
Implementation of Neural Networks to Aid Switched Reluctance Motor Control
On the TMS320C6701

Shyam S. Ramamurthy Juan Carlos Balda

Department of Electrical Engineering
University of Arkansas

3217 Bell Engineering Center
Fayetteville, AR 72701

501-575-6578, jcb@engr.uark.edu

Abstract - Neural Networks (NNs) can be employed to aid in the
real-time execution of the torque-prediction and position-
estimation tasks in Switched Reluctance Motor (SRM) drives.
This paper describes the implementation of such NNs on the
TMS320C6701 EVM and highlights the Code Composer Studio
Version 1.2 (CCS) features that aid the rapid development of the
application. Finally, the paper describes the scheme for
interfacing the C6701 EVM to a C240 EVM used for generating
the PWM signals for a SRM drive.

I. INTRODUCTION

SRM drives are now increasing in popularity due to their
simple construction features, feasibility for high-speed
operation and ability to design them to match an application
[1]. Several advantages have been identified for operating
the SRM in the multi-phase mode [2-4]. For control under
these conditions, it is essential to know (or map) the values
of the SRM output variables (e.g., torque) and the machine
parameters at different values of the terminal variables (i.e.,
currents and rotor position).

SRMs typically operate at high levels of saturation of the
magnetic circuit. As a result, the mapping between the SRM
input variables, output variables and parameters is highly
nonlinear. Many techniques have been reported in the past
for on-line calculation of these variables under a single-
phase operating mode [5]. However, it is difficult to
develop equations to calculate easily and accurately the
performance variables and parameters under the multi-phase
excitation mode. The superposition principle cannot be
applied to the multi-phase operation mode by extending the
single-phase operation results due to the nonlinear
electromagnetic circuit behavior [6]. Hence, a multi-input,
single-output mapping is required between the SRM
terminal variables and the output or parameters to achieve
the desired accuracy in control tasks. Also, it is desirable
that this mapping adapts to changes in the parameters of the
drive with frequency, temperature and aging effects. These
requirements could be met successfully if NNs are applied to
provide the desired mapping since they could be also trained
on-line to adapt to parameter variations. However, the main
obstacle of NNs in the past has been their execution speeds
that limit their applicability in real-time control tasks.

This paper first describes the intended application of NNs
for SRM control. Then, it reports on the NN implementation
entirely in ANSI C using the features of Code Composer
Studio Version 1.2. The profiling techniques available in the
CCS to aid the rapid code development are then applied to
measure the NN execution time of the different stages. The
SRM input variables obtained through simulations at
different operating conditions are then used to test the NN
operation and response. Finally, the paper gives an outline
of the schematic for interfacing the C6701 EVM with a
C240 EVM that takes care of the low-level tasks of
generating the PWM signals for SRM drive control.

II. NN APPLICATIONS FOR SRM CONTROL

This Section addresses the use of NNs in the control of a
four-phase 8/6 SRM prototype for an electric vehicle
application. Specifically, NNs can be applied for identifying
the nonlinear relationship between the terminal variables
with the internal parameters and output variables.

Accurate electromagnetic torque feedback is essential in a
torque controller. In the particular case of the SRM, the
electromagnetic torque is a function of the winding currents
and rotor position. The NN should be trained using static
torque measurements at different combinations of current
levels in the excited windings and at different rotor
positions. We used an implementation that predicts the
torque as a function of two excited winding currents and
rotor position. The two chosen winding currents are those of
a phase producing motoring torque (called the working
phase) and the one ahead of it (called the leading phase); see
Figure 1. The rotor position is measured with respect to the
working phase. With this idea in mind, the NN for torque
prediction of this SRM prototype is trained for the angle
range from �30° to 0° (with respect to the working phase)
and for currents from 0 to 15 A in the working and leading
phases at various combinations. For our designed SRM and
the results presented in this paper, we obtained the above
static torque mapping using ANSYSTM-based Finite-
Element-Analysis (FEA) simulations [7] since the SRM was
being constructed.

The NN was then trained and its structure was optimized
using MATLABTM. The desired performance accuracy was
obtained using a NN consisting of a input layer having 3
neurons, a hidden layer having 7 neurons and an output layer
having 1 neuron (see Figure 2). The hidden layer has log-
sigmoid activation functions whereas the output layer has a
linear activation function.

NNs can be also used to aid the position-estimation task by
predicting the mutual interaction factor between the working
and leading phases as a function of the winding currents and
rotor position. This paper only describes the implementation
of the NN for torque prediction on the TMS320C6701 EVM.

III. DESCRIPTION OF THE NN IMPLEMENTATION

We implemented the NN on the TMS320C6701 EVM
entirely in software using the C language and the features
available in the CCS Ver 1.2 [8-11]. From the NN structure
in Figure 2, one can anticipate that an important portion of
the computational time for the torque output is due to the
calculation of the weighted sums at each neuron of the
hidden and output layers. The C language code
implementing these calculations has a nested loop structure.
At each neuron, the first step is to compute the weighted
sum at each neuron of the hidden layer for the activation
functions. The bias at each neuron is then added to this sum
to obtain the net activation input. This is then propagated
through the activation function at the neuron. The code in
our first implementation had the following form:

void comptout()
{

int i,j;
 for (j=0;j<n1;j++) netin1[j]=bias1[j];
 for (j=0;j<n1;j++)
 {
 for (i=0;i<n0;i++) netin1[j]+=weight1[j][i]*netin0[i];
 actv1[j]=squash(netin1[j]);
 }

netin2[0]=bias2[0];
for (i=0;i<n1;i++) netin2[0]+=weight2[0][i]*actv1[i];
netout=netin2[0];

}
where float squash(float) computes the log-sigmoid function using the
functions from the math library.

Another time-consuming activity is the computation of the
activation using the following log-sigmoid function:

xe
xf −+

=
1

1)(

One can use the function �exp()� or �expf()� to implement
this equation in the C program. The CCS profiler was used
to measure the number of cycles required by each function.
Also, the precision of the value returned by the exp() and
expf() functions was noted. Based on this, it was determined
that the expf() function requires much lesser number of
cycles (390) than the exp() function (1030) and also offers
adequate precision for the application. The log-sigmoid
function value, thus computed, has a value of 0 for x<=-15
and a value of 1.0 for x>=15. As a result, it is necessary to
compute this function only in the range [�15 < x < 15].

Figure 1. Illustration of the working, leading and trailing phases in the
four-phase 8/6 SRM prototype.

Σ

Σ

Σ

Σ
Σ

Σ

Σ

Σ

Torque

Current 1

Current 2

θ

B11

B12

B13

B14

B15

B16

B17

B21

Figure 2. The feed-forward neural network used for torque estimation.

With the log-sigmoid computation using the expf() function,
the forward propagation (computing the torque output) takes
about 3900 cycles in the worst case when [�15 < x < 15].

This is because the usage of the expf() function leads to the
disadvantage that the code contains function calls that
cannot be software pipelined. To be able to use code that
can be pipelined, we used the �lookup-table� technique for
determining the log-sigmoid function values for inputs
between the range �15 to 15; these computed values were
stored in a lookup table. For a given input value for which
the function value is required, the index into the table is
calculated using:

()
�
�
�

�
�
� ×+=

30
15 sigPointsxroundm

where sigPoints is the number of points in the lookup table
for the log-sigmoid function. This equation was
implemented in the C program using type-casting to integer
value. However, it was found that direct implementation of
this equation in the C program leads to the requirement of a
large number of cycles (about 2800 cycles in the worst case
with [�15 < x < 15]) because the division process which is
used in the index computation is very time consuming. This
was overcome by replacing the fraction sigPoints/30 by its
value (say q) in the program; that is

(){ }qxroundm ×+= 15

The initial code using this formulation required about 540
cycles for the forward propagation because the code uses
simple addition and multiplication that are the �least
expensive� for the processing. Also, the compiler was able
to setup better pipelining since the number of registers
required during each iteration was small. The loop structure
and the arrangement of the code was further improved using
the CCS Ver 1.2 features [8-11] and the final code obtained
required only 217 cycles for the torque computation by
forward propagation. These 217 cycles at a clock of 133
MHz mean that the C6701 requires only

sec63.1
10133

217
6 µ=

×
for the torque computation by

forward propagation.

The following features of the CCS were used for improving
the code arrangement and pipelining [8]:

• The profiler was used to determine the number of cycles

taken by each section of the code and thus identify the
�expensive� sections.

• The #pragma MUST_ITERATE directive was used to
pass the information about the trip count (number of
loop iterations) to the compiler.

• The #pragma UNROLL directive was used to unroll
small loops and increase the number of instructions
available for execution in the pipeline.

• The �pm and �mt compiler options were respectively
used to direct the compiler to use the trip count data for
pipelining, and to indicate the absence of memory
aliasing.

• The �k option preserved the .asm file for inspection.
The compiler includes feedback about the pipelining in
this file and also indicates better options that the user
might choose. The code was rearranged till smaller
iteration intervals and a larger number of parallel
iterations were obtained.

The final code for the forward propagation has the following
form:

void comptout()
{

int j;
int m;
#pragma MUST_ITERATE(n1);
for (j=0;j<n1;j++)
{

netin1[j]=bias1[j];
netin1[j]+=weight1[j][0]*netin0[0]+weight1[j][1]
 netin0[1]+weight1[j][2]netin0[2];

}
#pragma MUST_ITERATE(n1);
for (j=0;j<n1;j++)

 {
 if ((netin1[j]>-15)&&(netin1[j]<15))
 {
 m=(int)((netin1[j]+15.)*80);

 actv1[j]=sigTable[m];
 }

 if (netin1[j]<-15) {actv1[j]=0.0;}
 if (netin1[j]>15) {actv1[j]=1.0;}

}
netin2[0]=bias2[0];
#pragma UNROLL(n1);
for (j=0;j<n1;j++) netin2[0]+=weight2[0][j]*actv1[j];
netout=netin2[0];

}
where sigTable[] contains the value for the log-sigmoid function in the
range �15 to 15 and has 2400 points.

The process of learning by error back-propagation involves
the computation of activations at the neurons. The back-
propagation algorithm was also implemented in C and the
code was then optimized. The resulting code executed in
344 cycles or 2.58 µs per iteration.

For electric drives applications, torque feedback at a
sampling rate of about 25 kHz maybe considered to be
adequate under most conditions. Since the C6701 is able to
compute the torque output under multi-phase operation at a
much higher speed, there is sufficient time available between
the samples to schedule training of an adaptive NN based
model (which changes with the actual motor parameters)
based on on-line measurements.

This can be used to schedule calculations to compute the
new actual values of torque. Finally, the error between the
NN torque output and the new calculated value can be used
to schedule training of the torque NN. Thus, the C6701 can
be used to implement several NNs that cannot only estimate
the drive output, but also adapt to changing drive
parameters.

IV. TESTING OF THE NN USING PROBE POINTS

The CCS has the facility to connect data from files on the
PC to the program running on the target DSP. This is done
using probe points [9]. The terminal current and rotor
position data were obtained from SIMULINKTM based
simulations [6] and the data corresponding to two different
speeds, 100 rpm and 6000 rpm, were stored in ASCII text
files in floating-point format. Probe points were used to
couple these data files at runtime to the C6701. This was
used to test the NN output. Portions of the resulting graphs
for the two winding currents, the rotor position and the
output torque are included as Figures 3 and 4, which are
screen snapshots taken during the simulations.

With sigPoints equal to 2400, it was found that the resulting
torque waveform includes additional high-frequency noise
introduced by the NN due to rounding of the index value.
Increasing sigPoints to 6000 mitigated this noise.

V. INTERFACING THE C6701 EVM TO THE C240 EVM

The intended role of the C6701 in the SRM drive system is
to provide computational support to the drive controller.
The main reason is that present-day DSPs for motion control
do not have the required bandwidth to implement novel
control algorithms (e.g., model reference adaptive control)
when the electric motor is running at high speeds (e.g.,
greater than 6000rpm). In our implementation, the SRM
will be controlled, at the low-level, through PWM signals
generated using the C240 EVM. To transfer the computed
torque value to the C240 EVM as feedback, an interface
between the two DSPs has to be designed. This section
presents an overview of the efforts in this direction. The
interface between the C6701 and the C240 EVM can be
implemented conveniently through the C6701 Host Port
Interface (HPI) [10].

The HPI is a 16-bit-wide parallel port through which the
C6701 memory space is visible to the host processor (the
C240, in this case). The C240 functions as a master to the
interface. The data exchange can take place using internal or
external memory. The C240 can also access the memory
mapped peripherals. Connectivity to the C6701�s memory
space is provided through the DMA controller in the CPU.

The HRDY pin can be used to insert a delay during a
transfer and characterize the data transfer speed through the
HPI. Since the C240 has a separate address bus, the HAS
can be inactive high at all times.

Figure 3. Test results of the NN processing using probe points in CCS
Ver 1.2 at 100 rpm. The graphs indicate (CCW from the top left

corner) the rotor position (with respect to the working phase), the NN
torque output, the current in the leading phase, and the current in the

working phase.

Figure 4. Test results of the NN processing using probe points in
CCS Ver 1.2 at 6000 rpm. The graphs indicate (CCW from the top

left corner) the rotor position (with respect to the working phase), the
NN torque output, the current in the leading phase, and the current in

the working phase.

HCNTL [1:0] values would be set by decoding the address
of the C240. The base address is determined by the
decoding logic and is chosen such that HCNTL1 = 0,
HCNTL0 = 0 and HHWIL = 0.

On the C240 EVM, the RAMOE on the GAL device
controls the read from external memory operation. On the
other hand, RAMWE controls the write to memory operation
[11]. These signals are used as separate strobes for the

1HDS and 2HDS for read and write. The C240 WR /
signal is connected to the HPI WHR / signal input.
HWOB=1 indicates that the first write is the least significant
half word. The connection diagram for the interface
between the C6701 and the C240 EVM is shown in Figure 5.

]0:1[HBE = 0 since only a half word (16 bits) is written
by the C240 during a write operation.

The HPI Control register (HPIC) is normally the first
register accessed to set the configuration bits and initialize
the interface [10]. The DSPINT bit can be used by the C240

to interrupt the C6701. The FETCH bit of the HPIC is used
with the HRDY during a read or write to set up a software
handshake.

Knowing the base address of the C6701 HPI chosen during
the design, the addresses of the control, address and data
registers of the HPI are relative displacements to this address
and are thus accessible by programs written on the host
C240. For example, if
�hpiBaseAddr� denotes the base address of the C6701 HPI
chosen to access the control register first half word.
Then:
�hpiBaseAddr+1� accesses the second half word of the
control register HPIC to change the control settings and
initialize the interface.
�hpiBaseAddr+2� accesses the first half word of the address
register HPIA to write the address of the C6701 address map
to which access is required.
�hpiBaseAddr+3� accesses the second half word of the
address register HPIA to write the address of the C6701
address map to which access is required.

HD [15:0]

HR/W

HCNTL [1:0]

HHWIL

HRDY

 TMS320C6701 EVM

HCS

1HDS
2HDS

HAS

0HBE
1HBE

HINT

 DATA [15:0]

 WR /

 ADDRESS

 READY

TMS320C240 EVM

 DS
 RAMOE
 RAMWE

 INTERRUPT

VCC

GND

Figure 5. Interface between the C6701 and C240 through the HPI.

�hpiBaseAddr+4� accesses the first half word of the data
corresponding to the address placed in the address register
through HPID.
�hpiBaseAddr+5� accesses the second half word of the data
corresponding to the address placed in the address register
through HPID.

V. CONCLUSIONS

The paper demonstrated an implementation of NNs to aid
SRM control using the C6701 EVM. The implementation
gave an idea of the possible execution speeds. The study
indicated the feasibility of implementing several NNs to aid
in tackling different aspects of the SRM control problem. A
scheme for interfacing the C6701 EVM and the C240 EVM
was also presented. At the present time, the cost of the
C6701 may make it unfeasible for low-power low-cost
drives. However, the benefits in control obtained by
applying NN aids makes it attractive for the higher-power
drives. The feasibility of incorporating high speeds NNs as
control aids when they are implemented on the C6xxx
architecture may also indicate the direction for possible
enhancements in the architecture of DSPs such as the C240,
that are specialized for motion control. It might be useful to
incorporate some of the features of express-DSPs such as the
C6xxx on the motion control DSPs to allow the
implementation of more advanced and adaptive control
techniques based on NNs.

ACKNOWLEDGEMENTS

The authors greatly appreciate the financial and technical
support from the Office of Naval Research under Grant
N00014-98-1-0617 as well as the support extended by the
Texas Instruments DSP University Program for this work.
The authors also appreciate the FEA data provided by Mr. R.
Marcelo Schupbach.

VI. REFERENCES

[1] T. J. E. Miller, Switched Reluctance Motors and their Control, Oxford Science
Publications, 1993.

[2] A. Michaelides, C. Pollock, � Short Flux Paths Optimize the
Efficiency of a 5-Phase Switched Reluctance Drive�, Conference
Proceedings of the 1995 Annual Meeting of the IEEE Industry
Applications Society, pp.286-293.

[3] B. C. Mecrow, "New Winding Configurations for Doubly Salient
Reluctance Machines", IEEE Transactions on Industry Applications,
Vol. 32, No. 6, November-December 1996, pp. 1348-1356.

[4] J. Moon, S. Oh, J. Ahn, Y. Hwang, " Switched Reluctance Motor with
2-Phase Excitation", Conference Proceedings of the 1998 Annual
Meeting of the IEEE Industry Applications Society, pp. 547-552.

[5] M.Ehsani, B. Fahimi, G. Suresh, J. Mahdavi, �A New Approach to
Model Switched Reluctance Motor Drive; Application to Dynamic
Performance Prediction, Control and Design�, Power Electronics
Specialist Conference, pp. 2097-2102, 1998.

[6] R.M.Schupbach, Switched-Reluctance Motors: Dynamic Simulation
Techniques, M.S. Thesis, Department of Electrical Engineering,
University of Arkansas, July 2000.

[7] Swanson analysis systems, ANSYS Revision 5.0 Tutorials, 1992.
[8] TI literature number SPRU198C: TMS32062x/TMS32067x

Programmer�s G uide, May 1999.
[9] TI literature number SPRU301C: TMS320C6000 Code Composer

Studio Tutorial, February 2000.
[10] TI literature number SPRU190C: TMS320C6000 Peripherals, April

1999.
[11] TI literature number SPRU248A: TMS320C24x DSP Controllers

Evaluation Module, August 1997.

