Image and Video Applications Using TI DSPs

Edward J. Delp

Video and Image Processing Laboratory (VIPER) School of Electrical and Computer Engineering Purdue University West Lafayette, Indiana, USA

> email: ace@ecn.purdue.edu http://www.ece.purdue.edu/~ace

Edward J. Delp DSPS H

DSPS Fest 2000

August 4, 2000

Overview

- Introduction
- System Definition
- Discrete Wavelet Transform
- Still Image Watermarking
- Real-Time Error Concealment in Digital Video Streams
- SAMCoW and Video Streaming
- Future Research

Edward J. Delp DSPS Fest 2000

Acknowledgement - Students

- Hyung Kim
- Dan Hintz
- Eugene Lin
- Eduardo Asbun

Edward J. Delp DSPS Fest 2000

Introduction

- Target Processors: TMS320C5410 and TMS320C6201
- Project Includes:
 - Wavelet based video compression
 - Still image watermarking
 - Error concealment for digital video streams
 - Internet video streaming

System Definition

- Software Versions
- TMS320C5410 platform
- TMS320C6201 hardware platform
- Development software

Software Versions

- Floating-point PC Code
 - Debugging and performance evaluation
- Fixed-point PC Code
 - Investigate the effects of fixed-point arithmetic
- *'C5410* DSP Code
 - Code for the 'C5410 DSP Simulator
- *'C6201* DSP Code
 - Code for the 'C6201 DSP EVM
- eXpressDSP compliance

TMS320C5410 Platform

- 'C5410 Software Simulator
- Targeted to the Digital Still Camera
- Interface to memory controller is simulated in software

Edward J. Delp DS

DSPS Fest 2000

Texas Instruments *TMS320C548*

- Fixed-point DSP, 50 MHz clock cycle
- 40-bit ALU and two independent 40-bit accumulators
- 17-bit x 17-bit parallel multiplier
- 192k words x 16-bit addressable memory space

TMS320C6201 Platform

- Rev. 2.1 'C6201 Detroit Board from Spectrum Signal
- Matrox Corona Video Capture Card

Texas Instruments *TMS320C6201*

- 32-bit fixed-point DSP, 200 MHz clock cycle
- Based on VelociTI architecture
 - VLIW architecture
 - Increased instruction-level parallelism
 - Can issue up to 8 instructions per clock cycle
- 8/16/32-bit data support (important for video and imaging)

Wavelet Decomposition

Wavelet Transform on the 'C6201

- Using Daubechies (9,7) wavelet filter pair
- To obtain perfect reconstruction, Whole-Sample Symmetric (WSS) extension is used at the image boundaries
- WSS also avoids coding artifacts
- Implemented using the lifting scheme to reduce computational complexity (approximately by half)

Edward J. Delp DSPS Fest 2000

August 4, 2000 Slide 12

Lifting Scheme

• Wavelet transform is decomposed into multiple lifting steps

Lifting Scheme

• Wavelet transform is decomposed into multiple lifting steps using the Euclidean algorithm

$$\begin{bmatrix} h_{e}(z) & g_{e}(z) \\ h_{o}(z) & g_{o}(z) \end{bmatrix} = \prod_{i=1}^{m} \begin{bmatrix} 1 & s_{i}(z) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ t_{i}(z) & 1 \end{bmatrix} \begin{bmatrix} K & 0 \\ 0 & 1/K \end{bmatrix}$$
$$h_{e}(z) = \sum_{k} h_{2k} z^{-k} \qquad g_{e}(z) = \sum_{k} g_{2k} z^{-k}$$
$$h_{o}(z) = \sum_{k} h_{2k+1} z^{-k} \qquad g_{o}(z) = \sum_{k} g_{2k+1} z^{-k}$$
m=n/2+1(n is the filter length)

August 4, 2000

DSPS Fest 2000

Edward J. Delp

Implementation Issues

- Floating-point arithmetic performed in a fixed-point DSP
- Using 16-bit arithmetic (Q6 notation)
- Memory management is critical (need to minimize access to external memory)

Slide 15

Edward J. Delp DSPS Fest 2000

Results: Wavelet Transform

- Performed on the *'C6201* fixed-point DSP
- 3-level decomposition, 512x512 grayscale image
- Timing results

	Cycles (millions)	Time (sec) (200 MHz <i>'C6201</i>)
Decomposition	Unoptimized: 57.3	~ 0.30
	Optimized, lifting: 16.6	~ 0.08
Reconstruction	Unoptimized: 99.7	~ 0.50
	Optimized , lifting: 15.6	~ 0.08

Results (Original Image)

Edward J. Delp DSF

DSPS Fest 2000 Aug

August 4, 2000

Results (Reconstructed Image)

Edward J. Delp DS

DSPS Fest 2000

Still Image Watermarking

- Aids in protecting intellectual property rights
- Offers forgery detection
- Chain-of-custody determination

DSPS Fest 2000

Precision Level for DSPs

- Determined off-line (remember you have only 16 bits)
- Must determine the magnitude of the largest and smallest wavelet coefficients
 - determines the number of integer bits used

Watermarked Images

Original image

Watermarked image

Watermark

Slide 24

Edward J. Delp

DSPS Fest 2000

Watermark Verification

Watermark Creation

- The Watermark consists of Gaussian distributed random numbers
 - Created off-line
- Watermark inserted into image

Edward J. Delp DSF

DSPS Fest 2000

Watermark Used

Gaussian Watermark

"Purdue" watermark

Edward J. Delp DSPS F

DSPS Fest 2000

Experimental Results

Watermark Used	α	Embedder Version	Detector Version	ρ	
Gaussian	0.1	Fixed point	Fixed point	0.539224	
Gaussian	0.15	Fixed point	Fixed point	0.715037	
Gaussian	0.2	Fixed point	Fixed point	0.807437	
Gaussian	0.3	Fixed point	Fixed point	0.899317	
Gaussian	0.4	Fixed point	Fixed point	0.939558	
Gaussian	0.5	Fixed point	Fixed point	0.96038	
Gaussian	1	Fixed point	Fixed point	0.989667	
Gaussian	0.1	Floating point	Fixed point	0.541586	
Gaussian	0.5	Floating point	Fixed point	0.960564	
Gaussian	1	Floating point	Fixed point	0.989711	
Purdue	0.1	Fixed point	Fixed point	0.038289	
Purdue	0.5	Fixed point	Fixed point	0.269927	
Purdue	1	Fixed point	Fixed point	0.658033	
Purdue	0.1	Floating point	Fixed point	0.038289	
Purdue	0.5	Floating point	Fixed point	0.27164	
Purdue	1	Floating point	Fixed point	0.67358	

Edward J. Delp D

DSPS Fest 2000

Real-Time Error Concealment

- In data networks, channel errors or congestion can cause cell or packet loss
- When MPEG compressed video is transmitted, cell loss causes macroblocks and motion vectors to be removed from compressed data streams
- Goal of error concealment: Exploit redundant information in a sequence to recover missing data

Error Concealment

Original frame

Damaged frame

Edward J. Delp DSPS Fest 2000

August 4, 2000

Approaches for Error Concealment

- Two approaches for error concealment:
 - Active concealment: Use of error control coding techniques and retransmission
 - unequal error protection

 Passive concealment: The video stream is postprocessed to reconstruct missing data

- Passive concealment is necessary:
 - where active concealment cannot be used due to compliance with video transmission standards
 - when active concealment fails

Edward J. Delp DSPS Fest 2000

August 4, 2000 Slide 32

Use of Error Concealment

- All video decoders that will be used in consumer applications, such as set-top decoder boxes must implement some form of passive error concealment
- This problem is interesting in that <u>it absolutely requires</u> <u>real-time implementation</u>
- Digital signal processors (DSPs) are well suited for the demands of real-time processing

Texas Instruments *TMS320C6201*

- Fixed-point DSP, 200 MHz clock cycle
- Based on VelociTI architecture
 - VLIW architecture
 - Can issue up to 8 instructions per clock cycle

Results

• At this time, the overall system is running in real-time (30 frames/second) on 320x240 size video sequences

Damaged frame

Recovered errors

Edward J. Delp DS

DSPS Fest 2000

August 4, 2000

Implementation Issues

- Error concealment is a module of an MPEG decoder
- Spatial technique, or modified temporal technique, used in damaged I frames
- Temporal technique used for damaged P and B frames
- Access to frame buffer in Motion Compensation module required for temporal technique
- Use of internal data memory of '*C6201* necessary to avoid high penalty of accessing external memory

Implementation Issues

- A single 200 MHz '*C6201* is needed for the implementation of the spatial technique
- In spatial concealment, each pixel is median filtered twice
- Capable to process up to 89 frames/sec
- Computational requirements of temporal technique are lower than spatial technique

To Read More About It

E. Asbun and E. J. Delp, "Real-Time Error Concealment in Compressed Digital Video Streams," Proceedings of the Picture Coding Symposium 1999, April 21-23, 1999, Portland, Oregon, pp. 345-348.

Video Streaming

- Examine rate scalable video compression
- Rate scalability is one of the most important scalability modes for streaming video over packet networks
- Scalable Adaptive Motion Compensated Wavelet (SAMCoW) rate scalable video compression algorithm
- SAMCoW uses the Color Embedded Zerotree Wavelet (CEZW) rate scalable, color image compression algorithm

Edward J. Delp DSPS Fest 2000

August 4, 2000 Slide 39

EZW

- Embedded Zerotree Wavelet (EZW) is a wavelet-based, rate scalable image compression technique
- EZW exploits interdependence between subbands of wavelet decomposition
- Coefficients are encode via significance maps using a hierarchical tree
- Quantize and encode the subband data via successive approximation

Edward J. Delp DSPS Fest 2000

August 4, 2000 Slide 40

Embedded Zerotree Wavelet (EZW)

• EZW was developed for grayscale images

Color Embedded Zerotree Wavelet (CEZW)

- For color images, EZW is applied on each color component independently
- A unique spatial orientation tree in the YUV color space is used
- *CEZW* exploits the interdependence between color components to achieve a higher degree of compression

Arithmetic Coding

- Lossless Coding of EZW symbols
- Adaptive arithmetic coding to incorporate learning

DSPS Fest 2000

Results: EZW

- EZW obtained on the '*C6201* fixed-point DSP
- 3-level decomposition, 176x144 grayscale image
- Timing results

	Cycles (million	ns) Time (sec) (200 MHz <i>'C6201</i>)			
Encode	42.6		0.23	0.23	
Decode	35.9		0.18		
Edward J. Delp	DSPS Fest 2000	August 4, 2000	Slide 45	Der Person	

Results EZW

Original

Reconstruction

Edward J. Delp DSPS Fest 2000

Future Work

- Further investigate watermarking techniques
- Continue efforts on Internet streaming

