Image and Video Applications Using TI DSPs

Edward J. Delp

Video and Image Processing Laboratory (VIPER)
School of Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana, USA

e-mail: ace@ecn.purdue.edu
http://www.ece.purdue.edu/~ace
Overview

- Introduction
- System Definition
- Discrete Wavelet Transform
- Still Image Watermarking
- Real-Time Error Concealment in Digital Video Streams
- SAMCoW and Video Streaming
- Future Research
Acknowledgement - Students

- Hyung Kim
- Dan Hintz
- Eugene Lin
- Eduardo Asbun
Introduction

• Target Processors: TMS320C5410 and TMS320C6201
• Project Includes:
 – Wavelet based video compression
 – Still image watermarking
 – Error concealment for digital video streams
 – Internet video streaming
System Definition

- Software Versions
- TMS320C5410 platform
- TMS320C6201 hardware platform
- Development software
Software Versions

• Floating-point PC Code
 – Debugging and performance evaluation
• Fixed-point PC Code
 – Investigate the effects of fixed-point arithmetic
• ‘C5410 DSP Code
 – Code for the ‘C5410 DSP Simulator
• ‘C6201 DSP Code
 – Code for the ‘C6201 DSP EVM
• eXpressDSP compliance
TMS320C5410 Platform

• ‘C5410 Software Simulator

• Targeted to the Digital Still Camera

• Interface to memory controller is simulated in software
Texas Instruments TMS320C548

- Fixed-point DSP, 50 MHz clock cycle
- 40-bit ALU and two independent 40-bit accumulators
- 17-bit x 17-bit parallel multiplier
- 192k words x 16-bit addressable memory space
TMS320C6201 Platform

- Rev. 2.1 ‘C6201 Detroit Board from Spectrum Signal
- Matrox Corona Video Capture Card
Texas Instruments **TMS320C6201**

- 32-bit fixed-point DSP, 200 MHz clock cycle
- Based on VelociTI architecture
 - VLIW architecture
 - Increased instruction-level parallelism
 - Can issue up to 8 instructions per clock cycle
- 8/16/32-bit data support (important for video and imaging)
Wavelet Decomposition

- Image corresponding to resolution level m
- Horizontal
- Vertical
- Detail images corresponding to information visible at resolution level $m+1$
- Image corresponding to resolution level $m+1$
Wavelet Transform on the ‘C6201

• Using Daubechies (9,7) wavelet filter pair

• To obtain perfect reconstruction, Whole-Sample Symmetric (WSS) extension is used at the image boundaries

• WSS also avoids coding artifacts

• Implemented using the lifting scheme to reduce computational complexity (approximately by half)
Lifting Scheme

- Wavelet transform is decomposed into multiple lifting steps
Lifting Scheme

- Wavelet transform is decomposed into multiple lifting steps using the Euclidean algorithm

\[
\begin{bmatrix}
 h_e(z) & g_e(z) \\
 h_o(z) & g_o(z)
\end{bmatrix}
= \prod_{i=1}^{m}
\begin{bmatrix}
 1 & s_i(z) \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 1 & 0 \ \\
 t_i(z) & 1
\end{bmatrix}
\begin{bmatrix}
 K & 0 \\
 0 & 1/K
\end{bmatrix}
\]

\[
h_e(z) = \sum_k h_{2k} z^{-k} \quad g_e(z) = \sum_k g_{2k} z^{-k}
\]

\[
h_o(z) = \sum_k h_{2k+1} z^{-k} \quad g_o(z) = \sum_k g_{2k+1} z^{-k}
\]

\[m=n/2+1(n \text{ is the filter length})\]
Implementation Issues

• Floating-point arithmetic performed in a fixed-point DSP

• Using 16-bit arithmetic (Q6 notation)

• Memory management is critical (need to minimize access to external memory)
Results: Wavelet Transform

- Performed on the ‘C6201 fixed-point DSP
- 3-level decomposition, 512x512 grayscale image
- Timing results

<table>
<thead>
<tr>
<th></th>
<th>Cycles (millions)</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(200 MHz ‘C6201)</td>
</tr>
<tr>
<td>Decomposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unoptimized</td>
<td>57.3</td>
<td>~ 0.30</td>
</tr>
<tr>
<td>Optimized, lifting</td>
<td>16.6</td>
<td>~ 0.08</td>
</tr>
<tr>
<td>Reconstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unoptimized</td>
<td>99.7</td>
<td>~ 0.50</td>
</tr>
<tr>
<td>Optimized, lifting</td>
<td>15.6</td>
<td>~ 0.08</td>
</tr>
</tbody>
</table>
Results (Reconstructed Image)
Results (Difference Image)
Still Image Watermarking

- Aids in protecting intellectual property rights
- Offers forgery detection
- Chain-of-custody determination
System Overview (Decomposition)

- Precision Level Determination
- Filters
- Bit-Shifter (scaling)
- Decomposition Level 1 to n
- Coefficient Watermarking
- Compression (JPEG2000)
System Overview (Reconstruction)

- Filters
- Reconstruction Level 1 to n
- Bit-Shifter (rescaling)
Precision Level for DSPs

- Determined off-line (remember you have only 16 bits)
- Must determine the magnitude of the largest and smallest wavelet coefficients
 - determines the number of integer bits used
Watermarked Images

Original image

Watermarked image

Watermark
Watermarking Technique Overview

Original Image \(I \) → Wavelet Decomp → \(F_I \) → \(F_{IW} = F_I + \alpha W \) → Wavelet Recon → \(I_W \) → Watermarked Image

Watermark
Watermark Verification

Image Under Test

Original Image

n-level Wavelet Decomp.

F_Z

Watermark Verifier

W

Compute Statistics

ρ_WW

Watermark W detected

ρ_WW > T_ρ

Watermark W not detected

ρ_WW ≤ T_ρ
Watermark Creation

- The Watermark consists of Gaussian distributed random numbers
 - Created off-line
- Watermark inserted into image
Watermark Used

Gaussian Watermark

“Purdue” watermark
Experimental Results

<table>
<thead>
<tr>
<th>Watermark Used</th>
<th>α</th>
<th>Embedder Version</th>
<th>Detector Version</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>0.1</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.539224</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.15</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.715037</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.2</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.807437</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.3</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.899317</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.4</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.939558</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.5</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.96038</td>
</tr>
<tr>
<td>Gaussian</td>
<td>1</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.989667</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.1</td>
<td>Floating point</td>
<td>Fixed point</td>
<td>0.541586</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.5</td>
<td>Floating point</td>
<td>Fixed point</td>
<td>0.960564</td>
</tr>
<tr>
<td>Gaussian</td>
<td>1</td>
<td>Floating point</td>
<td>Fixed point</td>
<td>0.989711</td>
</tr>
<tr>
<td>Purdue</td>
<td>0.1</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.038289</td>
</tr>
<tr>
<td>Purdue</td>
<td>0.5</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.269927</td>
</tr>
<tr>
<td>Purdue</td>
<td>1</td>
<td>Fixed point</td>
<td>Fixed point</td>
<td>0.658033</td>
</tr>
<tr>
<td>Purdue</td>
<td>0.1</td>
<td>Floating point</td>
<td>Fixed point</td>
<td>0.038289</td>
</tr>
<tr>
<td>Purdue</td>
<td>0.5</td>
<td>Floating point</td>
<td>Fixed point</td>
<td>0.27164</td>
</tr>
<tr>
<td>Purdue</td>
<td>1</td>
<td>Floating point</td>
<td>Fixed point</td>
<td>0.67358</td>
</tr>
</tbody>
</table>
Real-Time Error Concealment

• In data networks, channel errors or congestion can cause cell or packet loss

• When MPEG compressed video is transmitted, cell loss causes macroblocks and motion vectors to be removed from compressed data streams

• Goal of error concealment: Exploit redundant information in a sequence to recover missing data
Error Concealment

Original frame

Damaged frame
Approaches for Error Concealment

- Two approaches for error concealment:
 - Active concealment: Use of error control coding techniques and retransmission
 - unequal error protection
 - Passive concealment: The video stream is post-processed to reconstruct missing data

- Passive concealment is necessary:
 - where active concealment cannot be used due to compliance with video transmission standards
 - when active concealment fails
Use of Error Concealment

• All video decoders that will be used in consumer applications, such as set-top decoder boxes must implement some form of passive error concealment.

• This problem is interesting in that it absolutely requires real-time implementation.

• Digital signal processors (DSPs) are well suited for the demands of real-time processing.
Texas Instruments *TMS320C6201*

- Fixed-point DSP, 200 MHz clock cycle
- Based on VelociTI architecture
 - VLIW architecture
 - Can issue up to 8 instructions per clock cycle

Block Diagram of Spatial Error Concealment System
Results

• At this time, the overall system is running in real-time (30 frames/second) on 320x240 size video sequences

Damaged frame

Recovered errors
Implementation Issues

- Error concealment is a module of an MPEG decoder
- Spatial technique, or modified temporal technique, used in damaged I frames
- Temporal technique used for damaged P and B frames
- Access to frame buffer in Motion Compensation module required for temporal technique
- Use of internal data memory of ‘C6201 necessary to avoid high penalty of accessing external memory
Implementation Issues

• A single 200 MHz ‘C6201 is needed for the implementation of the spatial technique

• In spatial concealment, each pixel is median filtered twice

• Capable to process up to 89 frames/sec

• Computational requirements of temporal technique are lower than spatial technique
To Read More About It

Video Streaming

• Examine rate scalable video compression

• Rate scalability is one of the most important scalability modes for streaming video over packet networks

• Scalable Adaptive Motion Compensated Wavelet (SAMCoW) rate scalable video compression algorithm

• SAMCoW uses the Color Embedded Zerotree Wavelet (CEZW) rate scalable, color image compression algorithm
EZW

• Embedded Zerotree Wavelet (EZW) is a wavelet-based, rate scalable image compression technique

• EZW exploits interdependence between subbands of wavelet decomposition

• Coefficients are encode via significance maps using a hierarchical tree

• Quantize and encode the subband data via successive approximation
Embedded Zerotree Wavelet (EZW)

- EZW was developed for grayscale images
Color Embedded Zerotree Wavelet (CEZW)

- For color images, EZW is applied on each color component independently.

- A unique spatial orientation tree in the YUV color space is used.

- *CEZW* exploits the interdependence between color components to achieve a higher degree of compression.
Color Embedded Zerotree Wavelet (CEZW)
Arithmetic Coding

• Lossless Coding of EZW symbols

• Adaptive arithmetic coding to incorporate learning
Results: EZW

- EZW obtained on the ‘C6201 fixed-point DSP
- 3-level decomposition, 176x144 grayscale image
- Timing results

<table>
<thead>
<tr>
<th></th>
<th>Cycles (millions)</th>
<th>Time (sec) (200 MHz ‘C6201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encode</td>
<td>42.6</td>
<td>0.23</td>
</tr>
<tr>
<td>Decode</td>
<td>35.9</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Results EZW

Original

Reconstruction
Future Work

- Further investigate watermarking techniques
- Continue efforts on Internet streaming