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Abstract - Neural Networks (NNs) can be employed to aid in the 
real-time execution of the torque-prediction and position-
estimation tasks in Switched Reluctance Motor (SRM) drives. 
This paper describes the implementation of such NNs on the 
TMS320C6701 EVM and highlights the Code Composer Studio 
Version 1.2 (CCS) features that aid the rapid development of the 
application.  Finally, the paper describes the scheme for 
interfacing the C6701 EVM to a C240 EVM used for generating 
the PWM signals for a SRM drive. 
 

I. INTRODUCTION 
 

SRM drives are now increasing in popularity due to their 
simple construction features, feasibility for high-speed 
operation and ability to design them to match an application 
[1].  Several advantages have been identified for operating 
the SRM in the multi-phase mode [2-4].  For control under 
these conditions, it is essential to know (or map) the values 
of the SRM output variables (e.g., torque) and the machine 
parameters at different values of the terminal variables (i.e., 
currents and rotor position). 
 
SRMs typically operate at high levels of saturation of the 
magnetic circuit.  As a result, the mapping between the SRM 
input variables, output variables and parameters is highly 
nonlinear.  Many techniques have been reported in the past 
for on-line calculation of these variables under a single-
phase operating mode [5].  However, it is difficult to 
develop equations to calculate easily and accurately the 
performance variables and parameters under the multi-phase 
excitation mode.  The superposition principle cannot be 
applied to the multi-phase operation mode by extending the 
single-phase operation results due to the nonlinear 
electromagnetic circuit behavior [6].  Hence, a multi-input, 
single-output mapping is required between the SRM 
terminal variables and the output or parameters to achieve 
the desired accuracy in control tasks. Also, it is desirable 
that this mapping adapts to changes in the parameters of the 
drive with frequency, temperature and aging effects.  These 
requirements could be met successfully if NNs are applied to 
provide the desired mapping since they could be also trained 
on-line to adapt to parameter variations.  However, the main 
obstacle of NNs in the past has been their execution speeds 
that limit their applicability in real-time control tasks. 

This paper first describes the intended application of NNs 
for SRM control.  Then, it reports on the NN implementation 
entirely in ANSI C using the features of Code Composer 
Studio Version 1.2.  The profiling techniques available in the 
CCS to aid the rapid code development are then applied to 
measure the NN execution time of the different stages.  The 
SRM input variables obtained through simulations at 
different operating conditions are then used to test the NN 
operation and response.  Finally, the paper gives an outline 
of the schematic for interfacing the C6701 EVM with a 
C240 EVM that takes care of the low-level tasks of 
generating the PWM signals for SRM drive control. 
 
 

II. NN APPLICATIONS FOR SRM CONTROL 
 
This Section addresses the use of NNs in the control of a 
four-phase 8/6 SRM prototype for an electric vehicle 
application.  Specifically, NNs can be applied for identifying 
the nonlinear relationship between the terminal variables 
with the internal parameters and output variables.  
 
Accurate electromagnetic torque feedback is essential in a 
torque controller.  In the particular case of the SRM, the 
electromagnetic torque is a function of the winding currents 
and rotor position.  The NN should be trained using static 
torque measurements at different combinations of current 
levels in the excited windings and at different rotor 
positions.  We used an implementation that predicts the 
torque as a function of two excited winding currents and 
rotor position.  The two chosen winding currents are those of 
a phase producing motoring torque (called the working 
phase) and the one ahead of it (called the leading phase); see 
Figure 1.  The rotor position is measured with respect to the 
working phase.  With this idea in mind, the NN for torque 
prediction of this SRM prototype is trained for the angle 
range from �30° to 0° (with respect to the working phase) 
and for currents from 0 to 15 A in the working and leading 
phases at various combinations.  For our designed SRM and 
the results presented in this paper, we obtained the above 
static torque mapping using ANSYSTM-based Finite-
Element-Analysis (FEA) simulations [7] since the SRM was 
being constructed. 



The NN was then trained and its structure was optimized 
using MATLABTM.  The desired performance accuracy was 
obtained using a NN consisting of a input layer having 3 
neurons, a hidden layer having 7 neurons and an output layer 
having 1 neuron (see Figure 2).  The hidden layer has log-
sigmoid activation functions whereas the output layer has a 
linear activation function. 
 
NNs can be also used to aid the position-estimation task by 
predicting the mutual interaction factor between the working 
and leading phases as a function of the winding currents and 
rotor position.  This paper only describes the implementation 
of the NN for torque prediction on the TMS320C6701 EVM.  
 
 

III. DESCRIPTION OF THE NN IMPLEMENTATION 
 

We implemented the NN on the TMS320C6701 EVM 
entirely in software using the C language and the features 
available in the CCS Ver 1.2 [8-11].  From the NN structure 
in Figure 2, one can anticipate that an important portion of 
the computational time for the torque output is due to the 
calculation of the weighted sums at each neuron of the 
hidden and output layers.  The C language code 
implementing these calculations has a nested loop structure. 
At each neuron, the first step is to compute the weighted 
sum at each neuron of the hidden layer for the activation 
functions.  The bias at each neuron is then added to this sum 
to obtain the net activation input.  This is then propagated 
through the activation function at the neuron.  The code in 
our first implementation had the following form: 
 
 

void comptout() 
{ 

int i,j; 
 for (j=0;j<n1;j++) netin1[j]=bias1[j]; 
 for (j=0;j<n1;j++) 
 { 
  for (i=0;i<n0;i++) netin1[j]+=weight1[j][i]*netin0[i]; 
  actv1[j]=squash(netin1[j]); 
 }                        

netin2[0]=bias2[0]; 
for (i=0;i<n1;i++) netin2[0]+=weight2[0][i]*actv1[i]; 
netout=netin2[0]; 

} 
where float squash(float) computes the log-sigmoid function using the 
functions from the math library. 
 
Another time-consuming activity is the computation of the 
activation using the following log-sigmoid function: 
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One can use the function �exp()� or �expf()� to implement 
this equation in the C program.  The CCS profiler was used 
to measure the number of cycles required by each function. 
Also, the precision of the value returned by the exp() and 
expf() functions was noted.  Based on this, it was determined 
that the expf() function requires much lesser number of 
cycles (390) than the exp() function (1030) and also offers 
adequate precision for the application.  The log-sigmoid 
function value, thus computed, has a value of 0 for x<=-15 
and a value of 1.0 for x>=15.  As a result, it is necessary to 
compute this function only in the range [�15 < x < 15]. 
 
 

Figure 1.   Illustration of the working, leading and trailing phases in the 
four-phase 8/6 SRM prototype. 
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Figure 2.    The feed-forward neural network used for torque estimation. 



With the log-sigmoid computation using the expf() function, 
the forward propagation (computing the torque output) takes 
about 3900 cycles in the worst case when [�15 < x < 15]. 
 
This is because the usage of the expf() function leads to the 
disadvantage that the code contains function calls that 
cannot be software pipelined.  To be able to use code that 
can be pipelined, we used the �lookup-table� technique for 
determining the log-sigmoid function values for inputs 
between the range �15 to 15; these computed values were 
stored in a lookup table.  For a given input value for which 
the function value is required, the index into the table is 
calculated using: 
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where sigPoints is the number of points in the lookup table 
for the log-sigmoid function.  This equation was 
implemented in the C program using type-casting to integer 
value.  However, it was found that direct implementation of 
this equation in the C program leads to the requirement of a 
large number of cycles (about 2800 cycles in the worst case 
with [�15 < x < 15]) because the division process which is 
used in the index computation is very time consuming.  This 
was overcome by replacing the fraction sigPoints/30 by its 
value (say q) in the program; that is 
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The initial code using this formulation required about 540 
cycles for the forward propagation because the code uses 
simple addition and multiplication that are the �least 
expensive� for the processing.  Also, the compiler was able 
to setup better pipelining since the number of registers 
required during each iteration was small.  The loop structure 
and the arrangement of the code was further improved using 
the CCS Ver 1.2 features [8-11] and the final code obtained 
required only 217 cycles for the torque computation by 
forward propagation.  These 217 cycles at a clock of 133 
MHz mean that the C6701 requires only 
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forward propagation. 
 
The following features of the CCS were used for improving 
the code arrangement and pipelining [8]: 
 
• The profiler was used to determine the number of cycles 

taken by each section of the code and thus identify the 
�expensive� sections. 

• The #pragma MUST_ITERATE directive was used to 
pass the information about the trip count (number of 
loop iterations) to the compiler. 

• The #pragma UNROLL directive was used to unroll 
small loops and increase the number of instructions 
available for execution in the pipeline. 

• The �pm and �mt compiler options were respectively 
used to direct the compiler to use the trip count data for 
pipelining, and to indicate the absence of memory 
aliasing. 

• The �k option preserved the .asm file for inspection. 
The compiler includes feedback about the pipelining in 
this file and also indicates better options that the user 
might choose.  The code was rearranged till smaller 
iteration intervals and a larger number of parallel 
iterations were obtained. 

 
The final code for the forward propagation has the following 
form: 
 
void comptout() 
{ 

int j;                  
int m;         
#pragma MUST_ITERATE(n1); 
for (j=0;j<n1;j++) 
{  

netin1[j]=bias1[j];    
netin1[j]+=weight1[j][0]*netin0[0]+weight1[j][1] 
                netin0[1]+weight1[j][2]netin0[2]; 

}  
#pragma MUST_ITERATE(n1);  
for (j=0;j<n1;j++) 

  {    
  if ((netin1[j]>-15)&&(netin1[j]<15)) 
  {  
   m=(int)((netin1[j]+15.)*80);   

  actv1[j]=sigTable[m]; 
  }    

 if (netin1[j]<-15) {actv1[j]=0.0;} 
  if (netin1[j]>15) {actv1[j]=1.0;} 

}                          
netin2[0]=bias2[0];  
#pragma UNROLL(n1);        
for (j=0;j<n1;j++) netin2[0]+=weight2[0][j]*actv1[j]; 
netout=netin2[0]; 

} 
where sigTable[] contains the value for the log-sigmoid function in the 
range �15 to 15 and has 2400 points. 
 
The process of learning by error back-propagation involves 
the computation of activations at the neurons.  The back-
propagation algorithm was also implemented in C and the 
code was then optimized.  The resulting code executed in 
344 cycles or 2.58 µs per iteration. 
 
For electric drives applications, torque feedback at a 
sampling rate of about 25 kHz maybe considered to be 
adequate under most conditions.  Since the C6701 is able to 
compute the torque output under multi-phase operation at a 
much higher speed, there is sufficient time available between 
the samples to schedule training of an adaptive NN based 
model (which changes with the actual motor parameters) 
based on on-line measurements. 



This can be used to schedule calculations to compute the 
new actual values of torque.  Finally, the error between the 
NN torque output and the new calculated value can be used 
to schedule training of the torque NN.  Thus, the C6701 can 
be used to implement several NNs that cannot only estimate 
the drive output, but also adapt to changing drive 
parameters.  
 
 

IV. TESTING OF THE NN USING PROBE POINTS 
 
The CCS has the facility to connect data from files on the 
PC to the program running on the target DSP. This is done 
using probe points [9].  The terminal current and rotor 
position data were obtained from SIMULINKTM based 
simulations [6] and the data corresponding to two different 
speeds, 100 rpm and 6000 rpm, were stored in ASCII text 
files in floating-point format.  Probe points were used to 
couple these data files at runtime to the C6701.  This was 
used to test the NN output.  Portions of the resulting graphs 
for the two winding currents, the rotor position and the 
output torque are included as Figures 3 and 4, which are 
screen snapshots taken during the simulations. 
 
With sigPoints equal to 2400, it was found that the resulting 
torque waveform includes additional high-frequency noise 
introduced by the NN due to rounding of the index value.  
Increasing sigPoints to 6000 mitigated this noise. 
 
 

V. INTERFACING THE C6701 EVM TO THE C240 EVM 
 
The intended role of the C6701 in the SRM drive system is 
to provide computational support to the drive controller.  
The main reason is that present-day DSPs for motion control 
do not have the required bandwidth to implement novel 
control algorithms (e.g., model reference adaptive control) 
when the electric motor is running at high speeds (e.g., 
greater than 6000rpm).  In our implementation, the SRM 
will be controlled, at the low-level, through PWM signals 
generated using the C240 EVM.  To transfer the computed 
torque value to the C240 EVM as feedback, an interface 
between the two DSPs has to be designed.  This section 
presents an overview of the efforts in this direction. The 
interface between the C6701 and the C240 EVM can be 
implemented conveniently through the C6701 Host Port 
Interface (HPI) [10]. 
 
The HPI is a 16-bit-wide parallel port through which the 
C6701 memory space is visible to the host processor (the 
C240, in this case).  The C240 functions as a master to the 
interface.  The data exchange can take place using internal or 
external memory.  The C240 can also access the memory 
mapped peripherals.  Connectivity to the C6701�s memory 
space is provided through the DMA controller in the CPU.  
 
The HRDY  pin can be used to insert a delay during a 
transfer and characterize the data transfer speed through the 
HPI. Since the C240 has a separate address bus, the HAS  
can be inactive high at all times.  

Figure 3.   Test results of the NN processing using probe points in CCS 
Ver 1.2 at 100 rpm.  The graphs indicate (CCW from the top left 

corner) the rotor position (with respect to the working phase), the NN 
torque output, the current in the leading phase, and the current in the 

working phase. 

Figure 4.   Test results of the NN processing using probe points in 
CCS Ver 1.2 at 6000 rpm.  The graphs indicate (CCW from the top 

left corner) the rotor position (with respect to the working phase), the 
NN torque output, the current in the leading phase, and the current in 

the working phase. 



HCNTL [1:0] values would be set by decoding the address 
of the C240.  The base address is determined by the 
decoding logic and is chosen such that HCNTL1 = 0, 
HCNTL0 = 0 and HHWIL = 0. 
 
On the C240 EVM, the RAMOE on the GAL device 
controls the read from external memory operation.  On the 
other hand, RAMWE controls the write to memory operation 
[11].  These signals are used as separate strobes for the 

1HDS  and 2HDS  for read and write.  The C240 WR /  
signal is connected to the HPI WHR / signal input.  
HWOB=1 indicates that the first write is the least significant 
half word.  The connection diagram for the interface 
between the C6701 and the C240 EVM is shown in Figure 5.  

]0:1[HBE  = 0 since only a half word (16 bits) is written 
by the C240 during a write operation. 
 
The HPI Control register (HPIC) is normally the first 
register accessed to set the configuration bits and initialize 
the interface [10]. The DSPINT bit can be used by the C240 

to interrupt the C6701. The FETCH bit of the HPIC is used 
with the HRDY during a read or write to set up a software 
handshake. 
 
Knowing the base address of the C6701 HPI chosen during 
the design, the addresses of the control, address and data 
registers of the HPI are relative displacements to this address 
and are thus accessible by programs written on the host 
C240. For example, if 
�hpiBaseAddr� denotes the base address of the C6701 HPI 
chosen to access the control register first half word.   
Then: 
�hpiBaseAddr+1� accesses the second half word of the 
control register HPIC to change the control settings and 
initialize the interface.  
�hpiBaseAddr+2� accesses the first half word of the address 
register HPIA to write the address of the C6701 address map 
to which access is required. 
�hpiBaseAddr+3� accesses the second half word of the 
address register HPIA to write the address of the C6701 
address map to which access is required. 
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Figure 5.   Interface between the C6701 and C240 through the HPI. 



�hpiBaseAddr+4� accesses the first half word of the data 
corresponding to the address placed in the address register 
through HPID. 
�hpiBaseAddr+5� accesses the second half word of the data 
corresponding to the address placed in the address register 
through HPID. 
 

V. CONCLUSIONS 
 

The paper demonstrated an implementation of NNs to aid 
SRM control using the C6701 EVM.  The implementation 
gave an idea of the possible execution speeds.  The study 
indicated the feasibility of implementing several NNs to aid 
in tackling different aspects of the SRM control problem.  A 
scheme for interfacing the C6701 EVM and the C240 EVM 
was also presented.  At the present time, the cost of the 
C6701 may make it unfeasible for low-power low-cost 
drives.  However, the benefits in control obtained by 
applying NN aids makes it attractive for the higher-power 
drives.  The feasibility of incorporating high speeds NNs as 
control aids when they are implemented on the C6xxx 
architecture may also indicate the direction for possible 
enhancements in the architecture of DSPs such as the C240, 
that are specialized for motion control. It might be useful to 
incorporate some of the features of express-DSPs such as the 
C6xxx on the motion control DSPs to allow the 
implementation of more advanced and adaptive control 
techniques based on NNs. 
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