Abstract Summary

• How to design an open standards based Media Gateway
• Emerging open standards in the industry
• How is RadiSys embracing them
• About RadiSys’ Application Ready platform and other building blocks
3Ws of VoIP?

• **What?**
 - Piggybacking voice traffic on to data traffic and bypassing these high-tariff regulated networks.

• **Why?**
 - Cost Benefits
 - Single Network

• **When?**

![Graph showing Gateway Sales from 1998 to 2003](source: Cahners In-Stat. Group)
Driving Factors in VoIP Applications

- **Reliability**
 - High availability

- **Performance**
 - Voice quality (QoS)
 - Density
 - Interoperability
 - Signaling
 - Backward compatibility
 - Migration path

- **Price/performance (cost/port)**

- **Bandwidth usage**

Source: Forrester Research, July 1998
What Impacts QoS?

- Quality of Voice Compression
- Echo Canceller
- System Delay
 - Jitter buffer
 - Bad frame masking
 - Processing delay
- Network Delay
 - Controlled by ISP/CO
Open Standards

- CompactPCI
- H.110 Telephony Bus
- RTOS
- Algorithms
 - ITU-T
 - DAIS
- Call Control Protocols
 - IETF/TIPHON/ITU-T
 - MEGACO
 - H.323
 - SIGTRAN
- Software Framework
 - DSPBios (Planned Activity)
What is DAIS?

- **DSP Application Interoperability Standard from TI**
- DAIS algorithms are easy to integrate in any application
- Clean performance characterization
- Defines the memory requirements of the algorithm
- Common API’s -- easy to plug in
How Is RadiSys Embracing DAIS?

• 14 voice coders have successfully passed DAIS test!
• Working under TI’s big umbrella -- eXpressDSP™ Technology
• APIs
 • G729ENC_encode(handle, pInBuf, pOutBuf)
 • G729DEC_decode(handle, pInBuf, pOutBuf)
 • G723ENC_encode(handle, pInBuf, pOutBuf)
TDM-IP Media Processing Architecture

Middleware: H.323, Signaling, Protocols and Industry Standard frameworks -- CT Media, ...

TASK6000 APIs - Universal Port API

Telecom Kernel
- Composer & Kernel for Windows NT, VxWorks

Algorithms
- G.711, G.723.1, G.726, G.729, G.729A, Echo Canceller, DTMF, MF-R1/R2, V.17 Fax, AGC/VOX, CPM

Drivers & 3rd Party Development Tools

RadiSys Building Blocks
- Telecom Kernel
- Composer & Kernel for Windows NT, VxWorks

SW
- Host OS
 - WinNT, VxWorks, Unix, Linux, etc

HW
- Slave CPU
 - EPC-20x (x86 Controller CPU)

Private Ethernet Bus

Public Ethernet Bus

CompactPCI Bus

Rear Panel I/O

I/O
- Telephone Port
- Custom Interface
- Frame Relay
- ATM

J3

H.110

E1/T1/LAN

SPIRIT-6040E
- (C6x DSP Resource)

Remote Access

PBX

Pooled Modems

Remote Access

Call Centers

BSCs

CTI

AIN/IN

RadiSys Building Blocks
SPIRIT Family

- **SPIRIT6020-PCI**
 - Two C6201 DSPs @ 200MHz ea.
 - i960RD as IOP
 - Targeted for Call Center/IVR/CTI applications

- **SPIRIT-6040E**
 - Four C6201 DSPs
 - i960RD as IOP
 - Up to 48 ch. Of VoIP
 - Dual 10/100BaseT
 - Up to Quad E1/T1 via PMC
Voice Codecs & Telephony Algorithms

Middleware and Protocol Stacks (under development)

Telephony
- AGC/VOX
- Echo Canceller G.165/G.168*
- Comfort Noise Generator
- DTMF Detector/Generator
- CPT MF-R1, MF-R2

Vocoders (ITU-T)
- G.711
- G.723.1
- G.726
- G.729
- G.729/A
- GSM
- DAISed

Fax
- V.21
- V.17 Group III
- V.29
- V.27ter
- T.38

Modems†
- V.90
- V.34
- V.42bis

* Planned
† Through Partner. Not available today

Telecom Application Specific Kernel (with host API)
- UniversalPort, DSP resource management, QoS management
Telecom Application Specific Kernel (TASK 2.0)

- Application composer and a Real-time Telecom Kernel for ‘C6x DSP
- Supports dynamic channel switching
- Universal Port API
 - Flexible development environment for V/FoIP applications
 - No DSP and low level programming
 - Runs under VxWorks O.S
- Resource Manager
 - Host based API for management of all SPIRIT devices
 - Request a resource based on type and capabilities
 - Allocate a particular resource and register the capabilities which will be in use
 - Reallocate a resource with a different set of capabilities, which the RM will track
 - Free a resource
 - Display resource usage (version 3.0)
TASK 2.0 Architecture

Host CPU

- User Application
- Host APIs
 - Load Processors
 - Resource Management
 - Resource Configuration/control
 - Hot Swap Notification/Control
- Spirit Driver
- Hot Swap Service/Driver

IOP/DSP

- User Application
- IOP APIs
 - Load Processors
 - Resource Configuration/control
- IOP Drivers
- UPA Application
 - Receive Control Messages
 - Send Events
 - Codecs and other services
 - Sophisticated users may add additional services
- DSP APIs
 - Send/Receive Messages
 - Send/Receive Ethernet Packets
 - Send/Receive TDM data
- TASK Kernel

40% free for user Apps.
Application Ready Platform

Processing Engines
- DSP resources
- CPUs -- Master and Slave
- I/O (LAN/WAN)

Algorithms
- Voice Coders
- Fax
- Telephony (AGC/VOX, CPM, CNG, DTMF)
- Echo Canceller

Software
- BSP
- TASK 2.0

Protocols
- H.323
- MEGACO
- SS-7

Signaling
- MF R1/R2
- CAS/CCS

Port/Develop Your Applications
- Trunking Gateways
- Signaling Gateways
- AIN/IN Services
- CTI/IVR
- and more...

System Integration
- Chassis
- Backplane
- Power Supply
Summary

• Telecom is moving towards standardization
• RadiSys is working very closely with its partners, like Intel and TI, to make this happen
• DAISized all the voice coders
 • Work on telephony algorithms in progress
• RadiSys can provide an Application Ready Platform for VoIP/SS7 applications