600mW and operates for approximately 9
hours on 2 “AA” batteries.

From the data we see that DSP is the most power
hungry component in IA system. The power

consumed by the DSP is proportional to the clock
frequency supplied to the DSP. Thus the challenge to
the software designer is to use very low MIPS for
decoding. Low MIPS in decoder will aid:

1. Low power consumption.

2. Spare MIPS for OEM customization.

3. Spare MIPS for adding new features like
equalizer.

echnical Features
The C55x DSP core’s low power/high
performance makes possible feature-rich,
miniaturized personal and portable
applications:

Key Features
• Advanced power management and design:

Runs as low as 0.05 mW/MIPS @ 0.9V, with
performance ranging from 140-800 MIPS.

• Increased performance for tight power
budgets:
The C55xTM DSP core will speed up
development of exciting new miniaturized
applications. For example, the C55x DSP core
will make possible Cochlear implants so small
they may be completely implanted in the ear,
enabling people who are profoundly deaf to hear
again.

• New instructions:
These reduce code size, increase compiler
efficiency, cut power usage, and increase
parallelism.
The processor also has advanced on-chip
emulation capabilities for debugging.

ptimization methods
The following features of C55x provide
the designer with a number of methods
to optimize DSP algorithms:

1. Multiple Buses
The C55x family has 3 Data Read buses, 2 Data
Write buses and 1 Program bus. With more
buses, and combined with instructions which
execute in parallel, more data can be accessed.
Consider the case where we have to do the
following tasks in a single cycle:

a. Transfer a double word from one

P T

O

memory location to another
b. Increment both auxiliary register

pointers, so that they point to the next
data location.

This is a typical example of a function for
memory copy (memcpy). This can be
accomplished by using the following single
C55x instruction:

MOV dbl(*AR6+), dbl(*AR1+); move a double word

 This instruction uses four buses in the processor

at the same time for effecting the transfer i.e.,
two simultaneous memory accesses are made for
both reading and writing.

2. Variable length instruction set

The instructions can have varying lengths,
ranging from one byte to six bytes. The program
space in C55x is byte addressable. This
effectively means that the processor allows the
user to “pack” more instructions into the
memory, than say, having a fixed length
instruction set
This ultimately results in lesser code size.

3. Higher operating frequency
The C55x has operating frequency ranges upto
400 MHz. This results in fast execution of
instructions.

4. Pipeline Protection Unit
The Pipeline Protection Unit (PPU) allows for
faster execution of instructions in the user
program. The pipeline conflicts are avoided, thus
making debugging easier. This makes it easier to
program the processor.

5. Separate access to data coefficients
A dedicated register is provided for accessing
coefficients from data memory locations. This
register is functionally equivalent to the auxiliary
registers. This register, called the Coefficient
Data Pointer (CDP) can be used in instructions,
which simultaneously use two coefficients say, in
a Dual MAC instruction.
The CDP can be efficiently used when the same
coefficients are used in two separate output
calculations. To be specific, operations like
block-FIR filters can be implemented using this

approach.

6. Direct compare instructions
Some tasks involve a lot of conditional
processing using IF statements. In most cases, we
would be doing the following steps to accomplish
this:

a. Move the data memory value to a
register

b. Subtract or do some other operation to
see whether the condition is true or false

c. Restore the value to the value before
comparison

d. Do the conditional task
It can be seen that if a number of conditions have
to be tested, especially inside loops, the overhead
can be quite large. In view of this, C55x provides
a method of direct comparison of the values from
memory with a specific register.
For example, the following instruction compares
the value of AC3 and AC2, and sets TC1 if AC3
> AC2.

CMPU AC3 < AC2, TC1; check AC3 and AC1

7. Multiple Repeat options

Loops can be implemented in many ways in a
processor. Decrement-check for zero and then
branch conditionally is one approach, or a C54x
compatible RPT instruction can be used. In
C55x, recognising the need for fast looping
instructions, a new instruction, RPTBLOCAL
has been added. This instruction takes less
number of cycles to execute than the standard
RPT instruction, and it can be used where the
number of words inside the loop fits within 28
words.

8. Parallel instructions
Usage of parallelism in the instructions can help
increase the efficiency of the programs. Apart
from the parallel instructions offered in the
earlier versions of the C5xx family, the C55x
also offers the possibility of making our own
parallel instructions. Thus the instruction set
becomes more flexible.

ase Studies
The following case studies reflect the
methods adopted for optimising the
MP3 decoder algorithms. The first case
study indicates the optimisation done for

implementing the MDCT algorithm on to the C55x.
The second case study indicates the results achieved
with the Synthesis Filterbank.

Case Study 1: MDCT Optimisation

The MDCT (Modified Discrete Cosine Transform) is
used in the MP3 decoder for frequency-time domain
transformation. The Fix-Point MDCT computes end
sub-band – start sub-band DCT outputs using matrix
multiply. This function is usually called once per
granule (of 576 samples) per channel and computes
all DCT outputs for each sub band2. In the case of a
mixed-block (low 2 subbands only are LONG) this
function will be called twice per granule per channel.
Computing all the DCT outputs inside this function
avoids function call overhead of calling a single DCT
function 32 times.

The pseudo-code for the function is as
below:

FixptMDCT(
FixPt *in, /* Input vector*/
int blocktype, /* Size: either 18 or 6*/
int start_subband, /* Beginning subband*/
int end_subband /* Ending subband*/
) {

 if blocktype == SHORT_WINDOW
 windows = 3;
 else
 windows = 1;

 for (start sub-band to end sub-band)
 for (each window)
 FixPtMatrixMultiply (input, DCTcoeff);
}

The main component of MDCT is a Fixed-Point
matrix multiplication whose order depends on the
size of the window, which can be either long (18
samples) or short (6 samples). This
multiplication involves a product of two
fractional numbers, represented in Q31 format.
The conventional method of proceeding with this
is to have two nested for loops.

Considering the fact that for each 32 bit
fractional multiplication three 16-bit
multiplication instructions are required, the total

MIPS required for the matrix multiplication can
be calculated as follows:

Window type LONG
32b mults reqd

18*18

16b mults reqd 18*18*3
Total incldg
overhead

1230

MIPS @ 44.1 KHz 6.02

`

C

We have implemente
C55x, and the flow
algorithm is given. Th

given in the appendix. (For the instruction set,
refer to [3]). The code utilises the following
important features of the C55x processor for
achieving reduction in MIPS requirement:

a. Parallel instructions
b. Dual MACs
c. Nested loops
d. Concurrent usage of more temporary registers
e. Concurrent usage of more Accumulators
f. Less overhead in C-ASM calls

MDCT

Initialize
start_subband, end_subband

Input and DCT Coeff.

I
Blocktype

Window
Windo

 For each su

 For each w

 For each ro

 For each co

MDC

I
start_subba

Input an

Blocktype
Window

Windo

F

Repeat
Repeat c

MAC input

E

Original C code
f
 is SHORT
s = 3 else
ws = 1.
g. Faster local Repeat blocks
h. Logical optimisations

The comparison of the MIPS requirements for the
optimized code and the unoptimized code is as below:

MDCT W/o using Special instructions C55x
CLOCKS 1230 580
MIPS 6.02 2.84

bband

indow

w

lumn

 Multiply row and column index of
Input and DCT Coef.

The results show an improvement of about 52%
compared to an implementation, which does not use
the C55x features.

Case Study 2: FDCT Optimisation
The FDCT (Fast Discrete Cosine Transform)5
function is used in the Polyphase Synthesis Filter
Bank.
The features of C55x as applied in the MDCT
optimisation were used here, and the results are given
below:

FDCT W/o using Special instructions C55x
CLOCKS 1380 810

 End

T

nitialize
nd, end_subband
d DCT Coeff.

Optimised code
If
 is SHORT
s = 3 else
MIPS 3.87 2.27

The results show an improvement of about 41%

ws = 1.

For each subband
 compared to an implementation, which does not use
the C55x features.
or each window
d the above algorithm in
chart of the optimised

e core loop in assembly is

row/2
ollumn

 and DCTCoeff.

nd

ummary
This paper looks briefly at power
considerations in a typical Portable
Audio player, which has become popular
in the recent past. The TI TMS320C55x

processor fits into the requirements for a processing
device to be used in such applications, where
constraints on memory size, power, MIPS are
present. In this paper, we have introduced the
various features of the TMS320C55x processor.
Application of the features of the processor in an
MP3 decoder algorithm to achieve reduction in
processing power has been discussed. Utilising these
features can help implementers to save on MIPS and
hence on power.

Appendix

1. Assembly routine for modified MDCT code:

_MDCT55X:
BSET FRCT
BCLR C54CM:: AMOV #3,T1
BSET SXMD
;C54CM is set to make it to c55x mode
;After each block output is got to go to next block we need to go 3+36
;This is used as the outer loop count size/2-1 =8
; Should be changed depending on the value of size.
; Should be size/2-1
MOV T0, AC0 ; AC0 = T0
ADD AC0, #-1,AC0 ; AC0 = T0/2
MOV AC0-1, BRC0; for 6x6 change 8 to 2
MOV T0*2,T2
;This is the inner loop count. Size (18)-1=17
MOV T0-1, BRC1 ; for 6x6 change 17 to 5
;Allocate output memory pointer.After each inner loop
;Two long locations will be updated.
;Make ar2 and ar3 point to LSByte .That's why adding 1

AMOV #(_x18DCT4+T0*2+1), XAR3
;for change 37 to 13
AMOV #(_x18DCT4+1),XAR2
MOV #(32*2),T0
RPTBLOCAL Outer-1
;For each outer loop CDP increments from 0 to 544
;steps of 32.So loop will be performed 18 times.
MOV #0,AC0 :: XOR AC1
MOV #0,AC2 :: XOR AC3
MOV XAR0,XCDP
RPTBLOCAL MyInner-1
MAC *AR2-,*CDP+,AC0
::MAC *AR3-,*CDP+,AC1
MAC *AR2,*CDP-,AC0
::MAC *AR3,*CDP-,AC1
MAC *(AR2+T1),*(CDP+T0),AC2
::MAC *(AR3+T1),*(CDP+T0),AC3
MyInner:
ADD AC0,-16,AC2 :: ADD T2,AR2
ADD AC1,-16,AC3 :: ADD T2,AR3
MOV AC2, dbl(*AR1+)
MOV AC3, dbl(*AR1+)
MyOuter:
RET

eferences

1. "CPU Technical Brief - TMS320C55x
Digital Signal Processor Core" - Texas
Instruments technical brief #SPRT183

2. ISO MPEG Layer III standard CD 11172-3
3. "TMS320c55x Mnemonic Instruction set

Reference guide" - Texas Instruments publication
#SPRU374A

4. "Virtual Music Rocks" - A Forrester Research
Report, March 1999

5. "A Fast computational algorithm for DCT" -
Chen, Smith, Sralick, 1977, IEEE Publications

S

R

	Battery Life
	Key Features
	MOV dbl(*AR6+), dbl(*AR1+); move a double word
	CMPU AC3 < AC2, TC1; check AC3 and AC1
	
	Case Study 1: MDCT Optimisation
	Case Study 2: FDCT Optimisation

