
A Simple Voice Scrambler using the TMS320C6x DSK

Rulph Chassaing, Aaron Pasteris
University of Massachusetts Dartmouth

Abstract

A simple voice scrambling scheme is implemented on the TMS320C6211 DSK as an Undergraduate
research project. The approach makes use of basic and simple algorithms for filtering and modulation.
With voice as input, the resulting DSK output is scrambled voice. The original unscrambled voice is
recovered when the DSK output is used as the input to another DSK running the same identical
program.

Using an up-sampling scheme to process at a sampling rate of 16 kHz in lieu of the 8 kHz rate set
on the DSK, a better performance allowing for a wider input signal bandwidth is achieved.

This project was implemented on the TMS320C31-based DSK1 as a mini-project requirement in a
Senior Elective course: Introduction to DSP (it was also implemented on the TMS320C252)
without using up-sampling. EE students at the University of Massachusetts Dartmouth
implements this scheme with MATLAB in a Junior Linear Systems course.

Introduction

Digital signal processors are currently used for a wide range of applications from communications and
controls to speech processing. They are found in cellular phones, fax/modems, disk drives, etc. They
continue to be more and more successful because of the availability of low-cost support tools. DSP-
based systems can be readily reprogrammed for a different application.

The C6x is Texas Instruments’ (TI) highest performance processor based on the Very Long Instruction
Word (VLIW) architecture. This type of architecture is very suitable for multitasking. The C6x
supports a 32-bit address bus to address 4G bytes, and two sets of sixteen 32-bit registers. It contains
eight functional/execution units composed of six ALU’s and two multiplier units.

The internal program memory of the C6x is structured as “fetch packets” with a 256-bit
instruction and a 256-bit bus. As a result, a word (VLIW) can be fetched every cycle. For
example, a C6x with a 200 MHz clock is ideally capable of fetching eight 32-bit instructions,
which forms a fetch packet, every 5 ns. On-chip memory is available as program cache, data cache,
and RAM/cache. The exact amount and configuration of memory depends on the specific member of
the C6x family of processors. For example, the fixed-point C6211 (which is on-board TI’s popular

C6x DSK), has two Level-1 (L1) program and data cache of 4K Bytes each and a Level-2 (L2) 64K
Bytes which can be used either as RAM or cache. The C6x internal data memory can be accessed as
bytes, 16-bit (half-word) or 32-bit words.

The fixed-point C6211-based DSK is TI’s lowest cost development system based on the C6x
processor. The DSK board includes TI’s 16-bit AD535 data converter, which contains an A/D and a
D/A. The AD535 on board the DSK has a sampling rate of 8 kHz. It includes an antialiasing as well
as a reconstruction filter. The C6x-based DSK is well suited as an educational tool. A DSK based on
the floating-point C6711 is expected this year. The fixed-point C6211 is pin-compatible and upward
ASM code compatible with the C6711 floating-point processor.

The DSK package includes the popular Code Composer Studio (CCS)11 which provides an integrated
development environment (IDE), bringing together the necessary support tools such as the assembler,
C compiler, editor, debugger. A real-time data exchange (RTDX) capability with CCS, allows for the
transfer of data between the PC host and the processor without stopping the application running on the
target.

The syntax of the C6x assembly code is simpler than assembly code of the TMS320C5x or
TMS320C3x processors. For example, such type of C3x instruction: DBNZD decrements a
counter, then branches if not zero, with delay is not used with the C6x. On the C6x, the loop
counter is decremented with a separate instruction and NOP’s (no operations) are used to handle
the delays associated with a branch instruction.

These “single-task” types of instructions on the C6x is a key factor in achieving a very efficient C
compiler. It is relatively simpler to program the C6x in assembly code, compared to the C5x or
C3x; however, optimizing such code can be quite challenging. One would need to resequence the
order of the instructions in order to obtain as many as eight instructions in parallel (within one
fetch packet), considering the delays associated with load, multiply, and branch instructions.

Linear assembly code provides a good compromise between C and assembly code. To program in
linear assembly, one needs to know the syntax of the C6x instruction set but needs not specify the
actual registers or functional/execution units to be used. Linear assmbly code is then a “cross”
between C and assembly code and can in general be optimized to produce more efficient code
than with C.

Implementation

The scrambling method used is commonly referred to as frequency inversion. It basically takes an
audio range (represented by the band 0.3 – 3 kHz) and “folds” it about a carrier signal. The
frequency inversion is achieved by multiplying (modulating) the audio input by a carrier signal,
causing a shift in the frequency spectrum with upper and lower sidebands. On the lower sideband,
which represents the audible speech range, the low tones are high tones, and vice versa

Figure 1. Block diagram of the scrambling scheme.

Figure 1 shows the block diagram of the scrambling scheme. Its attractiveness comes from its
simplicity since only simple DSP algorithms are utilized (filtering, sine generation/modulation, and
up-sampling). The input signal is first lowpass filtered and the resulting output (at point A) is
multiplied (modulated) by a 3.3 kHz sine function with data values in a buffer in memory (look-up
table). The modulated signal (at point B) is filtered again, and the overall output is a scrambled
signal (at point C).

Using the resulting output as the input to a 2nd DSK running the same algorithm yields the original
unscrambled input. Note that the program still runs on the 1st DSK when it is disconnected from
the parallel port cable.

Figure 2 shows the C program to implement the voice scrambler. There are three functions
besides the function main. One of the functions is to process the data. This function first calls
another function “filter” so that the input signal is lowpassed for antialiasing. The resulting

// SCRAM16k_poll.c Voice Scrambler Program
#include "C6211dsk.h"
#include “C6211dskinit.h” // DSK support file
#include "sine.h" // file with sine data values
#include "coeff.h" // coefficient file
short processdata(short data);
short filter(short inp,short *mem);
short MultSine(short input);
static short filter1[COEFF],filter2[COEFF];
short input, output;

void main()
{
 int i;
 comm_poll(); // init DSK/codec
 for(i=0; i< COEFF; i++)

Input
3 kHz

LP Filter
3 kHz

LP Filter

3.3 kHz
Sine

Generator

Output

Multiplier

A B C

 {
filter1[i] = 0; // init buffer for filtered input signal - 1st filter

 filter2[i] = 0; // init buffer for modulated signal - 2nd filter
 }
 while(1)
 {
 input = input_sample(); // input data from codec
 processdata(input); // process the sample twice to upsample
 output = processdata(input); // and throw away the first result
 output_sample(output); // to decimate, then output
 }
}

short processdata(short data)
{

data = filter(data,filter1); // call filter function – 1st filter
 data = MultSine(data); // call function to generate sine and modulate

data = filter(data,filter2); // call filter function – 2nd filter
return data;
}

short filter(short inp,short *mem) // implements lowpass filter
{

int j;
long acc;
mem[COEFF-1] = inp; // bottom memory for newest sample
acc = mem[0] * coeff[0]; // y(0) = x[n-(COEFF-1)] * h[COEFF-1]
for (j = 1; j < COEFF; j++)
{

acc += mem[j] * coeff[j]; // y(n) = x[n-(COEFF-1-j)] * h[COEFF-1-j]
mem[j-1] = mem[j]; // update delay samples (x(n+1-i)=x(n-i)

}
acc = ((acc)>>15); // scale result
return acc; // return y(n) at time n

}

short MultSine(short input) // sine generation and modulation function
{
 static int j=0;
 input = (input * sine[j++]) >> 11; // input to multiplier * sine data
 if(j>=SINE) j = 0;
 return input; // return modulated signal
}

Figure 2. Program for implementing voice scrambling scheme.

output (filtered input) becomes the input to the multiplier/modulator. The function MultSine
generates a 3.3 kHz sine using data values in a buffer representing a sine, then
multiplies/modulates the filtered input signal with the 3.3 kHz sine data. This produces two
sidebands. The modulated output is again filtered so that only the lower sideband is kept.

With voice as input, the overall filtered and modulated signal is scrambled voice. For example,
with a 2-kHz input sinusoid, the resulting output is a lower sideband signal of 1.3 kHz (3.3 kHz –
2 kHz). With a sweeping input sinusoidal signal increasing in frequency, the resulting output is
the sweeping signal “decreasing” in frequency.

A 2nd DSK is used to recover/unscramble the original signal (simulating the receiving end). Using
the output of the 1st DSK as the input to the 2nd DSK and running the same program produces the
reversed procedure yielding the original unscrambled signal. If the same 2-kHz original input is
considered, the 1.3 kHz as the scrambled signal becomes the input to the 2nd DSK, and the
resulting output is the original signal of 2 kHz (3.3 kHz – 1.3 kHz).

The up-sampling scheme to obtain a 16-kHz sampling rate is achieved by “processing” the data
twice and retaining only the 2nd result. This allows for a wider input signal bandwidth to be
scrambled.

A buffer in memory is used to store the filter coefficients arranged in memory as h[COEFF-1],
…, h(0) where COEFF set to 113 (in coeff.h) is the order of the filter. Two other buffers are
used for the delay samples, one for each filter, and are arranged in memory as x[n-(COEFF-1)],
…, x[n], where x[n-(COEFF-1)] represents the oldest sample.

Conclusion

Interception of the speech signal can be made more difficult by dynamically changing the modulation
frequency, and including, or omitting, the carrier frequency according to a predefined sequence. For
example, a code for no modulation, another for modulating at frequency fc1 , and a third code for
modulating at frequency fc2.

This project can be readily duplicated at other institutions. Contact Rulph Chassaing at
chassaing@msn.com for support files, etc.

Acknowledgement

Grants from the National Science Foundation (NSF) over the last few years provided the support to
offer several workshops on Applications in DSP for many faculty over several years. The continued
support of Texas Instruments is also appreciated.

Bibliography

1. R. Chassaing, Digital Signal Processing-Laboratory Experiments Using C and the
TMS320C31 DSK, J. Wiley, 1999.

2. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
1990.

3. TMS320C6201/6701 Evaluation Module User’s Guide, SPRU269, Texas Instruments, Inc.,
1998.

4. TMS320C62x/C67x CPU and Instruction Set Reference Guide, SPRU189, Texas Instruments
Inc., Dallas, Tx., 1998.

5. TMS320C62x/C67x Programmer’s Guide, SPRU198, Texas Instruments, Inc., 1998.
6. TMS320C62x/C67x Technical Brief, Texas Instruments, Inc., Dallas, Tx.
7. TMS320C6x Assembly Language Tools User’s Guide, SPRU186, Texas Instruments, Inc.,

Dallas, Tx., 1998
8. TMS320C6x Optimizing C Compiler User’s Guide, SPRU187, Texas Instruments, Inc.,

Dallas, Tx., 1998
9. TMS320C6211 Fixed-point digital signal processor- Advance Information, SPRS073A, Texas

Instruments Inc., Dallas, Tx., 1999.
10. TMS320C62xx Peripherals Reference Guide, SPRU190, Texas Instruments, Inc., 1997.
11. Code Composer Studio Tutorial, SPRU301, Texas Instruments, Inc., Dallas, Tx., 1999.
12. W..J. Gomes III and R. Chassaing, “ Filter Design and Implementation Using the

TMS320C6x Interfaced with MATLAB,” in Proceedings of the 2000 ASEE Annual
Conference.

