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Abstract – The dramatic increase in the computational speed provided by state-of-the-art 
high-end DSP’s offers the possibilities of processing large high-resolution images in real 
time. The authors have experience in high-fidelity lossy compression of high-resolution 
color medical images (up to 2048x4096 pixels, eight bits per pixel) using TI’s TMS320C6201 
DSP’s. The amount of on-chip memory in C’6000 DSP cores is insufficient for processing 
such images using internal memory only. Allocating the data to the external memory can 
increase the execution time significantly. The use of direct memory access channels (DMA) 
does not lead to a substantial decrease of the execution time for unstructured algorithms, 
i.e. the algorithms in which the data processing order is highly dependent on the results of 
the previous steps in the algorithm. We have developed and tested a technique, which 
decreases execution time for such algorithms by applying them to only one subband of a 
signal dependent wavelet transform. 
 
1. Introduction 
 

Advanced lossy image compression algorithms utilizing vector quantization [1,2,3] 
offer low distortion in the reconstructed images at high compression ratios (even above 
100:1). Such low distortion rate makes these algorithms a good choice for effective 
storage and internet transmission of large high-resolution images for many applications. 
While storage space has become a lesser problem in recent years, fast internet 
transmission is an acute problem due to increasing internet traffic and the limited channel 
bandwidths available for most consumers. Obviously, if the original image is compressed 
a hundred times, it takes one hundred less time to receive the image given the same 
transmission channel conditions. While the compressed image can be transmitted for 
viewing fast, the decoding time depends on the type of the processor employed, the 
decoding algorithm, and the total size of the data used during decoding. If the 
compression takes place upon the client’s request (only original uncompressed images 
are stored at the transmitting end), then the total time that takes to transmit and display 
the image includes the encoding time as well. Since the main goal in compressing images 
for transmission is to transmit and display the received images faster, the total 
coding/decoding time should be less than the time for transmitting the compressed 
images. This last requirement is frequently not met by the vector-quantization based 
algorithms mentioned above; the coding/decoding time can be in excess of one minute 
for 6-24Mbytes original image sizes using Pentium 400 MHz processors. 

The use of faster processors such as Texas Instruments’ C’6000 DSP’s can decrease 
the encoding/decoding time. However, this decrease can be dramatic for some algorithms 
while only marginal for others. A common problem faced by many algorithms when 
applied to large data sets is a slow data access rate. For example, 512 Kbits of data 
memory available on TI ‘C6201 DSP and 4 Mbits on C’6203 are insufficient to perform 
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compression storing the images (6-24Mbytes) and intermediate data entirely in the 
internal memory. Allocating the data to the external memory can increase the execution 
time significantly (the new ‘C64x core is expected to run at 1.1 GHz, while a typical 
SDRAM device, the most common inexpensive type of memory, runs at 100-120 MHz). 
The common solution to this problem is the use of direct memory access channels. This 
solution is very effective when the algorithm is well structured, i.e. it is known in 
advance which block of data needs to be transferred from the external to the internal 
memory, while the current block of data is being processed. A good example of such an 
algorithm is the DCT-based JPEG, which divides the input image into 16Kbyte 
independent blocks of data and processes them separately. Fig. 1 a illustrates such a 
technique.  
 
 

 
(a) (b)   

 
Fig 1. 

Only three blobs are within the same independent block (a) 
All the blobs are within the same LL subband of a wavelet transform (b) 

                  
In that figure the entire data set is divided into 16 separate blocks of data of such sizes 
that each of them can be processed entirely in the internal memory. Then, while the 
processor is encoding the first block, the second block is fetched from the external to the 
internal memory using DMA. The processor is freed from data trafficking and 
concentrates on “crunching numbers”. Unfortunately, such use of DMA leads to a 
significant execution time reduction only if it is known in advance which block of data 
should be processed next after the current block is done. The basis of vector quantization 
algorithms is in finding similar vectors (blocks of the image/image transform matrix) and 
then approximating (clustering) them by some vector (centroid vector). Fig. 1 shows six 
blobs that form similar vectors. If the 16 blocks of data are encoded independently, then 
only the three blobs that are in the same block will be approximated by one vector, while 
encoding the entire data set at the same time approximates the remaining three blobs by 
the same vector thus achieving a higher compression. 
 The solution presented in this paper is based on encoding only one subband of the 
output of a multirate filter bank (commonly referred to as the discrete wavelet transform). 

LH

HL HH

LL



Fig. 1 b. illustrates such a technique. The original image is divided into four subbands 
marked LL, HL, LH, and HH in the figure. Each subband contains incomplete (in 
general) information about the entire image. Thus, as it can be seen, in Fig 1. b, if we 
process one subband (for example LL) the size of the data set is reduced by four, yet all 
the six blobs will be approximated by the same vector thus achieving a maximum 
compression for this example.  
 
2. Background 
 
Unless otherwise specified all functions used in this paper are assumed to be real and 
compactly supported. Functions’ arguments and indices are assumed to be integer, if not 
specified otherwise. All functions are assumed to be bounded. If the upper and lower 
limits of a summation are omitted, the operation is performed on all values of the 
argument(s) for which the expression inside the summation is supported. Where the 
extension to two-dimensions is straightforward one-dimensional notations are used. 
      The part of the wavelet decomposition created by applying the low-pass filter in both 
directions is called the low-frequency subband/low-resolution part (denoted LL) of the 
decomposition. The rest of the decomposition forms the higher frequency subbands/detail 
components (denoted LH, HL, and HH). 
      Let us denote by )(0 nh  and )(1 nh  the low-pass and high-pass filters, respectively, 
that form a two-channel filter bank.  The filter bank is orthogonal if the following 
equations hold true4:  

 
∑ =+n mnhmnh ),()()2( 00 δ   (2.1) 
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 The image matrix can be convolved with )(0 nh  and )(1 nh  and downsampled by two in 
both dimensions. The result is a matrix of the same as the original image matrix 
dimensions, which schematically depicted in Fig. 1 b. The resulting matrix is called a 
discrete wavelet transform of the original image. If (2.1) – (2.3) hold then by applying the 
inverse procedure to the wavelet transform we get the original image without any 
distortion. This condition is called the perfect reconstruction condition (PR). Because of 
downsampling by two in two dimensions each subband contains one fourth of the number 
of elements in the original image. If the downsampling by two and convolution are applied 
again just to one of the subbands, we will get the second level wavelet transform. Each 
subband in the second level transform will contain one sixteenth of the number of elements 
in the original image. Applying the same procedure iteratively will lead to subbands 

containing l4
1  of the elements in the original image. Here l  denotes the l th level of the 

transform. 
 If the following equation is true the amplitude spectrum of )(0 nh  and )(1 nh  are 

symmetrical (mirrored) with respect to 
2
π   
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and )(0 nh  and )(1 nh  form a filter bank called a quadrature mirror filter (QMF) bank5  
Note that if  (2.4) and (2.2) are satisfied then (2.1) and (2.3) are always satisfied. Thus, if 
we find )(1 nh  that satisfies (2.2), we can always find )(0 nh . Filters satisfying either (2.2) 
or (2.1) are called Nyquist (2) filters. If either )(1 nh  or )(0 nh is a Nyquist (2) filter and 
(2.4) holds, then )(0 nh  and )(1 nh  form a perfect reconstruction QMF bank (PR-QMF).  
Note, since there are infinitely many solutions to obtain Nyquist (2) filters for filter 
lengths greater than two, we can design PR-QMF filter banks with some desired 
properties. Finally, we require that the Fourier transform of )(1 nh  have a zero DC 
component, or in the time/spatial domain: 
 

0)(1∑ =n nh   (2.5) 
 
If  (2.5) is satisfied, and )(0 nh  and )(1 nh  form a QMF bank, then )(0 nh  has a zero at π . 
This last requirement is due to the fact that typical images contain a large DC component, 
which we want to put entirely in one of the subbands. 
 
3. Description of the execution time reduction technique 
 
           Briefly, our technique can be described in several steps. 
In the first step, some statistics of the entire image is amassed (typically the 
autocorrelation sequence). The first step uses the external memory if the image does not 
fit into the internal memory, but this step is not computationally expensive. 
In the second step our new interior-point-based wavelet optimization algorithm finds the 
optimal wavelet filter bank that compacts the energy (for a given input image) in the low-
resolution part of the wavelet decomposition. This part does not operate on a large data 
set and uses the internal memory only. The execution time for this step is small and 
independent of the size of the input image.  
In the third step, using the optimal filter, a discrete wavelet transform is performed. This 
step uses the external memory, but it is not computationally expensive. 
 Finally, the detail component of the wavelet decomposition that contains small 
coefficients is completely discarded (in practice it is not even computed). Only the low-
resolution part of the wavelet decomposition that contains one fourth (because we use 
two-channel filter banks in two dimensions) of the elements in the original image is used 
as an input to the main compression algorithm. 
      A block diagram of our technique is shown in Fig 2 
 
 



 
Fig 2. 

A block diagram of our optimal wavelet-based method. 
The main compression algorithm acts on ¼ of the transform 

 
The decoding is performed in reverse order. First the main compression algorithm 
decodes the low-resolution part of the transform. Then the detail components of the 
wavelet transform are approximated by zeros, and the inverse wavelet transform is 
performed. 
 Since the goal of this technique is reduction of the execution time, a fast 
procedure for finding “the best” PR-QMF filter bank is required.  

Some previous work6 in this area was aimed at finding an optimum filter bank 
analytically.  There are two drawbacks in that technique. Firstly, it does not work for 
every autocorrelation sequence – for some autocorrelation sequences the algorithm 
completely fails. Secondly, the final step of that algorithm requires spectral factorization 
of a polynomial, which is not an analytical procedure (for 4>N ).  

Our algorithm uses an interior-point optimization algorithm7 to find “the best” 
PR-QMF filter bank. Interior-point methods are fast global optimization algorithms for 
constrained problems that exhibit a polynomial convergence rate with respect to the 
number of variables and constraints. They also possess a logarithmic convergence rate 

with respect to the initial distance from starting point to the solution, i.e. )log(
ε
R∝ , 

where R is the distance and ε  is the desired accuracy of the solution. 
Formally, the optimization problem is stated as follows: 

given the autocorralation matrix NxNRC ∈ , where N  is the length of the optimal filter 
)(1 nh , find )(1 nh , such that 

  min11 →Chh T          (3.1) 
under the constraints (2.2). Here 1h  is the column vector that represents the high-pass 
filter )(1 nh . In particular, we have implemented the algorithm for 6=N  . (for 2=N  the 
orthonormal filter bank is unique, and for 4=N  it was shown in [8] that Daubechies’ 
Maxflat filters are optimal in terms of (3.1)) under frequently met assumptions on the 
autocorrelation sequence. For 6=N   Daubechies’ Maxflat filters are near optimal8 with 
respect to (3.1) (under some assumptions on the autocorrelation sequence), and therefore 
provide a good benchmark for comparison. 
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 The main problem in using interior-point methods for (3.1) is that (3.1) is not a 
convex/concave function, and interior-point methods can only be used directly for 
convex/concave functions. We have been able to reformulate the problem without loss of 
generality into a convex optimization problem and then solve the latter by an interior-
point method (to find filter )(1 nh  that puts the smallest amount of energy into the detail 
components of the wavelet decomposition). Let us describe briefly the main stages of our 
method. First using (2.2), (2.5), we parameterize the vectors )(0 nh  and )(1 nh  by the 

vector 5Ry ∈ to remove the linear equation (2.5) and we rewrite Eq (2.2), and (2.5) using 
vector notations: 

01 =hqT ,      Tq ]1,1,1,1,1,1[= , then: 

let 1Ghy = ,       :56xRG ∈ 0=GqT  
and write the optimization problem in the form: 

min0 →yAyT  (3.2) 

0=yAy i
T ,       ;2,1=i         13 =yAyT , (3.3) 

where matrix CGGA T=0  is obtained from C  by parameterization by G , and 1A , 

2A , 3A  are obtained from (2.2) after the parameterization by G  (to remind: (2.1) and 
(2.3) follow from (2.2) and (2.4)). 

Then we consider the auxiliary optimization problem: 
 

min)( 30 →− xAAxT µ  (3.4) 

0=xAx i
T ,        2,1=i        5Rx ∈  (3.5) 

 
and adjust R∈µ  in such a way that the optimal value of (3.4) and (3.5) are equal to 

zero. When such *µ  is found and the optimal solution *x  is located, the solution of (3.2) 
and (3.3) can be obtained by 
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It remains to describe the solution method for (3.4) and (3.5) when µ  is fixed. For 

any 2R∈λ , let us denote 
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 and consider the optimization problem: 
minimize ( )0~:)( ≥λλ Af  (3.7) 



If *λ  is the solution of (3.7), then 5
1

1

~
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−
λλ

λ  is the solution of (3.4) and (3.5). It 

is easy to verify that the problem (3.7) is convex. Then, an interior-point algorithm 
described below is used to find the global minimum:  

0=µ ; 

repeat: 

30 AAB µ−= ; 

( ) )0~/min(arg* ≥= λλλ Af ; 

)0/max(arg 3* ≥−= AA γγµ λ ; 

*ξµµµ += ; 

until:    εµ <* ; 

λλ

λ

xAx

x
y

T
3

* =  

where ξ, ε are the algorithm’s parameters. 
On all of the test images the interior-point algorithm converges to a global minimum after 
14 iterations in 0.2-second (Pentium II 400MHz CPU) independent of the input image 
size. 
 
4. Results and discussion 
 

We tested our algorithm by applying it to different images. The results below present 
both the performance of the overall algorithm (of Fig. 2) and an important intermediate 
figure of merit – the amount of energy in the higher-frequency subbands, which are 
discarded. Since distortion in the reconstructed image is caused by discarding these 
subbands (approximating them by zero), a small amount of energy in those subbands lead 
to a small distortion. To evaluate the energy compaction capability of our algorithm let us 
define the figures of merit used below (we do not use the coding gain as the figure of 
merit, because in general optimization for coding gain and energy compaction are not the 
same9). Let us denote by dE the amount of energy in the higher subbands of a one level 
decomposition using Daubechies’ Maxflat filters and by oE  using optimal filters. 
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Table 4.1 below shows the algorithm’s performance when it was applied to four test 
images. 



 
 
 
 
Table 4.1 Energy decrease for gray scale images 
Image Improvement (T) 

in the detail part of the 
decomposition. 

Lena 7.07 
Visible Human 3.75 
Calgary 18.95 
Banff 56.44 

 
Figure 4.1 shows the effect of discarding the detail part on the reconstructed 

(Calgary) image. 

 
 

Fig 4.1 
Edge enhanced image of the Calgary skyline reconstructed from only the low-frequency 

subband using optimal QMF bank of length 6  (left) and Daub 6 (right) 
 

As it can be seen in Fig. 4.1 the image on the right suffers considerably from the ringing 
artifact (the right side of the tall building and the clouds). The image on the left does not 
have such a well-pronounced artifact.  
 The evaluation of the overall performance of our algorithm was conducted using 
the EZW algorithm10 as the main compression algorithm of Fig 2. Although EZW 
employs scalar quantization, the results can be extended to vector quantization algorithm 
without loss of generality. Table 4.2 shows the distortion for the Lena image when the 
EZW algorithm used the entire wavelet decomposition, and when it used only the low-
frequency subband of the optimal transform. The optimal filters were used only for the 
first level decomposition. The main (EZW) algorithm used Duabechies’ Maxflat filters of 
length six. 
   



 
 
 
Table 4.2 Distortion for the standard Lena image at 100:1 compression ratio 
Technique Used MSE PSNR 
EZW  330.93 22.93 
EZW with preprocessing*  319.82 23.08 
*Preprocessing means EZW is applied to the low-frequency subband of the wavelet transform 
instead of being applied to the original image 
 
As it can be seen the distortion is comparable (there is some increase in PSNR when our 
technique was used). The overall execution time, however, was reduced 3.9 times 
compared with the EZW applied to the entire decomposition. 

However, at lower compression ratios (30:1) our technique introduces more 
distortion compared with the coding algorithm applied to the entire image. When lower 
compression ratios can be tolerated, (a high bandwidth is available or transmission time is 
not crucial), the DCT-based JPEG is fast and introduces low distortion at low 
compression rates.  

The above results show that our execution time reduction technique can be used 
to reduce encoding/decoding time of advanced image compression algorithms without an 
appreciable increase in distortion at high compression ratios. One straightforward way of 
further decreasing distortion introduced by discarding of the detail components is to 
increase the filter length. One can view wavelet filters as basis vectors in N dimensional 
space. An image is reconstructed from its wavelet transform can be viewed as a 
superposition of these basis vectors. Longer basis vectors will be able to represent the 
image using fewer significant coefficients, if the basis vectors are selected appropriately.  
The fact that PR-QMF banks were used in our algorithm has its advantages as well as 

drawbacks. If most of the image’s energy is distributed at spatial frequencies 
2
πϖ <   

(which is almost always the case), the reduction in the amount of energy passed by )(1 nh  
will lead to the reduction of aliasing between the subbands. This leads to an overall 
improvement in the distortion rate (since aliasing also introduces a significant distortion 
when some of the subbands are discarded).  

 There are two major drawbacks in using PR-QMF banks. Firstly, if some filter 
)(1 nh  is optimal, it may not be a Nyquist (2) filter, thus we have to be satisfied with 

some other )(1 nh , which is Nyquist (2), but suboptimal. In case of biorthogonal filter 
banks, given an optimal )(1 nh , a biorthogonal filter bank can almost always be computed 
to satisfy the PR condition (in the biorthogonal case )(1 nh  does not have to be Nyquist 
(2)) . Secondly, an iterative numerical procedure could not be avoided. Thus, computing 
longer filters takes significantly more time. 

 
5. Conclusion 
 

We have developed and tested a technique, which decreases execution time for 
image compression algorithms by applying them to only one subband of a signal 



dependent wavelet transform. The EZW algorithm has been used as the main 
compression algorithm. Further tests will be carried out with AFLC-VQ2. In the most 
general case the reduction of the execution time is achieved due to the reduction of the 
number of elements that need to be processed. If the reduction is sufficient to put all the 
data entirely into the internal memory, an additional reduction is achieved, since the data 
no longer should be fetched from the external memory. This is particularly important for 
unstructured algorithms, for which the use of DMA does not offer significant execution 
time reduction. If the reduced data set cannot fit the on-chip memory entirely, the number 
of elements residing in the external memory is reduced leading to fewer accesses of the 
external memory.  

Our current research is conducted on biorthogonal filter banks with embedded 
aliasing reduction to replace PR-QMF filter banks in order to reduce the computation 
time for finding optimal filters and increase the solution space. 
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